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Preface

Not so long ago, multivariate analysis consisted solely of linear methods
illustrated on small to medium-sized data sets. Moreover, statistical com-
puting meant primarily batch processing (often using boxes of punched
cards) carried out on a mainframe computer at a remote computer facil-
ity. During the 1970s, interactive computing was just beginning to raise its
head, and exploratory data analysis was a new idea. In the decades since
then, we have witnessed a number of remarkable developments in local
computing power and data storage. Huge quantities of data are being col-
lected, stored, and efficiently managed, and interactive statistical software
packages enable sophisticated data analyses to be carried out effortlessly.
These advances enabled new disciplines called data mining and machine
learning to be created and developed by researchers in computer science
and statistics.

As enormous data sets become the norm rather than the exception, sta-
tistics as a scientific discipline is changing to keep up with this development.
Instead of the traditional heavy reliance on hypothesis testing, attention
is now being focused on information or knowledge discovery. Accordingly,
some of the recent advances in multivariate analysis include techniques
from computer science, artificial intelligence, and machine learning theory.
Many of these new techniques are still in their infancy, waiting for statistical
theory to catch up.

The origins of some of these techniques are purely algorithmic, whereas
the more traditional techniques were derived through modeling, optimiza-
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tion, or probabilistic reasoning. As such algorithmic techniques mature, it
becomes necessary to build a solid statistical framework within which to
embed them. In some instances, it may not be at all obvious why a partic-
ular technique (such as a complex algorithm) works as well as it does:

When new ideas are being developed, the most fruitful approach
is often to let rigor rest for a while, and let intuition reign — at
least in the beginning. New methods may require new concepts
and new approaches, in extreme cases even a new language, and
it may then be impossible to describe such ideas precisely in the
old language.

— Inge S. Helland, 2000

It is hoped that this book will be enjoyed by those who wish to under-
stand the current state of multivariate statistical analysis in an age of high-
speed computation and large data sets. This book mixes new algorithmic
techniques for analyzing large multivariate data sets with some of the more
classical multivariate techniques. Yet, even the classical methods are not
given only standard treatments here; many of them are also derived as spe-
cial cases of a common theoretical framework (multivariate reduced-rank
regression) rather than separately through different approaches. Another
major feature of this book is the novel data sets that are used as examples
to illustrate the techniques.

I have included as much statistical theory as I believed is necessary to
understand the development of ideas, plus details of certain computational
algorithms; historical notes on the various topics have also been added
wherever possible (usually in the Bibliographical Notes at the end of each
chapter) to help the reader gain some perspective on the subject matter.
References at the end of the book should be considered as extensive without
being exhaustive.

Some common abbreviations used in this book should be noted: “iid”
means independently and identically distributed; “wrt” means with respect
to; and “lhs” and “rhs” mean left- and right-hand side, respectively.

Audience
This book is directed toward advanced undergraduate students, gradu-

ate students, and researchers in statistics, computer science, artificial in-
telligence, psychology, neural and cognitive sciences, business, medicine,
bioinformatics, and engineering. As prerequisites, readers are expected to
have had previous knowledge of probability, statistical theory and methods,
multivariable calculus, and linear/matrix algebra. Because vectors and ma-
trices play such a major role in multivariate analysis, Chapter 3 gives the
matrix notation used in the book and many important advanced concepts
in matrix theory. Along with a background in classical statistical theory
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and methods, it would also be helpful if the reader had some exposure to
Bayesian ideas in statistics.

There are various types of courses for which this book can be used, in-
cluding data mining, machine learning, computational statistics, and for
a traditional course in multivariate analysis. Sections of this book have
been used at Temple University as the basis of lectures in a one-semester
course in applied multivariate analysis to statistics and graduate business
students (where technical derivations are skipped and emphasis is placed
on the examples and computational algorithms) and a two-semester course
in advanced topics in statistics given to graduate students from statistics,
computer science, and engineering. I am grateful for their feedback (includ-
ing spotting typos and inconsistencies).

Although there is enough material in this book for a two-semester course,
a one-semester course in traditional multivariate analysis can be drawn
from the material in Sections 1.1–1.3, 2.1–2.3, 2.5, 2.6, 3.1–3.5, 5.1–5.7, 6.1–
6.3, 7.1–7.3, 8.1–8.7, 12.1–12.4, 13.1–13.9, 15.4, and 17.1–17.4; additional
parts of the book can be used as appropriate.

Software
Software for computing the techniques described in this book is publicly

available either through routines in major computer packages or through
download from Internet websites. I have used primarily the R, S-Plus, and
Matlab packages in writing this book. In the Software Packages section at
the ends of certain chapters, I have listed the relevant R/S-Plus routines
for the respective chapter as well as the appropriate toolboxes in Matlab.
I have also tried to indicate other major packages wherever relevant.

Data Sets
The many data sets that illustrate the multivariate techniques presented

in this book were obtained from a wide variety of sources and disciplines and
will be made available through the book’s website. Disciplines from which
the data were obtained include astronomy, bioinformatics, botany, chemo-
metrics, criminology, food science, forensic science, genetics, geoscience,
medicine, philately, physical anthropology, psychology, soil science, sports,
and steganography. Part of the learning process for the reader is to become
familiar with the classic data sets that are associated with each technique.
In particular, data sets from popular data repositories are used to compare
and contrast methodologies. Examples in the book involve small data sets
(if a particular point or computation needs clarifying) and large data sets
(to see the power of the techniques in question).

Exercises
At the end of every chapter (except Chapter 1), there is a number of

exercises designed to make the reader (a) relate the problem to the text and
fill in the technical details omitted in the development of certain techniques,
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(b) illustrate the techniques described in the chapter with real data sets
that can be downloaded from Internet websites, and (c) write software to
carry out an algorithm described in the chapter. These exercises are an
integral part of the learning experience. The exercises are not uniform in
level of difficulty; some are much easier than others, and some are taken
from research publications.

Book Website
The book’s website is located at:

http://astro.ocis.temple.edu/~alan/MMST

where additional materials and the latest information will be available,
including data sets and R and S-Plus code for many of the examples in
the book.
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1
Introduction and Preview

1.1 Multivariate Analysis

This book invites the reader to learn about multivariate analysis, its mod-
ern ideas, innovative statistical techniques, and novel computational tools,
as well as exciting new applications.

The need for a fresh approach to multivariate analysis derives from three
recent developments. First, many of our classical methods of multivariate
analysis have been found to yield poor results when faced with the types
of huge, complex data sets that private companies, government agencies,
and scientists are collecting today; second, the questions now being asked
of such data are very different from those asked of the much-smaller data
sets that statisticians were traditionally trained to analyze; and, third, the
computational costs of storing and processing data have crashed over the
past decade, just as we see the enormous improvements in computational
power and equipment. All these rapid developments have now made the
efficient analysis of more complicated data a lot more feasible than ever
before.

Multivariate statistical analysis is the simultaneous statistical analysis
of a collection of random variables. It is partly a straightforward extension
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2 1. Introduction and Preview

of the analysis of a single variable, where we would calculate, for example,
measures of location and variation, check violations of a particular distrib-
utional assumption, and detect possible outliers in the data. Multivariate
analysis improves upon separate univariate analyses of each variable in a
study because it incorporates information into the statistical analysis about
the relationships between all the variables.

Much of the early developmental work in multivariate analysis was mo-
tivated by problems from the social and behavioral sciences, especially ed-
ucation and psychology. Thus, factor analysis was devised to provide a
statistical model for explaining psychological theories of human ability and
behavior, including the development of a notion of general intelligence;
principal component analysis was invented to analyze student scores on
a battery of different tests; canonical variate and correlation analysis had
a similar origin, but in this case the relationship of interest was between
student scores on two separate batteries of tests; and multidimensional scal-
ing originated in psychometrics, where it was used to understand people’s
judgments of the similarity of items in a set.

Some multivariate methods were motivated by problems in other scien-
tific areas. Thus, linear discriminant analysis was derived to solve a taxo-
nomic (i.e., classification) problem using multiple botanical measurements;
analysis of variance and its big brother, multivariate analysis of variance,
derived from a need to analyze data from agricultural experiments; and the
origins of regression and correlation go back to problems involving heredity
and the orbits of planets.

Each of these multivariate statistical techniques was created in an era
when small or medium-sized data sets were common and, judged by today’s
standards, computing was carried out on less-than-adequate computational
platforms (desk calculators, followed by mainframe batch computing with
punched cards). Even as computational facilities improved dramatically
(with the introduction of the minicomputer, the hand calculator, and the
personal computer), it was only recently that the floodgates opened and the
amounts of data recorded and stored began to surpass anything previously
available. As a result, the focus of multivariate data analysis is changing
rapidly, driven by a recognition that fast and efficient computation is of
paramount importance to its future.

Statisticians have always been considered as partners for joint research
in all the scientific disciplines. They are now beginning to participate with
researchers from some of the subdisciplines within computer science, such
as pattern recognition, neural networks, symbolic machine learning, com-
putational learning theory, and artificial intelligence, and also with those
working in the new field of bioinformatics; together, new tools are being
devised for handling the massive quantities of data that are routinely col-
lected in business transactions, governmental studies, science and medical
research, and for making law and public policy decisions.
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We are now seeing many innovative multivariate techniques being devised
to solve large-scale data problems. These techniques include nonparamet-
ric density estimation, projection pursuit, neural networks, reduced-rank
regression, nonlinear manifold learning, independent component analysis,
kernel methods and support vector machines, decision trees, and random
forests. Some of these techniques are new, but many of them are not so
new (having been introduced several decades ago but virtually ignored by
the statistical community). It is because of the current focus on large data
sets that these techniques are now regarded as serious alternatives to (and,
in some cases, improvements over) classical multivariate techniques.

This book focuses on the areas of regression, classification, and mani-
fold learning, topics now regarded as the core components of data mining
and machine learning, which we briefly describe in this chapter. It is im-
portant to note here that these areas overlap a great deal in content and
methodology: what is one person’s data-mining problem may be another’s
machine-learning problem.

1.2 Data Mining

1.2.1 From EDA to Data Mining

Although the revolutionary concept of exploratory data analysis (EDA)
(Tukey, 1977) changed the way many statisticians viewed their discipline,
emphasis in EDA centered on quick and dirty methods (using pencil and
paper) for the visualization and examination of small data sets. Enthusi-
asts soon introduced EDA topics into university (and high school) courses
in statistics. To complete the widespread acceptance and utility of John
Tukey’s exploratory procedures and his idiosyncratic nomenclature, EDA
techniques were included in standard statistical software packages. Never-
theless, despite the available computational power, EDA was still perceived
as a collection of small-sample, data-analytic tools.

Today, measurements on a variety of related variables often produce a
data set so large as to be considered unwieldy for practical purposes. Such
data now often range in size from moderate (say 103 to 104 cases) to large
(106 cases or more). For example, billions of transactions each year are
carried out by international finance companies; Internet traffic data are
described as “ferocious” (Cleveland and Sun, 2000); the Human Genome
Project has to deal with gigabytes (230 (∼ 109) bytes) of genetic informa-
tion; astronomy, the space sciences, and the earth sciences have terabytes
(240 (∼ 1012) bytes) and soon, petabytes (250 (∼ 1015) bytes), of data for
processing; and remote-sensing satellite systems, in general, record many
gigabytes of data each hour. Each of these data sets is incredibly large and
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complex, with millions of observations being recorded on huge numbers of
variables.

Furthermore, governmental statistical agencies (e.g., the Federal Statis-
tical Service in the United States, the National Statistical Service in the
United Kingdom, and similar agencies in other countries) are accumulat-
ing greater amounts of detailed economic, labor, demographic, and census
information than at any time in the past. The U.S. census file based solely
on administrative records, for example, has been estimated to be of size
at least 1012 bytes (Kirkendall, 1997). Other massive data sets (e.g., crime
data, health-care data) are maintained by other governmental agencies.

The availability of massive quantities of data coupled with enormous
increases in computational power for relatively low cost has led to the cre-
ation of a whole new activity called data mining. With massive data sets,
the process of data mining is not unlike a gigantic effort at EDA for “infi-
nite” data sets. For many companies, their data sets of interest are so large
that only the simplest of statistical computations can be carried out. In
such situations, data mining means little more than computing means and
standard deviations of each variable; drawing some bivariate scatterplots
and carrying out simple linear regressions of pairs of variables; and doing
some cross-tabulations. The level of sophistication of a data mining study
depends not just on the statistical software but also on the computer hard-
ware (RAM, hard disk, etc.) and database management system for storing
the data and processing the results.

Even if we are faced with a huge amount of data, if the problem is
simple enough, we can sample and use standard exploratory and confirma-
tory methods. In some instances, especially when dealing with government-
collected data, sampling may be carried out by the agency itself. Census
data, for example, is too big to be useful for most users; so, the U.S. Census
Bureau creates manageable public-use files by drawing a random sample of
individuals from the full data set and either removes or masks identifying
information (Kirkendall, 1997),

In most applications of data mining, there is no à priori reason to sam-
ple. The entire population of data values (at least, those with which we
would be interested) is readily available, and the questions asked of that
data set are usually exploratory in nature and do not involve inference. Be-
cause a data pattern (e.g., outliers, data errors, hidden trends, credit-card
fraud) is a local phenomenon, possibly affecting only a few observations,
sampling, which typically reduces the size of the data set in drastic fashion,
may completely miss the specifics of whatever pattern would be of special
interest.

Data mining differs from classical statistical analysis in that statistical
inference in its hypothesis-testing sense may not be appropriate. Further-
more, most of the questions asked of large data sets are different from the
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classical inference questions asked of much smaller samples of data. This is
not to say that sampling and subsequent modeling and inference have no
role to play when dealing with massive data sets. Sampling, in fact, may be
appropriate in certain circumstances as an accompaniment to any detailed
data exploration activities.

1.2.2 What Is Data Mining?

It is usual to categorize data mining activities as either descriptive or
predictive, depending upon the primary objective:

Descriptive data mining: Search massive data sets and discover the lo-
cations of unexpected structures or relationships, patterns, trends,
clusters, and outliers in the data.

Predictive data mining: Build models and procedures for regression,
classification, pattern recognition, or machine learning tasks, and as-
sess the predictive accuracy of those models and procedures when
applied to fresh data.

The mechanism used to search for patterns or structure in high-dimensional
data might be manual or automated; searching might require interactively
querying a database management system, or it might entail using visual-
ization software to spot anomolies in the data. In machine-learning terms,
descriptive data mining is known as unsupervised learning, whereas predic-
tive data mining is known as supervised learning.

Most of the methods used in data mining are related to methods devel-
oped in statistics and machine learning. Foremost among those methods are
the general topics of regression, classification, clustering, and visualization.
Because of the enormous sizes of the data sets, many applications of data
mining focus on dimensionality-reduction techniques (e.g., variable selec-
tion) and situations in which high-dimensional data are suspected of lying
on lower-dimensional hyperplanes. Recent attention has been directed to
methods of identifying high-dimensional data lying on nonlinear surfaces
or manifolds.

Table 1.1 lists some of the application areas of data mining and exam-
ples of major research themes within those areas. Using the massive data
sets that are routinely collected by each of these disciplines, advances in
dealing with the topics depend crucially upon the availability of effective
data mining techniques and software.

One of the most important issues in data mining is the computational
problem of scalability. Algorithms developed for computing standard ex-
ploratory and confirmatory statistical methods were designed to be fast
and computationally efficient when applied to small and medium-sized data
sets; yet, it has been shown that most of these algorithms are not up to



6 1. Introduction and Preview

the challenge of handling huge data sets. As data sets grow, many exist-
ing algorithms demonstrate a tendency to slow down dramatically (or even
grind to a halt).

In data mining, regardless of size or complexity of the problem (essen-
tially, the numbers of variables and observations), we require algorithms to
have good performance characteristics; that is, they have to be scalable.
There is no globally accepted definition of scalability, but a general idea of
what this property means is the following:

Scalability: The capability of an algorithm to remain efficient and accu-
rate as we increase the complexity of the problem.

The best scenario is that scalability should be linear. So, one goal of data
mining is to create a library of scalable algorithms for the statistical analysis
of large data sets.

Another issue that has to be considered by those working in data mining
is the thorny problem of statistical inference. The twentieth century saw
Fisher, Neyman, Pearson, Wald, Savage, de Finetti, and others provide
a variety of competing — yet related — mathematical frameworks (fre-
quentist, Bayesian, fiducial, decision theoretic, etc.) from which inferential
theories of statistics were built. Extrapolating to a future point in time,
can we expect researchers to provide a version of statistical inference for
analyzing massive data sets?

There are situations in data mining when statistical inference — in its
classical sense — either has no meaning or is of dubious validity: the former
occurs when we have the entire population to search for answers (e.g.,
gene or protein sequences, astronomical recordings), and the latter occurs
when a data set is a “convenience” sample rather than being a random
sample drawn from some large population. When data are collected through
time (e.g., retail transactions, stock-market transactions, patient records,
weather records), sampling also may not make sense; the time-ordering of
the observations is crucial to understanding the phenomenon generating
the data, and to treat the observations as independent when they may be
highly correlated will provide biased results.

Those who now work in data mining recognize that the central compo-
nents of data mining are — in addition to statistical theory and methods
— computing and computational efficiency, automatic data processing, dy-
namic and interactive data visualization techniques, and algorithm devel-
opment. There are a number of software packages whose primary purpose
is to help users carry out various techniques in data mining. The leading
data-mining products include the packages listed (in alphabetical order) in
Table 1.2.
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TABLE 1.1. Application areas of data mining

Marketing: Predict new purchasing trends. Identify “loyal” customers. Predict
what types of customers will respond to direct mailings, telemarketing
calls, advertising campaigns, or promotions. Given customers who have
purchased product A, B, or C, identify those who are likely to purchase
product D and, in general, which products sell together (popularly called
market basket analysis).

Banking: Predict which customers will likely switch from one credit card com-
pany to another. Evaluate loan policies using customer characteristics. Pre-
dict behavioral use of automated teller machines (ATMs).

Financial Markets: Identify relationships between financial indicators. Track
changes in an investment portfolio and predict price turning points. Ana-
lyze volatility patterns in high-frequency stock transactions using volume,
price, and time of each transaction.

Insurance: Identify characteristics of buyers of new policies. Find unusual claim
patterns. Identify “risky” customers.

Healthcare: Identify successful medical treatments and procedures by examin-
ing insurance claims and billing data. Identify people “at risk” for certain
illnesses so that treatment can be started before the condition becomes
serious. Predict doctor visits from patient characteristics. Use healthcare
data to help employers choose between HMOs.

Molecular Biology: Collect, organize, and integrate the enormous quantities
of data on bioinformatics, functional genomics, proteomics, gene expression
monitoring, and microarrays. Analyze amino acid sequences and deoxyri-
bonucleic acid (DNA) microarrays. Use gene expression to characterize
biological function. Predict protein structure and identify related proteins.

Astronomy: Catalogue (as stars, galaxies, etc.) hundreds of millions of objects
in the sky using hundreds of attributes, such as position, size, shape, age,
brightness, and color. Identify patterns and relationships of objects in the
sky.

Forensic Accounting: Identify fraudulent behavior in credit card usage by
looking for transactions that do not fit a particular cardholder’s buying
habits. Identify fraud in insurance and medical claims. Identify instances
of tax evasion. Detect illegal activities that can lead to suspected money
laundering operations. Identify stock market behaviors that indicate pos-
sible insider-trading operations.

Sports: Identify in realtime which players and which designed plays are most
effective at specific points in the game and in relation to combinations of
opposing players. Identify the exact moment when intriguing play patterns
occurred. Discover game patterns hidden behind summary statistics.
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TABLE 1.2. Data mining software packages.

Company Software Package

IBM Corp. Intelligent Miner
Insightful Insightful Miner
NCR Corp. Teradata Warehouse Miner
Oracle Darwin
SAS Institute, Inc. Enterprise Miner
Silicon Graphics, Inc. MineSet
SPSS, Inc. Clementine

1.2.3 Knowledge Discovery

Data mining has been described (Fayyad, Piatetsky-Shapiro, and Smyth,
1996) as a step in a more general process known as knowledge discovery in
databases (KDD). The “knowledge” acquired by KDD has to be interesting,
non-trivial, non-obvious, previously unknown, and potentially useful.

KDD is a multistep process designed to assist those who need to search
huge data sets for “nuggets of useful information.” In KDD, assistance is
expected to be intelligent and automated, and the process itself is interac-
tive and iterative.

KDD is composed of six primary activities:

1. selecting the target data set (which data set or which variables and
cases are to be used for data mining);

2. data cleaning (removal of noise, identification of potential outliers,
imputing missing data);

3. preprocessing the data (deciding upon data transformations, tracking
time-dependent information);

4. deciding which data-mining tasks are appropriate (regression, classi-
fication, clustering, etc.);

5. analyzing the cleaned data using data-mining software (algorithms for
data reduction, dimensionality reduction, fitting models, prediction,
extracting patterns);

6. interpreting and assessing the knowledge derived from data-mining
results.

In KDD, and hence in data mining, the descriptive aspect is more important
than the predictive aspect, which forms the main goal of machine learning.
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1.3 Machine Learning

Machine learning evolved out of the subfield of computer science known
as artificial intelligence (AI). Whereas the focus of AI is to make machines
intelligent, able to think rationally like humans and solve problems, ma-
chine learning is concerned with creating computer systems and algorithms
so that machines can “learn” from previous experience. Because intelligence
cannot be attained without the ability to learn, machine learning now plays
a dominant role in AI.

1.3.1 How Does a Machine Learn?

A machine learns when it is able to accumulate experience (through
data, programs, etc.) and develop new knowledge so that its performance
on specific tasks improves over time. This idea of learning from experience
is central to the various types of problems encountered in machine learning,
especially problems involving classification (e.g., handwritten digit recogni-
tion, speech recognition, face recognition, text classification). The general
goal of each of these problems is to find a systematic way of classifying a
future example (e.g., a handwriting sample, a spoken word, a face image, a
text fragment). Classification is based upon measurements on that future
example together with knowledge obtained from a learning (or training)
sample of similar examples (where the class of each example is completely
determined and known, and the number of classes is finite and known).

The need to create new methods and terminology for analyzing large
and complex data sets has led to researchers from several disciplines —
statistics, pattern recognition, neural networks, symbolic machine learning,
computational learning theory, and, of course, AI — to work together to
influence the development of machine learning.

Among the techniques that have been used to solve machine-learning
problems, the topics that are of most interest to statisticians — density
estimation, regression, and pattern recognition (including neural networks,
discriminant analysis, tree-based classifiers, random forests, bagging and
boosting, support vector machines, clustering, and dimensionality-reduction
methods) — are now collectively referred to as statistical learning and con-
stitute many of the topics discussed in this book. Vladimir N. Vapnik, one
of the founders of statistical learning theory, relates statistics to learning
theory in the following way (Vapnik, 2000, p. x):

The problem of learning is so general that almost any question
that has been discussed in statistical science has its analog in
learning theory. Furthermore, some very important general re-
sults were first found in the framework of learning theory and
then formulated in the terms of statistics.
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The machine-learning community divides learning problems into vari-
ous categories: the two most relevant to statistics are those of supervised
learning and unsupervised learning.

Supervised learning: Problems in which the learning algorithm receives
a set of continuous or categorical input variables and a correct out-
put variable (which is observed or provided by an explicit “teacher”)
and tries to find a function of the input variables to approximate the
known output variable: a continuous output variable yields a regres-
sion problem, whereas a categorical output variable yields a classifi-
cation problem.

Unsupervised learning: Problems in which there is no information avail-
able (i.e., no explicit “teacher”) to define an appropriate output vari-
able; often referred to as “scientific discovery.”

The goal in unsupervised learning differs from that of supervised learn-
ing. In supervised learning, we study relationships between the input and
output variables; in unsupervised learning, we explore particular character-
istics of the input variables only, such as estimating the joint probability
density, searching out clusters, drawing proximity maps, locating outliers,
or imputing missing data.

Sometimes there might not be a “bright-line” distinction between super-
vised and unsupervised learning. For example, the dimensionality-reduction
technique of principal component analysis (PCA) has no explicit output
variable and, thus, appears to be an unsupervised-learning method; how-
ever, as we will see, PCA can be formulated in terms of a multivariate
regression model where the input variables are also used as output vari-
ables, and so PCA can also be regarded as a supervised-learning method.

1.3.2 Prediction Accuracy

One of the most important tasks in statistics is to assess the accuracy of a
predictor (e.g., regression estimator or classifier). The measure of prediction
accuracy typically used is that of prediction error, defined generically as

Prediction error: In a regression problem, the mean of the squared errors
of prediction, where error is the difference between a true output
value and its corresponding predicted output value; in a classification
problem, the probability of misclassifying a case.

The simplest estimate of prediction error is the resubstitution error, which
is computed as follows. In a regression problem, the fitted model is used
to predict each of the (known) output values from the entire data set,
and the resubstitution estimate is then the mean of the squared residuals,
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also known as the residual mean square. In a classification problem, the
classifier predicts the (known) class of each case in the entire data set, a
correct prediction is scored as a 0 and a misclassification is scored as a 1,
and the resubstitution estimate is the proportion of misclassified cases.

Because the resubstitution estimate uses the same data as was used to
derive the predictor, the result is an overly optimistic view of prediction
accuracy. Clearly, it is important to do better.

1.3.3 Generalization

The need to improve upon the resubstitution estimator of prediction ac-
curacy led naturally to the concept of generalization: we want an estimation
procedure to generalize well; that is, to make good predictions when applied
to a data set independent of that used to fit the model. Although this is not
a new idea — it has existed in statistics for a long time (see, e.g., Mosteller
and Tukey, 1977, pp. 37–38) — the machine-learning community embraced
this particular concept (adopting the name from psychology) and made it
a central issue in the theory and applications of machine learning.

Where do we find such an independent data set? One way is to gather
fresh data. However, “when fresh gathering is not feasible, good results can
come from going to a body of data that has been kept in a locked safe
where it has rested untouched and unscanned during all the choices and
optimizations” (Mosteller and Tukey, 1977, p. 38). The data in the “locked
safe” can be viewed as holding back a portion of the current data from
the model-fitting phase and using it instead for assessment purposes. If an
independent set of data is not used, then we will overestimate the model’s
predictive accuracy.

In fact, it is now common practice — assuming the data set is large
enough — to use a random mechanism to separate the data into three
nonoverlapping and independent data sets:

a learning (or training) set L, a data set where “anything goes . . . in-
cluding hunches, preliminary testing, looking for patterns, trying large
numbers of different models, and eliminating outliers” (Efron, 1982,
p. 49);

a validation set V, a data set to be used for model selection and assess-
ment of competing models (usually on the basis of predictive ability);

a test set T , a data set to be used for assessing the performance of a
completely specified final model.

The key assumption here is that the three subsets of the data are each
generated by the same underlying distribution. In some instances, learning
data may be taken from historical records.
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As a simple guideline, the learning set should consist of about 50% of
the data, whereas the validation and test sets may each consist of 25%
(although these percentages are not written in stone). In some instances,
we may find it convenient to merge the validation set with the test set,
thus forming a larger test set. For example, we often see publicly available
data sets in Internet databases divided into a learning set and a test set.

1.3.4 Generalization Error

In supervised learning problems, it is important to assess how closely a
particular model (function of the inputs) fits the data (the outputs). As
before, we use prediction error as our measure of prediction accuracy.

In regression problems, there are two different types of prediction error.
For both types, we first fit a model to the learning set L. Then, we use that
fitted model to predict the output values of either L (given input values
from L) or the test set T (given input values from T ). Prediction error is
the mean (computed only over the appropriate data set) of the squared-
errors of prediction (where error = true output value – predicted output
value). If we average over L, the prediction error is called the regression
learning error (equivalent to the resubstitution estimate computed only
over L), whereas if we average over T , the prediction error is called the
regression test error.

A similar strategy is used in classification problems; only the definition
of prediction error is different. We first build a classifier from L. Next, we
use that classifier to predict the class of each data vector in either L or T .
For each prediction, we assign the value of 0 to a correct classification and 1
to a classification error. The prediction error is then defined as the average
of all the 0s and 1s over the appropriate data set (i.e., the proportion of
misclassified observations). If we average over L, then prediction error is
referred to as the classification learning error (equivalent to the resubstitu-
tion estimate computed only over L), whereas averaging over T yields the
classification test error.

If the learning set L is moderately sized, we may feel that using only
a portion of the entire data set to fit the model is a waste of good data.
Alternative data-splitting methods for estimating test error are based upon
cross-validation (Stone, 1974) and the bootstrap (Efron, 1979):

V -fold cross-validation: Randomly divide the entire data set into, say, V
nonoverlapping groups of roughly equal size; remove one of the groups
and fit the model using the combined data from the other V −1 groups
(which forms the learning set); use the omitted group as the test set,
predict its output values using the fitted model, and compute the
prediction error for the omitted group; repeat this procedure V times,
each time removing a different group; then, average the resulting V
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prediction errors to estimate the test error. The number of groups V
can be any number from 2 to the sample size.

Bootstrap: Select a “bootstrap sample” from the entire data set by draw-
ing a random sample with replacement having the same size as the
parent data set, so that the sample may contain repeated observa-
tions; fit a model using this bootstrap sample and compute its pre-
diction error; repeat this sampling procedure, say, 1000 times, each
time computing a prediction error; then, average all the prediction
errors to estimate the test error.

These are generic descriptions of the two procedures; specific descriptions
are given in various sections of this book. In particular, the definition of
the bootstrap is actually more complicated than that given by this descrip-
tion because it depends on what is assumed about the stochastic model
generating the data. Although both cross-validation and the bootstrap are
computationally intensive techniques, cross-validation uses the entire data
set in a more efficient manner than the division into a learning set and an
independent test set. We also caution that, in some applications, it may
not make sense to use one of these procedures.

The expected prediction error over an independent test set is called infi-
nite test error or generalization error. We estimate generalization error by
the test error. One goal of generalization theory is to choose that regression
model or classifier thatgives the smallest generalization error.

1.3.5 Overfitting

To minimize generalization error, it is tempting to find a model that will
fit the data in the learning set as accurately as possible. This is not usually
advisable because it may make the selected model too complicated. The
resulting learning error will be very small (because the fitted model has
been optimized for that data set), whereas the test error will be large (a
consequence of overfitting).

Overfitting: Occurs when the model is too large or complicated, or con-
tains too many parameters relative to the size of the learning set. It
usually results in a very small learning error and a large generalization
(test) error.

One can control such temptation by following the principle known as Ock-
ham’s razor, which encourages us to choose simple models while not losing
track of the need for accuracy. Simple models are generally preferred if ei-
ther the learning set is too small to derive a useful estimate of the model
or fitting a more complex model would necessitate using huge amounts of
computational resources.
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We illustrate the idea of overfitting with a simple regression example.
Using 10 equally spaced x values as the learning set, we generate corre-
sponding y values from the function y = 0.5 + 0.25cos(2πx) + e, where the
Gaussian noise component e has mean zero and standard deviation 0.06.
We try to approximate the underlying unknown function (the cosinusoid)
by a polynomial in x, where the problem is to decide on the degree of the
polynomial. In the top-left panel of Figure 1.1, we give the cosinusoid and
the 10 generated points; in the top-right panel, a linear regression function
gives a poor fit to the points and shows the result of underfitting by using
too few parameters; in the bottom-left panel, a cubic polynomial is fitted
to the data, showing an improved approximation to the cosinusoid; and in
the bottom-right panel, by increasing the fit to a 9th-degree polynomial,
we ensure that the fitted curve passes through each point exactly. However,
the 9th-degree polynomial actually makes the fit much worse by introduc-
ing unwanted fluctuations and shows the result of overfitting by using too
many parameters.

How would such polynomial fits affect a test set obtained by using the
same x values but different noise values (hence, different y values) in the
above cosinusoid model? In Figure 1.2, we plot the prediction errors for
both the learning set and the test set. The learning error, as expected,
decreases monotonically to zero when we fit a 9th-degree polynomial. This
behavior for the learning error is typical whenever the fitted model ranges
from the very simple to the most complex. The test error decreases to a
4th degree polynomial and then increases, indicating that models with too
many parameters will have poor generalization properties.

Researchers have suggested several methods for reducing the effects of
overfitting. These include methods that employ some form of averaging
of predictions made by a number of different models fit to the learning
set (e.g., the “bagging” and “boosting” algorithms of Chapter 14) and
regularization (where complex models are penalized in favor of simpler
models). Bayesian arguments in favor of a related idea of “model averaging”
have also been proposed (see Hoeting, Madigan, Raftery, and Volinsky,
1999, for an excellent review of the topic).

1.4 Overview of Chapters

This book is divided into 17 chapters. Chapter 2 describes multivari-
ate data, database management systems, and data problems. Chapter 3
reviews basic vector and matrix notation, introduces random vectors and
matrices and their distributions, and derives maximum likelihood estimates
for the multivariate Gaussian mean, including the James–Stein shrinkage
estimator. Chapter 4 provides the elements of nonparametric density esti-
mation. Chapters 5 reviews topics in multiple linear regression, including
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FIGURE 1.1. Ten y-values corresponding to equally spaced x-values were
generated from the cosinusoid y = 0.5 + 0.25cos(2πx) + e, where the noise
component e ∼ N (0, (0.06)2). Top-left panel: the true cosinusoid is shown
in black with the 10 points in blue; top-right: the red line is the ordinary
least-squares (OLS) linear regression fit to the points; bottom-left: the red
curve is an OLS cubic polynomial fit to the points; bottom-right: the red
curve is a 9th-degree polynomial that passes through every point.
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model assessment (through cross-validation and the bootstrap), biased re-
gression, shrinkage, and model selection, concepts that will be needed in
later chapters.

In Chapter 6, we discuss multivariate regression for both the fixed-X and
random-X cases. We discuss multivariate analysis of variance and multi-
variate reduced-rank regression (RRR). RRR provides the foundation for
a unified theory of multivariate analysis, which includes as special cases
the classical techniques of principal component analysis, canonical variate
analysis, linear discriminant analysis, factor analysis, and correspondence
analysis. In Chapter 7, we introduce the idea of (linear) dimensionality re-
duction, which includes principal component analysis, canonical variate and
correlation analysis, and projection pursuit. Chapter 8 discusses Fisher’s
linear discriminant analysis. Chapter 9 introduces recursive partitioning
and classification and regression trees. Chapter 10 discusses artificial neural
networks via analogies to neural networks in the brain, artificial intelligence,
and expert systems, as well as the related statistical techniques of projec-
tion pursuit regression and generalized additive models. Chapter 11 deals
with classification using support vector machines. Chapter 12 describes the
many algorithms for cluster analysis and unsupervised learning.

In Chapter 13, we discuss multidimensional scaling and distance geome-
try, and Chapter 14 introduces committee machines and ensemble methods,
such as bagging, boosting, and random forests. Chapter 15 discusses inde-
pendent component analysis. Chapter 16 looks at nonlinear methods for di-
mensionality reduction, especially the various flavors of nonlinear principal
component analysis, and nonlinear manifold learning. Chapter 17 describes
correspondence analysis.
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Books on data mining include Fayyad, Piatetsky-Shapiro, Smyth, and
Uthurusamy (1996) and Hand, Mannila, and Smyth (2001). There are
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KDD section of the ACM: www.acm.org/sigkdd. Books on machine learn-
ing include Bishop (1995), Ripley (1996), Hastie, Tibshirani, and Friedman
(2001), MacKay (2003), and Bishop (2006).
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Data and Databases

2.1 Introduction

Multivariate data consist of multiple measurements, observations, or re-
sponses obtained on a collection of selected variables. The types of variables
usually encountered often depend upon those who collect the data (the do-
main experts), possibly together with some statistical colleagues; for it is
these people who actively decide which variables are of interest in study-
ing a particular phenomenon. In other circumstances, data are collected
automatically and routinely without a research direction in mind, using
software that records every observation or transaction made regardless of
whether it may be important or not.

Data are raw facts, which can be numerical values (e.g., age, height,
weight), text strings (e.g., a name), curves (e.g., a longitudinal record re-
garded as a single functional entity), or two-dimensional images (e.g., pho-
tograph, map). When data sets are “small” in size, we find it convenient
to store them in spreadsheets or as flat files (large rectangular arrays). We
can then use any statistical software package to import such data for sub-
sequent data analysis, graphics, and inference. As mentioned in Chapter 1,
massive data sets are now sprouting up everywhere. Data of such size need
to be stored and manipulated in special database systems.

A.J. Izenman, Modern Multivariate Statistical Techniques,
doi: 10.1007/978-0-387-78189-1 2, 17
c© Springer Science+Business Media, LLC 2008
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2.2 Examples

We first describe some examples of the data sets to be encountered in
this book.

2.2.1 Example: DNA Microarray Data

The DNA (deoxyribonucleic acid) microarray has been described as “one
of the great unintended consequences of the Human Genome Project”
(Baker, 2003). The main impact of this enormous scientific achievement
is to provide us with large and highly structured microarray data sets from
which we can extract valuable genetic information. In particular, we would
like to know whether “gene expression” (the process by which genetic in-
formation encoded in DNA is converted, first, into mRNA (messenger ri-
bonucleic acid), and then into protein or any of several types of RNA) is
any different for cancerous tissue as opposed to healthy tissue.

Microarray technology has enabled the expression levels of a huge num-
ber of genes within a specific cell culture or tissue to be monitored si-
multaneously and efficiently. This is important because differences in gene
expression determine differences in protein abundance, which, in turn, de-
termine different cell functions. Although protein abundance is difficult to
determine, molecular biologists have discovered that gene expression can
be measured indirectly through microarray experiments.

Popular types of microarray technologies include cDNA microarrays (de-
veloped at Stanford University) and high-density, synthetic, oligonucleotide
microarrays (developed by Affymetrix, Inc., under the GeneChip R© trade-
mark). Both technologies use the idea of hybridizing a “target” (which is
usually either a single-stranded DNA or RNA sequence, extracted from bio-
logical tissue of interest) to a DNA “probe” (all or part of a single-stranded
DNA sequence printed as “spots” onto a two-way grid of dimples in a glass
or plastic microarray slide, where each spot corresponds to a specific gene).

The microarray slide is then exposed to a set of targets. Two biologi-
cal mRNA samples, one obtained from cancerous tissue (the experimental
sample), the other from healthy tissue (the reference sample), are reverse-
transcribed into cDNA (complementary DNA); then, the reference cDNA
is labeled with a green fluorescent dye (e.g., Cy3) and the experimental
cDNA is labeled with a red fluorescent dye (e.g., Cy5). Fluorescence mea-
surements are taken of each dye separately at each spot on the array. High
gene expression in the tissue sample yields large quantities of hybridized
cDNA, which means a high intensity value. Low intensity values derive
from low gene expression.

The primary goal is to compare the intensity values, R and G, of the
red and green channels, respectively, at each spot on the array. The most
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popular statistic is the intensity log-ratio, M = log(R/G) = log(R)−log(G).
Other such functions include the probe value, PV = log(R − G), and the
average log-intensity, A = 1

2 (log R + log G). The logarithm in each case is
taken to base 2 because intensity values are usually integers ranging from
0 to 216 − 1.

Microarray data is a matrix whose rows are genes and whose columns
are samples, although this row-column arrangement may be reversed. The
genes play the role of variables, and the samples are the observations stud-
ied under different conditions. Such “conditions” include different experi-
mental conditions (treatment vs. control samples), different tissue samples
(healthy vs. cancerous tumors), and different time points (which may in-
corporate environmental changes).

For example, Figure 2.1 displays the heatmap for the expression levels
of 92 genes obtained from a microarray study on 62 colon tissue samples,
where the entries range from negative values (green) to positive values
(red).1 The tissue samples were derived from 40 different patients: 22 pa-
tients each provided both a normal tissue sample and a tumor tissue sample,
whereas 18 patients each provided only a colon tumor sample. As a result,
we have tumor samples from 40 patients (T1, . . . , T40) and normal samples
from 22 patients (Normal1, . . . ,Normal21), and this is the way the samples
are labeled.

From the heatmap, we wish to identify expression patterns of interest in
microarray data, focusing in on which genes contribute to those patterns
across the various conditions. Multivariate statistical techniques applied to
microarray data include supervised learning methods for classification and
the unsupervised methods of cluster analysis.

2.2.2 Example: Mixtures of Polyaromatic Hydrocarbons

This example illustrates a very common problem in chemometrics. The
data (Brereton, 2003, Section 5.1.2) come from a study of polyaromatic
hydrocarbons (PAHs), which are described as follows:2

Polyaromatic hydrocarbons (PAHs) are ubiquitous environmen-
tal contaminants, which have been linked with tumors and ef-
fects on reproduction. PAHs are formed during the burning
of coal, oil, gas, wood, tobacco, rubbish, and other organic

1The data can be found in the file alontop.txt on the book’s website. The 92 genes
are a subset of a larger set of more than 6500 genes whose expression levels were measured
on these 62 tissue samples (Alon et al, 1999).

2This quote is taken from the August 1997 issue of the Update newsletter of the
World Wildlife Fund–UK at its website www.wwf-uk.org/filelibrary/pdf/mu 32.pdf.
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FIGURE 2.1. Gene expression heatmap of 92 genes (columns) and 62
tissue samples (rows) for the colon cancer data. The tissue samples are
divided into 40 colon cancer samples (T1–T40) and 22 normal samples
(Normal1–Normal22).

substances. They are also present in coal tars, crude oil, and
petroleum products such as creosote and asphalt. There are
some natural sources, such as forest fires and volcanoes, but
PAHs mainly arise from combustion-related or oil-related man-
made sources. A few PAHs are used by industry in medicines
and to make dyes, plastics, and pesticides.

Table 2.1 gives a list of the 10 PAHs that are used in this example.
The data were collected in the following way.3 From the 10 PAHs listed

in Table 2.1, 50 complex mixtures of certain concentrations (in mg L) of
those PAHs were formed. From each such mixture, an electronic absorption

3The data, which can be found in the file PAH.txt on the book’s website, can also
be downloaded from the website statmaster.sdu.dk/courses/ST02/data/index.html.
The fifty sample observations were originally divided into two independent sets, each of
25 observations, but were combined here so that we would have more observations than
either set of data for the example.
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TABLE 2.1. Ten polyaromatic hydrocarbon (PAH) compounds.

pyrene (Py), acenaphthene (Ace), anthracene (Anth), acenaphthylene (Acy),
chrysene (Chry), benzanthracene (Benz), fluoranthene (Fluora), fluorene

(Fluore), naphthalene (Nap), phenanthracene (Phen)

spectrum (EAS) was computed. The spectra were then digitized at 5 nm
intervals into r = 27 wavelength channels from 220 nm to 350 nm. The 50
spectra are displayed in Figure 2.2. The scatterplot matrix of the 10 PAHs
is displayed in Figure 2.3. Notice that most of these scatterplots appear as
5× 5 arrays of 50 points, where only half the points are visible because of
a replication feature in the experimental design.

Using the resulting digitized values of the spectra, we wish to predict the
individual concentrations of PAHs in the mixture. In chemometrics, this
type of regression problem is referred to as multivariate inverse calibra-
tion: although the concentrations are actually the input variables and the
spectrum values are the output variables in the chemical process, the real

205 230 255 280 305 330 355

wavelength

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIGURE 2.2. Electronic absorption spectroscopy (EAS) spectra of 50
samples of polyaromatic hydrocarbons (PAH), where the spectra are mea-
sured at 25 wavelengths within the range 220–350 nm.
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FIGURE 2.3. Scatterplot matrix of the mixture concentrations of the
10 chemicals in Table 2.1. In each scatterplot, there are 50 points; in
most scatterplots, 25 of the points appear in a 5 × 5 array, and the other
25 are replications. In the remaining four scatterplots, there are eight
distinguishable points with different numbers of replications.

goal is to predict the mixture concentrations (which are difficult to deter-
mine) from the spectra (easy to compute), and not vice versa.

2.2.3 Example: Face Recognition

Until recently, human face recognition was primarily based upon identi-
fying individual facial features such as eyes, nose, mouth, ears, chin, head
outline, glasses, and facial hair, and then putting them together compu-
tationally to construct a face. The most used approach today (and the
one we describe here) is an innovative computerized system called eigen-
faces, which operates directly on an image-based representation of faces
(Turk and Pentland, 1991). Applications of such work include homeland
security, video surveillance, human-computer interaction for entertainment
purposes, robotics, and “smart” cards (e.g., passports, drivers’ licences,
voter registration).

Each face, as a picture image, might be represented by a (c×d)-matrix of
intensity values, which are usually quantized to 8-bit gray scale (0–255, with
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FIGURE 2.4. Face images of the same individual under nine different
conditions (1=centerlight, 2=glasses, 3=happy, 4=no glasses, 5=normal,
6=sad, 7=sleepy, 8=surprised, 9=wink). From the Yale Face Database.

0 as black and 255 as white). These values are then scaled and converted to
double precision, with values in [0, 1]. The values of c and d depend upon
the degree of resolution needed. The matrix is then “vec’ed” by stacking
the columns of the matrix under one another to form a cd-vector in image
space. For example, if an image is digitized into a (256 × 256)-array of
pixels, that face is now a point in a 65,536-dimensional space. We can view
all possible images of one particular face as a lower-dimensional manifold
(face space) embedded within the high-dimensional image space.

There are a number of repositories of face images. The data for this
example were taken from the Yale Face Database (Belhumeur, Hespanha,
and Kriegman, 1997).4 which contains 165 frontal-face grayscale images
covering 15 individuals taken under 11 different conditions of different illu-
mination (centerlight, leftlight, rightlight, normal), expression (happy, sad,
sleepy, surprised, wink), and glasses (with and without). Each image has

4A list of the many face databases that can be accessed on the Internet, including
the Yale Face Database, can be found at the website www.face-rec.org/databases.
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size 320× 243, which then gets stacked into an r-vector, where r = 77, 760.
Figure 2.4 shows the images of a single individual taken under 9 of those
11 conditions. The problem is one of dimensionality reduction: what is the
fewest number of variables necessary to identify these types of facial im-
ages?

2.3 Databases

A database is a collection of persistent data, where by “persistent” we
mean data that can be removed from the database only by an explicit
request and not through an application’s side effect. The most popular
format for organizing data in a database is in the form of tables (also called
data arrays or data matrices), each table having the form of a rectangular
array arranged into rows and columns, where a row represents the values of
all variables on a single multivariate observation (response, case, or record),
and a column represents the values of a single variable for each observation.

In this book, a typical database table having n multivariate observations
taken on r variables will be represented by an (r × n)-matrix,

r×n

X =

⎛
⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xr1 xr2 · · · xrn

⎞
⎟⎟⎟⎠ , (2.1)

say, having r rows and n columns. In (2.1), xij represents the value in the
ith row (i = 1, 2, . . . , r) and jth column (j = 1, 2, . . . , n) of X . Although
database tables are set up to have the form of X τ , with variables as columns
and observations as rows, we will find it convenient in this book to set X
to be the transpose of the database table.

Databases exist for storing information. They are used for any of a num-
ber of different reasons, including statistical analysis, retrieving information
from text-based documents (e.g., libraries, legislative records, case dockets
in litigation proceedings), or obtaining administrative information (e.g.,
personnel, sales, financial, and customer records) needed for managing an
organization. Databases can be of any size. Even small databases can be
very useful if accessed often. Setting up a large and complex database typi-
cally involves a major financial committment on the part of an organization,
and so the database has to remain useful over a long time period. Thus, we
should be able to extend a database as additional records become available
and to correct, delete, and update records as necessary.
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2.3.1 Data Types

Databases usually consist of mixtures of different types of variables:

Indexing: These are usually names, tags, case numbers, or serial numbers
that identify a respondent or group of respondents. Their values may
indicate the location where a particular measurement was taken, or
the month or day of the year that an observation was made.

There are two special types of indexing variables:

1. A primary key is an indexing variable (or set of indexing vari-
ables) that uniquely identifies each observation in a database
(e.g., patient numbers, account numbers).

2. A foreign key is an indexing variable in a database where that
indexing variable is a primary key of a related database.

Binary: This is the simplest type of variable, having only two possible
responses, such as YES or NO, SUCCESS or FAILURE, MALE or
FEMALE, WHITE or NON-WHITE, FOR or AGAINST, SMOKER
or NON-SMOKER, and so on. It is usually coded 0 or 1 for the two
possible responses and is often referred to as a dummy or indicator
variable.

Boolean: A Boolean variable has the two responses TRUE or FALSE but
may also have the value UNKNOWN.

Nominal: This character-string data type is a more general version of a
binary variable and has a fixed number of possible responses that
cannot be usefully ordered. These responses are typically coded al-
phanumerically, and they usually represent disjoint classifications or
categories set up by the investigator. Examples include the geograph-
ical location where data on other variables are collected, brand prefer-
ence in a consumer survey, political party affiliation, and ethnic-racial
identification of respondent.

Ordinal: The possible responses for this character-string data type are
linearly ordered. An example is “excellent, good, fair, poor, bad, aw-
ful” (or “strongly disagree” to “strongly agree”). Another example
is bond ratings for debt issues, recorded as AA+, AA, AA-, A+, A,
A-, B+, B, and B-. Such responses may be assigned scores or rank-
ings. They are often coded on a “ranking scale” of 1–5 (or 1–10). The
main problem with these ranking scales is the implicit assumption of
equidistance of the assigned scores. Brand preferences can sometimes
be regarded as ordered.
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Integer: The response is usually a nonnegative whole number and is often
a count.

Continuous: This is a measured variable in which the continuity assump-
tion depends upon a sufficient number of digits (and decimal places)
being recorded. Continuous variables are specified as numeric or dec-
imal in database systems, depending upon the precision required.

We note an important distinction between variables that are fixed and
those that are stochastic:

Fixed: The values of a fixed variable have deliberately been set in advance,
as in a designed experiment, or are considered “causal” to the phe-
nomenon in question; as a result, interest centers only on a specific
group of responses. This category usually refers to indexing variables
but can also include some of the above types.

Stochastic: The values of a stochastic variable can be considered as having
been chosen at random from a potential list (possibly, the real line or
a portion of it) in some stochastic manner. In this sense, the values
obtained are representative of the entire range of possible values of
the variable in question.

We also need to distinguish between input and output variables:

Input variable: Also called a predictor or independent variable, typically
denoted by X, and may be considered to be fixed (or preset or con-
trolled) through a statistically designed experiment, or stochastic if
it can take on values that are observed but not controlled.

Output variable: Also called a response or dependent variable, typically
denoted by Y , and which is stochastic and dependent upon the input
variables.

Most of the methods described in this book are designed to elicit informa-
tion concerning the extent to which the outputs depend upon the inputs.

2.3.2 Trends in Data Storage

As data collections become larger and larger, and areas of research that
were once “data-poor” now become “data-rich,” it is how we store those
data that is of great importance.

For the individual researcher working with a relatively simple database,
data are stored locally on hard disks. We know that hard-disk storage
capacity is doubling annually (Kryder’s Law), and the trend toward tiny,
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TABLE 2.2. Internet websites containing many different databases.

www.ics.uci.edu/pub/machine-learning-databases

lib.stat.cmu.edu/datasets

www.statsci.org/datasets.html

www.amstat.org/publications/jse/jse data archive.html

www.physionet.org/physiobank/database

biostat.mc.vanderbilt.edu/twiki/bin/view/Main/DataSets

high-capacity hard drives has outpaced even the rate of increase in number
of transistors that can be placed on an integrated circuit (Moore’s Law).
Gordon E. Moore, Intel co-founder, predicted in 1965 that the number of
transistors that can be placed on an integrated circuit would continue to
increase at a constant rate for at least 10 years. In 1975, Moore predicted
that the rate would double every two years. So far, this assessment has
proved to be accurate, although Moore stated in 2005 that his law, which
may hold for another two decades, cannot be sustained indefinitely.

Because chip speeds are doubling even faster than Moore had anticipated,
we are seeing rapid progress toward the manufacturing of very small, high-
performance storage devices. New types of data storage devices include
three-dimensional holographic storage, where huge quantities (e.g., a ter-
abyte) of data can be stored into a space the size of a sugar cube.

For large institutions, such as health maintenance organizations, educa-
tional establishments, national libraries, and industrial plants, data storage
is a more complicated issue, and the primary storage facility is usually a
remote “data warehouse.” We describe such storage facilities in Section
2.4.5.

2.3.3 Databases on the Internet

In Table 2.2, we list a few Internet websites from which databases of
various sizes can be downloaded. Many of the data sets used as examples
in this book were obtained through these websites.

There are also many databases available on the Internet that specialize
in bioinformatics information, such as biological databases and published
articles. These databases contain an amazingly rich variety of biological
data, including DNA, RNA, and protein sequences, gene expression profiles,
protein structures, transcription factors, and biochemical pathways. See
Table 2.3 for examples of such websites.

A recent development in data-mining applications is the processing and
categorization of natural-language text documents (e.g., news items, scien-
tific publications, spam detection). With the rapid growth of the Internet
and e-mail, academics, scientists, and librarians have shown enormous in-
terest in mining the structured or unstructured knowledge present in large
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collections of text documents. To help those whose research interests lie
in analyzing text information, large databases (having more than 10,000
features) of text documents are now available.

For example, Table 2.4 lists a number of text databases. Two of the most
popular collections of documents come from Reuters, Ltd., which is the
world’s largest text and television news agency; the English-language col-
lections Reuters-21578 containing 21,578 news items and RCV1 (Reuters
Corpus Volume 1) (Lewis, Yang, Rose, and Li, 2004) containing 806,791
news items are drawn from online databases. The 20 Newsgroups database
(donated by Tom Mitchell) contains 20,000 messages taken from 20 Usenet
newsgroups. The OHSUMED text database (Hersh, Buckley, Leone, and
Hickam, 1994) from Ohio State University contains 348,566 references and
abstracts derived from Medline, an on-line medical information database,
for the period 1987–1991.

Computerized databases of scientific articles (e.g., arXiv, see Table 2.4)
are assembled to (Shiffrin and Börner, 2004):

[I]dentify and organize research areas according to experts, insti-
tutions, grants, publications, journals, citations, text, and figures;
discover interconnections among these; establish the import of
research; reveal the export of research among fields; examine
dynamic changes such as speed of growth and diversification;
highlight economic factors in information production and dis-
semination; find and map scientific and social networks; and
identify the impact of strategic and applied research funding by
government and other agencies.

A common element of text databases is the dimensionality of the data,
which can run well into the thousands. This makes visualization especially
difficult. Furthermore, because text documents are typically noisy, possibly
even having differing formats, some automated preprocessing may be nec-
essary in order to arrive at high-quality, clean data. The availability of text
databases in which preprocessing has already been undertaken is proving
to be an important development in database research.

TABLE 2.3. Internet websites containing microarray databases.

www.broad.mit.edu/tools/data.html

sdmc.lit.org.sg/GEDatasets/Datasets.html

genome-www5.stanford.edu

www.bioconductor.org/packages/1.8/AnnotationData.html

www.ncbi.nlm.nih.gov/geo
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TABLE 2.4. Internet websites containing natural-language text
databases.

arXiv.org

medir.ohsu.edu/pub/ohsumed

kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

2.4 Database Management

After data have been recorded and physically stored in a database, they
need to be accessed by an authorized user who wishes to use the infor-
mation. To access the database, the user has to interact with a database
management system, which provides centralized control of all basic storage,
access, and retrieval activities related to the database, while also minimiz-
ing duplications, redundancies, and inconsistencies in the database.

2.4.1 Elements of Database Systems

A database management system (DBMS) is a software system that man-
ages data and provides controlled access to the database through a personal
computer, an on-line workstation, or a terminal to a mainframe computer or
network of computers. Database systems (consisting of databases, DBMS,
and application programs) are typically used for managing large quantities
of data. If we are working with a small data set with a simple structure,
if the particular application is not complicated, and if multiple concurrent
users (those who wish to access the same data at the same time) are not
an issue, then there is no need to employ a DBMS.

A database system can be regarded as two entities: a server (or backend),
which holds the DBMS, and a set of clients (or frontend), each of which
consists of a hardware and a software component, including application pro-
grams that operate on the DBMS. Application programs typically include
a query language processor, report writers, spreadsheets, natural language
processors, and statistical software packages. If the server and clients com-
municate with each other from different machines through a distributed
processing network (such as the Internet), we refer to the system as having
a “client/server” architecture.

The major breakthrough in database systems was the introduction by
1970 of the relational model. We call a DBMS relational if the data are
perceived by users only as tables, and if users can generate new tables
from old ones. Tables in a relational DBMS (RDBMS) are rectangular ar-
rays defined by their rows of observations (usually called records or tuples)
and columns of variables (usually called attributes or fields); the number
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of tuples is called the cardinality, and the number of attributes is called
the degree of the table. A RDBMS contains operators that enable users to
extract specified rows (restrict) or specified columns (project) from a
table and match up (join) information stored in different tables by check-
ing for common entries in common columns. Also part of a DBMS is a data
dictionary, which is a system database that stores information (metadata)
about the database itself.

2.4.2 Structured Query Language (SQL)

Users communicate with a RDBMS through a declarative query language
(or general interactive enquiry facility), which is typically one of the many
versions of SQL (Structured Query Language), usually pronounced “sequel”
or “ess-cue-ell.” Created by IBM in the early 1970s and adopted as the
industry standard in 1986, there are now many different implementations
of SQL; no two are exactly the same, and each one is regarded as a dialect.
In SQL, we can make a declarative statement that says, “From a given
database, extract data that satisfy certain conditions,” and the DBMS has
to determine how to do it.

SQL has two main sublanguages:

• a data definition language (DDL) is used primarily by database ad-
ministrators to define data structures by creating a database object
(such as a table) and altering or destroying a database object. It does
not operate on data.

• a data manipulation language (DML) is an interactive system that
allows users to retrieve, delete, and update existing data from and
add new data to the database.

There is also a data control language (DCL), a security system used by the
database administrator, which controls the privileges granted to database
users.

Before creating a database consisting of multiple tables, it is advisable to
do the following: give a unique name to each table; specify which columns
each table should contain and identify their data types; to each table, assign
a primary key that uniquely identifies each row of the table; and have at
least one common column in each table in the database.

We can then build a working data set through the DDL by using SQL
create table statements of the following form:

create table <table name> (<table elements>);

where <table name> specifies a name for the table and <table elements>
is a list separated by commas that specifies column names, their data
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types, and any column constraints. The set of data types depends upon the
SQL dialect; they include: char(c) (a column of characters where c gives
the maximum number of characters permitted in the column), integer,
decimal(a, b) (where a is the total number of digits and b is the number
of decimal places), date (in DBMS-approved format), and logical (True
or False). The column constraints include null (that column may have
empty row values) or not null (empty row values are not permitted in
that column), primary keys, and any foreign keys. A semicolon ends the
statement.

The DML includes such commands as select (allows users to retrieve
specific database information), insert (adds new rows into an existing
table), update (modifies information contained within a table), and delete
(removes rows from a table). DML commands can be quite complicated and
may include multiple expressions, clauses, predicates, or subqueries.

For example, the select statement (which supports restrict, project,
and join operations, and is the most commonly used, but also most com-
plicated SQL command) has the basic form

select <columns> from <table name> where <condition>;

where <columns> is a list of columns separated by commas. The select
command is used to gather certain attributes from a particular RDBMS
table, but where the tuples (rows) that are to be retrieved from those
columns are limited to those that satisfy a given conditional Boolean search
expression (i.e., True or False). One or more conditions may be joined
by and or or operators as in set theory (the and always precedes the or
operation). An asterisk may be used in place of the list of columns if all
columns in the database are to be selected.

A primitive form of data analysis is included within the select statement
through the use of five aggregate operators, sum, avg, max, min, and count,
which provide the obvious column statistics over all rows that satisfy any
stated conditions. For example, we can apply the command

select max(<column>) as max, min(<column>) as min from <table
name> where <condition>;

to find the maximum (saved as “max”) and minimum (saved as “min”) of
specified columns. Column statistics that are not aggregates (e.g., medians)
are not available in SQL.

The smaller RDBMSs that are available include Access (from Microsoft
Corp.), MySQL (open source), and mSQL (Hughes Technologies). These
“lightweight” RDBMSs can support a few hundred simultaneous users and
up to a gigabyte of data. All of the major statistical software packages that
operate in a Windows environment can import data stored in certain of
these smaller RDBMSs, especially Microsoft Access.
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We note that purists strongly object to SQL being thought of as a re-
lational query language because, they argue, it sacrifices many of the fun-
damental principles of the relational model in order to satisfy demands of
practicality and performance. RDBMSs are slow in general and, because
the dialects of SQL are different enough and are often incompatible with
each other, changing RDBMSs can be a nightmarish experience. Even so,
SQL remains the most popular RDBMS query language.

2.4.3 OLTP Databases

A large organization is likely to maintain a DBMS that manages a
domain-specific database for the automatic capture and storage of real-
time business transactions. This type of database is essential for handling
an organization’s day-to-day operations. An on-line transaction processing
(OLTP) system is a DBMS application that is specially designed for very
fast tracking of millions of small, simple transactions each day by a large
number of concurrent users (tellers, cashiers, and clerks, who add, update,
or delete a few records at a time in the database). Examples of OLTP data-
bases include Internet-based travel reservations and airline seat bookings,
automated teller machines (ATM) network transactions and point-of-sale
terminals, transfers of electronic funds, stock trading records, credit card
transactions and authorizations, and records of driving license holders.

These OLTP databases are dynamic in nature, changing almost contin-
uously as transactions are automatically recorded by the system minute-
by-minute. It is not unusual for an organization to employ several different
OLTP systems to carry out its various business functions (e.g., point-of-
sale, inventory control, customer invoicing). Although OLTP systems are
optimized for processing huge numbers of short transactions, they are not
configured for carrying out complex ad hoc and data analytic queries.

2.4.4 Integrating Distributed Databases

In certain situations, data may be distributed over many geographically
dispersed sites (nodes) connected by a communications network (usually
some sort of local-area network or wide-area network, depending upon dis-
tances involved). This is especially true for the healthcare industry. A huge
amount of information, for example, on hospital management practices may
be recorded from a number of different hospitals and consist of overlapping
sets of variables and cases, all of which have to be combined (or integrated)
into a single database for analysis.

Distributed databases also commonly occur in multicenter clinical trials
in the pharmaceutical industry, where centers include institutions, hospi-
tals, and clinics, sometimes located in several countries. The number of
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total patients participating in such clinical trials rarely exceeds a few thou-
sand, but there have been large-scale multicenter trials such as the Prostate
Cancer Prevention Trial (Baker, 2001), which is a chemoprevention trial in
which 18,000 men aged 55 years and older were randomized to either daily
finasteride or placebo tablets for 7 years and involved 222 sites in the United
States.

Data integration is the process of merging data that originate from mul-
tiple locations. When data are to be merged from different sources, several
problems may arise:

• The data may be physically resident in computer files each of which
was created using database software from different vendors.

• Different media formats may be used to store the information (e.g.,
audio or video tapes or DVDs, CDs or hard disks, hardcopy question-
naires, data downloaded over the Internet, medical images, scanned
documents).

• The network of computer platforms that contain the data may be
organized using different operating systems.

• The geographical locations of those platforms may be local or remote.

• Parts of the data may be duplicated when collected from different
sources.

• Permission may need to be obtained from each source when deal-
ing with sensitive data or security issues that will involve accessing
personal, medical, business, or government records.

Faced with such potential inconsistencies, the information has to be inte-
grated to become a consistent set of records for analysis.

2.4.5 Data Warehousing

An organization that needs to integrate multiple large OLTP databases
will normally establish a single data warehouse for just that purpose. The
term data warehouse was coined by W.H. Inmon to refer to a read-only,
RDBMS running on a high-performance computer. The warehouse stores
historical, detailed, and “scrubbed” data designed to be retrieved and
queried efficiently and interactively by users through a dialect of SQL.
Although data are not updated in realtime, fresh data can be added as
supplements at regular intervals.

The components of a data warehouse are
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DBMS: The publicly available RDBMSs that are almost mandatory for
data warehousing usage include Oracle (from Oracle Corp.), SQL

Server (from Microsoft Corp.), Sybase (from Sybase Inc.), Post-

greSQL (freeware), Informix (from Informix Software, Inc.), and
DB2 (from IBM Corp.). These “heavyweight” DBMSs can handle
thousands of simultaneous users and can access up to several ter-
abytes of data.

Hardware: It is generally accepted that large-scale data warehouse
applications require either massively parallel-processing (MPP) or
symmetric multiprocessing (SMP) supercomputers. Which type of
hardware is installed depends upon many factors, including the com-
plexity of the data and queries and the number of users that need to
access the system.

• SMP architectures are often called “shared everything” because
they share memory and resources to service more than a single
CPU, they run a single copy of the operating system, and they
share a single copy of each application. SMP is reputed to be
better for those data warehouses whose capacity ranges between
50GB and 100GB.

• MPP architectures, on the other hand, are called “shared noth-
ing”; they may have hundreds of CPUs in a single computer,
each node of which is a self-contained computer with its own
CPU, disk, and memory, and nodes are connected by a high-
speed bus or switch. The larger the data warehouse (with ca-
pacity at least 200GB) and the more complex the queries, the
more likely the organization will install an MPP server.

Such centralized data depositories typically contain huge quantities of in-
formation taking up hundreds of gigabytes or terabytes of disk space. Small
data warehouses, which store subsets of the central warehouse for use by
specialized groups or departments, are referred to as data marts.

More and more organizations that require a central data storage facility
are setting up their own data warehouses and data marts. For example,
according to Monk (2000), the Foreign Trade Division of the U.S. Census
Bureau processes 5 million records each month from the U.S. Customs
Service on 18,000 import commodities and 9,000 export commodities that
travel between 250 countries and 50 regions within the United States. The
raw import-export data are extracted, “scrubbed,” and loaded into a data
warehouse having one terabyte of storage. Subsets of the data that focus
on specific countries and commodities, together with two years of historical
data, are then sent to a number of data marts for faster and more specific
querying.
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It has been reported that 90 percent of all Fortune 500 companies are cur-
rently (or soon will be) engaged in some form of data warehousing activity.
Corporations such as Federal Express, UPS, JC Penney, Office Depot, 3M,
Ace Hardware, and Sears, Roebuck and Co. have installed data warehouses
that contain multi-terabytes of disk storage, and Wal-Mart and Kmart are
already at the 100 terabyte range. These retailers use their data warehouses
to access comprehensive sales records (extracted from the scanners of cash
registers) and inventory records from thousands of stores worldwide.

Institutions of higher education now have data warehouses for informa-
tion on their personnel, students, payroll, course enrollments and revenues,
libraries, finance and purchasing, financial aid, alumni development, and
campus data. Healthcare facilities have data warehouses for storing uni-
form billing data on hospital admissions and discharges, outpatient care,
long-term care, individual patient records, physician licensing, certification,
background, and specialties, operating and surgical profiles, financial data,
CMS (Centers for Medicare and Medicaid Services) regulations, and nurs-
ing homes, and that might soon include image data.

2.4.6 Decision Support Systems and OLAP

The failure of OLTP systems to deliver analytical support (e.g., statis-
tical querying and data analysis) of RDBMSs caused a major crisis in the
database market until the concept of data warehouses each with its own
decision support system (DSS) emerged. In a client/server computing envi-
ronment, decision support is carried out using on-line analytical processing
(OLAP) software tools.

There are two primary architectures for OLAP systems, ROLAP (re-
lational OLAP) and MOLAP (multidimensional OLAP); in both, multi-
variate data are set up using a multidimensional model rather than the
standard model, which emphasizes data-as-tables. The two systems store
data differently, which in turn affects their performance characteristics and
the amounts of data that can be handled.

ROLAP operates on data stored in a RDBMS. Complex multipass SQL
commands can create various ad hoc multidimensional views of a two-
dimensional data table (which slows down response times). ROLAP
users can access all types of transactional data, which are stored in
100GB to multiple-terabyte data warehouses.

MOLAP operates on data stored in a specialized multidimensional DBMS.
Variables are scaled categorically to allow transactional data to be
pre-aggregated by all category combinations (which speeds up re-
sponse times) and the results stored in the form of a “data cube”
(a large, but sparse, multidimensional contingency table). MOLAP
tools can handle up to 50GB of data stored in a data mart.
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OLAP users typically access multivariate databases without being aware
exactly which system has been implemented. There are other OLAP sys-
tems, including a hybrid version HOLAP.

The data analysis tools provided by a multidimensional OLAP system
include operators that can roll-up (aggregate further, producing marginals),
drill-down (de-aggregate to search for possible irregularities in the aggre-
gates), slice (condition on a single variable), and dice (condition on a par-
ticular category) aggregated data in a multidimensional contingency table.
Summary statistics that cannot be represented as aggregates (e.g., medi-
ans, modes) and graphics that need raw data for display (e.g., scatterplots,
time series plots) are generally omitted from MOLAP menus (Wilkinson,
2005).

2.4.7 Statistical Packages and DBMSs

Some statistical analysis packages (e.g., SAS, SPSS) and Matlab can
run their complete libraries of statistical routines against their OLAP data-
base servers.

A major effort is currently under way to provide a common interface
for the S language (i.e., S-Plus and particularly R) to access the really
big DBMSs so that sophisticated data analysis can be carried out in a
transparent manner (i.e., DBMS and platform independent). Although a
table in a RDBMS is very similar to the concept of data frame in R and
S-Plus, there are many difficulties in building such interfaces.

The R package RODBC (written by Michael Lapsley and Brian Ripley,
and available from CRAN) provides an R interface to DBMSs based upon
the Microsoft ODBC (Open Database Connectivity) standard. RODBC,
which runs on both MS Windows and Unix/Linux, is able to copy an R data
frame to a table in a database (command: sqlSave), read a table from a
DBMS into an R data frame (sqlFetch), submit an SQL query to an ODBC
database (sqlQuery), retrieve the results (sqlGetResults), and update
the table where the rows already exist (sqlUpdate). RODBC works with
Oracle, MS Access, Sybase, DB2, MySQL, PostgreSQL, and SQL

Server on MS Windows platforms and with MySQL, PostgreSQL, and
Oracle under Unix/Linux.

2.5 Data Quality Problems

Errors exist in all kinds of databases. Those that are easy to detect will
most likely be found at the data “cleaning” stage, whereas those errors
that can be quite resistant to detection might only be discovered during
data analysis. Data cleaning usually takes place as the data are received
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and before they are stored in read-only format in a data warehouse. A
consistent and cleaned-up version of the data can then be made available.

2.5.1 Data Inconsistencies

Errors in compiling and editing the resulting database are common and
actually occur with alarming frequency, especially in cases where the data
set is very large. When data from different sources are being connected,
inconsistencies as to a person’s name (especially in cases where a name
can be spelled in several different ways) occur frequently, and matching (or
“disambiguation”) has to take place before such records can be merged.
One popular solution is to employ Soundex (sound-indexing) techniques
for name matching.

To get an idea of how poor data quality can become, consider the prob-
lem of estimating the extent of the undercount from census data collected
for the 1990 U.S. census. Breiman (1994) identified a number of sources
of error, including the following: Matching errors (incorrectly matching
records from two different files of people with differing names, ages, miss-
ing gender or race identifiers, and different addresses), fabrications (the
creation of fictitious people by dishonest interviewers), census day address
errors (incorrectly recording the location of a person’s residence on census
day), unreliable interviews (many of the interviews were rejected as being
unreliable), and incomplete data (a lack of specific information on certain
members in the household). Most of the problems involving data fabri-
cation, incomplete data, and unreliable interviews apparently occurred in
areas that also had the highest estimated undercounts, such as the central
cities and minority areas.

Massive data sets are prone to mistakes, errors, distortions, and, in gen-
eral, poor data quality, just as is any data set, but such defects occur here
on a far grander scale because of the size of the data set itself. When invalid
product codes are entered for a product, they may easily be detected; when
valid product codes, however, are entered for the wrong product, detection
becomes more difficult. Customer codes may be entered inconsistently, es-
pecially those for gender identification (M and F , as opposed to 1 and 2).
Duplication of records entered into the database from multiple sources can
also be a problem. In these days of takeovers and buyouts, and mergers and
acquisitions, what was once a code for a customer may now be a problem if
the entity has since changed its description (e.g., Jenn-Air, Hoover, Norge,
Magic Chef, etc., are all now part of Maytag Corp.). Any inconsistencies
in historical data may also be difficult to correct if those who knew the
answer are no longer with the company.
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2.5.2 Outliers

Outliers are values in the data that, for one reason or another, do not
appear to fit the pattern of the other data values; visually, they are located
far away from the rest of the data. It is not unusual for outliers to be
present in a data set.

Outliers can occur for many different reasons but should not be confused
with gross errors. Gross errors are cases where “something went wrong”
(Hampel, 2002); they include human errors (e.g., a numerical value recorded
incorrectly) and mechanical errors (e.g., malfunctioning of a measuring
instrument or a laboratory instrument during analysis). The density of
gross errors depends upon the context and the quality of the data. In
medical studies, gross error rates in excess of 10% have been quoted.

Univariate outliers are easy to detect when they indicate impossible (or
“out of bounds”) values. More often, an outlier will be a value that is ex-
treme, either too large or too small. For multivariate data, outlier detection
is more difficult. Low-dimensional visual displays of the data (such as his-
tograms, boxplots, scatterplots) can encourage insight into the data and
provide at the same time a method for manually detecting some of the
more obvious univariate or bivariate outliers.

When we have a large data set, outliers may not be all that rare. Unlike a
data set of 100 or so observations, where we may find two or three outliers,
in a data set of 100,000, we should not be surprised to discover a large
number (in some cases, hundreds, and maybe even thousands) of outliers.
For example, Figure 2.5 shows a scatterplot of the size (in bytes) of each
of 50,000 packets5 containing roughly two minutes worth of TCP (transfer
control protocol) packet traffic between Digital Equipment Corporation
servers and the rest of the world on 8th March 1995 plotted against time.
We see clear structure within the scatterplot: the vast majority of points
occur within the 0–512 bytes range, and a number of dense horizontal bands
occur inside this range; these bands show that the vast majority of packets
sent consist of either 0 bytes (37% of the total packets), which are used
only to acknowledge data sent by the other side, or 512 bytes (29% of the
total packets). There are 952 packets each having more than 512 bytes,
of which 137 points are identified as outliers (with values greater than 1.5
times IQR), including 61 points equal to the largest value, 1460 bytes.

To detect true multidimensional outliers, however, becomes a test of
statistical ingenuity. A multivariate observation whose every component
value may appear indistinguishable from the rest may yet be regarded
as an outlier when all components are treated simultaneously. In large

5See www.amstat.org/publications/jse/datasets/packetdata.txt.
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FIGURE 2.5. Time-series plot of 50,000 packets containing roughly two
minutes worth of TCP (transfer control protocol) packets traffic between
Digital Equipment Corporation servers and the rest of the world on 8th
March 1995.

multivariate data sets, some combination of visual display of the data,
manual outlier detection scheme, and automatic outlier detection program
may be necessary: potential outliers could be “flagged” by an automatic
screening device, and then an analyst would manually decide on the fate
of that flagged outlier.

2.5.3 Missing Data

In the vast majority of data sets, there will be missing data values. For
example, human subjects may refuse to answer certain items in a battery
of questions because personal information is requested; some observations
may be accidentally lost; some responses may be regarded as implausible
and rejected; and in a study of financial records of a company, some records
may not be available because of changes in reporting requirements and data
from merged or reorganized organizations.

In R/S-Plus, missing values are denoted by NA. In large databases, SQL
incorporates the null as a flag or mark to indicate the absence of a data
value, which might mean that the value is missing, unknown, nonexistent
(no observation could be made for that entry), or that no value has yet
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been assigned. A null is not equivalent to a zero value or to a text string
filled with spaces. Sometimes, missing values are replaced by zeroes, other
times by estimates of what they should be based on the rest of the data.

One popular method deletes those observations that contain missing data
and analyzes only those cases that are observed in their entirety (often
called complete-case analysis or listwise-deletion method). Such a complete-
case analysis may be satisfactory if the proportion of deleted observations
is small relative to the size of the entire data set and if the mechanism that
leads to the missing data is independent of the variables in question —
an assumption referred to by Donald Rubin as missing at random (MAR)
or missing completely at random (MCAR) depending upon the exact na-
ture of the missing-data mechanism (Little and Rubin, 1987). Any deleted
observations may be used to help justify the MCAR assumption.

If the missing data constitute a sizeable proportion of the entire data
set, then complete-case methods will not work. Single imputation has been
used to impute (or “fill in”) an estimated value for each missing obser-
vation and then analyze the amended data set as if there had been no
missing values in the first place. Such procedures include hot-deck impu-
tation, where a missing value is imputed by substituting a value from a
similar but complete record in the same data set; mean imputation, where
the singly imputed value is just the mean of all the completely recorded
values for that variable; and regression imputation, which uses the value
predicted by a regression on the completely recorded data. Because sam-
pling variability due to single imputation cannot be incorporated into the
analysis as an additional source of variation, the standard errors of model
estimates tend to be underestimated.

Since the late 1970s, Rubin and his colleagues have introduced a num-
ber of sophisticated algorithmic methods for dealing with incomplete data
situations. One approach, the EM algorithm (Dempster, Laird, and Rubin,
1977; Little and Rubin, 1987), which alternates between an expectation (E)
step and a maximization (M) step, is used to compute maximum-likelihood
estimates of model parameters, where missing data are modeled as unob-
served latent variables. We shall describe applications of the EM algorithm
in more detail in later chapters of this book. A different approach, multiple
imputation (Rubin, 1987), fills in the missing values m > 1 times, where
the imputed values are generated each time from a distribution that may
be different for each missing value; this creates m different data sets, which
are analyzed separately, and then the m results are combined to estimate
model parameters, standard errors, and confidence intervals.

2.5.4 More Variables than Observations

Many statistical computer packages do not allow the number of input
variables, r, to exceed the number of observations, n, because, then, certain
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matrices, such as the (r × r) covariance matrix, would have less than full
rank, would be singular, and, hence, uninvertible. Yet, we should not be
surprised when r > n. In fact, this situation occurs quite routinely in
certain applications, and in such instances, r can be much greater than n.
Typical examples include:

Satellite images When producing maps, remotely sensed image data are
gathered from many sources, including satellite and aircraft scanners,
where a few observations (usually fewer than 10 spectral bands) are
measured at more than 100,000 wavelengths over a grid of pixels.

Chemometrics For determining concentrations in certain chemical com-
pounds, calibration studies often need to analyze intensity measure-
ments on a very large number (500–1,000 or more) of different spectral
wavelengths using a small number of standard chemical samples.

Gene expression data Current microarray methods for studying human
malignancies, such as tumors, simultaneously monitor expression lev-
els of very large numbers of genes (5,000–10,000 or more) on relatively
small numbers (fewer than 100) of tumor samples.

When r > n, one way of dealing with this problem is to analyze the data
on each variable separately. However, this suggestion does not take account
of correlations between the variables. Researchers have recently provided
new statistical techniques that are not sensitive to the r > n issue. We will
address this situation in various sections of this book.

2.6 The Curse of Dimensionality

The term “curse of dimensionality” (Bellman, 1961) originally described
how difficult it was to perform high-dimensional numerical integration. This
led to the more general use of the term to describe the difficulty of dealing
with statistical problems in high dimensions. Some implications include:

1. We can never have enough data to cover every part of high-dimensional
input space to learn which part of the space is important to a relationship
and which is not.

To see this, divide the axis of each of r input variables into K uniform in-
tervals (or “bins”), so that the value of an input variable is approximated by
the bin into which it falls. Such a partition divides the entire r-dimensional
input space into Kr “hypercubes,” where K is chosen so that each hy-
percube contains at least one point in the input space. Given a specific
hypercube in input space, an output value y0 corresponding to a new input
point in the hypercube can be approximated by computing some function
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(e.g., the average value) of the y values that correspond to all the input
points falling in that hypercube. Increasing K reduces the sizes of the hy-
percubes while increasing the precision of the approximation. However, at
the same time, the number of hypercubes increases exponentially. If there
has to be at least one input point in each hypercube, then the number of
such points needed to cover all of r-space must also increase exponentially
as r increases. In practice, we have a limited number of observations, with
the result that the data are very sparsely spread around high-dimensional
space.

2. As the number of dimensions grows larger, almost all the volume
inside a hypercubic region of input space lies closer to the boundary or
surface of the hypercube rather than near the center.

An r-dimensional hypercube [−A,A]r with each edge of length 2A has
volume (2A)r. Consider a slightly smaller hypercube with each edge of
length 2(A − ε), where ε > 0 is small. The difference in volume between
these two hypercubes is (2A)r − 2r(A− ε)r, and, hence, the proportion of
the volume that is contained between the two hypercubes is

(2A)r − 2r(A− ε)r

(2A)r
= 1−

(
1− ε

A

)r

→ 1 as r →∞.

In Figure 2.6, we see a graphical display of this result for A = 1 and number
of dimensions r = 1, 2, 10, 20, 50. The same phenomenon also occurs with
spherical regions in high-dimensional input space (see Exercise 2.4).
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FIGURE 2.6. Graphs of the proportion of the total volume contained be-
tween two hypercubes, one of edge length 2 and the other of edge length
2− e for different numbers of dimensions r. As the number of dimensions
increases, almost all the volume becomes closer to the surface of the hyper-
cube.
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lier detection include Rousseeuw and Leroy (1987) and Barnett and Lewis
(1994).

Exercises

2.1 In a statistical application of your choice, what does a missing value
mean? What are the traditional methods of imputing missing values in
such an application?

2.2 In sample surveys, such as opinion polls, telephone surveys, and ques-
tionnaire surveys, nonresponse is a common occurrence. How would you
design such a survey so as to minimize nonresponse?

2.3 Discuss the differences between single and multiple imputation for
imputing missing data.
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2.4 The volume of an r-dimensional sphere with radius A is given by
volr(A) = SrA

r/r, where Sr = 2πr/2/Γ(r/2) is the surface area of the
unit sphere in r dimensions, Γ(x) =

∫∞
0

tx−1e−tdt = (x − 1)!, 1x > 0,

is the gamma function, Γ(x + 1) = xΓ(x), and Γ(1/2) = π1/2. Find the
appropriate spherical volumes for two and three dimensions. Using a similar
limiting argument as in (2) of Section 2.6, show that as the dimensionality
increases, almost all the volume inside the sphere tends to be concentrated
along a “thin shell” closer to the surface of the sphere than to the center.

2.5 Consider a hypercube of dimension r and sides of length 2A and
inscribe in it an r-dimensional sphere of radius A. Find the proportion of
the volume of the hypercube that is inside the hypersphere, and show that
the proportion tends to 0 as the dimensionality r increases. In other words,
show that all the density sits in the corners of the hypercube.

2.6 What are the advantages and disadvantages of database systems, and
when would you find such a system useful for data analysis?

2.7 Find a commercial SQL product and discuss the various options that
are available for the create table statement of that product.

2.8 Find a DBMS and investigate whether that system keeps track of
database statistics. Which statistics does it maintain, how does it do that,
and how does it update those statistics?

2.9 What are the advantages and disadvantages of distributed database
systems?

2.10 (Fairley, Izenman, and Crunk, 2001) You are hired to carry out a
survey of damage to the bricks of the walls of a residential complex con-
sisting of five buildings, each having 5, 6, or 7 stories. The type of damage
of interest is called spalling and refers to deterioration of the surface of the
brick, usually caused by freeze-thaw weather conditions. Spalling appears
to be high at the top stories and low at the ground. The walls consist of
three-quarter million bricks. You take a photographic survey of all the walls
of the complex and count the number of bricks in the photographs that are
spalled. However, the photographs show that some portions of the walls
are obscured by bushes, trees, pipes, vehicles, etc. So, the photographs are
not a complete record of brick damage in the complex. Discuss how would
you estimate the spall rate (spalls per 1,000 bricks) for the entire complex.
What would you do about the missing data in your estimation procedure?

2.11 Read about MAR (missing at random) and MCAR (missing com-
pletely at random) and discuss their differences and implications for im-
puting missing data.
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Random Vectors and Matrices

3.1 Introduction

This chapter builds the foundation for the statistical analysis of multivari-
ate data. We first give the notation we use in this book, followed by a quick
review of the rules for manipulating vectors and matrices. Then, we learn
about random vectors and matrices, which are the fundamental building
blocks for multivariate analysis. We then describe the properties of a va-
riety of estimators of an unknown mean vector and unknown covariance
matrix of a multivariate Gaussian distribution.

3.2 Vectors and Matrices

In this section, we briefly review the notation, terminology, and basic
operations and results for vectors and matrices.

3.2.1 Notation

Vectors having J elements will be represented as column vectors (i.e., as
(J×1)-matrices, which we will refer to as J-vectors for convenience) and will

A.J. Izenman, Modern Multivariate Statistical Techniques,
doi: 10.1007/978-0-387-78189-1 3, 45
c© Springer Science+Business Media, LLC 2008
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be represented by boldface letters, either uppercase (e.g., X) or lowercase
(e.g., x, α) depending upon the context. Two J-vectors, x = (x1, · · · , xJ )τ

and y = (y1, · · · , yJ)τ , are orthogonal if xτy =
∑J

j=1 xjyj = 0.
We denote matrices by uppercase boldface letters (e.g., A, Σ) or by

capital script letters (e.g., X ,Y,Z). Thus, the (J ×K) matrix A = (Ajk)
has J rows and K columns and jkth entry Ajk. If J = K, then A is said to
be square. The (J × J) identity matrix IJ has Ijj = 1 and Ijk = 0, j �= k,
The null matrix 0 has all entries equal to zero.

3.2.2 Basic Matrix Operations

If A = (Ajk) is a (J×K)-matrix, then the transpose of A is the (K×J)-
matrix denoted by Aτ = (Akj). If A = Aτ , then A is said to be symmetric.

The sum of two (J × K) matrices A and B is A + B = (Ajk + Bjk),
and its transpose is (A + B)τ = Aτ + Bτ = (Akj + Bkj). The inequality
A + B ≥ A holds if B ≥ 0 (i.e., Bjk ≥ 0, all j and k).

The product of a (J×K)-matrix A and a (K×L)-matrix B is the (J×L)-
matrix (Cjl) = C = AB = (

∑K
k=1 AjkBkl). Note that (AB)τ = BτAτ .

Multiplication of a (J ×K)-matrix A by a scalar a is the (J ×K)-matrix
aA = (aAjk).

A (J×J)-matrix A is orthogonal if AAτ = AτA = IJ and is idempotent
if A2 = A. A square matrix P is a projection matrix (or a projector) iff P
is idempotent. If P is both idempotent and orthogonal, then P is called an
orthogonal projector. If P is idempotent, then so is Q = I–P; Q is called
the complementary projector to P.

The trace of a square (J×J) matrix A is denoted by tr(A) =
∑J

j=1 Ajj .
Note that for square matrices A and B, tr(A + B) = tr(A) + tr(B), and
for (J ×K)-matrix A and (K × J) matrix B, tr(AB) = tr(BA).

The determinant of a (J × J)-matrix A = (Aij) is denoted by either |A|
or det(A). The minor Mij of element Aij is the (J − 1 × J − 1)-matrix
formed by removing the ith row and jth column from A. The cofactor of
Aij is Cij = (−1)i+j |Mij |. One way of defining the determinant of A is
by using Laplace’s formula: |A| =

∑J
j=1 AijCij , where we expand along

the ith row. Note that |Aτ | = |A|. If a is a scalar and A is (J × J), then
|aA| = aJ |A|. A is singular if |A| = 0, and nonsingular otherwise.

Matrix decompositions include the LR decomposition (A = LR, where
L is lower-triangular and R is upper-triangular), the Cholesky decomposi-
tion (A = LLτ , where L is lower-triangular and A is symmetric positive-
definite), and the QR decomposition (A = QR, where Q is orthogonal
and R is upper-triangular). These matrix decompositions are used as effi-
cient methods of computing |A| by applying the following results: |AB| =
|A| · |B| if both A and B are (J × J); the determinant of a triangular
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matrix is the product of its diagonal entries; and for orthogonal
Q, |det(Q)| = 1.

Let

Σ =
(

A B
C D

)
(3.1)

be a partitioned matrix, where A and D are both square and nonsingular.
Then, the determinant of Σ can be expressed in two ways:

|Σ| = |A| · |D−CA−1B| = |D| · |A−BD−1C|. (3.2)

The rank of A, denoted r(A), is the size of the largest submatrix of A
that has a nonzero determinant; it is also the number of linearly indepen-
dent rows or columns of A. Note that r(AB) = r(A) if |B| �= 0, and, in
general, r(AB) ≤ min(r(A), r(B)).

If A is square, (J × J), and nonsingular, then a unique (J × J) inverse
matrix A−1 exists such that AA−1 = IJ . If A is orthogonal, then A−1 =
Aτ . Note that (AB)−1 = B−1A−1, and |A−1| = |A|−1. A useful result
involving inverses is

(A + BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1, (3.3)

where A and D are (J×J) and (K×K) nonsingular matrices, respectively.
If A is (J×J) and u and v are J-vectors, then, a special case of this result
is

(A + uvτ )−1 = A−1 − (A−1u)(vτA−1)
1 + vτA−1u

, (3.4)

which reduces the problem of inverting A+uvτ to one of just inverting A.
If A and D are symmetric matrices and A is nonsingular, then,

(
A B
Bτ D

)−1

=
(

A−1 + FE−1Fτ −FE−1

−EFτ E−1

)
, (3.5)

where E = D−BτA−1B is nonsingular and F = A−1B.
If A is a (J × J)-matrix and x is a J-vector, then a quadratic form is

xτAx =
∑J

j=1

∑J
k=1 Ajkxjxk. A (J × J)-matrix A is positive-definite if,

for any J-vector x �= 0, the quadratic form xτAx > 0, and is nonnegative-
definite (or positive-semidefinite) if the same quadratic form is nonnegative.

3.2.3 Vectoring and Kronecker Products

The vectoring operation vec(A) denotes the (JK × 1)-column vector
formed by placing the columns of a (J ×K)-matrix A under one another
successively.

If a (J × K)-matrix A is such that the jkth element Ajk is itself a
submatrix, then A is termed a block matrix. The Kronecker product of a
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(J × K)-matrix A and an (L × M)-matrix B is the (JL × KM) block
matrix

A⊗B = (ABjk) =

⎛
⎜⎝

AB11 · · · AB1M

...
...

ABL1 · · · ABLM

⎞
⎟⎠ . (3.6)

Strictly speaking, the definition (3.6) is commonly known as the left Kro-
necker product. There is also the right Kronecker product in the literature,
A⊗B = (AijB), which, in our notation, is given by B⊗A.

The following operations hold for Kronecker products as defined by (3.6):

(A⊗B)⊗C = A⊗ (B⊗C) (3.7)
(A⊗B)(C⊗D) = (AC)⊗ (BD) (3.8)

(A + B)⊗C = (A⊗C) + (B⊗C) (3.9)
(A⊗B)τ = Aτ ⊗Bτ (3.10)
tr(A⊗B) = (tr(A))(tr(B)) (3.11)
r(A⊗B) = r(A) · r(B) (3.12)

If A is (J × J) and B is (K ×K), then,

|A⊗B| = |A|K |B|J (3.13)

If A is (J ×K) and B is (L×M), then,

A⊗B = (A⊗ IL)(IK ⊗B) (3.14)

If A and B are square and nonsingular, then,

(A⊗B)−1 = A−1 ⊗B−1 (3.15)

One of the most useful results that combines vectoring with Kronecker
products is that

vec(ABC) = (A⊗Cτ )vec(B). (3.16)

3.2.4 Eigenanalysis for Square Matrices

If A is a (J × J)-matrix, then |A− λIJ | is a polynomial of order J in λ.
The equation

|A− λIJ | = 0

will have J (possibly complex-valued) roots denoted by λj = λj(A), j =
1, 2, . . . , J . The root λj is called the eigenvalue (characteristic root, latent
root) of A, and the set {λj} is called the spectrum of A. Associated with
λj , there is a J-vector vj = vj(A) (not all of whose entries of zero) such
that

(A− λjIJ)vj = 0.
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The vector vj is called the eigenvector (characteristic vector, latent vector)
associated with λj . Eigenvalues of positive-definite matrices are all positive,
and eigenvalues of nonnegative-definite matrices are all nonnegative.

The following results for a real and symmetric (J × J)-matrix A are not
difficult to prove. All the eigenvalues of A are real and the eigenvectors
can be chosen to be real. Eigenvectors vj and vk associated with distinct
eigenvalues (λj �= λk) are orthogonal. If V = (v1,v2, . . . ,vJ ), then

AV = VΛ, (3.17)

where Λ = diag{λ1, λ2, . . . , λJ} is a matrix with the eigenvalues along the
diagonal and zeroes elsewhere, and VτV = IJ .

The “outer product” of a J-vector v with itself is the (J × J)-matrix
vvτ , which has rank 1. The spectral theorem expresses the (J × J)-matrix
A as a weighted average of rank-1 matrices,

A = VΛVτ =
J∑

j=1

λjvjvτ
j , (3.18)

where IJ =
∑J

j=1 vjvτ
j , and where the weights, λ1, . . . , λJ , are the eigen-

values of A. The rank of A is the number of nonzero eigenvalues, the trace
is

tr(A) =
J∑

j=1

λj(A), (3.19)

and the determinant is

|A| =
J∏

j=1

λj(A). (3.20)

3.2.5 Functions of Matrices

If A is a symmetric (J ×J)-matrix and φ : RJ → RJ is a function, then

φ(A) =
J∑

j=1

φ(λj)vjvτ
j , (3.21)

where λj and vj are the jth eigenvalue and corresponding eigenvector,
respectively, of A. Examples include the following:

A−1 = VΛ−1Vτ =
J∑

j=1

λ−1
j vjvτ

j , if A is nonsingular (3.22)

A1/2 = VΛ1/2Vτ =
J∑

j=1

λ
1/2
j vjvτ

j (3.23)
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log(A) =
J∑

j=1

(log(λj))vjvτ
j , if λj �= 0, all j (3.24)

Hence, λj(φ(A)) = φ(λj(A)) and vj(φ(A)) = vj(A). Note that A1/2 is
called the square-root of A.

3.2.6 Singular-Value Decomposition

If A is a (J ×K)-matrix with J ≤ K, then

λj(AτA) = λj(AAτ ), j = 1, 2, . . . , J, (3.25)

and zero for j > J . Furthermore, for λj(AAτ ) �= 0,

vj(AτA) = (λj(AAτ ))1/2Aτvj(AAτ ) (3.26)

vj(AAτ ) = (λj(AAτ ))−1/2Avj(AτA) (3.27)

The singular-value decomposition (SVD) of A is given by

A = UΨVτ =
J∑

j=1

λ
1/2
j ujvτ

j , (3.28)

where U = (u1, . . . ,uJ ) is a (J×J)-matrix, uj = vj(AAτ ), j = 1, 2, . . . , J ,
V = (v1, . . . ,vK) is a (K × K)-matrix, vk = vk(AτA), k = 1, 2, . . . ,K,
λj = λj(AAτ ), j = 1, 2, . . . , J ,

Ψ =
(
Ψσ

... 0
)

(3.29)

is a (J ×K)-matrix, and Ψσ is an (J × J) diagonal matrix with the non-
negative singular values, σ1 ≥ σ2 ≥ . . . ≥ σJ ≥ 0, of A along the diagonal,
where σj = λ

1/2
j is the square-root of the jth largest eigenvalue of the

(J × J)-matrix AAτ , j = 1, 2, . . . , J .
A corollary of the SVD is that if r(A) = t, then there exists a (J × t)-

matrix B and a (t×K)-matrix C, both of rank t, such that A = BC. To
see this, take B = (λ1/2

1 u1, . . . , λ
1/2
t ut) and C = (vτ

1 , . . . ,vτ
t )τ .

3.2.7 Generalized Inverses

If A is either singular or nonsymmetric (or even not square), we can
define a generalized inverse of A. First, we need the following definition:
a g-inverse of a (J × K)-matrix A is any (K × J)-matrix A− such that,
for any J-vector y for which Ax=y is a consistent equation, x = A−y is a
solution. It can be shown that A− exists iff

AA−A = A; (3.30)
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we call such an A− a reflexive g-inverse. Note that although A− is not nec-
essarily unique, it has some interesting properties. For example, a general
solution of the consistent equation Ax=y is given by

x = A−y + (A−A− IK)z, (3.31)

where z is an arbitrary K-vector. Furthermore, setting z=0 shows that the
x with minimum norm (i.e., ‖ x ‖2= xτx) that solves Ax=y is given by
x = A−y.

A unique g-inverse can be defined for the (J ×K)-matrix A. From the
SVD, A = UΨVτ , we set

A+ = VΨ+Uτ , (3.32)

where Ψ+ is a diagonal matrix whose diagonal elements are the reciprocals
of the nonzero elements of Ψ = Λ1/2, and zeroes otherwise. The (K ×
J)-matrix A+ is the unique Moore–Penrose generalized inverse of A. It
satisfies the following four conditions:

AA+A = A, A+AA+ = A+, (AA+)τ = AA+, (A+A)τ = A+A.
(3.33)

There are less restrictive (nonunique) types of generalized inverses than A+,
such as the reflexive g-inverse above, involving one or two of the above four
conditions.

3.2.8 Matrix Norms

Let A = (Ajk) be a (J×K)-matrix. It would be useful to have a measure
of the size of A, especially for comparing different matrices. The usual
measure of size of a matrix A is the norm, ‖ A ‖, of that matrix. There
are many definitions of a matrix norm, all of which satisfy the following
conditions:

1. ‖ A ‖ ≥ 0

2. ‖ A ‖= 0 iff A=0.

3. ‖ A + B ‖ ≤ ‖ A ‖ + ‖ B ‖

4. ‖ αA ‖= |α|· ‖ A ‖

where B is a (J ×K)-matrix and α is a scalar. Examples of matrix norms
include:

1.
(∑J

j=1

∑K
k=1 |Ajk|p

)1/p

(p-norm)

2.
√

tr(AAτ ) =
(∑J

j=1

∑K
k=1 A2

jk

)1/2

=
(∑J

j=1 λj(AAτ )
)1/2

(Frobe-
nius norm)
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3.
√

λ1(AAτ ) (spectral norm, J = K)

4.
(∑J0

j=1 λj(AAτ )
)1/2

, for some J0 < J .

3.2.9 Condition Numbers for Matrices

The condition number of a square (K ×K)-matrix A is given by

κ(A) = ||A|| · ||A−1|| = σ1

σK
, (3.34)

which is the ratio of the largest to the smallest nonzero singular value. In
(3.34), || · || is the spectral norm and σi is the square-root of the ith largest
eigenvalue of the (K ×K)-matrix AτA, i = 1, 2, . . . ,K. Thus, κ ≥ 1. If A
is an orthogonal matrix, all singular values are unity, and so κ = 1. A is
said to be ill-conditioned if its singular values are widely spread out, so that
κ(A) is large, whereas A is said to be well-conditioned if κ(A) is small.

3.2.10 Eigenvalue Inequalities

We shall find it useful to have the following eigenvalue inequalities.

The Eckart–Young Theorem If A and B are both (J ×K)-matrices, and
we plan on using B with reduced rank r(B) = b to approximate A with
full rank r(A) = min(J,K), then the Eckart–Young (1936) Theorem states
that

λj((A−B)(A−B)τ ) ≥ λj+b(AAτ ), (3.35)

with equality if

B =
b∑

i=1

λ
1/2
i uivτ

i , (3.36)

where λi = λi(AAτ ), ui = vi(AAτ ), and vi = vi(AτA). Because the
above choice of B provides a simultaneous minimization for all eigenvalues
λj , it follows that the minimum is achieved for different functions of those
eigenvalues, say, the trace or the determinant of (A−B)(A−B)τ .

The Courant–Fischer Min-Max Theorem A very useful result is the follow-
ing expression for the jth largest eigenvalue of a (J ×J) symmetric matrix
A:

λj(A) = inf
L

sup
x:Lx=0

xτAx
xτx

, x �= 0, (3.37)

where inf is an infimum over a ((j − 1) × J)-matrix L with rank at most
j−1, and sup is a supremum over a nonzero J-vector x that satisfies Lx=0.
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Equality in (3.37) is reached if L = (v1, · · · ,vj−1)τ and x = vj = vj(A),
the eigenvector associated with the jth largest eigenvalue of A. A corollary
of this result is that the jth smallest eigenvalue of A can be written as

λJ−j+1(A) = sup
L

inf
Lx=0

xτAx
xτx

, x �= 0. (3.38)

For a proof, see, e.g., Bellman (1970, pp. 115–117). These two results enable
us to write

λJ(A) ≤ xτAx
xτx

≤ λ1(A), x �= 0, (3.39)

where λ1(A) is the largest eigenvalue and λJ(A) is the smallest eigenvalue
of A.

The Hoffman–Wielandt Theorem Suppose A and B are (J × J)-matrices
with A − B symmetric. Suppose A and B have eigenvalues {λj(A)} and
{λj(B)}, respectively. Hoffman and Wielandt (1953) showed that

J∑
j=1

(λj(A)− λj(B))2 ≤ tr{(A−B)(A−B)τ}. (3.40)

This result is useful for studying the bias in sample eigenvalues. For a
simple proof, see Exercise 3.3.

Poincaré Separation Theorem Let A be a (J × J)-matrix and let U be a
(J × k)-matrix, k ≤ J , such that UτU = Ik. Then,

λj(UτAU) ≤ λj(A), (3.41)

with equality if the columns of U are the first k eigenvectors of A. This
inequality can be proved using (3.37) from the Courant–Fischer Min-Max
Theorem; see Exercise 3.4.

3.2.11 Matrix Calculus

Let x = (x1, · · · , xK)τ be a K-vector and let

y = (y1, · · · , yJ )τ = (f1(x), · · · , fJ (x))τ = f(x) (3.42)

be a J-vector, where f : 
K → 
J . Then, the partial derivative of y wrt x
is the JK-vector,

∂y
∂x

=
(

∂y1

∂x1
, · · · , ∂yJ

∂x1
, · · · , ∂y1

∂xK
, · · · , ∂yK

∂xJ

)τ

. (3.43)
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A more convenient form is the partial derivative of y wrt xτ , which yields
the (J ×K) Jacobian matrix,

Jxy =
∂y
∂xτ

=

⎛
⎜⎜⎜⎜⎝

∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xK

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xK

...
...

...
∂yJ

∂x1

∂yJ

∂x2
· · · ∂yJ

∂xK

⎞
⎟⎟⎟⎟⎠

. (3.44)

The Jacobian matrix can be interpreted as the first derivative of f(x) wrt x.
It, therefore, provides a method for linearly approximating a multivariate
vector-valued function: f(x) ≈ f(c) + [Jxf(c)](x − c), where c ∈ 
K . The
Jacobian of the transformation y = f(x) is

J = |Jxy|. (3.45)

If y = f(x) is a scalar, then the gradient vector is

∇xy =
∂y

∂x
=

(
∂y

∂x1
,

∂y

∂x2
, · · · , ∂y

∂xK

)τ

=
(

∂y

∂xτ

)τ

= (Jxy)τ , (3.46)

while if x is a scalar, then,

∂y
∂x

=
(

∂y1

∂x
,
∂y2

∂x
, · · · , ∂yJ

∂x

)τ

. (3.47)

For example, if A is a (J ×K)-matrix, then:

∂(Ax)
∂xτ

= A (3.48)

∂(xτx)
∂xτ

= 2x (3.49)

∂(xτAx)
∂xτ

= xτ (A + Aτ ) (J = K). (3.50)

The derivative of a (J ×K)-matrix A wrt an r-vector x is the (Jr ×K)-
matrix of derivatives of A wrt each element of x:

∂A
∂x

=
(

∂Aτ

∂x1
, · · · , ∂Aτ

∂xr

)τ

. (3.51)

It follows that:

∂(αA)
∂x

= α
∂A
∂x

(α a constant) (3.52)

∂(A + B)
∂x

=
∂A
∂x

+
∂B
∂x

(3.53)
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∂(AB)
∂x

=
(

∂A
∂x

)
B + A

(
∂B
∂x

)
(3.54)

∂(A⊗B)
∂x

=
(

∂A
∂x
⊗B

)
+
(
A⊗ ∂B

∂x

)
(3.55)

∂(A−1)
∂x

= −A−1

(
∂A
∂x

)
A−1, (3.56)

where A and B are conformable matrices.
If y = f(A) is a scalar function of the (J ×K)-matrix A = (Aij), define

the following gradient matrix:

∂y

∂A
=

⎛
⎜⎜⎜⎜⎝

∂y
∂A11

∂y
∂A12

· · · ∂y
∂A1K

∂y
∂A21

∂y
∂A22

· · · ∂y
∂A2K

...
...

...
∂y

∂AJ1

∂y
∂AJ2

· · · ∂y
∂AJK

⎞
⎟⎟⎟⎟⎠

. (3.57)

For example, if A is a (J × J)-matrix, then,

∂(tr(A))
∂A

= IJ (3.58)

∂(|A|)
∂A

= |A| · (Aτ )−1. (3.59)

Next, we define the Hessian matrix as a square matrix whose elements
are the second-order partial derivatives of a function. Let y = f(x) be a
scalar function of x ∈ 
K . The (K ×K)-matrix,

Hxy =
∂

∂x

(
∂y

∂x

)τ

=
∂2y

∂x∂xτ
=

⎛
⎜⎜⎜⎜⎜⎝

∂2y
∂x2

1

∂2y
∂x1∂x2

· · · ∂2y
∂x1∂xK

∂2y
∂x2∂x1

∂2y
∂x2

2
· · · ∂2y

∂x2∂xK

...
...

. . .
...

∂2y
∂xK∂x1

∂2y
∂xK∂x2

· · · ∂2y
∂x2

K

⎞
⎟⎟⎟⎟⎟⎠

,

(3.60)
is called the Hessian of y wrt x. Note that Hxy = ∇2

xy = ∇x∇xy, so that
the Hessian is the Jacobian of the gradient of f . If the second-order partial
derivatives are continuous, the Hessian is a symmetric matrix. The Hessian
enables a quadratic term to be included in the Taylor-series approximation
to a real-valued function:

f(x) ≈ f(c) + [Jf(c)](x− c) +
1
2
(x− c)τ [Hf(c)](x− c), c ∈ 
K . (3.61)
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3.3 Random Vectors

If we have r random variables, X1,X2, . . . , Xr, each defined on the real
line, we can write them as the r-dimensional column vector,

X = (X1, · · · ,Xr)τ . (3.62)

which we, henceforth, call a “random r-vector.” The joint distribution func-
tion FX of the random vector X is given by

FX(x) = FX(x1, . . . , xr) (3.63)
= P{X1 ≤ x1, . . . , Xr ≤ xr} (3.64)
= P{X ≤ x}, (3.65)

for any vector x = (x1, x2, · · · , xr)τ of real numbers, where P(A) represents
the probability that the event A will occur. If FX is absolutely continuous,
then the joint density function fX of X, where

fX(x) = fX(x1, . . . , xr) =
∂rFX(x1, . . . , xr)

∂x1 · · · ∂xr
, (3.66)

will exist almost everywhere. The distribution function FX can be recovered
from fX using the relationship

FX(x) =
∫ xr

−∞
· · ·

∫ x1

−∞
fX(u1, . . . , ur) du1 · · · dur. (3.67)

Consider a subset, X1,X2, . . . , Xk (k < r), say, of the components of X.
The marginal distribution function of that component subset is given by

FX(x1, . . . , xk) = FX(x1, . . . , xk,∞, . . . ,∞)
= P{X1 ≤ x1, . . . , Xk ≤ xk,Xk+1 ≤ ∞, . . . , Xr ≤ ∞},

(3.68)

and the marginal density of that subset is
∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(u1, . . . , ur) duk+1 · · · dur. (3.69)

For example, if r = 2, the bivariate joint density of X1 and X2 is given by
fX1,X2(x1, x2), and its marginal densities are

fX1(x1) =
∫

�
fX1,X2(x1, x2)dx2, fX2(x2) =

∫

�
fX1,X2(x1, x2)dx1. (3.70)



3.3 Random Vectors 57

The components of a random r-vector X are said to be mutually statisti-
cally independent if the joint distribution can be factored into the product
of its r marginals,

FX(x) =
r∏

i=1

Fi(xi), (3.71)

where Fi(xi) is the marginal distribution of Xi, i = 1, 2, . . . , r. This im-
plies that a similar factorization of the joint density function holds under
independence,

fX(x) =
r∏

i=1

fi(xi), (3.72)

for any set of r real numbers x1, . . . , xr.

3.3.1 Multivariate Moments

Let X be a continuous real-valued random variable with probability den-
sity function fX ; that is, fX(x) ≥ 0, for all x ∈ 
, and

∫
� fX(x)dx = 1.

The expected value of X is defined as

µX = E(X) =
∫

xfX(x)dx, (3.73)

and its variance is

σ2
X = var(X) = E{(X − µX)2}. (3.74)

If X is a random r-vector with values in 
r, then its expected value is the
r-vector

µX = E(X) = (E(X1), · · · ,E(Xr))τ = (µ1, · · · , µr)τ , (3.75)

and the (r × r) covariance matrix of X is given by

ΣXX = cov(X,X) (3.76)
= E{(X− µX)(X− µX)τ} (3.77)
= E {(X1 − µ1, · · · ,Xr − µr)(X1 − µ1, · · · ,Xr − µr)τ} (3.78)

=

⎛
⎜⎜⎝

σ2
1 σ12 · · · σ1r

σ21 σ2
2 · · · σ2r

...
...

. . .
...

σr1 σr2 · · · σ2
r

⎞
⎟⎟⎠ , (3.79)

where
σ2

i = var(Xi) = E{(Xi − µi)2} (3.80)

is the variance of Xi, i = 1, 2, . . . , r, and

σij = cov(Xi,Xj) = E{(Xi − µi)(Xj − µj)} (3.81)
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is the covariance between Xi and Xj , i, j = 1, 2, . . . , r (i �= j). It is not
difficult to show that

ΣXX = E(XXτ )− µXµτ
X . (3.82)

The correlation matrix of X is obtained from the covariance matrix ΣXX

by dividing the ith row by σi and dividing the jth column by σj . It is given
by the (r × r)-matrix,

PXX =

⎛
⎜⎜⎝

1 ρ12 · · · ρ1r

ρ21 1 · · · ρ2r
...

...
. . .

...
ρr1 ρr2 · · · 1

⎞
⎟⎟⎠ , (3.83)

where

ρij = ρji =
{ σij

σiσj
if i �= j

1 otherwise
(3.84)

is the (pairwise) correlation coefficient of Xi with Xj , i, j = 1, 2, . . . , r.
The correlation coefficient ρij lies between −1 and +1 and is a measure of
association between Xi and Xj . When ρij = 0, we say that Xi and Xj are
uncorrelated; when ρij > 0, we say that Xi and Xj are positively correlated;
and when ρij < 0, we say that Xi and Xj are negatively correlated.

Now, suppose we have two random vectors, X and Y, where X has r
components and Y has s components. Let Z be the random (r + s)-vector,

Z =
(

X
Y

)
. (3.85)

Then, the expected value of Z is the (r + s)-vector,

µZ = E(Z) =
(

E(X)
E(Y)

)
=

(
µX

µY

)
, (3.86)

and the covariance matrix of Z is the partitioned ((r +s)× (r +s))-matrix,

ΣZZ = E{(Z− µZ)(Z− µZ)τ} (3.87)

=
(

cov(X,X) cov(X,Y)
cov(Y,X) cov(Y,Y)

)
(3.88)

=
(

ΣXX ΣXY

ΣY X ΣY Y

)
, (3.89)

where

ΣXY = cov(X,Y) = E{(X− µX)(Y − µY )τ} = Στ
Y X (3.90)

is an (r × s)-matrix.
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If Y is linearly related to X in the sense that

Y = AX + b, (3.91)

where A is a fixed (s× r)-matrix and b is a fixed s-vector, then the mean
vector and covariance matrix of Y are given by

µY = AµX + b, (3.92)

ΣY Y = AΣXXAτ , (3.93)

respectively.

3.3.2 Multivariate Gaussian Distribution

The multivariate Gaussian distribution is a generalization to two or more
dimensions of the univariate Gaussian (or Normal) distribution, which is
often characterized by its resemblance to the shape of a bell. In fact, in
either of its univariate or multivariate incarnations, it is popularly referred
to as the “bell curve.”

The Gaussian distribution is used extensively in both theoretical and
applied statistics research. The Gaussian distribution often represents the
stochastic part of the mechanism that generates observed data. This as-
sumption is helpful in simplifying the mathematics that allows researchers
to prove asymptotic results. Although it is well-known that real data rarely
obey the dictates of the Gaussian distribution, this deception does provide
us with a useful approximation to reality.

If the real-valued univariate random variable X is said to have the
Gaussian (or Normal) distribution with mean µ and variance σ2 (written
as X ∼ N (µ, σ2)), then its density function is given by the curve

f(x|µ, σ) =
1

(2πσ2)1/2
e−

1
2σ2 (x−µ)2 , x ∈ 
, (3.94)

where −∞ < µ < ∞ and σ > 0. The constant multiplier term c =
(2πσ2)−1/2 is there to ensure that the exponential function in the formula
integrates to unity over the whole real line.

The random r-vector X is said to have the r-variate Gaussian (or Nor-
mal) distribution with mean r-vector µ and positive-definite, symmetric
(r × r) covariance matrix Σ if its density function is given by the curve

f(x|µ,Σ) = (2π)−r/2|Σ|−1/2e−
1
2 (x−µ)τΣ−1(x−µ), x ∈ 
r. (3.95)

The square-root, ∆, of the quadratic form,

∆2 = (x− µ)τΣ−1(x− µ), (3.96)
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is referred to as the Mahalanobis distance from x to µ. The multivariate
Gaussian density is unimodal, always positive, and integrates to unity. We,
henceforth, write

X ∼ Nr(µ,Σ), (3.97)

when we mean that X has the above r-variate Gaussian (or Normal) dis-
tribution. If Σ is singular, then, almost surely, X lives on some reduced-
dimensionality hyperplane so that its density function does not exist; in
that case, we say that X has a singular Gaussian (or singular Normal)
distribution.

An important result, due to Cramer and Wold, states that the dis-
tribution of a random r-vector X is completely determined by its one-
dimensional linear projections, ατX, for any given r-vector α. This result
allows us to make a more useful definition of the multivariate Gaussian dis-
tribution: The random r-vector X has the multivariate Gaussian distribu-
tion iff every linear function of X has the univariate Gaussian distribution.

Special Cases

If Σ = σ2Ir, then the multivariate Gaussian density function reduces to

f(x|µ, σ) = (2π)−r/2σ−1e−
1

2σ2 (x−µ)τ (x−µ), (3.98)

and this is termed a spherical Gaussian density because (x−µ)τ (x−µ) = a2

is the equation of an r-dimensional sphere centered at µ. In general, the
equation (x − µ)τΣ−1(x − µ) = a2 is an ellipsoid centered at µ, with
Σ determining its orientation and shape, and the multivariate Gaussian
density function is constant along these ellipsoids.

When r = 2, the multivariate Gaussian density can be written out ex-
plicitly. Suppose

X = (X1,X2)τ ∼ N2(µ,Σ), (3.99)

where

µ = (µ1, µ2)τ , Σ =
(

σ11 σ12

σ21 σ22

)
=

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, (3.100)

σ2
1 is the variance of X1, σ2

2 is the variance of X2, and

ρ =
cov(X1,X2)√

var(X1) · var(X2)
=

σ12

σ1σ2
(3.101)

is the correlation between X1 and X2. It follows that

|Σ| = (1− ρ2)σ2
1σ2

2 , (3.102)
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and

Σ−1 =
1

1− ρ2

(
1

σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

)
. (3.103)

The bivariate Gaussian density function of X is, therefore, given by

f(x|µ,Σ) =
1

2πσ1σ2

√
1− ρ2

e−
1
2 Q, (3.104)

where

Q =
1

1− ρ2

{(
x1 − µ1

σ1

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+
(

x2 − µ2

σ2

)2
}

.

(3.105)
If X1 and X2 are uncorrelated, ρ = 0, and the middle term in the exponent
(3.106) drops out. In that case, the bivariate Gaussian density function
reduces to the product of two univariate Gaussian densities,

f(x|µ1, µ2, σ
2
1 , σ2

2) = (2πσ1σ2)−1e
− 1

2σ2
1
(x1−µ1)

2

e
− 1

2σ2
2
(x2−µ2)

2

= f(x1|µ1, σ
2
1)f(x2|µ2, σ

2
2), (3.106)

implying that X1 and X2 are independent. (see (3.72)).

3.3.3 Conditional Gaussian Distributions

Consider the random (r + s)-vector Z in (3.85) with mean vector µZ in
(3.86) and partitioned covariance matrix ΣZZ in (3.89). Assume that Z
has the multivariate Gaussian distribution. Then, the exponent in (3.95) is
the quadratic form,

−1
2
(z− µZ)τΣ−1

ZZ(z− µZ). (3.107)

From (3.5),

Σ−1
ZZ =

(
A11 A12

A21 A22

)
, (3.108)

where
A11 = Σ−1

XX + Σ−1
XXΣXY Σ−1

Y Y ·XΣY XΣ−1
XX

A12 = −Σ−1
XXΣXY Σ−1

Y Y ·X = Aτ
21

A22 = Σ−1
Y Y ·X ,

and ΣY Y ·X = ΣY Y − ΣY XΣ−1
XXΣXY . As a result, we can write Σ−1

ZZ as
follows:

(
I −Σ−1

XXΣXY

0 I

)(
Σ−1

XX 0
0 Σ−1

Y Y ·X

)(
I 0

−ΣY XΣ−1
XX I

)
.

(3.109)
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Consider the following nonsingular transformation of the random r-vector
Z:

U =
(

U1

U2

)
=

(
I 0

−ΣY XΣ−1
XX I

)(
X
Y

)
(3.110)

The random vector U has a multivariate Gaussian distribution with mean,

µU =
(

I 0
−ΣXY Σ−1

XX I

)(
µX

µY

)
(3.111)

and covariance matrix,

ΣUU =
(

ΣXX 0
0 ΣY Y ·X

)
. (3.112)

Hence, the marginal distribution of U1 = X is Nr(µX ,ΣXX), the marginal
distribution of U2 = Y−ΣY XΣ−1

XXX is Ns(µY −ΣY XΣ−1
XXµX ,ΣY Y ·X),

and U1 and U2 are independent.
Now, given X = x, µY +ΣY XΣ−1

XX(x−µX) is a constant. So, because of
independence, the conditional distribution of (Y−µY )−ΣY XΣ−1

XX(x−µX)
is identical to the unconditional distribution of (Y−µY )−ΣY XΣ−1

XX(X−
µX), which is Ns(0,ΣY Y ·X). Hence, (Y − µY ) − ΣY XΣ−1

XX(x − µX) ∼
Ns(0,ΣY Y ·X).

The resulting conditional distribution of Y given X=x is an s-variate
Gaussian with mean vector and covariance matrix given by

µY |X = µY + ΣY XΣ−1
XX(x− µX) (3.113)

ΣY |X = ΣY Y −ΣY XΣ−1
XXΣXY , (3.114)

respectively. Note that the mean vector is a linear function of x, whereas
the covariance matrix does not depend upon x at all.

3.4 Random Matrices

The (r × s)-matrix

Z =

⎛
⎝

Z11 · · · Z1s
...

...
Zr1 · · · Zrs

⎞
⎠ (3.115)

with r rows and s columns is a matrix-valued random variable (henceforth
“random (r × s)-matrix”) if each component Zij is a random variable,
i = 1, 2, . . . , r, j = 1, 2, . . . , s. That is, if the joint distribution,

FZ(z) = FZ(zij , i = 1, 2, . . . , r, j = 1, 2, . . . , s) (3.116)
= P{Zij ≤ zij , i = 1, 2, . . . , r, j = 1, 2, . . . , s} (3.117)
= P{Z ≤ z}, (3.118)
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is defined for all z = (zij).
The expected value of the random (r × s)-matrix Z is given by

µZ = E(Z) =

⎛
⎜⎝

E(Z11) · · · E(Z1s)
...

...
E(Zr1) · · · E(Zrs)

⎞
⎟⎠ =

⎛
⎜⎝

µ11 · · · µ1s
...

...
µr1 · · · µrs

⎞
⎟⎠ . (3.119)

The covariance matrix of Z is the matrix of all covariances of pairs of ele-
ments of Z and has rs rows and rs columns. It is, therefore, the covariance
matrix of vec(Z),

ΣZZ = cov{vec(Z)} = E{(vec(Z− µZ))(vec(Z− µZ))τ}. (3.120)

If we form a new matrix-valued random variable W by setting

W = AZBτ + C, (3.121)

where A, B, and C are matrices of constants, then the mean matrix of W
is

µW = AµZBτ + C, (3.122)

and, because

vec(W − µW ) = vec(A(Z− µZ)Bτ ) = (A⊗B)vec(Z− µZ), (3.123)

the covariance matrix of vec(W) is

ΣWW = E{(vec(W − µW ))(vec(W − µW ))τ}
= (A⊗B)ΣZZ(A⊗B)τ . (3.124)

3.4.1 Wishart Distribution

Given n independently distributed random r-vectors,

Xi ∼ Nr(µi,Σ), i = 1, 2, . . . , n (n ≥ r), (3.125)

we say that the random positive-definite and symmetric (r × r)-matrix,

W =
n∑

i=1

XiXτ
i , (3.126)

has the Wishart distribution with n degrees of freedom and associated ma-
trix Σ. If µi = 0 for all i, the Wishart distribution of W is termed central;
otherwise, it is noncentral.
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It can be shown that the joint density function of the r(r + 1)/2 distinct
elements of W is given by

wr(W|n,Σ) = cr,n|Σ|−1/2n|W| 12 (n−r−1)e−
1
2 tr(WΣ−1), (3.127)

where
1

cr,n
= 2nr/2πr(r−1)/4

r∏
i=1

Γ
(

n + 1− i

2

)
. (3.128)

If W is singular, the density is 0, in which case W is said to have the singu-
lar Wishart distribution. If W has a Wishart density, we find it convenient
to write

W ∼ Wr(n,Σ). (3.129)

Many derivations of (3.127) have appeared in the statistical literature. See
Anderson (1984) for references. When r = 1, W1(n, σ2) is identical to the
σ2χ2

n distribution.
The first two moments of W are given by

E(W) = nΣ. (3.130)

cov{vec(W)} = E{(vec(W − nΣ))(vec(W − nΣ))τ} (3.131)
= n(Ir2 + I(r,r))(Σ⊗Σ), (3.132)

where I(p,q) is a permuted-identity matrix (Macrae, 1974), which is a (pq×
pq)-matrix partitioned into (p×q)-submatrices such that the ijth submatrix
has a 1 in its jith position and zeroes elsewhere. For example, when p =
q = 2, the permuted-identity matrix is given by

I(2.2) =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ . (3.133)

The permuted identity matrix I(r,r) can be expressed as the sum of r2

Kronecker products,

I(r,r) =
r∑

i=1

r∑
j=1

(Hij ⊗Hτ
ij), (3.134)

where Hij is an (r × r)-matrix with ijth element equal to 1 and zero
otherwise. Another property of the permuted identity matrix is that

I(r,r)vec(A) = vec(Aτ ), (3.135)

which led to it also being called a commutation matrix.
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Properties of the Wishart Distribution

Because of the following properties of the Wishart distribution, it is not
necessary to apply the density form (3.127) to obtain explicit distributional
results.

1. Let Wj ∼ Wr(nj ,Σ), j = 1, 2, . . . ,m, be independently distributed
(central or not). Then,

∑m
j=1 Wj ∼ Wr(

∑r
j=1 nj ,Σ).

2. Suppose W ∼ Wr(n,Σ), and let A be a (p × r)-matrix of fixed
constants with rank p. Then, AWAτ ∼ Wr(n,AΣAτ ).

3. Suppose W ∼ Wr(n,Σ), and let a be a fixed r-vector. Then, aτWa ∼
σ2

aχ2
n, where σ2

a = aτΣa. The chi-squared distribution is central if the
Wishart distribution is central.

4. Let X = (X1, · · · ,Xn)τ , where Xi ∼ Nr(0,Σ), i = 1, 2, . . . , n, are
independently and identically distributed (iid). Let A be a symmetric
(n × n)-matrix, and let a be a fixed r-vector. Let y = Xa. Then,
X τAX ∼ Wr(n,Σ) iff yτAy ∼ σ2

aχ2
n, where σ2

a = aτΣa.

3.5 Maximum Likelihood Estimation
for the Gaussian

Assume that we have n random r-vectors X1,X2, . . . ,Xn, iid as multi-
variate Gaussian vectors,

Xj ∼ Nr(µ,Σ), j = 1, 2, . . . , n, (3.136)

where the parameters, µ and Σ, of this distribution are both unknown. To
estimate µ and Σ, we use the method of maximum likelihood (ML).

By independence, the joint density of the data {Xi, i = 1, 2, . . . , n} is the
product of the individual densities; that is,

∏n
i=1 fXi

(xi|µ,Σ). If we now
consider this joint density as a function of the parameters, µ and Σ, then
we have the likelihood function of the parameters given the data,

L(µ,Σ|{Xi}) = (2π)−nr/2|Σ|−n/2exp

{
−1

2

n∑
i=1

(xi − µ)τΣ−1(xi − µ)

}
.

(3.137)
Taking logarithms of this expression, we have that the log-likelihood func-
tion is

�(µ,Σ) = logL(µ,Σ|{Xi})
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= −nr

2
log(2π)− n

2
log |Σ| − 1

2

n∑
i=1

(xi − µ)τΣ−1(xi − µ).

(3.138)

It will be convenient to reexpress the summation term in (3.138) as follows:

n∑
i=1

(xi − µ)τΣ−1(xi − µ) (3.139)

= tr

{
Σ−1

n∑
i=1

(xi − x̄)(xi − x̄)τ

}
+ n(x̄− µ)τΣ−1(x̄− µ), (3.140)

where x̄ = n−1
∑n

i=1 xi is the sample mean.
The ML method estimates the parameters µ and Σ by maximizing the

log-likelihood with respect to (wrt) those parameters, given the data values,
{xi, i = 1, 2, . . . , n}. First, we maximize � wrt µ:

∂�(µ,Σ)
∂µ

= Σ−1(x̄− µ). (3.141)

Setting this derivative equal to zero, the ML estimator of µ is the random
r-vector

µ̂ = X̄, (3.142)

which we call the sample mean vector. For a given data set, the ML estimate
is µ̂ = x̄.

Deriving the ML estimate for Σ needs a little more work. If we define
A =

∑n
i=1(xi − x̄)(xi − x̄)τ , then (3.138) can be written as

�(µ,Σ) = −nr

2
log(2π)−n

2
log |Σ|−1

2
tr(Σ−1A)+n(x̄−µ)τΣ−1(x̄−µ).

(3.143)
The first term on the rhs of (3.143) is a constant and, at the maximum of
�, the last term is zero. So, we need to find Σ to maximize −n log |Σ| −
tr(Σ−1A).

Set A = EEτ and EτΣ−1E = H. Then, Σ = EH−1Eτ and |Σ| =
|A|/|H|, whence, log |Σ| = log |A| − log |H|. Also, using properties of
the trace, tr(Σ−1A) = tr(Σ−1EEτ ) = tr(EτΣ−1E) = tr(H). Putting
these results together, we now need to find H to maximize −n log |A| +
n log |H| − tr(H).

By the Cholesky decomposition of H, there is a unique lower-triangular
matrix T = (tij) with positive diagonal elements such that H = TTτ .
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Hence, we need to find a lower-triangular T to maximize −n log |A| +∑r
i=1(n log t2ii−t2ii)−

∑
i>j t2ij , where we used the facts that |T|2 =

∏r
i=1 t2ii

and tr(TTτ ) =
∑r

i=1 t2ii. The solution is to take t2ii = n and tij = 0
for i �= j; that is, take T =

√
nIr. Thus, we take H = nIr, whence,

Σ = n−1EEτ = n−1A. So, the ML estimator of Σ is given by the random
(r × r)-matrix

Σ̂ =
1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)τ = n−1S, (3.144)

which we call the sample covariance matrix. For a given data set, the ML
estimate is Σ̂ = n−1A.

3.5.1 Joint Distribution of Sample Mean and Sample
Covariance Matrix

The ML estimator X̄ is an unbiased estimator of the population mean
vector µ; that is,

E{X̄} = µ. (3.145)

On the other hand, because

E{Σ̂} =
n− 1

n
Σ, (3.146)

the ML estimator Σ̂ in (3.144) is a biased estimator of the population
covariance matrix Σ. To remove the bias from the covariance estimator
(3.144), it suffices to divide S by n− 1 instead of by n.

Because X̄ is a linear combination of the X1, . . . ,Xn, each of which are
i.i.d. as Nr(µ,Σ), then, the ML estimator, X̄ of µ has the distribution

X̄ ∼ Nr(µ, n−1Σ). (3.147)

To derive the distribution of Σ̂, we suppose for the moment that µ = 0.
Let a be a fixed r-vector and consider yi = aτXi, i = 1, 2, . . . , n. Then,
yi ∼ N1(0, σ2

a), where σ2
a = aτΣa, and y = (y1, · · · , yn)τ ∼ Nn(0, σ2

aIn).
Let b = n−11n, whence, bτb = n−1, and let A = In − n−1Jn, where
Jn = 1n1τ

n is a matrix every element of which is unity. Note that A is
idempotent with rank n. From univariate theory, bτy = ȳ ∼ N1(0, σ2

a/n)
and, yτAy =

∑
i(yi − ȳ)2 ∼ σ2

aχ2
n−1 are independently distributed for

any a.
Now, let X = (X1, · · · ,Xn)τ . Then, bτX ∼ Nr(0, n−1Σ) and, from

Property 4 of the Wishart distribution,

X τAX ∼ Wr(n,Σ). (3.148)
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Because y ∼ Nn(0, σ2
aIn), it follows that bτy ∼ N1(0, σ2

ab
τb) and

yτbbτy/bτb ∼ σ2
aχ2

1. (3.149)

Furthermore, Abbτ = 0; postmultiplying by b yields Ab = 0, so that
the columns of A = (a1, · · · ,an) and b are mutually orthogonal. Thus,
X τai = Xi − X̄, i = 1, 2, . . . , n, and bτX are statistically independent
of each other. Thus, bτX = X̄ and X τAX = (X τA)(X τA)τ = S are
independently distributed.

The case of µ �= 0 is dealt with by replacing Xi by Xi−µ, i = 1, 2, . . . , n.
This does not change S, and X̄ is replaced by X̄−µ. Thus, S is independent
of X̄− µ (and, hence, of X̄), and

Σ̂ ∼ n−1Wr(n− 1,Σ). (3.150)

3.5.2 Admissibility

In 1955, Charles Stein rocked the statistical world by showing that the
ML estimator, X̄, of the unknown mean vector, µ, of a multivariate Gaussian
distribution was “admissible” in one or two dimensions but was “inadmis-
sible” in three or higher dimensions (Stein, 1955).

The idea of inadmissibility of an estimator θ̂ of an unknown vector-valued
parameter θ ∈ Θ is part of the framework of statistical decision theory and
relates to the quality of that estimator in terms of a given loss function
L(θ, θ̂). A loss function gives a quantitative description of the loss incurred
if θ is estimated by θ̂. For example, the most popular type of loss function
for assessing an estimator, θ̂ = (θ̂1, · · · , θ̂r)τ , of the unknown parameter
vector θ = (θ1, · · · , θr)τ is the “squared-error” loss function,

L(θ, θ̂) = (θ̂ − θ)τ (θ̂ − θ) =
r∑

j=1

(θ̂j − θj)2. (3.151)

Different types of loss functions have been proposed in different situations,
and we will meet several of these throughout this book.

It is usual to compare estimators through their risk functions, which are
the expected values of the respective loss functions; that is,

R(θ, θ̂) = Eθ{L(θ, θ̂)}. (3.152)

Two different estimators, θ̂a and θ̂b, of θ can be compared by viewing the
graphs of R(θ, θ̂a) and R(θ, θ̂b) over a suitable range of values of some
function of θ, say, ‖ θ ‖. An estimator θ̂a is inadmissible if there exists
another estimator θ̂b for which

R(θ, θ̂b) ≤ R(θ, θ̂a) for all θ ∈ Θ (3.153)
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and
R(θ, θ̂b) < R(θ, θ̂a) for some θ ∈ Θ; (3.154)

the estimator θ̂a is admissible if no such estimator θ̂b exists. In other words,
an estimator is inadmissible if we can find a better estimator that has a
smaller risk function, whereas an estimator that cannot be improved upon
in this way is called admissible.

3.5.3 James–Stein Estimator of the Mean Vector

Suppose Xi, i = 1, 2, . . . , n, are independently drawn from an r-variate
Gaussian distribution with unknown mean vector µ = (µ1, · · · , µr)τ , such
that the ML estimator Y = X̄ = n−1

∑
i Xi has the Nr(µ, Ir) distribution.

Thus, the components of the unknown mean vector, µ, are different, and
the components of Y are mutually independent with unit variances. The
following development can be easily modified if the covariance matrix of Y
were σ2Ir, where σ2 > 0 is known (Exercise 3.17), or a more general known
covariance matrix V (Exercise 3.18).

The risk function of the estimator Y = (Y1, · · · , Yr)τ is given by

R(µ,Y) = Eµ{(Y − µ)τ (Y − µ)} = tr{Ir} = r. (3.155)

Stein’s result that the sample mean vector is inadmissible for r ≥ 3 in
the case of squared-error loss was later supplemented by James and Stein
(1961), who exhibited a “better” estimator of the multivariate Gaussian
mean vector µ than the sample mean X̄. Let θ = (θ1, · · · , θr)τ be an
arbitrary fixed vector, which is chosen before we look at the data. Typically,
θ is thought to be near µ.

The James–Stein estimator, δ(Y) = (δ1(Y), · · · , δr(Y))τ , is given by

δ(Y) = θ +
(

1− r − 2
S

)
(Y − θ), (3.156)

where

S =‖ Y − θ ‖2=
r∑

j=1

(Yj − θj)2 (3.157)

is the sum of the squared deviations of each individual mean Yj from the
constant θj , and r ≥ 3. Thus, the James–Stein estimator shrinks Y toward
θ by a factor c = 1− (r− 2)/S. Note that for fixed θ, the shrinkage factor
c is the same for all components of Y.

The estimator δ(Y) has a smaller risk than that of Y for every µ, inde-
pendent of whichever vector θ is chosen. To see this, consider the risk of
δ(Y):

R(µ, δ(Y)) = Eµ

⎧⎨
⎩

r∑
j=1

(δj(Y)− µj)2

⎫⎬
⎭ = Eµ{‖ δ(Y)− µ ‖2}. (3.158)



70 3. Random Vectors and Matrices

Now,

‖ δ(Y)− µ ‖2 = ‖ θ +
(

1− r − 2
S

)
(Y − θ)− µ ‖2

=
r∑

j=1

{
(Yj − µj)−

r − 2
S

(Yj − θj)
}2

. (3.159)

Expand the summand to get

(Yj − µj)2 −
2(r − 2)

S
(Yj − µj)(Yj − θj) +

(r − 2)2

S2
(Yj − θj)2. (3.160)

Substituting this expression back into (3.159), rearranging terms, and then
taking expectations, the risk of δ(Y) is

R(µ, δ(Y)) =

r − Eµ

⎧⎨
⎩2(r − 2)

r∑
j=1

(
Yj − θj

S

)
(Yj − µj)−

(r − 2)2

S

⎫⎬
⎭ . (3.161)

The first term inside the expectation is evaluated using Stein’s Lemma,
which says that if Y ∼ N (θ, 1) and g is a differentiable function such that
Eθ{|g′(Y )|} <∞, then,

Eθ{g(Y )(Y − θ)} = Eθ{g′(Y )}. (3.162)

Let

g(Yj) =
Yj − θj

S
, (3.163)

whence,

g′(Yj) =
1
S
− 2(Yj − θj)2

S2
. (3.164)

Substituting the last result into (3.162) yields

R(µ, δ(Y)) =

r − Eµ

⎧⎨
⎩2(r − 2)

r∑
j=1

{
1
S
− 2(Yj − θj)2

S2

}
− (r − 2)2

S

⎫⎬
⎭ ; (3.165)

that is,

R(µ, δ(Y)) = r − Eµ

{
1
S

}
< r = R(µ,Y). (3.166)

This result holds as long as the expectation exists. For r = 1 and r = 2, the
expectation is infinite. For r ≥ 3, the expectation is finite. The expectation
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in (3.166), which represents the difference between the two risk functions,
R(µ,Y)−R(µ, δ(Y)), is sometimes called the Stein effect.

Thus, instead of using just the jth component, Yj , of Y to estimate the
jth component, µj , of µ, the James–Stein estimator, δ(Y), combines all
the mutually independent components of Y in estimating µj . This esti-
mator appears to be intuitively unappealing: why should the estimator of
µj depend upon the estimators of µk, k �= j? The reason why the James–
Stein estimator dominates the usual mean estimator is because we used the
squared-error loss function. This surprising result is commonly referred to
as Stein’s paradox (Efron and Morris, 1977).

The James–Stein estimator (3.156) also happens to be inadmissible for µ.
This follows because, for small values of S, the shrinkage factor c becomes
negative, which, in turn, drags the estimator away from θ. We can avoid
such anomolies by replacing the shrinkage factor c by zero if it is negative
(Efron and Morris, 1973):

δ+(Y) = θ +
(

1− r − 2
S

)

+

(Y − θ), (3.167)

where (x)+ = max{x, 0}. Unfortunately, this so-called positive-part James–
Stein estimator is still not admissible (Brown, 1971).

The James–Stein estimator of µ shrinks Y toward some chosen point
θ. Shrinking to different points will produce different estimates of µ. De-
ciding which one is best then becomes a subjective decision. If one has no
information about the location of µ, then what should we take for θ? One
possibility is to use θ = 0, so that the James–Stein estimator shrinks Y
toward the origin. Another possibility is to shrink each component of Y
toward the overall mean Ȳ = r−1

∑r
j=1 Yj . Let Ȳ = (Ȳ , · · · , Ȳ )τ be an

r-vector whose every entry is Ȳ . The resulting James–Stein estimator is

δ′(Y) = Ȳ +
(

1− r − 3
S′

)
(Y − Ȳ), (3.168)

where

S′ =‖ Y − Ȳ ‖2=
r∑

k=1

(Yk − Ȳ )2 (3.169)

is the sum of the squared deviations of each individual mean Yk from the
overall mean Ȳ . Note that the constant r − 2 is replaced by r − 3 because
the parameter θ is estimated by Ȳ. This estimator dominates Y if r ≥ 4.
Thus, µj is estimated by Ȳ +c(Yj− Ȳ ), j = 1, 2, . . . , r, where the shrinkage
factor is

c = 1− r − 3∑r
k=1(Yk − Ȳ )2

(3.170)
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which can be motivated using an empirical Bayes approach (Efron and
Morris, 1975).
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Exercises

3.1 Let x = (x1, · · · , xp)τ and y = (y1, · · · , yp)τ be any two p-vectors on

p. Show that xτy ≤ (xτx)(yτy), where the equality is achieved only if
ax + by = 0 for a, b ∈ 
. (Hint: Consider (ax + by)τ (ax + by), which is
nonnegative.)

3.2 Let f and g be any real functions defined in some set A, and suppose
f2 and g2 are integrable (wrt some measure). Show that

(∫

A

f(x)g(x)dx

)2

≤
(∫

A

[f(x)]2dx

)(∫

A

[g(x)]2dx

)2

.

Hence, or otherwise, show that if X and Y are random variables, then,
[cov(X,Y )]2 ≤ (var(X))(var(Y )). (Hint: Consider the nonnegative integral
of (af + bg)2.)

3.3 Prove the Hoffman–Wielandt Theorem. (Hint: Use the spectral de-
composition theorem on A and on B; express tr{(A − B)(A − B)τ} in
terms of the decomposition matrices of A and B, and simplify; then, show
that the result is minimized by

∑
j(λj − µj)2.)

3.4 If X ∼ Nr(µ,Σ), show that the marginal distribution of any subset
of r∗ elements of X is r∗-variate Gaussian.

3.5 Show that X ∼ Nr(µ,Σ) if and only if ατX ∼ N (ατµ,ατΣα), where
α is a given r-vector.
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3.6 If X ∼ Nr(µ,Σ), and if A is a fixed (s × r)-matrix and b is a
fixed s-vector, show that the random s-vector Y = AX + b ∼ Ns(Aµ +
b,AτΣA).

3.7 Suppose X ∼ Nr(µ,Σ), where Σ = diag{σ2
i } is a diagonal matrix.

Show that the elements, X1,X2, . . . , Xr, of X are independent and each
Xj follows a univariate Gaussian distribution, j = 1, 2, . . . , r.

3.8 If Z in (3.85) is distributed as an (r + s)-variate Gaussian with mean
(3.86) and partitioned covariance matrix (3.89), show that X and Y are
independently distributed if and only if ΣXY = 0.

3.9 If Z in (3.85) is distributed as an (r + s)-variate Gaussian with mean
(3.86) and partitioned covariance matrix (3.89), and if ΣXX is nonsingu-
lar, show that Y−ΣY XΣ−1

XXX ∼ Ns(µY −ΣY XΣ−1
XXµX ,ΣY Y ·X), where

ΣY Y ·X = ΣY Y −ΣY XΣ−1
XXΣXY . The conditional distribution of Y given

X is Ns(µY +ΣY XΣ−1
XX(X−µX),ΣY Y ·X). If ΣXX is singular, show that

the above results hold, but with Σ−1
XX replaced by the reflexive g-inverse

Σ−
XX .

3.10 The conditional distribution of Y given X=x can be expressed as
the ratio of the joint distribution of (X,Y) to the marginal distribution
of X: f(y|x) = fX,Y (x,y)/fX(x). Using the definition of the multivariate
Gaussian distribution, find the joint and marginal distributions and com-
pute their ratio to find the conditional distribution of Y given X=x. Find
the conditional distribution for the special case of the bivariate Gaussian
distribution. (Hint: The joint distribution of (U1,U2) is given by the prod-
uct of their marginals; transform the variables to X and Y by substituting
x for u1 and y −ΣY XΣ−1

XXx for u2 in that joint distribution.)

3.11 If Xj ∼ N (µj ,Σj), j = 1, 2, . . . , n, are mutually independent and
c1, c2, . . . , cn are real numbers, show that

n∑
j=1

cjXj ∼ Nr

⎛
⎝

n∑
j=1

cjµj ,

n∑
j=1

c2
jΣj

⎞
⎠ .

3.12 If the s columns of the random matrix Z in (3.115) are independent
random r-vectors with common covariance matrix Σ, show that ΣZZ =
Is ⊗Σ.

3.13 Let Wj ∼ Wr(nj ,Σ), j = 1, 2, . . . ,m, be independently distrib-
uted. Show that

∑m
j=1 Wj ∼ Wr(

∑m
j=1 nj ,Σ). Show that this result holds

regardless of whether the distributions are central or noncentral.

3.14 If W ∼ Wr(n,Σ) and A is a (p× r)-matrix of fixed constants with
rank p, show that AWAτ ∼ Wp(n,AΣAτ ).
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3.15 Let W ∼ Wr(n,Σ) and let a be a fixed r-vector. Show that aτWa ∼
σ2

aχ2
n, where σ2

a = aτΣa. The chi-squared distribution is central if the
Wishart distribution is central.

3.16 (Stein’s Lemma) Let X ∼ N (θ, σ2) and let g be a differentiable func-
tion such that E{|g′(X)|} < ∞. Show that E{g(X)(X − θ)} = E{g′(X)}.
(Hint: Use integration by parts with u = g(X) and dv = (X−θ) exp{−(X−
θ)2/2σ2}.)

3.17 Show that if Y = X̄ ∼ Nr(µ, σ2Ir), r ≥ 3, then Y is inadmissible
for the loss function L(θ,Y) = ‖ θ −Y ‖ /σ2, where σ2 > 0 is known.

3.18 Show that if Y = X̄ ∼ Nr(µ,V), where V is a known (r × r)
covariance matrix, r ≥ 3, then Y is inadmissible for the loss function
L(θ,Y) = (Y − θ)τV−1(Y − θ), where p ≥ 3. (Hint: set S = (Y −
θ)τV−1(Y − θ).)

3.19 Assume that X is a random r-vector with mean µ and covariance ma-
trix Σ. Let A be an (r×r)-matrix of constants. Show that (a) E{XτAX} =
tr(AΣ)+µτAµ. Assume now that A is symmetric, and let X ∼ Nr(µ,Σ).
Show that (b) var{XτAX} = 2tr(AΣAΣ)+4µτAΣAµ. If B is also a sym-
metric (r×r)-matrix, show that (c) cov{XτAX,XτBX} = 2tr(AΣBΣ)+
4µτAΣBµ.

3.20 By expressing a correlation matrix R with equal correlations ρ as
R = (1− ρ)I + ρJ, where J is a matrix of ones, find the determinant and
inverse of R.



4
Nonparametric Density Estimation

4.1 Introduction

Nonparametric techniques consist of sophisticated alternatives to tradi-
tional parametric models for studying multivariate data. What makes these
alternative techniques so appealing to the data analyst is that they make
no specific distributional assumptions and, thus, can be employed as an
initial exploratory look at the data. In this chapter, we discuss methods for
nonparametric estimation of a probability density function.

Suppose we wish to estimate a continuous probability density function p
of a random r-vector variate X, where

p(x) ≥ 0,

∫

�r

p(x)dx = 1. (4.1)

Any p that satisfies (4.1) is called a bona fide density. The nonparametric
density estimation (NPDE) problem is to estimate p without specifying
a formal parametric structure. In other words, p is taken to belong to a
large enough family of densities so that it cannot be represented through
a finite number of parameters. It is usual to assume instead that p (and
its derivatives) satisfy some appropriate “smoothness” conditions. How-
ever, there are applications (e.g., X-ray transition tomography) in which
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discontinuities in p (in that case, tissue density) are natural (Johnstone
and Silverman, 1990)

Perhaps the earliest nonparametric estimator of a univariate density p
was the histogram. Further breakthroughs — initially, with the kernel,
orthogonal series, and nearest neighbor methods — came from researchers
working in nonparametric discrimination and time series analysis. Indeed,
Parzen (1962), in his seminal work on kernel density estimators, noted the
resemblance between probability density estimation and spectral density
estimation for stationary time series and then went on to say that “the
methods employed here are inspired by the methods used in the treatment
of the latter problem.”

Nonparametric density estimates can be effective in the following situa-
tions. Descriptive features of the density estimate, such as multimodality,
tail behavior, and skewness, are of special interest, and a nonparametric
approach may be more flexible than the traditional parametric methods;
NPDE is used in decision making, such as nonparametric discrimination
and classification analysis, testing for modes, and random variate testing;
and statistical peculiarities of the data often can be readily explained in
presentations to clients through simple graphical displays of estimated den-
sity curves.

4.1.1 Example: Coronary Heart Disease

A popular application of nonparametric density estimation is that of
comparing data from two independent samples. In this example, data on a
large number of variables were used to compare 117 coronary heart disease
patients (the “coronary group”) with 117 age-matched healthy men (the
“control group”) (Kasser and Bruce, 1969). These variables included heart
rates recorded at rest and at their maximum after a series of exercises on
a treadmill.

Figure 4.1 shows kernel density estimates of resting heart rate and maxi-
mum heart rate for both groups. The maximum heart rate density estimate
(see right panel) for the coronary group appears to be bimodal, possibly a
mixture of the unimodal control-group density and a contaminating den-
sity having a smaller mean. The opposite conclusions appear to be the
case for resting heart rate (left panel). For each density estimate, we used
a smoothing parameter (window width), which reflected sample variation.
Both graphs show a considerable amount of overlap in their density esti-
mates, making it difficult to distinguish between the groups on the basis of
either of these two variables.

A statistic used to monitor activity of the heart is the change in heart
rate from a resting state to that after exercise; that is, maximum heart
rate minus resting heart rate. As can be seen from Figure 4.1, many of the
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FIGURE 4.1. Gaussian kernel density estimates for comparing a “coro-
nary group” of 117 male heart patients (red curves) with a “control group”
of 117 age-matched healthy men (blue curves) in a coronary heart disease
study. Left panel: resting heart rate. Right panel: maximum heart rate after
a series of exercises on a treadmill. For each density estimate, the window
width was taken to reflect sample variation.

coronary group will have very small values of this difference (one patient
has a difference of 3), whereas the bulk of the control group’s values will
tend to be larger. Indeed, 20% of the coronary group had differences strictly
smaller than the smallest of the differences of the control group, and 14%
of the control group had differences lying strictly between the two largest
differences of the coronary group.

4.2 Statistical Properties of Density Estimators

Like any statistical procedure, nonparametric density estimators are rec-
ommended only if they possess desirable properties. In general, research
emphasis has centered upon developing large-sample properties of non-
parametric density estimators.

4.2.1 Unbiasedness

An estimator p̂ of a probability density function p is unbiased for p if, for
all x ∈ 
r, Ep{p̂(x)} = p(x). Although unbiased estimators of parametric
densities, such as the Gaussian, Poisson, exponential, and geometric, do ex-
ist, no bona fide density estimator (i.e., satisfying (4.1)) based upon a finite
data set can exist that is unbiased for all continuous densities (Rosenblatt,
1956). Hence, attention has focused on sequences {p̂n} of nonparametric
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density estimators that are asymptotically unbiased for p; that is, for all
x ∈ 
r, Ep{p̂n(x)} → p(x), as the sample size n→∞.

4.2.2 Consistency

A more important property is consistency. The simplest notion of consis-
tency of a density estimator is where p̂ is weakly-pointwise consistent for p if
p̂(x)→ p(x) in probability for every x ∈ 
r, and is strongly-pointwise con-
sistent for p if convergence holds almost surely. Other types of consistency
depend upon the error criterion.

The L2 Approach. This has always been the most popular approach to
nonparametric density estimation. If p is assumed to be square integrable,
then the performance of p̂ at x ∈ 
r is measured by the mean-squared error
(MSE),

MSE(x) = Ep{p̂(x)− p(x)}2 = var{p̂(x)}+ [bias{p̂(x)}]2, (4.2)

where

var{p̂(x)} = Ep[p̂(x)− Ep{p̂(x)}]2 (4.3)
bias{p̂(x)} = Ep{p̂(x)} − p(x). (4.4)

If MSE(x) → 0 for all x ∈ 
r as n → ∞, then p̂ is said to be a pointwise
consistent estimator of p in quadratic mean.

A more important performance criterion relates to how well the entire
curve p̂ estimates p. One such measure of goodness of fit is found by inte-
grating (4.2) over all values of x, which yields the integrated mean-squared
error (IMSE),

IMSE =
∫

�r

Ep{p̂(x)− p(x)}2dx (4.5)

= Ep

{∫
[p̂(x)]2dx

}
− 2Ep{p̂(x)}+

∫
[p(x)]2dx. (4.6)

If we let R(g) =
∫

[g(x)]2dx, then the last term, R(p), on the rhs of (4.6) is
a constant and, hence, can be removed:

IMSE−R(p) = Ep{R(p̂)− 2p̂}. (4.7)

Thus, R(p̂)− 2p̂ is an unbiased estimator for IMSE−R(p).
Another popular measure is integrated squared error (ISE, or L2-norm),

ISE =
∫

�r

[p̂(x)− p(x)]2dx. (4.8)

Taking expectations over p in (4.8) gives the mean-integrated squared error;
that is, Ep(ISE) = MISE = IMSE (Fubini’s theorem). ISE is often preferred
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as a performance criterion (rather than its expected value IMSE) because
ISE determines how closely p̂ approximates p for a given data set, whereas
MISE is concerned with the average over all possible data sets. For bona
fide density estimates, the best possible asymptotic rate of convergence for
MISE is O(n−4/5); by dropping the restriction that p be a bona fide density,
a density estimate can be constructed with MISE better than O(n−1).

The L1 Approach. One problem with the L2 approach to NPDE is that
the criterion pays less attention to the tail behavior of a density, possibly
resulting in peculiarities in the tails of the density estimate. An alterna-
tive L1-theory of NPDE is also available (Devroye and Gyorfi, 1985). The
integrated absolute error (IAE, or total variation or L1-norm) is given by

IAE =
∫

�r

|p̂(x)− p(x)|dx. (4.9)

IAE is always well-defined as a norm on the L1-space, is invariant under
monotone transformations of scale, and lies between 0 and 2.

If IAE→ 0 in probability as n→∞, then p̂ is said to be a consistent es-
timator of p; strong consistency of p̂ occurs when convergence holds almost
surely. The IAE distance is related to Kullback–Leibler relative entropy
(KL),

KL =
∫

p̂(x) log
{

p̂(x)
p(x)

}
dx, (4.10)

and Hellinger distance (HD),

HD(m) =
{∫ (

[p̂(x)]1/m − [p(x)]1/m
)m

}1/m

(4.11)

(Devroye and Gyorfi, 1985, Chapter 8). The expectation of (4.9) over all
densities p yields the mean integrated absolute error, MIAE = Ep{IAE}.
Some quite remarkable results can be proved concerning the asymptotic
behavior of IAE and MIAE under little or no assumptions on p. One thing,
however, is clear: The technical labor needed to get L1 results is substan-
tially more difficult than that needed to obtain analogous L2 results.

4.2.3 Bona Fide Density Estimators

Some density estimation methods always yield bona fide density esti-
mates, and others generally yield density estimates that contain negative
ordinates (especially in the tails) or have an infinite integral. Negativity
can occur naturally as a result of data sparseness in certain regions or it
can be caused by relaxing the nonnegativity constraint in (4.1) in order
to improve the rate of convergence of an estimator of p. Negativity in a
density estimate can lead to an especially undesirable interpretation if a
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function of that estimate is needed in a practical situation. For example,
Terrell and Scott (1980) remarked that “a negative hazard rate implies the
spontaneous reviving of the dead.” Moreover, in the quest for faster rates of
convergence for density estimators, some researchers have chosen to relax
the integral constraint in (4.1) rather than the nonnegativity constraint.

There are several ways of alleviating such problems. The density estimate
may be truncated to its positive part and renormalized, or a transformed
version of p (e.g., log p or p1/2) may be estimated and then backtransformed
to get a nonnegative estimate of p.

4.3 The Histogram

The histogram has long been used to provide a visual clue to the general
shape of p. We begin with the univariate case, where x ∈ 
. Suppose p
has support Ω = [a, b], where a and b are usually taken to contain the
entire collection of observed data. Create a fixed partition of Ω by using
a grid (or mesh) of L nonoverlapping bins (or cells), T� = [tn,�, tn,�+1),
� = 0, 1, 2, . . . , L − 1, where a = tn,0 < tn,1 < tn,2 < · · · < tn,L = b, and
the bin edges {tn,�} are shown depending upon the sample size n. Let IT�

denote the indicator function of the �th bin and let N� =
∑n

i=1 IT�
(xi) be

the number of sample values that fall into T�, � = 0, 1, 2, . . . , L− 1, where∑L−1
�=0 N� = n.
Then, the histogram, defined by

p̂(x) =
L−1∑
�=0

N�/n

tn,�+1 − tn,�
IT�

(x), (4.12)

satisfies (4.1). If we fix hn = tn,�+1 − tn,�, � = 0, 1, 2, . . . , L − 1, to be a
common bin width, and if we take tn,0 = 0, then the bins will be T0 =
[0, hn), T1 = [hn, 2hn), . . . , TL−1 = [(L − 1)hn, Lhn). Then, (4.12) reduces
to

p̂(x) =
1

nhn

L−1∑
�=0

N�IT�
(x). (4.13)

So, if x ∈ T�, then,

p̂(x) =
N�

nhn
. (4.14)

As a density estimator, the histogram leaves much to be desired, with de-
fects that include “the fixed nature of the cell structure, the discontinuities
at cell boundaries, and the fact that it is zero outside a certain range”
(Hand, 1982, p. 15).

A much more serious defect relates to the sensitivity of histogram shapes
to the choice of origin. Figure 4.2 displays histograms for the data set
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FIGURE 4.2. Histograms of the radial velocities of 323 locations in the
area of the spiral galaxy NGC7531 in the Southern Hemisphere (Buta,
1987). In both panels, the bin width is h = 20. In the left panel, the origin
is 1,400; in the right panel, it is 1,409, the minimum data value.

galaxy, which consists of the radial velocities of 323 locations in the area
of the spiral galaxy NGC7531 in the Southern Hemisphere (Buta, 1987).
The bin width is h = 20 and the origins are 1,400 (left panel) and 1,409
(right panel). We see how different the histograms look when the origin is
changed.

In general, histograms tend not to have symmetric, unimodal, or Gaussian
shapes. Indeed, in many large data sets, we often see histograms that are
highly skewed with short left-hand tails, very long right-hand tails, sev-
eral modes (some more prominent than others), and multiple outliers. In
many cases, the modes can be modeled parametrically as components of a
mixture of distributions.

4.3.1 The Histogram as an ML Estimator

Let H(Ω) be a specified class of real-valued functions defined on Ω. Given
a random sample of observations, X1,X2, . . . , Xn, the maximum-likelihood
(ML) problem is to find a p ∈ H(Ω) that maximizes the likelihood function

L(p) =
n∏

i=1

p(Xi), (4.15)

or its logarithm, subject to
∫

Ω

p(t)dt = 1, p(t) ≥ 0 for all t ∈ Ω. (4.16)

If H(Ω) is finite dimensional, then a (not necessarily unique) solution to this
problem exists and is called an ML estimator of p. The uniqueness of the
solution depends upon the specification of H(Ω). If we restrict H to contain
only functions of the form p(x) =

∑L−1
�=0 y�IT�

(x), where h
∑L−1

�=0 y� = 1,
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then the histogram (4.13) is the unique ML estimator of p based on the
random sample X1,X2, . . . , Xn; see Exercise 4.1.

4.3.2 Asymptotics

If n observations are randomly drawn from the probability density p, then
the bin count N� in interval T� can be viewed as a binomial random variable;
that is, N� ∼ Bin(n, p�), where p� =

∫
T�

p(x)dx. Thus, the probability that
N� out of the n observations will fall into bin T� is given by

Prob{N� ∈ T�} =
(

n

N�

)
pN�

� (1− p�)n−N� . (4.17)

Hence, E{N�} = np� and var{N�} = np�(1− p�). Under suitable continuity
conditions for p(x) and assuming that p(x) does not vary much for x ∈ T�,
there exists ξ� ∈ T� such that, by the mean-value theorem,

p� =
∫

T�

p(x)dx = hnp(ξ�), (4.18)

where hn is the width of T�. Then, from (4.14), we have that, for x ∈ T�,

E{p̂(x)} =
p�

hn
= p(ξ�) (4.19)

and

var{p̂(x)} =
var{N�}

n2h2
n

=
np�(1− p�)

n2h2
n

≤ p�

nh2
n

=
p(ξ�)
nhn

, (4.20)

because p�(1− p�) ≤ p�.
Now, consider the bin T0 = [0, hn). By expanding p(y) around p(x) using

a Taylor series, we have that

p0 =
∫

T0

p(y)dy = hnp(x) + hn

(
hn

2
− x

)
p′(x) + O(h3). (4.21)

The bias of p̂(x) is Ep{p̂(x)}−p(x), where, from (4.19), Ep{p̂(x)} = p0/hn.
By the generalized mean value theorem, there exists ξ0 ∈ T0 such that the
leading term of the integrated squared bias for bin T0 is

∫

T0

[bias{p̂(x)}]2dx ∼ p′(ξ0)
∫

T0

(
h

2
− x

)2

dx =
h3

n

12
[p′(ξ0)]2. (4.22)

A similar result holds for bin T�. The total integrated squared bias (ISB)
is obtained by multiplying this result by hn, summing over all bins, and
arguing that the sum converges to an integral. The asymptotic integrated
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squared bias (AISB), which is defined as the leading term in ISB, is given
by

AISB =
1
12

h2
nR(p′), (4.23)

where R(g) =
∫
�{g(u)}2du. Next, define the integrated variance (IV) as

IV =
∫

�
var{p̂(x)}dx =

∑
�

∫

T�

var{p̂(x)}dx. (4.24)

Substituting from (4.20), summing over all bins, and setting
∑

� p� =∫
p(x)dx = 1, we have that

IV =
1

nhn
− 1

nhn

∑
�

p2
� . (4.25)

Now, from (4.18), we have that
∑

� p2
� = hn

∑
�[p(ξ�)]2hn. The summation

on the rhs approximates hn

∫
[p(x)]2dx. The asymptotic integrated variance

(AIV) is defined as the leading terms in IV and is given by

AIV =
1

nhn
− R(p)

n
. (4.26)

Combining AIV with AISB yields the asymptotic MISE (AMISE),

AMISE =
1

nhn
+

1
12

h2
nR(p′). (4.27)

If hn → 0 and nhn →∞ as n→∞, then IMSE→ 0.
Differentiating (4.27) wrt hn, setting the result equal to zero, and solving,

we have that AIMSE is minimized wrt hn by the optimal bin width,

h∗
n =

{
6

R(p′)n

}1/3

, (4.28)

where p′ = p′(x) = dp(x)/dx is the first derivative of p wrt x, and R(p′)
is a measure of roughness of the density function p (see Exercise 4.2). If
X ∼ N (0, σ2), then (4.28) reduces to

h∗
n ≈ 3.4908σn−1/3. (4.29)

In Figure 4.3, we graph the histogram of 5,000 observations randomly
drawn from N (0, 1) using bin widths 0.1, 0.2 (optimal using (4.29)), 0.3,
and 0.4.

The asymptotic IMSE corresponding to the optimal choice (4.29) of bin
width is given by

AIMSE∗ = (3/4)2/3[R(p′)]1/3n−2/3, (4.30)
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FIGURE 4.3. Histograms of 5,000 observations randomly drawn from
a standard Gaussian distribution. The optimal bin width is 0.2 (top-right
panel). The other three histograms have bin widths of 0.1 (top-left panel),
0.3 (bottom-left panel), and 0.4 (bottom-right panel).

which reduces to AIMSE∗ ≈ 0.43n−2/3 in the N (0, 1) case. This conver-
gence rate of O(n−2/3) is substantially slower than most other types of
density estimators, which gives a more technical reason why histograms do
not make good density estimators.

4.3.3 Estimating Bin Width

An important aspect of drawing histograms is choice of bin width, which
operates as a smoothing parameter. The two most popular methods for
choosing the most appropriate histogram bin-width for a given data set are
the “plug-in” method and cross-validation.

The obvious estimate of h∗
n in the Gaussian case is given by substituting

the sample standard deviation s in (4.29) in place of the unknown σ; that is,
ĥ∗

n = 3.5sn−1/3 (“Scott’s rule”). This “plug-in” estimator generally works
well, but for non-Gaussian data, it can lead to overly smoothed histograms
(via too-wide bin widths or, equivalently, too-few bins). Slightly narrower
bin widths can be obtained using the more robust rule ĥ∗

n = 2(IQR)n−1/3,
where IQR is the interquartile range of the data. The robust rule will yield
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a narrower bin width than the Gaussian rule if s/IQR > 0.57. Although
this robust rule can sometimes yield wider bin widths than the Gaussian
rule, we should not see much difference between the two choices in practice.

The second method uses leave-one-out cross-validation, CV/n, to esti-
mate h∗

n. From (4.8), ISE can be expanded into three terms:

ISE =
∫

[p̂(x)]2dx− 2
∫

p̂(x)p(x)dx +
∫

[p(x)]2dx. (4.31)

The last term, which depends only upon the unknown p, is not affected
by changes in bin-widths h, and so can be ignored. The first term only
depends upon the density estimate p̂ and can be easily computed. Because
the middle integral is the expected height of the histogram, Ep{p̂(X)},
CV/n can be used to estimate this integral. Accordingly, the unbiased cross-
validation (UCV) criterion for a histogram is

UCV(h) = R(p̂)− 2
n

n∑
i=1

p̂−i(xi)

=
2

(n− 1)h
− n + 1

n2(n− 1)h

L∑
�=1

N2
� . (4.32)

See Exercise 4.8. The CV/n estimate, ĥUCV , of h is that value of h that
minimizes UCV(h). A biased cross-validation (BCV) criterion for choosing
the bin width of a histogram has also been proposed and studied; for details,
see Scott and Terrell (1987). The BCV bin width, ĥBCV , is the value of
h that minimizes BCV(h), a similar-looking criterion to (4.32). Both UCV
and BCV criteria yield consistent estimates of h, but convergence is slow
in either case, the relative error being O(n−1/6).

4.3.4 Multivariate Histograms

The univariate results on optimal bin width and asymptotically optimal
IMSE can be extended to the multivariate case.

In this case, we are given a random sample, X1,X2, . . . ,Xn, where Xi =
(X1i,X2i, · · · ,Xri)τ , from the multivariate density p(x), x ∈ 
r. Each axis
is partitioned in the form of a grid of uniformly spaced bins. If the jth
axis is partitioned by bins of width hj,n, j = 1, 2, . . . , r, the space 
r is
partitioned into hyperrectangles, each having volume h1,nh2.n · · ·hr,n.

Now, suppose N� multivariate observations fall into the �th hyperrectan-
gle B�, where

∑
� N� = n. Then, our histogram estimate of p(x) is

p̂(x) =
1

nh1,nh2,n · · ·hr,n

∑
�

N�IB�
(x). (4.33)
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FIGURE 4.4. Bivariate histograms for the coronary heart disease study.
Variables plotted are resting heart rate and maximum heart rate. Left panel:
control group. Right panel: coronary group.

It can be shown (Scott, 1992, Theorem 3.5) that the asymptotically optimal
bin width, h∗

�,n, for the �th variable is given by

h∗
�,n = [R(p�)]−1/2

⎛
⎝6

r∏
j=1

[R(pj)]1/2

⎞
⎠

1/(2+r)

n−1/(2+r) (4.34)

and the asymptotically optimal IMSE is

AIMSE∗ =
1
4
62/(2+r)

⎛
⎝

r∏
j=1

R(pj)

⎞
⎠

1/(2+r)

n−2/(2+r), (4.35)

where pj = ∂p(x)/∂xj .
In the multivariate Gaussian case,Nr(0,Σ), where Σ = diag{σ2

1 , . . . , σ2
r},

(4.35) reduces to

h∗
�,n = 2 · 31/(2+r)πr/(4+2r)σ�n

−1/(2+r). (4.36)

For r = 1, the constant in (4.36) reduces to 2 · 31/3π1/6 = 3.4908, and as
r →∞, the constant becomes 2π1/2 = 3.5449. So, for all r, the constant lies
between 3.4908 and 3.5449. A rule-of-thumb, therefore, for this particular
case is to use h∗

�,n ≈ 3.5σ�n
−1/(2+r).

Figure 4.4 displays bivariate histograms of both the control group (left
panel) and coronary group (right panel) for the coronary heart disease
study (see Section 4.1.1). In particular, the control-group histogram has a
unimodal and sharply skewed shape, whereas the coronary-group histogram
has a bimodal and more blocky shape. Problems in visualizing important
characteristics of a bivariate histogram, due to its “blocky” and discontin-
uous nature, often make such density estimators difficult to work with in
practice.
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4.4 Maximum Penalized Likelihood

The ML method of Section 4.3.3 fails miserably when the class H of den-
sities over which the likelihood L is to be maximized is unrestricted. For
that case, the likelihood is maximized by a linear combination of Dirac delta
functions (or “spikes”) at the n sample values, resulting in a value of +∞
for the likelihood. There have been several approaches to ML density esti-
mation in which restrictions are placed on H; these include order-restricted
methods and sieve methods (see, e.g., Izenman, 1991). Here, we restrict the
likelihood L by penalizing L for producing density estimates that are “too
rough.”

Let Φ be a given nonnegative (roughness) penalty functional defined on
H. The Φ-penalized likelihood of p is defined to be

L̃(p) =
n∏

i=1

p(Xi)e−Φ(p). (4.37)

The optimization problem calls for L̃(p), or its logarithm,

L(p) = loge L̃(p) =
n∑

i=1

loge p(Xi)− Φ(p), (4.38)

to be maximized subject to

p ∈ H(Ω),
∫

Ω

p(u)du = 1, p(u) ≥ 0 for all u ∈ Ω. (4.39)

If it exists, a solution, p̂, of that problem is called a maximum penalized
likelihood (MPL) estimate of p corresponding to the penalty function Φ and
class of functions H. For example, Φ(p) = α

∫∞
−∞[p′′(x)]2dx is used in the

IMSL Fortran routine DESPL, where α > 0 is a smoothing parameter. IMSL
recommends α = 10 for N (0, 1) data and using a grid of α = 1(10)100 for
other situations.

Good and Gaskins (1971) observed that the MPL method could, for
certain types of problems, be interpreted as “quasi-Bayesian” because L̃(p)
in (4.37) resembles a posterior density for a parametric estimation problem.
Furthermore, the MPL method is closely related to Tikhonov’s method of
regularization used for solving ill-posed inverse problems (O’Sullivan, 1986).

The existence and uniqueness of MPL density estimates have been estab-
lished, and it has been shown that such estimates are intimately related to
spline methods (de Montricher, Tapia, and Thompson, 1975). For example,
if p has finite support Ω and if H(Ω) is a suitable class of smooth functions
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on Ω, then the MPL estimate p̂ exists, is unique, and is a polynomial spline
with join points (or “knots”) only at the sample values.

The case when p has infinite support is more complicated. Good and
Gaskins (1971) proposed penalty functionals designed to estimate the “root-
density,” so that p̂ = γ̂2 would be a nonnegative (and bona fide) estimator
of p. The penalty functionals were

Φ1(p) = 4αR(γ′), α > 0, (4.40)

Φ2(p) = 4αR(γ′) + βR(γ′′), α ≥ 0, β ≥ 0, (4.41)

where, as before, R(g) =
∫

[g(x)]2dx, for any square-integrable function g,
and the hyperparameters α and β, with α + β > 0 in (4.41), control the
amount of smoothing. The choice of Φ1 or Φ2 depends upon how best to
represent the “roughness” of p. Good and Gaskins preferred Φ2 to Φ1,
arguing that curvature as well as slope of the density estimate should be
penalized.

If the optimization problem is set up correctly, and we use the penalty
function Φ1 and a given value of α, then the resulting estimator, γ̂α, say,
exists, is unique, and is a positive exponential spline with knots only at
the sample values (de Montricher, Tapia, and Thompson, 1975). An expo-
nential spline rather than a polynomial spline is the price to be paid for
requiring nonnegativity of the density estimator. The MPL estimator is
then given by p̂α = γ̂2

α. This density estimator is consistent over a number
of norms, including L1 and L2. Similar statements can be made about the
optimization problem where Φ2 is the penalty function and α and β are
given.

Implementation of the MPL method depends upon the quality of the
numerical solutions to the restricted optimization problems. Scott, Tapia,
and Thompson (1980) studied a discrete approximation to the spline so-
lutions of the MPL problems and proved that the resulting discrete MPL
estimator exists, is unique, converges to the spline MPL estimator, and
is a strongly pointwise consistent estimator of p. Fortunately, solutions to
the MPL density-estimation problem can be expressed in terms of kernel
density estimates, where the kernels are weighted according to the other
observations in the sample rather than with a uniform n−1 weight as in
(4.42) below.

4.5 Kernel Density Estimation

The most popular density estimation method is the kernel density esti-
mator. Given iid univariate observations, X1,X2, . . . , Xn ∼ p, the kernel
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density estimator,

p̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, x ∈ 
, h > 0, (4.42)

of p(x), x ∈ 
, is used to obtain a smoother density estimate than the
histogram. In (4.42), K is a kernel function, and the window width h deter-
mines the smoothness of the density estimate. Choice of h is an important
statistical problem: too small a value of h yields a density estimate too
dependent upon the sample values, whereas too large a value of h produces
the opposite effect and oversmooths the density estimate by removing in-
teresting peculiarities. Given a kernel K and window width h, the resulting
kernel density estimate is unique for a specific data set; hence, kernel den-
sity estimates do not depend upon a choice of origin as do histograms.

There are several ways to define a multivariate version of (4.42). In the
following, we use the formulation provided by Scott (1992, Section 6.3.2).
Given the r-vectors Xi,X2, . . . ,Xn, the multivariate kernel density esti-
mator of p is defined to have the general form,

p̂H(x) =
1

n|H|

n∑
i=1

K(H−1(x−Xi)), x ∈ 
r, (4.43)

where H is an (r×r) nonsingular matrix that generalizes the window width
h, and K is a multivariate function with mean 0 and integrates to 1. If,
for example, we take H = hA, where h > 0 and |A| = 1, the size and
elliptical shape of the kernel will be determined completely by h and the
matrix AAτ , respectively. If A = Ir, then (4.43) reduces to

p̂h(x) =
1

nhr

n∑
i=1

K

(
x−Xi

h

)
, x ∈ 
r. (4.44)

In (4.44), the choice of kernel function K and window width h control
the performance of p̂h as an estimator of p. Because p̂h inherits whatever
properties the kernel K possesses, it is important that K has desirable
statistical properties.

4.5.1 Choice of Kernel

The simplest class of kernels consists of multivariate probability density
functions that satisfy

K(x) ≥ 0,

∫

�r

K(x)dx = 1. (4.45)

If a kernel K from this class is used in (4.44), then p̂h will always be a bona
fide probability density.
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TABLE 4.1. Examples of univariate kernel functions with compact sup-
port.

Kernel Function K(x)

Rectangular 1
2
I[|x|≤1]

Triangular (1 − |x|)I[|x|≤1]

Bartlett–Epanechnikov 3
4
(1 − x2)I[|x|≤1]

Biweight 15
16

(1 − x2)2I[|x|≤1]

Triweight 35
32

(1 − x2)3I[|x|≤1]

Cosine π
4

cos(π
2
x)I[|x|≤1]

Popular choices of univariate kernels include the Gaussian kernel with
unbounded support,

K(x) = (2π)−1/2e−x2/2, x ∈ 
, (4.46)

and the compactly supported “polynomial” kernels,

K(x) = κij(1− |x|i)jI[|x|≤1], κij =
i

2Beta(j + 1, 1/i)
, i > 0, j ≥ 0.

(4.47)
Special cases of the polynomial kernel are the rectangular kernel (j = 0,
κi0 = 1/2), the triangular kernel (i = 1, j = 1, κ11 = 1), the Bartlett–
Epanechnikov kernel (i = 2, j = 1, κ21 = 3/4), the biweight kernel (i =
2, j = 2, κ22 = 15/16), the triweight kernel (i = 2, j = 3, κ23 = 35/32),
and, after a suitable rescaling, the Gaussian kernel (i = 2, j = ∞). Their
specific forms are listed in Table 4.1 and graphed in Figure 4.5.

It has been known for some time that the Bartlett–Epanechnikov kernel
minimizes the optimal asymptotic IMSE with respect to K. However, IMSE
is, in fact, quite insensitive to the shape of the kernel, so the Gaussian or
rectangular kernels are just as good in practice as the optimal kernel.

Multivariate kernels are usually radially symmetric unimodal densities,
such as the Gaussian,

K(x) =
1

(2π)r/2
e−xτx/2, x ∈ 
r, (4.48)
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FIGURE 4.5. Univariate kernel functions with compact support.
Left panel: rectangular and triangular kernels. Right panel: Bartlett–
Epanechnikov, biweight, and triweight kernels.

and the compactly supported Bartlett–Epanechnikov,

K(x) =
r + 2
2cr

(1− xτx)I[xτx≤1], cr =
πr/2

Γ((r/2) + 1)
. (4.49)

In certain multivariate situations, it may be convenient to use product ker-
nels of the form,

K(x) =
r∏

j=1

K(xj), (4.50)

which is a product of univariate kernel functions, where the kernels are the
same for each dimension. If we take H in (4.43) to be the diagonal ma-
trix H = diag{h1,n, · · · , hr,n} = hA with different window widths in each
dimension, where A = diag{h1,n/h, · · · , hr,n/h}, and let K be a product
kernel, then (4.43) reduces to

p̂H(x) =
1

nhr

n∑
i=1

⎧⎨
⎩

r∏
j=1

K

(
xj −Xij

hj,n

)⎫⎬
⎭ , x ∈ 
r, (4.51)

where x = (x1, · · · , xr)τ , Xi = (Xi1, · · · ,Xir)τ , and h = (h1,n · · ·hr,n)1/r is
the geometric mean of the r window widths.

4.5.2 Asymptotics

Early work on kernel density estimation emphasized asymptotic results,
which depended upon the particular viewpoint considered.

The L1 Approach. Among the remarkable L1 results proved for kernel
density estimates, we have that if K satisfies (4.45), then the kernel esti-
mator (4.44) will be a strongly consistent estimator of p iff hn → 0 and
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nhn →∞, as n→∞, without any conditions on p (Devroye, 1983). More-
over, in the univariate case, MIAE is of order O(n−2/5) (Devroye and Pen-
rod, 1984), which is better than the corresponding L1 rate for histograms.
Explicit formulas for the minimum MIAE and the asymptotically optimal
smoothing parameters for kernel estimators are available (Hall and Wand,
1988).

The L2 Approach. Under regularity conditions on K and p, it can be
shown that if hn → 0 as n→∞, then the univariate kernel density estima-
tor is both asymptotically unbiased and asymptotically Gaussian (Parzen,
1962). In the multivariate case, the MISE is asymptotically minimized over
all h satisfying the above conditions by

h∗
n = α(K)β(p)n−1/(r+4), (4.52)

where r is the dimensionality, α(K) depends only upon the kernel K, and
β(p) depends only upon the unknown density p (Cacoullos, 1966). This
result shows that the window width should get smaller as the sample size
n gets larger; this reflects a commonsense notion that “local” smoothing
information becomes more important as more data become available. More-
over, MISE → 0 at the rate O(n−4/(r+4)). These L2 results show clearly
the dimensionality effect, because these convergence rates become slower
as the dimensionality r increases.

In the univariate case, the pointwise variance (4.3) and bias (4.4) of p̂h(x)
are found by using Taylor-series expansions:

var{p̂(x)} ≈ R(K)p(x)
nhn

− [p(x)]2

n
, (4.53)

bias{p̂(x)} ≈ 1
2
σ2

Kh2
np′′(x); (4.54)

where R(g) =
∫

[g(x)]2dx for any square-integrable function g, and σ2
K =∫

x2K(x)dx. See Exercise 4.10. Thus, we can reduce the variance by in-
creasing the size of hn (i.e., by oversmoothing), and bias reduction can
take place if we make hn small (i.e., by undersmoothing). This is the clas-
sical bias-variance trade-off dilemma, and so, to choose hn, a compromise
is needed.

Adding the variance term and the square of the bias term and then
integrating wrt x gives us the asymptotic MISE (AMISE) for a univariate
kernel density estimator:

AMISE(hn) =
R(K)
nhn

+
1
4
σ4

Kh4
nR(p′′). (4.55)

Minimizing AMISE(hn) wrt hn yields the asymptotically optimal window
width,

h∗
n =

{
R(K)

σ4
KR(p′′)

}1/5

n−1/5, (4.56)



4.5 Kernel Density Estimation 93

so that α(K) = {R(K)/σ4
K}1/5 and β(p) = {R(p′′)}−1/5 in (4.52). Substi-

tuting the expression for h∗
n into AMISE shows that

AMISE∗ =
5
4
[σKR(K)]4/5[R(p′′)]1/5n−4/5. (4.57)

See Scott (1992, p. 131).
Consider the special case where K is a product Gaussian kernel (4.50)

and the density p is multivariate Gaussian with diagonal covariance matrix,
diag{σ2

1 , . . . , σ2
r} (i.e., the variables are independent). Then, (4.52) reduces

to

h∗
j,n =

(
4

r + 2

)1/(r+4)

σjn
−1/(r+4), j = 1, 2, . . . , r. (4.58)

In the univariate case, where K is the standard Gaussian kernel and p is a
Gaussian density with variance σ2, then

h∗
n = 1.06σn−1/5 (4.59)

is the asymptotically optimal window width. In the bivariate case, the
constant in (4.58) is exactly 1. In general. (4/(r + 2))1/(r+4) attains its
minimum as a function of r when r = 11, where its value is 0.924. For
general r, Scott (1992, p. 152) recommends the rule h∗

j,n = σjn
−1/(r+4).

4.5.3 Example: 1872 Hidalgo Postage Stamps of Mexico

This example shows the effect of varying the window width h of a
Gaussian kernel density estimate. The data1 consist of 485 measurements
of the thickness of the paper on which the 1872 Hidalgo Issue postage
stamps of Mexico were printed (Izenman and Sommer, 1988). This exam-
ple is particularly interesting because of the fact that these stamps were
deliberately printed on a mixture of paper types, each having its own
thickness characteristics due to poor quality control in paper manufac-
ture.

Today, the thickness of the paper on which this particular stamp image
is printed is a primary factor in determining its price. In almost all cases,
a stamp printed on relatively scarce “thick” paper is worth a great deal
more than the same stamp printed on “medium” or “thin” paper. It is,
therefore, important for stamp dealers and collectors to know how to dif-
ferentiate between thick, medium, and thin paper. Quantitative definitions
of the words thin and thick do not appear in any current stamp catalogue,

1The Hidalgo stamp data can be found in the file Hidalgo1872 on the book’s
website.
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FIGURE 4.6. Gaussian kernel density estimates of the 485 measurements
on paper thickness of the 1872 Hidalgo Issue postage stamps of Mexico.
The window widths are (a) h = 0.01; (b) h = 0.005; (c) h = 0.0036;
(d) h = 0.0025; (e) h = 0.0012; and (f) h = 0.0005. Notice the smooth
appearance of the density estimates and the emergence of more modes as h
is decreased.

and decisions as to the financial worth of such stamps are left to personal
subjective judgment.

Figure 4.6 displays Gaussian kernel density estimates of the Hidalgo
stamp data for six window widths: h = 0.01, 0.005, 0.0036, 0.0025, 0.0012,
and 0.0005. As h is reduced in magnitude, more structure and detail of the
underlying density become visible and more modes emerge. Clearly, the
estimate in panel (a) is too smooth, and that in panel (f) is too noisy. The
most reasonable density estimate is that which corresponds to a window
width of h = 0.0012 (see panel (e)) and has seven modes. The two biggest
modes occur at thicknesses of 0.072 mm and 0.080 mm; a cluster of three
side modes occur at 0.090 mm, 0.100 mm, and 0.110 mm; and there are
two tail modes at 0.120 mm and 0.130 mm.

Our analysis does not stop there. We have more information regarding
this particular stamp issue. Every stamp from the 1972 Hidalgo Issue was
overprinted with year-of-consignment information: there was an 1872 con-
signment (289 stamps) and an 1873–1874 consignment (196 stamps). We
divided these 485 thickness measurements into two groups according to the
appropriate consignment overprint.

Gaussian kernel density estimates (with common window width h =
0.0015) were computed for the data from each consignment. The resulting
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FIGURE 4.7. Gaussian kernel density estimates from data on the 1872
consignment (n = 289) and 1873–1874 consignment (n = 196) of the 1872
Hidalgo Postage Stamp Issue of Mexico. For both density estimates, a com-
mon window width of h = 0.0015 was used.

density estimates, which are graphed in Figure 4.7, show clearly that the
paper used for printing the stamps in the two consignments had very dif-
ferent thickness characteristics. It appears that a large proportion of the
1872 consignment of stamps was printed on very thick paper, which was
not used for the 1873–1874 consignment.

Because 1872 Hidalgo Issue stamps printed on thick paper command
much higher prices, these results show that one should look at year-of-
consignment as an important factor for valuation purposes.

4.5.4 Estimating the Window Width

For kernel density estimation, rather than trying an ad hoc sequence of
different window widths until we find one with which we are satisfied, it
would be much more convenient to have an automated method for deter-
mining the optimal window width for any given data set.

For the L2 approach, we see from (4.52) that the optimal window width,
h∗

n, depends explicitly on the unknown density p through the quantity
β(p), and so cannot be computed exactly. The most popular methods for
estimating h∗

n are the so-called “rule-of-thumb” method, cross-validation,
and the “plug-in”method.

Rule-of-Thumb Method An obvious way to estimate the window width is
to insert a parametric estimate p̂ of p into β(p).
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In the univariate case, we can choose a “reference density” for p, find
R(p′′), and then estimate the result using a random sample from p. If we
take p to be N (0, σ2) and K to be a standard Gaussian kernel, then the
“optimal” rule-of-thumb (ROT) window width for a Gaussian reference
density (see (4.61)) would be ĥROT

n = 1.06sn−1/5, where the sample stan-
dard deviation s is the usual estimate for σ. Otherwise, a more robust
estimate of σ may be used, such as min{s, IQR/1.34}, where IQR is the
interquartile range, and for Gaussian data, IQR ≈ 1.34s (Silverman, 1986,
pp. 45–47).

For example, the Hidalgo postage stamp data has standard deviation
s = 0.015, so that the optimal ROT window width is given by ĥROT

n =
(1.06)(0.015)(485)−1/5 = 0.005; as we see from Figure 4.6(b), this value
yields an overly smoothed density estimate.

Rule-of-thumb estimators for window widths are generally regarded as
unsatisfactory (with some exceptions). Simulations and case studies with
real data both indicate that window widths produced by this method tend
to be overly large; if that happens, the density estimate will be drastically
oversmoothed and the presence of an important mode may be unknowingly
removed.

Cross-Validation A popular method for determining the optimal window
width is leave-one-out cross-validation (CV/n). In the univariate case, the
basic algorithm removes a single value, say Xi, from the sample, computes
the appropriate density estimate at that Xi from the remaining n−1 sample
values,

p̂h,−i(Xi) =
1

(n− 1)h

∑
j �=i

K

(
Xi −Xj

h

)
, (4.60)

and then chooses h to optimize some given criterion involving all values
of p̂h,−i(Xi), i = 1, 2, . . . , n. A number of different versions of CV/n have
been used for determining h in density estimation, including unbiased and
biased cross-validation.

The unbiased cross-validation choice, hUCV
n , of window width is that h

that minimizes

UCV (h) = R(p̂h)− 2
n

n∑
i=1

p̂h,−i(Xi), (4.61)

where R(g) =
∫
�[g(x)]2dx. The criterion (4.61), which is derived in exactly

the same manner as the CV-expression for the histogram given in (4.32),
is referred to as an unbiased cross-validation (UCV) criterion because it is
exactly unbiased for a shifted version of MISE; that is,

Ep{UCV(h)} = MISE(h)−R(p). (4.62)
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Only very mild tail conditions on K and p are needed to prove that hUCV
n

asymptotically minimizes ISE and gives good results even for long-tailed
p; it has also been shown to perform asymptotically as well as the MISE-
optimal (but unattainable) window width h∗

n, and even though convergence
tends to be slow, it cannot be improved upon asymptotically.

Another approach to the problem of choosing h is to minimize AMISE(h)
directly. In the univariate case, AMISE depends upon the unknown R(p′′),
which we, therefore, need to estimate. Scott and Terrell (1987) showed
that Ep{R(p̂′′)} = R(p′′) + R(K ′′)/nh5 + O(h2), so that R(p̂′′h) asymptot-
ically overestimates R(p′′). From this result, they proposed the modified
estimator

R̂(p′′) = R(p̂′′h)− R(K ′′)
nh5

, (4.63)

which is an asymptotically unbiased estimator of R(p′′). See also Hall and
Marron (1987).

If we define Kh(u) = h−1K(u/h), then, K ′′(u/h) = h3K ′′
h(u). Differen-

tiating p̂h(x) (see (4.44)) twice wrt x gives

p̂′′h(x) =
1
n

n∑
i=1

K ′′
h(x−Xi). (4.64)

Squaring (4.64), integrating the result wrt x, and then using a change of
variable gives

R(p̂′′h) =
1
n2

n∑
i=1

n∑
j=1

K ′′
h ∗K ′′

h(Xi −Xj)

=
1
n

K ′′
h ∗K ′′

h(0) +
1
n2

∑∑
i�=j

K ′′
h ∗K ′′

h(Xi −Xj)

=
R(K ′′)

nh5
+

1
n2h5

∑∑
i�=j

K ′′
h ∗K ′′

h(Xi −Xj), (4.65)

where the convolution of two functions f and g is defined by f ∗ g(u) =∫
f(z)g(z + u)dz. Substituting (4.65) into the expression (4.63) yields

R̂(p′′h) =
1

n2h5

∑∑
i�=j

K ′′
h ∗K ′′

h(Xi −Xj). (4.66)

Substituting (4.66) as an estimator of R(p′′) into AMISE (4.55) and setting
h = hn yields a biased cross-validation (BCV) criterion,

BCV(hn) =
R(K)
nhn

+
σ4

K

2n2hn

∑∑
i<j

K ′′
hn
∗K ′′

hn
(Xi −Xj). (4.67)
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The BCV estimator of h is that value, hBCV
n that (locally) minimizes the

BCV(hn) criterion.
For the Hidalgo stamp data example, the BCV choice of h is 0.0036,

corresponding to Figure 4.6(c) and yielding an overly smoothed density
estimate, whereas the UCV choice of h is 0.0005, corresponding to Figure
4.6(f) and yielding an undersmoothed density estimate.

Even though CV methods are popular, they have been strongly criticized.
In general, we have seen that UCV tends to undersmooth, whereas BCV
tends to oversmooth, especially for skewed distributions. Both methods are
computationally intensive because they involve computing the differences
between all pairs of data values (see (4.67) for BCV, and a similar formula
can be given for UCV); thus, for large quantities of data (i.e., thousands
of observations), these methods tend to becomes impractical. Furthermore,
the UCV and BCV methods have been found to produce multiple local
minima, and the question becomes one of which to choose (a recommended
action in each case is to take the largest local minimum).

These criticisms, plus recent successful work on “plug-in” methods, have
relegated the UCV and BCV methods to “first-generation” status.

Plug-in Methods The “plug-in” idea for estimating h∗
n can be traced back

to Woodroofe (1970), who proposed a two-step procedure:

1. Choose a window width gn for a “pilot” density estimate p̂gn
(x), and

use this density estimate to compute R̂(p′′) = R(p̂gn
);

2. Plug R̂(p′′) into (4.59) to obtain the final window width, ĥ∗
n.

This idea of estimating R(p′′) in two steps via a pilot estimate has since
been modified in a number of different ways, including a fully iterated ver-
sion and a version that uses (4.63) to reduce the bias. Some of these candi-
date ideas proved useful, others less so. For example, in certain situations,
using (4.63) can produce negative values for R̂(p′′).

The most successful of these modifications was proposed by Sheather and
Jones (1991). Estimating R(p′′) is different from estimating p, and so we
expect the corresponding window widths, gn and hn, to be different, but
related; that is, we expect the pilot window width gn = g(hn). Rather than
use (4.63), we estimate R(p′′) by R(p̂′′g(hn)). The proposed window width,
hSJ

n , is that value of hn that solves the equation,

hn =

{
R(K)

σ4
KR(p̂′′g(hn))

}1/5

n−1/5. (4.68)

The optimal choice for gn is given by

g(hn) = C(K)
{

R(p′′)
R(p′′′)

}1/7

h5/7
n , (4.69)
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where C(K) is a constant dependent only upon the kernel K. The un-
known quantities R(p′′) and R(p′′′) are estimated by R(p̂′′a) and R(p̂′′′b ),
respectively, where the window widths, a and b, are chosen according to
the asymptotic optimality results. At this second step in the computa-
tions, R(p′′) and R(p′′′) are estimated using the Gaussian reference density
method, as we did for the ROT window width. The resulting convergence
rate of hSJ

n is O(n−5/14).
Applying the Sheather–Jones plug-in (SJPI) method to the Hidalgo stamp

data yields an estimated window width of 0.0012, which corresponds to
the density estimate in Figure 4.6(e). Thus, the plug-in estimator clearly
outperforms any of the competing window-width estimators for the Hidalgo
stamp data.

Plug-in methods are currently being promoted as “second-generation”
methods. This viewpoint is based upon strong evidence of superior per-
formance from asymptotics, simulations, and experience with real data.
Despite this evidence, however, there are some reservations regarding the
superiority of the plug-in method. In particular, Loader (1999) makes the
following points: (1) the success of plug-in methods depends crucially upon
an arbitrary specification of the pilot window width, and if misspecification
occurs, poor density estimates will result; (2) in difficult examples, where
there are many modes in the data, the SJPI method oversmoothes and
completely misses the fine structure, whereas UCV, with its tendency to
undersmooth, gives a good accounting of itself; and (3) the poor perfor-
mance of the UCV method may be due to an inappropriate use of a fixed
window width, and that instead a more data-adaptive window width would
be a better choice.

Example: Eruptions of Old Faithful Geyser

Another example of the different window-width selection methods is dis-
played in Figure 4.8 for the well-known Old Faithful Geyser data.2 This
data set, which has been explored at length in the density estimation lit-
erature, consists of the duration, in minutes, of 107 consecutive eruptions
of Old Faithful Geyser (a hot spring that erupts hot water and steam at
intervals ranging from 30 to 90 minutes, in Yellowstone National Park,
Wyoming), 1–8 August 1978 (Weisberg, 1985, pp. 230–235).

We see the bimodality in the data; we also see that UCV provides a
noisier density estimate than does BCV, with SJPI providing some degree
of compromise between them. Compared with a histogram of the data,
SJPI and BCV have substantially reduced the magnitude of the left mode

2The data can be found in the file geyser available on the book’s website.
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FIGURE 4.8. Gaussian kernel density estimators of the Old Faithful
Geyser data. The window widths for the estimates were selected by un-
biased cross-validation (left panel), Sheather–Jones plug-in method (center
panel), and biased cross-validation (right panel).

relative to the right mode, whereas UCV retains that particular feature of
the data.

4.6 Projection Pursuit Density Estimation

Multivariate kernel density estimators tend to be poor performers when
it comes to high-dimensional data because extremely large sample sizes
are needed to match the sort of numerical accuracy that is possible in low
dimensions. In light of this, Friedman and Stuetzle (1982) and Friedman,
Stuetzle, and Schroeder (1984) developed projection pursuit density esti-
mation (PPDE) based upon the general projection pursuit algorithm. The
PPDE method has been shown in simulations to possess excellent proper-
ties, and several striking applications of PPDE to real data have also been
published.

4.6.1 The PPDE Paradigm

When dealing with small samples of high-dimensional data, the PPDE
procedure may be jump-started by restricting attention to the subspace
spanned by the first few significant principal components. A projection
pursuit density estimator of p is then formed using the iterative procedure
given in Table 4.2.

The iterative procedure is repeated as many times as necessary. At the
kth iteration,

p̂(k)(x) = p̂(0)(x)
k∏

j=1

gj(aτ
j x) = p̂(k−1)(x)gk(aτ

kx) (4.70)
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TABLE 4.2. Projection pursuit density estimation algorithm.

1. Input: L = {Xi, i = 1, 2, . . . , n}. Sphere the data to have mean 0 and
covariance matrix Ir.

2. Initialize: Choose p̂(0) to be an initial multivariate density estimate of p,
usually taken to be the standard multivariate Gaussian.

3. Do j = 1, 2, . . . :

• Find the direction aj ∈ �r for which the (model) marginal paj along
aj differs most from the current estimated (data) marginal p̂aj along
aj . Choice of direction aj will not generally be unique.

• Given aj , define a univariate “augmenting function”

gj(a
τ
j x) =

paj (a
τ
j x)

p̂aj (a
τ
j x)

.

• Update the previous estimate so that

p̂(j)(x) = p̂(j−1)(x)gj(a
τ
j x).

will be the current multivariate density estimate, where

gj(aτ
j x) =

paj
(aτ

j x)
p̂aj

(aτ
j x)

, j = 1, 2, . . . , k. (4.71)

The vectors {aj} are unit-length directions in 
r, and the augmenting (or
ridge) functions {gj} are used to build up the structure of p̂(0) so that
p̂(k) converges to p in some appropriate sense as k → ∞. The number k
of iterations operates as a smoothing parameter, and a stopping rule is
determined by balancing bias against the variance of the estimator.

Friedman, Stuetzle, and Schroeder (1984) suggest graphical inspection
of the augmenting functions (i.e., plotting gj(aτ

j x) against aτ
j x for j =

1, 2, . . . , k) as a termination criterion for the iterative procedure. Compu-
tation of the augmenting functions {gj(aτ

j x)} is discussed in Huber (1985,
Section 15) and discussants Buja and Stuetzle (especially pp. 487–489),
and Jones and Sibson (1987, Section 3). Given aj , estimate paj

by first pro-
jecting the sample data along the direction aj , thus obtaining zi = aτ

j xi,
i = 1, 2, . . . , n, and then compute a kernel density estimate from the {zi}.
Monte Carlo sampling is used to compute p̂aj

, followed by kernel den-
sity estimation. Alternatives to kernel smoothing include cubic spline func-
tions (Friedman, Stuetzle, and Schroeder, 1984) and the average shifted
histogram (Jee, 1987).
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4.6.2 Projection Indexes

PPDE is driven by a projection index usually of the form

I(p) =
∫

J(p(z))p(z)dz = Ep{J(p)}, (4.72)

where J is a smooth real-valued functional and z is a one-dimensional
projected version of x. As a functional of p, I(p) should be absolutely con-
tinuous with easily computable first derivatives. “Interesting” projections
should correspond to random or unstructured projections.

Estimates of I(p) should be amenable to fast computation, unaffected
by the overall covariance structure of the data or by outliers or heavy tails.
A very reliable and thorough numerical optimizer is absolutely essential
for finding “substantive” maxima of I(p), because sampling fluctuations
tend to trap ineffective optimizers within a multitude of local maxima
(Friedman, 1987).

If {zi} are the projected data, then we can estimate (4.72) by

Î(p) =
∫

J(p̂(z))dF̂n(z) =
1
n

n∑
i=1

J(p̂(zi)). (4.73)

Thus, if J(p(z)) = p(z), then I(p) =
∫

[p(z)]2dz can be estimated by Î(p) =
(1/n)

∑n
i=1 p̂h(zi), where p̂h is a kernel estimator with window width h. An-

other choice is to take J(p(z)) = loge p(z), so that I(p) =
∫

p(z) loge p(z)dz,
which is (negative) cross-entropy, and (4.73) can be estimated at the kth
iteration by (1/n)

∑n
i=1 loge p̂(k)(zi).

Other projection indexes that have been used for PPDE include a mo-
ment index based upon the sum of squares of the third and fourth sample
cumulants of the projected data (Jones and Sibson, 1987) and the ISE
criterion (Friedman, 1987; Hall, 1989a). The latter approaches, though re-
lated, differed on whether or not to transform the projected data first.
Friedman used ISE between the transformed projected data density and
the uniform density, and Hall’s version used the ISE between the untrans-
formed projected data density and the standard Gaussian. Both Friedman
and Hall used orthogonal series density estimators (Legendre polynomials
and Hermite functions, respectively) to study their projection indexes.

Each of these indexes was designed to search for deviations from “unin-
terestingness,” whose definition depended upon the specific context. Thus,
the Friedman–Tukey index searched for evidence of “clottedness” as well
as departures from a parabolic density; the entropy index searched for de-
partures of the projected data from Gaussian form because the Gaussian
distribution maximizes entropy; and the moment index and ISE criteria
also set up the Gaussian distribution as the least-interesting data feature.



4.7 Assessing Multimodality 103

4.7 Assessing Multimodality

As we have seen, it is not unusual for a data set, large or small, to
have several modes (or local maxima) in its density estimate. Multiple
modes strongly suggest that the underlying probability distribution can be
modeled parametrically as a mixture of several probability distributions
(each usually Gaussian), where initial values of the EM algorithm can be
set by centering each mixture component at the location of a mode and
setting the weight attached to that component according to the relative
magnitude of the corresponding mode.

Of course, there is no guarantee that a mixture of unimodal densities will
produce a multimodal density with the same number of modes as there are
densities in the mixture; similarly, there is no guarantee that those indi-
vidual modes will remain at the same locations in such a mixture. Indeed,
the shape of the mixture distribution depends upon both the spacings of
the modes and the relative shapes of the component distributions.

In many practical instances, however, the presence of more than a single
mode does suggest evidence for a mixture; this has led to several tests being
proposed for detecting multimodality in a distribution (see, e.g., Hartigan
and Hartigan, 1985). Given a sample of data and some degree of assurance
in multimodality, the modes can be evaluated in several ways. For example,
Good and Gaskins (1980) used the MPL method of density estimation to-
gether with certain “bump-hunting” surgical techniques, whereas Silverman
(1981, 1983) combined kernel-based density estimation with a hierarchical
bootstrap testing procedure to determine the most probable number of
modes in the underlying density. See Izenman and Sommer (1988) for an
extensive discussion of Silverman’s test and application to the 1872 Hidalgo
postage stamp data. Both methods are nonparametric, data-adaptive, and
computationally intensive.

Bibliographical Notes

There is a huge literature on nonparametric density estimation. Because
of the amount of material published, we cannot list all pertinent articles or
even books on the subject. Furthermore, due to space considerations, there
are many nonparametric density estimation methods, including orthogonal
series estimators and adaptive-kernel estimators, that are not described in
this chapter. For descriptions of these methods, see Izenman (1991) and
the references therein.

The most useful books on the subject are by Scott (1992), Silverman
(1986), and Simonoff (1996). Chapters on nonparametric density estimation
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in books include Bishop (1995, Chapter 2), Ripley (1996, Chapter 6), and
Duda, Hart, and Stork (2001, Chapter 4).

The origin of the histogram has been traced variously back to Galileo’s
star observations of 1632, John Graunt’s mortality tables of 1662, the bar
charts of William Playfair in 1786, and Karl Pearson in 1805 for the name.

There are several surveys on choices of window width, including Jones,
Marron, and Sheather (1996).

Multivariate kernel density estimation was studied by Cacoullos (1966)
and Epanechnikov (1969). Cacoullos (1966) appears to have been the first
to call K in (4.28) a kernel function; previously, K was known as a weight
function. He also was the first to use product kernels.

Exercises

4.1 Consider the class of functions of the form p(x) =
∑L−1

�=0 y�ITi
(x),

where h
∑L−1

�=0 y� = 1. Given an iid sample, X1,X2, . . . , Xn from p(x),
maximize the log-likelihood function, L =

∑n
i=1 loge[

∑L−1
�=0 y�IT�

(xi)], sub-
ject to the condition that h

∑L−1
�=0 y� = 1. Show that the histogram (4.13)

is the unique ML estimator of p. [Hint: Use Lagrangian multipliers.]

4.2 By minimizing AMISE in (4.27) wrt hn, show that the optimal bin
width, h∗

n, is given by (4.28) and that the AMISE∗ = AMISE(h∗
n) of the

histogram with the optimal bin width is (4.30).

4.3 The average shifted histogram (ASH) (Scott, 1985a) is constructed by
taking m histograms, p̂1, p̂2, . . . , p̂m, say, each of which has the same bin
width hn, but with different bin origins, 0, hn/m, 2hn/m, . . . , (m−1)hn/m,
respectively, and then averaging those histograms,

p̂ASH(x) = m−1
m∑

k=1

p̂k(x).

The resulting ASH is piecewise constant over intervals [kδ, (k + 1)δ) of
width δ = hn/m; it has a similar block-like structure as a histogram but is
defined over narrower bins. Derive the integrated variance and integrated
squared-bias of the average shifted histogram. Show that the asymptotic
MISE of the ASH is

AMISE =
2

3nhn

(
1 +

1
2m2

)
+

h2
n

12m2
R(p′)+

h4
n

144

(
1− 2

m2
+

3
5m2

)
R(p′′).

4.4 The frequency polygon (FP) (Scott, 1985b) connects the center of each
pair of adjacent histogram bin-values with a straight line. If two adjacent
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bin-values are p̂� = N�/nhn and p̂�+1 = N�/nhn, then the value of the FP
at x ∈ [(�− 1

2 )hn, (� + 1
2 )hn) is

p̂FP(x) =
((

� +
1
2

)
− x

hn

)
p̂� +

(
x

hn
−
(

�− 1
2

))
p̂�+1.

Whereas the histogram is discontinuous, the FP is a continuous density
estimator. Derive the integrated variance and integrated squared-bias of
the frequency polygon. [Hint: For ISB, use a Taylor series expansion of
p(x) to the term involving p′′; then, for IV, use var(X + Y ) = var(X) +
var(Y ) + 2cov(X,Y ) for binomial X and Y .] Show that if p′′ is absolutely
continuous and R(p′′′) <∞, then the asymptotic MISE is given by

AMISE(hn) =
2

3nhn
+

49
2880

h4
nR(p′′).

Show that the hn that minimizes AMISE(hn) is

h∗
n = 2

(
15

49R(p′′)

)1/5

n−1/5.

4.5 Write a computer program to compute the FP and the ASH and try
them out on a data set of your choice.

4.6 By considering m shifted histograms, let Bk = [kδ, (k+1)δ) be the kth
bin of the ASH, where δ = hn/m, and let νk be the bin count in Bk. Note
that the ASH bin count for bin Bk is the average of the bin counts of the
m shifted histograms, each of width δ, in bin Bk. Show that, for x ∈ Bk

and m large, the ASH can be expressed as a kernel density estimator with
triangular kernel on (−1, 1).

4.7 The ASH is not continuous but can be made continuous by linearly
interpolating using the FP approach. Show that this ASH-FP density esti-
mate can be expressed as a kernel estimator.

4.8 Rosenblatt’s density estimator is

p̂n(x) = h−1

[
Fn

(
x +

h

2

)
− Fn

(
x− h

2

)]
,

where Fn(x) is the empirical cumulative distribution function, x ∈ 
. Show
that this estimator is a kernel density estimator. Which type of kernel
corresponds to Rosenblatt’s estimator? Apply this kernel to estimate the
density of the 1872 Hidalgo stamp data. What do you notice about the
smoothness of the resulting density estimate?

4.9 Find the bias and variance of Rosenblatt’s estimator (Exercise 4.8).
From these expressions, find the MISE of that estimator.
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4.10 Verify equation (4.32).

4.11 Verify equations (4.53) and (4.54).

4.12 Generate n observations from the claw density,

p(x) = 0.5N (0, 1) + (0.1)
4∑

k=0

N
(

k

2
− 1, (0.1)2

)
,

and estimate that density using a kernel density estimator. Take n =
100, 200, and 300, and repeat 1,000 times at each sample size. Compare
the performances of UCV, BCV, and SJPI window-width estimators for
each simulation. Which window-width estimation method best finds the
claws?

4.13 The galaxy velocity data consist of the radial velocities of 323 loca-
tions in the area of the spiral galaxy NGC7531 in the Southern Hemisphere;
the data can be found on the book’s website. Compare the kernel density
estimates of the galaxy data using UCV, BCV, and SJPI window-width
estimators. Pay special attention to the number of modes in the estimates.
Use Silverman’s test to determine the number of modes (see Silverman,
1981; Izenman and Sommer, 1988).

4.14 The ushighways data consist of the approximate length (in miles)
of all 212 U.S. 3-digit interstate highways (spurs and connectors). The
data were extracted by L. Winner from the Rand McNally 1993 Business
Traveler’s Road Atlas and Guide to Major Cities and can be found on the
book’s website. Compare the kernel density estimates for these data using
UCV, BCV, and SJPI window-width estimators.



5
Model Assessment and Selection
in Multiple Regression

5.1 Introduction

Regression, as a scientific method, first appeared around 1885, although the
method of least squares was discovered 80 years earlier. Least squares owes
its origins to astronomy and, specifically, to Legendre’s 1805 pioneering
work on the determination of the orbits of planets in which he introduced
and named the method of least squares. Adrien Marie Legendre estimated
the coefficients of a set of linear equations by minimizing the error sum
of squares. Gauss stated in 1809 that he had been using the method since
1795, but could not prove his claim with documented evidence. Within a
few years, Gauss and Pierre Simon Laplace added a probability component
— a Gaussian curve to describe the error distribution — that was crucial to
the success of the method. Gauss went on to devise an elimination algorithm
to compute least-squares estimates. Once introduced, least squares caught
on immediately in astronomy and geodetics, but it took 80 years for these
ideas to be transported to other disciplines.

The ideas of regression and correlation were developed in the mid-1880s
by Francis Galton in studies of heredity stature, and he applied those
ideas to a comparison of the heights of parents and their children (which
led to his famous phrase of “regression to mediocrity”). Galton (and also

A.J. Izenman, Modern Multivariate Statistical Techniques,
doi: 10.1007/978-0-387-78189-1 5, 107
c© Springer Science+Business Media, LLC 2008
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Francis Ysidro Edgeworth and Karl Pearson), however, failed to connect
least squares to regression. It was George Udny Yule, in 1897, who showed
that an assumption of a Gaussian error curve in regression could be re-
placed by an assumption that the variables were linearly related, and that,
as a result, least squares could be applied to regression. Thus, the wealth
of numerical algorithms already developed by astronomers and geodesists
for finding least-squares solutions could be put to work solving regression
equations.

Since then, regression has evolved into many different forms, including
linear and nonlinear regression and parametric and nonparametric regres-
sion. Linear regression models, in particular, are referred to as simple, mul-
tiple, or multivariate depending upon the number of input and output
variables considered. Simple linear regression deals with one input and one
output, multiple regression deals with many inputs and one output, and
multivariate regression deals with many inputs and many outputs.

5.2 The Regression Function and Least Squares

We assume that the output (or dependent, response) variable Y is linearly
related to the input (or independent, predictor) variables X1, . . . , Xr in the
following way,

Y = β0 +
r∑

j=1

βjXj + e, (5.1)

where e is an unobservable random variable (the error component) with
mean 0 and variance σ2. The relationship (5.1) is known as a linear re-
gression model, where β0, β1, . . . , βr are unknown parameters and σ2 > 0 is
an unknown error variance. The linearity of the model (5.1) is a result of
its linearity in the parameters β0, β1, . . . , βr. Thus, transformations of the
input variables (such as powers Xd

j and products XjXk) can be included
in (5.1) without it losing its characterization as a linear regression model.

The goal is to estimate the true values of β0, β1, . . . , βr, and σ2, and
to assess the impact of each input variable on the behavior of Y . In the
likely event that some of the input variables have negligible effects on Y ,
we may also wish to reduce the number of input variables to a smaller
number, especially if r is large. In many uses of multiple regression, we are
interested in predicting future values of Y , given future values of the input
variables, and we would like to be able to measure the accuracy of those
predictions.

The way we treat the model (5.1) depends upon our assumptions about
how the input variables X1, . . . , Xr were generated. We distinguish between
the case when the values of X1, . . . , Xr are randomly selected according
to some probability distribution (the “random-X” case), a situation that
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occurs with observational data, and the case when the values of X1, . . . , Xr

are fixed in repeated sampling (the “fixed-X” case), possibly set through
a designed experiment.

5.2.1 Random-X Case

Suppose we have an input vector of random variables X = (X1, . . . , Xr)τ

and a random output variable Y , and suppose that these r + 1 real-valued
random variables are jointly distributed according to P(X, Y ) with means
E(X) = µX and E(Y ) = µY , respectively, and covariance matrices ΣXX ,
ΣY Y = σ2

Y , and ΣXY .
Consider the problem of predicting Y by a function, f(X), of X. We

measure prediction accuracy by a real-valued loss function L(Y, f(X)), that
gives the loss incurred if Y is predicted by f(X). The expected loss is the
risk function,

R(f) = E{L(Y, f(X))}, (5.2)

which measures the quality of f as a predictor. The Bayes rule is the
function f∗ which minimizes R(f), and the Bayes risk is R(f∗).

For squared-error loss, R(f) becomes the mean squared error criterion
by which we judge f(X) as a predictor of Y . We have that

R(f) = E(Y − f(X))2 (5.3)
= EX[EY |X{(Y − f(X))2|X}], (5.4)

where the subscripts indicate the distribution over which the expectation is
taken. Hence, R(f) can be minimized pointwise (at each x). We can write

Y − f(x) = (Y − µ(x)) + (µ(x)− f(x)), (5.5)

where µ(x) = EY |X{Y |X = x} is the mean of the conditional distribution
of Y given X = x and is called the regression function of Y on X. Squaring
both sides of (5.5) and taking conditional expectations, we have that

EY |X{(Y − f(x))2|X = x} = EY |X{(Y − µ(x))2|X = x}
+ (µ(x)− f(x))2, (5.6)

where the cross-product term vanishes because EY |X{Y −µ(x)|X = x} = 0.
Therefore, (5.6) is minimized with respect to f by taking

f∗(x) = µ(x) = EY |X{Y |X = x}, (5.7)

so that the pointwise minimum of (5.6) is given by

EY |X{(Y − f∗(x))2|X = x} = EY |X{(Y − µ(x))2|X = x}. (5.8)
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Taking expectations of both sides, we have that the Bayes risk is

R(f∗) = min
f

R(f) = E{(Y − µ(X))2}. (5.9)

Thus, the best predictor of Y at X=x, using minimum mean squared er-
ror to define “best,” is given by µ(x), the regression function of Y on X,
evaluated at X=x, which is also the unique Bayes rule.

To be more specific, suppose the relationship (5.1) holds, where we as-
sume that e is uncorrelated with the X1, . . . , Xr. The regression function,
which is linear in X, is given by

µ(X) = β0 +
r∑

i=1

βiXi = β0 + Xτβ = Zτα, (5.10)

where β0 is the intercept, β = (β1, . . . , βr)τ is an r-vector of regression

coefficients, α = (β0

... βτ )τ is an (r + 1)-vector, and Z = (1
... Xτ )τ is an

(r+1)-vector. We then choose β0 and β to minimize the quadratic objective
function (5.8). Let

S(α) = E{(Y − Zτα)2}, (5.11)

and define α∗ = arg minα S(α). Differentiating S(α) with respect to α
yields:

∂S(α)
∂α

= −2E(ZY − ZZτα). (5.12)

Setting (5.12) equal to zero for a minimum, we get:

α∗ = [E(ZZτ )]−1E(ZY ). (5.13)

From (5.13), and noting that α∗ = (β∗
0

... β∗τ )τ , it is not difficult to show
(Exercise 5.1) that

β∗ = Σ−1
XXΣXY , (5.14)

β∗
0 = µY − µτ

Xβ∗. (5.15)

In practice, because µX , µY , ΣXX and ΣXY will be unknown, we estimate
them by ML using data generated by the joint distribution of (X, Y ).

Suppose that
D = {(Xi, Yi), i = 1, 2, . . . , n}, (5.16)

are iid observations from P(X, Y ), where Xi = (Xi1, · · · ,Xir)τ is the ith
observed value of X = (X1,X2, · · · ,Xr)τ and Yi is the ith observed value
of Y , i = 1, 2, . . . , n. Let X = (X1, · · · ,Xn)τ be an (n × r)-matrix and
Y = (Y1, · · · , Yn)τ be an n-vector. We estimate µX and µY by the r-vector
X̄ = n−1

∑n
j=1 Xj and scalar Ȳ = n−1

∑n
j=1 Yj , respectively. Let X̄ =

(X̄, · · · , X̄)τ be an (n × r)-matrix and Ȳ = (Ȳ , · · · , Ȳ )τ be an n-vector.
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Let Xc = X − X̄ and Yc = Y − Ȳ be the mean-centered forms of X and Y,
respectively, and estimate ΣXX by n−1X τ

c Xc and ΣXY by n−1X τ
c Yc. The

least-squares estimates of (5.14) and (5.15) are given by

β̂∗ = (X τ
c Xc)−1X τ

c Yc. (5.17)

β̂∗
0 = Ȳ − X̄τ β̂∗, (5.18)

respectively.

5.2.2 Fixed-X Case

In the “fixed-X” case, we view the input variables X1, . . . , Xr as being
fixed in repeated sampling. Thus, the value of Y may depend upon input
variables whose values are selected by an experimentalist within the frame-
work of a designed experiment, or Y may be observed conditional on the
X1, . . . , Xr.

Suppose the n observations (5.16) satisfy (5.1), so that

Yi = β0 +
r∑

j=1

βjXij + ei, i = 1, 2, . . . , n, (5.19)

where e1, e2, . . . , en are i.i.d. random variables having the same distribution
as e. Equations (5.19) can be written as

Yi = Zτ
i β + ei = µ(Xi) + ei, i = 1, 2, . . . , n, (5.20)

where µ(Xi) = Zτ
i β is the regression function, Zτ

i = (1,Xi1, · · · ,Xir),
and βτ = (β0, β1, · · · , βr). The n equations (5.20) can be written more
compactly as

Y = Zβ + e, (5.21)

where Y = (Y1, · · · , Yn)τ is a random n-vector, Z = (Z1, · · · ,Zn)τ is an
(n × (r + 1))-matrix with ith row Zτ

i (i = 1, 2, . . . , n), β is an (r + 1)-
vector, and e is a random n-vector of unobservable errors with E(e) = 0
and var(e) = σ2In. To account for the intercept β0, the first column of Z
consists only of 1s.

We form the error sum of squares (ESS),

ESS(β) =
n∑

i=1

e2
i = eτe = (Y − Zβ)τ (Y − Zβ), (5.22)

and estimate β by minimizing ESS(β) with respect to β. Differentiating
ESS(β) with respect to β yields

∂ESS(β)
∂β

= −2Zτ (Y − Zβ), (5.23)
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∂2ESS(β)
∂β ∂βτ = −2ZτZ, (5.24)

and setting result (5.23) equal to 0 for a minimum yields the normal equa-
tions,

ZτZβ̂ = ZτY. (5.25)

Assuming that the ((r + 1) × (r + 1))-matrix ZτZ is nonsingular (and,
hence, invertible), the unique ordinary least-squares (OLS) estimator of β
in the model (5.21) is given by

β̂ols = (ZτZ)−1ZτY. (5.26)

Note the resemblance of (5.26) to (5.13).

We can write Z = (1n

... X τ ), where X τ is an (r × n)-matrix, with a

corresponding partition of β as β = (β0

... βτ
∗)

τ , where β∗ = (β1, · · · , βr)τ .
Let X̄ = n−1X1n and Ȳ = n−11τ

nY. As before, let X̄ = (X̄, · · · , X̄) be an
(n× r)-matrix, each column of which is X̄, and let Ȳ = (Ȳ , · · · , Ȳ )τ , be an
n-vector each element of which is ȳ. Then, Xc = X −X̄ is an (n×r)-matrix
and Yc = Y − Ȳ is an n-vector. It is not difficult to show (Exercise 5.2)
that

β̂∗ = (X τ
c Xc)−1X τ

c Yc (5.27)

β̂0 = Ȳ − X̄τ β̂∗ (5.28)

Clearly, the estimates (5.17) and (5.18) are identical to the corresponding
estimates (5.27) and (5.28). Even though the descriptions differ as to how
the input data are generated, the OLS estimates turn out to be the same
for the random-X case and the fixed-X case.

For fixed X and assuming that var(y) = σ2In, the mean and variance of
β̂ols in (5.26) are given by E(β̂ols) = β∗ and

var(β̂ols) = (ZτZ)−1Zτ{var(y)}Z(ZτZ)−1

= σ2(ZτZ)−1, (5.29)

respectively.
The OLS regression estimator β̂ols has some very desirable properties

that are characterized by the Gauss–Markov Theorem (Exercise 5.3). If we
are looking for a linear unbiased estimator of β with minimum variance,
the Gauss–Markov Theorem states that we need only consider β̂ols.

The components of the n-vector of OLS fitted values are the vertical
projections of the n points onto the LS regression surface (or hyperplane)
ŷi = µ̂(xi) = xτ

i β̂ols, i = 1, 2, . . . , n. See Figure 5.1 for a geometrical view.
The variance of ŷi for fixed xi is given by

var(ŷi | xi) = xτ
i {var(β̂ols)}xi = σ2xτ

i (ZτZ)−1xi. (5.30)
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FIGURE 5.1. A geometrical view of the ordinary least-squares method,
using two input variables, X1 and X2. The hyperplane spanned by the input
variables is denoted by M , and the OLS fitted value ŷ is the orthogonal
projection of the output value y onto M .

The n-vector of fitted values Ŷ = (ŷ1, . . . , ŷn)τ is

Ŷ = Zβ̂ols = Z(ZτZ)−1ZτY = HY, (5.31)

where the (n×n)-matrix H = Z(ZτZ)−1Zτ is often called the hat matrix
because it puts the “hat” on Y. Note that H and In−H are both symmetric,
idempotent matrices with H(In − H) = 0. Furthermore, HZ = Z and
(In −H)Z = 0. The variance of Ŷ is given by

var(Ŷ|X) = H{var(Y)}Hτ = σ2H. (5.32)

The ijth component hij of H is the amount of leverage (or impact) that
the observed value of yj exerts on the fitted value ŷi. The hat matrix H is,
therefore, used to identify high-leverage points. In particular, the diagonal
components hii satisfy 0 ≤ hii ≤ 1, their sum is the number, r, of input
variables, and the average leverage magnitude is r/n. From this, high-
leverage points have been defined as those points having hii > 2r/n.

The residuals, ê = Y − Ŷ = (In − H)Y are the OLS estimates of the
unobservable errors e. The residual vector can also be written as

ê = Y − Zβ̂ols = (Zβ + e)−Z(β + (ZτZ)−1Zτe) = (In −H)e, (5.33)

whence, assuming again that Z is fixed, it follows that E(ê) = 0 and
var(ê) = σ2(In − H). Hence, var(êi) = σ2(1 − hii), where hii is the ith
diagonal element of H, i = 1, 2, . . . , n. The residual sum of squares (RSS)
is given by

RSS =
n∑

i=1

ê2
i = êτ ê = ESS(β̂ols). (5.34)
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Note that

RSS = ESS(β) + (β − β̂ols)
τZτZ(β − β̂ols). (5.35)

Dividing RSS by its number of degrees of freedom, n− r − 1, gives us an
unbiased estimate of the error variance σ2,

σ̂2 =
RSS

n− r − 1
, (5.36)

which is known as the residual variance. Hence, the OLS estimate of the
var(β̂ols) is given by

v̂ar(β̂ols) = σ̂2(ZτZ)−1. (5.37)

Residuals are often rescaled into internally Studentized residuals (which are
more usually called standardized residuals) by dividing them by an estimate
of their standard error,

êS
i =

êi

σ̂(1− hii)1/2
, i = 1, 2, . . . , n. (5.38)

An externally Studentized residual can also be defined by omitting the ith
case from the regression.

Because the n fitted values Ŷ = HY and the n residuals ê = (In −H)Y
have zero covariance and, hence, are uncorrelated, it follows that the re-
gression of Ŷ on ê has zero slope. If the multiple regression model is correct,
then a scatterplot of residuals (or Studentized residuals) against fitted val-
ues should show no discernible pattern (i.e., a slope of approximately zero).
Anomolous patterns to look out for include nonlinearity, nonconstant vari-
ance, and possible outliers.

Now, consider the identity yi − ȳ = (yi − ŷi) + (ŷi − ȳ). Squaring both
sides, summing over all n observations, and noting that the cross-product
term disappears, we have that the total sum of squares,

SY Y =
n∑

i=1

(yi − ȳ)2 = (Y − Ȳ)τ (Y − Ȳ), (5.39)

can be written as SY Y = SSreg+RSS, where the regression sum of squares,

SSreg =
n∑

i=1

(ŷi − ȳi)2 = β̂
τ

ols(ZτZ)β̂ols, (5.40)

and the residual sum of squares,

RSS =
n∑

i−1

(yi − ŷi)2 = (Y − Zβ̂ols)
τ (Y − Zβ̂ols), (5.41)
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TABLE 5.1. ANOVA table for a multiple regression model.

Source of Variation df Sum of Squares

Regression on X1, . . . , Xr r SSreg = β̂
τ

ols(ZτZ)β̂ols

Residual n− r − 1 RSS = (Y − Zβ̂ols)τ (Y − Zβ̂ols)

Total n− 1 SY Y = (Y − Ȳ)τ (Y − Ȳ)

form an orthogonal decomposition, which can be summarized by an analysis
of variance (ANOVA) table; see Table 5.1. The squared multiple correlation
coefficient, R2 = SSreg/SY Y , lies between 0 and 1 and is used to measure
the proportion of the total variation in Y that can be explained by a linear
regression on the r Xs.

So far, no assumptions have been made about the probability distribution
of the errors. If ei ∼ N (0, σ2), i = 1, 2, . . . , n, it follows that

β̂ols ∼ Nr+1

(
β, σ2(ZτZ)−1

)
, (5.42)

RSS = (n− r − 1)σ̂2 ∼ σ2χ2
n−r−1, (5.43)

and β̂ols and σ̂2 are independently distributed. From the ANOVA table,
we can determine whether there is a linear relationship between Y and the
Xs. We compute the F-statistic,

F =
SSreg/r

RSS/(n− r − 1)
, (5.44)

and compare the resulting F -value with an appropriate percentage point of
the Fr,n−r−1 distribution. A small value for F implies that the data did not
provide sufficient evidence to reject β = 0, whereas a large value indicates
that at least one βj is not zero. Under normality, if βj = 0, the statistic

tj =
β̂j

σ̂
√

vjj
, (5.45)

where vjj is the jth diagonal entry of (ZτZ)−1, follows the Student’s t
distribution with n−r−1 degrees of freedom, j = 1, 2, . . . , r. A large value
of |tj | is evidence that βj �= 0, whereas a small, near-zero value of |tj | is
evidence that βj = 0. For large n, tj reduces to a Gaussian-distributed
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random variable, and the cutoff value for |tj | is usually taken to be 2.0. For
0 < α < 1, it follows that a (1−α)× 100% confidence region for β is given
by the set of β-vectors such that

(r + 1)−1(β̂ols − β)τ (ZτZ)(β̂ols − β) ≤ σ̂2Fα
r+1,n−r−1 . (5.46)

Geometrically, the confidence region (5.46) is an (r + 1)-dimensional ellip-
soid with center β and orientation controlled by the matrix ZτZ.

5.2.3 Example: Bodyfat Data

These data were used to produce predictive equations for lean body
weight, a measure of health.1 Measurements were made on n = 252 men
in order to relate the percentage of bodyfat determined by underwater
weighing (bodyfat), which is inconvenient and costly to obtain, to a num-
ber of body circumference measurements, recorded using only a scale and
measuring tape.

The r = 13 input variables are age in years (age), weight in lb (weight),
height in inches (height), neck circumference in cm (neck), chest circum-
ference in cm (chest), abdomen 2 circumference in cm (abdomen), hip
circumference in cm (hip), thigh circumference in cm (thigh), knee circum-
ference in cm (knee), ankle circumference in cm (ankle), extended biceps
circumference in cm (biceps), forearm circumference in cm (forearm), and
wrist circumference in cm (wrist).

The pairwise correlations of the input variables are given in Table 5.2.
We see 13 correlations greater than 0.8 and two greater than 0.9. One
observation (#39) appears to be an outlier in all variables except age,
height, forearm, and wrist. Using these 13 body measurements, we wish
to derive accurate predictive measurements of bodyfat.

To study the relationship between bodyfat and the 13 input variables,
we formulate the regression equation as follows:

bodyfat = β0 + β1(age) + β2(weight) + β3(height) + β4(neck)
+ β5(chest) + β6(abdomen) + β7(hip) + β8(thigh)
+ β9(knee) + β10(ankle) + β11(biceps)
+ β12(forearm) + β13(wrist) + e, (5.47)

where e is a random variable with mean zero and constant variance σ2. The
results of the multiple regression are given in Table 5.3 and summarized in
Figure 5.2 by the ordered absolute values of the t-ratios of the 13 estimated

1The data and literature references can be downloaded from the StatLib–Datasets
Archive, lib.stat.cmu.edu/datasets/, under the filename bodyfat.
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TABLE 5.2. Correlations between all pairs of input variables for the body-
fat data. For these data, r = 13, n = 252.

age weight height neck chest abdomen

weight –0.013
height –0.245 0.487

neck 0.114 0.831 0.321
chest 0.176 0.894 0.227 0.785

abdomen 0.230 0.888 0.190 0.754 0.916
hip –0.050 0.941 0.372 0.735 0.829 0.874

thigh –0.200 0.869 0.339 0.696 0.730 0.767
knee 0.018 0.853 0.501 0.672 0.719 0.737

ankle –0.105 0.614 0.393 0.478 0.483 0.453
biceps –0.041 0.800 0.319 0.731 0.728 0.685

forearm –0.085 0.630 0.322 0.624 0.580 0.503
wrist 0.214 0.730 0.398 0.745 0.660 0.620

hip thigh knee ankle biceps forearm

thigh 0.896
knee 0.823 0.799

ankle 0.558 0.540 0.612
biceps 0.739 0.761 0.679 0.485

forearm 0.545 0.567 0.556 0.419 0.678
wrist 0.630 0.559 0.665 0.566 0.632 0.586

regression coefficients. We see a few large values in the residual analysis:
12 standardized residuals have absolute values greater than 2.0, and two of
them (observations 39 and 224) have absolute values greater than 2.6. We
estimate the error variance σ2 by the residual variance, σ̂2 = 18.572 on 238
degrees of freedom. If the errors are Gaussian distributed (an assumption
that is supported by the residual analysis), the t statistics for abdomen,
wrist, forearm, neck, and age are significant.

5.3 Prediction Accuracy and Model Assessment

Prediction is the art of making accurate guesses about new response
values that are independent of the current data. Good predictive ability is
often recognized as the most useful way of assessing the fit of a model to
data. Thus, the two aims of prediction and model assessment (or validation)
are closely related to each other.

For prediction in regression, we use the learning data,

L = {(Xi, Yi), i = 1, 2, . . . , n}, (5.48)

to regress Y on X, and then predict a new Y -value, Y new, by applying the
fitted model to a brand-new X-value, Xnew, from the test set T . The result-
ing prediction is compared with the actual response value. The predictive
ability of the regression model is assessed by its prediction (or generaliza-
tion) error, an overall measure of the quality of the prediction, usually
taken to be mean squared error. The definition of prediction error depends
upon whether we consider X as fixed or as random.
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TABLE 5.3. OLS estimation of coefficients for the regression model using
the bodyfat data with r = 13, n = 252. The multiple R2 is 0.749, the
residual sum of squares is 4420.1, and the F -statistic is 54.5 on 13 and
238 degrees of freedom. A multiple regression using only those variables
having |t| > 2 (i.e., abdomen, wrist, forearm, neck, and age) has residual
sum of squares 4724.9, R2 = 0.731, and an F -statistic of 133.85 on 5 and
246 degrees of freedom.

Coefficient Estimate Std.Error t-value

(Intercept) -21.3532 22.1862 -0.9625
age 0.0646 0.0322 2.0058

weight -0.0964 0.0618 -1.5584
height -0.0439 0.1787 -0.2459
neck -0.4755 0.2356 -2.0184

chest -0.0172 0.1032 -0.1665
abdomen 0.9550 0.0902 10.5917

hip -0.1886 0.1448 -1.3025
thigh 0.2483 0.1462 1.6991
knee 0.0139 0.2477 0.0563

ankle 0.1779 0.2226 0.7991
biceps 0.1823 0.1725 1.0568

forearm 0.4557 0.1993 2.2867
wrist -1.6545 0.5332 -3.1032

0 2 4 6 8 10
Absolute Value of t-ratio

knee
chest

height
ankle

biceps
hip

weight
thigh
age

neck
forearm
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abdomen

FIGURE 5.2. Multiple regression results for the bodyfat data. The variable
names are given on the vertical axis (listed in descending order of their
absolute t-ratios) and the absolute value of the t-ratio for each variable on
the horizontal axis.
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5.3.1 Random-X Case

In the random-X case, the learning data L are iid observations from the
joint distribution of (X, Y ). The observed responses Yi, i = 1, 2, . . . , n, are
assumed to have been generated by the regression model,

Y = β0 + Xτβ + e = µ(X) + e, (5.49)

where µ(X) = E(Y |X) = β0 +Xτβ, E(e|X) = 0, and var(e|X) = σ2. From
T , we draw a new observation, (Xnew, Y new), where we assume Y new is
unknown, from the same distribution as (X, Y ), but independent of the
learning set L. We assess the fitted model by predicting Y new from Xnew.

If the estimated OLS regression function at X is

µ̂(X) = β̂0 + Xτ β̂ols, (5.50)

then the predicted value of Y at Xnew is given by µ̂(Xnew). The prediction
error (PER) in this case is defined as the mean squared error in predicting
Y new using µ̂(Xnew),

PER = E {Y new − µ̂(Xnew)}2 = σ2 + MER, (5.51)

where the expectation is taken over (Xnew, Y new), and

MER = E{µ(Xnew)− µ̂(Xnew)}2 (5.52)

= (β − β̂ols)
τΣXX(β − β̂ols), (5.53)

is the model error (i.e., the mean squared error of µ̂(xnew) as a predictor
of µ(Xnew), a quantity also called the “expected bias-squared”), and ΣXX

is the covariance matrix of X.

5.3.2 Fixed-X Case

In the fixed-X case, the r-vectors {Xi}, whose transposes are the rows
of the design matrix X , are fixed by the experimental conditions, so that
only Y is random. We assume that the true model generating the observa-
tions {yi} on Y is

Yi = β0 + Xτ
i β + ei = µ(Xi) + ei, (5.54)

where µ(Xi) = β0 + Xτ
i β is the regression function evaluated at Xi, and

the errors ei, i = 1, 2, . . . , n, are iid with mean 0 and variance σ2 and
are uncorrelated with the {Xi}. We assume that the test data in T are
generated by using “future-fixed” {Xnew} points (Breiman, 1992), which
may either be the same fixed design points {Xi} as in the learning data L
or they may be future values of X that are considered by the experimenter
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to be known and fixed (i.e., new design points). For convenience in this
discussion, we assume the former situation holds. Thus, we assume that
T = {(Xi, Y

new
i ), i = 1, 2, . . . ,m}, where

Y new
i = µ(Xi) + enew

i , (5.55)

and the {enew
i } are independent of the {ei} but have the same distribution.

We further assume that the X τX matrix for the {Xi} is known.
The predicted value of Y new at a future-fixed X is given by

µ̂(X) = β̂0 + Xτ β̂ols, (5.56)

where β̂ols is the OLS estimate of the regression coefficients. The prediction
error in the fixed-X case is defined as

PEF = E

(
m−1

m∑
i=1

(Y new
i − µ̂(Xi))2

)
= σ2 + MEF , (5.57)

where the expectation is taken only over the {Y new
i }, and

MEF = m−1
n∑

i=1

(µ(Xi)− µ̂(Xi))2 (5.58)

= (β − β̂ols)
τ (m−1X τX )(β − β̂ols) (5.59)

is the model error due to the lack of fit to the true model. Compare (5.65)
with (5.59).

5.4 Estimating Prediction Error

In the random-X case, when the entire data set D is large enough, we can
use the partition into learning, validation, and test sets to do a thorough
job of estimating the regression function, predicting future outcomes, and
validating the model. However, in cases where such a division may not be
practical, we have to use alternative methods.

5.4.1 Apparent Error Rate

As before, let µ̂(Xnew) be the predicted value of Y at X = Xnew, and let
L(Y, µ(X)) = (Y − µ(X))2 be the loss incurred by predicting Y by µ(X).
The prediction error PE for µ̂(Xnew) is given by (5.57). We can estimate
PE by

P̂E(µ̂,D) =
1
n

n∑
i=1

(Yi − µ̂(Xi))2 =
RSS

n
, (5.60)
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which we call the apparent error rate (or resubstitution error rate) for D.
This estimate of PE is computed by fitting the OLS regression function to
the idiosyncracies of the original sample D and then applying that func-
tion to see how well it predicts those same members of D. The apparent
error rate is a misleadingly optimistic value because it estimates the pre-
dictive ability of the fitted model from the same data that was used to fit
that model. Consequently, we expect that RSS/n will be too optimistic an
estimate of PE with P̂E(µ̂,D) < PE.

Rather than using the apparent error rate for estimating prediction error,
we use resampling methods (cross-validation and the bootstrap). Which
resampling methodology we use depends upon whether the fixed-X or the
random-X model is more appropriate. For the random-X case, we can use
cross-validation or the “unconditional bootstrap,” and in the fixed-X case,
we can use the “conditional bootstrap.” Cross-validation is not appropriate
for estimating prediction error in the fixed-X case.

5.4.2 Cross-Validation

Among the methods available for estimating prediction error (and model
error) for the random-X case, the most popular is cross-validation (Stone,
1974), of which there are several versions.

Suppose D is a random sample drawn from the joint probability distrib-
ution of (X, Y ) in (r + 1)-dimensional space. If n = 2m, we can randomly
split D into two equal subsets, treating one subset as the learning set L
and the other as the test set T , where D = L ∪ T and L ∩ T = ∅. Let
T = {(X′

i, Y
′
i ), i = 1, 2, . . . ,m}. An estimate of PER obtained from the

test set is

P̂E =
1
m

m∑
i=1

(Y ′
i − µ̂(X′

i))
2, (5.61)

where µ̂(X′
i) = β̂0 + X′τ

i β̂ols. The learning set and the test set are then
switched and the resulting two estimates of PER are averaged to yield a
final estimate.

To generalize the above precedure, assume that n = V m, where V ≥ 2 is
a small integer, such as 5 or 10. We split the data set D randomly into V dis-
joint subsets Tv, v = 1, 2, . . . , V , of equal size, where D =

⋃V
v=1 Tv, Tv ∩ Tv′

= ∅, v �= v′. We next create V different versions of the data set, each version
of which has a learning set consisting of V −1 of the subsets (i.e., (V −1)m
observations) and a test set of the one remaining subset (of m observa-
tions). In other words, we drop the Tv cases and consider the remaining
learning set of Lv = D − Tv cases. Using only the Lv cases, we obtain the
OLS regression function µ̂−v(X). We then evaluate this regression function
at the Tv test-set cases, yielding the values µ̂−v(Xi), Xi ∈ Tv. We compute
the prediction error from the vth test set Tv, repeating the procedure V
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times, while cycling through each of the test sets, T1, T2, . . . , TV . This pro-
cedure is called V-fold cross-validation (CV/V ). Combining these results
gives us a CV/V-estimate of PE,

P̂ECV/V =
1
V

V∑
v=1

∑
(Xi,Yi)∈Tv

(Yi − µ̂−v(Xi))2. (5.62)

Then, subtract σ̂2 from P̂E to get M̂E, where σ̂2 is the residual variance
obtained from the full data set.

The most computationally intensive version of cross-validation occurs
when m = 1 (so that V = n). In this case, each learning set Lv has size
n−1, and the test set Tv has size one. At the ith stage, the ith case (xi, yi) is
omitted from the ith learning set, and the OLS regression function µ̂−i(x) is
computed from that learning set and evaluated at xi. This type of balanced
split is referred to as the leave-one-out rule (CV/n or LOO). The prediction
error is then estimated by

P̂ECV/n =
1
n

n∑
i=1

(Yi − µ̂−i(Xi))2. (5.63)

As before, we obtain M̂E by subtracting σ̂2 from P̂E.
As well as issues of computational complexity, the difference between

taking V = 5 or 10 and taking V = n is one of “bias versus variance.” The
leave-one-out rule yields an estimate of PER that has low bias but high
variance (arising from the high degree of similarity between the leave-one-
out learning sets), whereas the 5–fold or 10–fold rule yields an estimate
of PER with higher bias but lower mean squared error (and also lower
variance). Furthermore, 10–fold (and even 5-fold) cross-validation appears
to be better at model assessment than is leave-one-out cross-validation.

5.4.3 Bootstrap

For estimating prediction error in regression models, we can also use the
bootstrap technique (Efron, 1979). In general, the specific version of the
bootstrap to be applied has to depend upon what we actually assume about
the stochastic model that may have generated the data. In regression mod-
els, it again boils down to whether we are in the random-X case (using the
“unconditional” bootstrap) or the fixed-X case (“conditional” bootstrap).

Unconditional Bootstrap

The unconditional bootstrap is used for the random-X case. We first
sample n times with replacement from the original sample, D, to get a
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random-X bootstrap sample, which we denote by

D∗b
R = {(X∗b

i , Y ∗b
i ), i = 1, 2, . . . , n}. (5.64)

Next, we regress Y ∗b
i on X∗b

i , i = 1, 2, . . . , n, and obtain an OLS regres-
sion function µ̂∗b

R (X). If we then apply µ̂∗b
R to the original sample, D, the

resulting estimate of PE is given by

P̂E(µ̂∗b
R ,D) =

1
n

n∑
i=1

(Yi − µ̂∗b
R (Xi))2. (5.65)

Averaging P̂E(µ̂∗b
R ,D) over all B bootstrap samples yields the simple boot-

strap estimator of PE,

P̂ER(D) =
1
B

B∑
b=1

P̂E(µ̂∗b
R ,D) =

1
Bn

B∑
b=1

n∑
i=1

(Yi − µ̂∗b
R (Xi))2, (5.66)

which is not a particularly good estimate of PE because there are obser-
vations common to the bootstrap samples {D∗b

R } (that determined {µ̂∗b
R })

and the original sample D, and so an estimate of PE such as (5.66) will
also be overly optimistic.

As another estimator of PE, an apparent error rate for D∗b
R is computed

by applying µ̂∗b
R to D∗b

R :

P̂E(µ̂∗b
R ,D∗b

R ) =
1
n

n∑
i=1

(Y ∗b
i − µ̂∗b

R (X∗b
i ))2. (5.67)

Averaging (5.67) over all B bootstrap samples yields

P̂E(D∗
R) =

1
B

B∑
b=1

P̂E(µ̂∗b
R ,D∗b

R ) =
1

Bn

B∑
b=1

n∑
i=1

(Y ∗b
i − µ̂∗b

R (X∗b
i ))2. (5.68)

This estimate of PE has the same disadvantages as the apparent error rate
for D.

We can improve on these estimates of PE by estimating the bias in
using RSS/n (the apparent error rate for D) as an estimate of PE and
then correcting RSS/n by subtracting its estimated bias. An estimate of
that bias for D∗b

R is the bth optimism,

ôptb
R = P̂E(µ̂∗b

R ,D)− P̂E(µ̂∗b
R ,D∗b

R ). (5.69)

Averaging ôptb
R over all B bootstrap samples yields an overall estimate,

ôptR =
1
B

B∑
b=1

ôptb
R = P̂E(D)− P̂E(D∗

R), (5.70)
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of the average optimism, opt = E{PE(µ̂,D)−P̂E(µ̂,D)}, which is generally
positive. The bootstrap estimator of PE is given by the sum of the apparent
error rate for D and the bias in that apparent error,

P̂ER =
RSS

n
+ ôptR , (5.71)

and ME is estimated by M̂ER = P̂ER − σ̂2. In simulations, P̂ER (which
is computationally more expensive than cross-validation) appears to have
low bias and is slightly better for model assessment than is 10-fold cross-
validation.

Recall that P̂ER(D) in (5.66) underestimates PER because there are ob-
servations common to the bootstrap samples {D∗b

R } (operating as learning
sets) and to the original data set D (operating as the test set). In fact, the
chance that the ith observation (Xi, Yi) from D is selected at least once to
be in the bth bootstrap sample D∗b

R is

Prob((Xi, Yi) ∈ D∗b
R ) = 1−

(
1− 1

n

)n

→ 1− e−1 ≈ 0.632, (5.72)

as n → ∞. Thus, on average, about 37% of the observations in D are
left out of each bootstrap sample, which contains about 0.632n distinct
observations. One unfortunate consequence of this result is that if n is
close to r, this will lead to numerical difficulties in computing µ̂∗b

R , because
in such cases it is likely that X τX will be singular or nearly singular when
computed from a bootstrap sample.

We now use (5.72) to improve upon ôptR (and also P̂ER) by including
in the computation the prediction errors for the ith observation (Xi, Yi)
only from those bootstrap samples that do not contain that observation,
i = 1, 2, . . . , n.

Let PE
(1)
R be the expected bootstrap prediction error at those points

(Xi, Yi) ∈ D that are not included in the B bootstrap samples. We esti-
mate PE

(1)
R as follows. Define nib to be the number of times that the ith

observation (Xi, Yi) appears in the bth bootstrap sample, and set Iib = 1
if nib = 0 and zero otherwise. Then, we estimate PE

(1)
R by

P̂E
(1)
R =

1
n

n∑
i=1

P̂Ei, (5.73)

where

P̂Ei =
∑

b Iib(Yi − µ̂b(Xi))2∑
b Iib

. (5.74)
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Efron and Tibshirani (1997) called P̂E
(1)
R the leave-one-out bootstrap es-

timator because of its similarity to the leave-one-out cross-validation esti-
mator. Another way of writing (5.74) is

P̂Ei =
1
Bi

∑
b∈Ci

(Yi − µ̂b(Xi))2, (5.75)

where Ci is the set of indices of the bootstrap samples that do not contain
(Xi, Yi), and Bi = |Ci| is the number of such bootstrap samples. These
observations are often referred to as out-of-bootstrap (OOB) observations.
Efron (1983) showed that P̂E

(1)
R is biased upwards compared to P̂ECV/n,

which is nearly unbiased.
Based upon (5.72), the 0.632 bootstrap estimator of optimism is given by

ôpt(0.632)
R = 0.632(P̂E

(1)
R − P̂E(µ̂,D)). (5.76)

Replacing ôptR in (5.71) by ôpt(0.632)
R in (5.76) yields the 0.632 bootstrap

estimator of prediction error,

P̂E
(0.632)

R = P̂E(µ̂,D) + ôpt
(0.632)

R

= 0.368 · RSS

n
+ 0.632 · P̂E

(1)
R . (5.77)

Although the 0.632 bootstrap estimator is an improvement over the appar-
ent error rate, it still underestimates PER (Efron, 1983).

Example: Bodyfat Data (Continued)

Cross-validation and the unconditional bootstrap were used to estimate
the prediction error for the bodyfat data. The results are summarized in
Tables 5.4 and 5.5.

From Table 5.4, we see that the estimates obtained from CV/5, CV/10,
CV/n, and the bootstrap (with B = 500) are reasonably close to each
other. The apparent error rate, RSS/n = 4420.064/252 = 17.5399, un-
derestimates the leave-one-out cross-validation estimate of the prediction
error by more than 12%. Dividing RSS by its degrees of freedom to give
an unbiased estimate of σ2 yields RSS/238 = 18.5717, still well below the
other estimates.

B=10 For a simple bootstrap illustration, let B = 10. The bootstrap
computations are detailed in Table 5.5. The simple bootstrap estimate,
P̂ER(D) = 18.4692, is the average of the first column and is much too small.
The average of the third column, ôptR = 18.4692−15.9535 = 2.5157, is the
difference between the average of the first column and the average of the
second column and yields a measure of how optimistic the apparent error
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TABLE 5.4. Estimated prediction errors for the bodyfat data when the
multiple regression model is fit. Listed are the apparent error rate (RSS/n)
and the error rates from using 5-fold (CV/5), 10-fold (CV/10), leave-one-
out cross-validation (CV/n), and the unconditional bootstrap and 0.632
bootstrap using B = 500. The subscript “R” indicates that the bootstrap
computations are made for the random-X case. These results show the very
optimistic value of the apparent error rate.

RSS/n P̂ECV/5 P̂ECV/10 P̂ECV/n P̂ER P̂E
(0.632)

R

17.5399 20.2578 20.7327 20.2948 19.6891 19.9637

rate is in estimating the prediction error. Finally, P̂ER = RSS/n+ôptR =
17.5399 + 2.5815 = 20.1214.

B=500 When we use B = 500 bootstrap samples, we obtain P̂ER(D) =
18.7683 and P̂E(D∗

R) = 16.6191, so that ôptR = 18.7683 − 16.6191 =
2.1492, whence, P̂ER = 17.5399 + 2.1492 = 19.6891. We see a small differ-
ence between the bootstrap estimates of PE using B = 10 and B = 500
bootstrap samples.

Conditional Bootstrap

The conditional bootstrap for the fixed-X case operates by sampling with
replacement from the residuals obtained from fitting the regression model
to the non-stochastic inputs X1,X2, . . . ,Xn (Efron, 1979).

We first fit the model (5.21) and obtain the OLS regression coefficients
β̂ols = (ZτZ)−1ZτY, the estimated regression function µ̂(X) = Xτ β̂ols,
the residuals ê1, ê2, . . . , ên, and the residual variance σ̂2. When applying
the conditional bootstrap, we assume that the errors of the model are
iid and homoscedastic. For an extensive discussion of the effect of error
variance heterogeneity on the conditional bootstrap, see Wu (1986).

Because E(RSS/n) = (1 − p/n)σ2, where p = r + 1 is the number of
parameters, RSS/n is biased downwards as an estimator of σ2, and the
residuals tend to be smaller than the errors of the model. Some statisticians
advocate rescaling the residuals upwards by multiplying each of them by
the factor (n/(n− p))1/2; Efron and Tibshirani (1993, p. 112) feel that the
scaling issue becomes important only when p > n/4.

Suppose we consider β̂ols to be the true value of the regression para-
meter. For the bth bootstrap sample, we sample with replacement from
the residuals to get the bootstrapped residuals, ê∗b

1 , ê∗b
2 , . . . , ê∗b

n , and then
compute a new set of responses

Y ∗b
i = µ̂(Xi) + ê∗b

i , i = 1, 2, . . . , n. (5.78)
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TABLE 5.5. Unconditional bootstrap estimates of prediction error for the
bodyfat data, where B = 10 bootstrap samples are taken. Each row of the
table represents a bootstrap sample b, and the multiple regression model is fit
to that sample. For each b, the first column is the simple bootstrap estimate
of prediction error, the second column is the bootstrap apparent error rate,
and the third column is the difference between the first two columns. The
average optimism, in this case 2.4806, is the difference between the average
of the first column and the average of the second column.

b P̂E(µ̂∗b
R ,D) P̂E(µ̂∗b

R ,D∗b
R ) ôptb

R

1 18.5198 15.8261 2.6937
2 18.2555 13.5946 4.6609
3 17.9683 18.2385 -0.2702
4 18.9317 14.5406 4.3911
5 18.6249 15.7998 2.8251
6 18.0191 15.1146 2.9045
7 18.5381 17.7595 0.7786
8 18.9265 13.8298 5.0967
9 18.6881 18.8233 -0.1352

10 18.2201 16.0080 2.2121

ave 18.4692 15.9535 2.5157

The bth fixed-X bootstrap sample is now given by

D∗b
F = {(Xi, Y

∗b
i ), i = 1, 2, . . . , n}. (5.79)

We regress Y ∗b on X to get a bootstrapped estimator,

β̂∗b = (ZτZ)−1ZτY∗b, (5.80)

of the regression coefficients, where Y∗b = (Y ∗b
1 , . . . , Y ∗b

n )τ . Under this
bootstrap sampling scheme,

√
n(β̂∗b − β̂ols) is approximately distributed

as
√

n(β̂ols − β) (Freedman, 1981). The bootstrap regression function is
µ̂∗b

F (x) = β̂0 + xτ β̂∗b. Straightforward analogues of the estimates for the
fixed-X case, similar to those for the unconditional case, can now be com-
puted.

5.5 Instability of LS Estimates

If Xc has less than full rank, then X τ
c Xc will be singular, and the OLS

estimate of β will not be unique. Singularity occurs when the matrix Xc

is ill-conditioned, or the columns of Xc are collinear, or when there are
more variables than observations (i.e., r > n). If the assumptions for the
regression model do not hold (e.g., due to ill-conditioned data, collinearity,
correlated errors), then we have to look for alternative solutions.
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Data are ill-conditioned for a given problem whenever the quantities to
be computed for that problem are sensitive to small changes in the data.
When that is the case, computational results, especially those obtained
using matrix inversion routines, are likely to be numerically unstable. As a
result, major errors (due to rounding and cancellations) tend to accumulate
and severely skew the calculations. In some regression situations, the matrix
X (or its mean-centered version Xc) may be rank-deficient or almost so
because of too many highly correlated variables, which exhibit collinearity.
Exact collinearity rarely occurs, but problems involving variables that are
almost collinear (“near collinearity”) are not unusual.

In linear regression models, ill-conditioning and collinearity problems co-
incide. Near collinearity in linear regression problems is of major concern to
statisticians and econometricians, especially when an overly large number of
input variables is included in the initial model (the so-called kitchen-sink
approach to modeling). Among the effects of near collinearity are overly
large (positive or negative) estimated coefficient values whose signs may be
reversed if negligible changes are made to the data. The standard errors
of the estimated regression coefficients may also be dramatically inflated,
thereby masking the presence of what would otherwise be significant re-
gression coefficients.

There are several measures of ill-conditioning of a square matrix M, the
most popular of which is the condition number, κ(M); see Section 3.2.9. In
regression, M = X τX . Each variable may be scaled to have equal length
(e.g., replacing xij by xij/si, where si is the sample standard deviation of
the ith variable). The condition number of X τX (or X ) reduces to the ratio
of the largest to the smallest nonzero singular value, κ = σ1/σr, of X . If
κ is large, X is said to be ill-conditioned. When exact collinearity occurs,
κ =∞.

As an alternative to κ, we can compute the set of collinearity indices,

κk(X ) =
√

V IFk , k = 1, 2, . . . , r, (5.81)

where
V IFk = (1−R2

k)−1, (5.82)

is the kth variance inflation factor, and R2
k is the squared multiple cor-

relation coefficient of the kth column of X on the other r − 1 columns
of X , k = 1, 2, . . . , r. Large values of V IFk (typically, V IFk > 10) imply
that R2

k is close to unity, which in turn suggests near collinearity may be
present. The collinearity indices have value at least one and are invariant
under scale changes of the columns of X . For example, the bodyfat data has
some very large V IF values: each of the variables weight, chest, abdomen,
and hip has a V IF value in the range 10–50. The high V IF values for those
particular four variables appear to reflect their high pairwise correlations.
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5.6 Biased Regression Methods

Because the OLS estimates depend upon (ZτZ)−1, we would experience
numerical complications in computing β̂ols if ZτZ were singular or nearly
singular. If Z is ill-conditioned, small changes to the elements of Z lead to
large changes in (ZτZ)−1, the estimator β̂ols becomes computationally un-
stable, and the individual component estimates may either have the wrong
sign or be too large in magnitude. So, even though the regression model
may be a good fit to the learning data, it will not generalize sufficiently
well to the test data.

One way out of this situation is to abandon the requirement of an unbi-
ased estimator of β and, instead, consider the possibility of using a biased
estimator of β. There are several such estimators that are superior (in
terms of MSE) to β̂ols when Z is ill-conditioned or when ZτZ is singular
(or nearly singular). Biased regression methods have primarily been used in
chemometrics (e.g., food research, environmental pollution studies). In such
applications, it is not unusual to see the number of input variables greatly
exceed the number of observations, so that the OLS regression estimator
does not exist.

We assume only that the Xs and the Y have been centered, so that we
have no need for a constant term in the regression. Thus, X is an (n× r)-
matrix with centered columns and Y is a centered n-vector. Each of these
biased estimators can be written in the form

β̂ =
∑

j

f(λj)λ−1
j vjvτ

j s, (5.83)

where f(λj) is the jth “shrinkage” factor, vj is the eigenvector associated
with the jth largest eigenvalue λj of S = X τX , and s = X τY. For a
t-component PCR, theshrinkage factor is f(λj) = 1 if j ≤ t, and 0 other-
wise; for a t-component PLSR, f(λj) is a polynomial of degree t; and for
RR with ridge parameter k > 0, f(λj) = fk(λj) = λj/(λj + k).

5.6.1 Example: PET Yarns and NIR Spectra

These data2 were obtained from a calibration study (Swierenga, de Weijer,
van Wijk, and Buydens, 1999) of polyethylene terephthalate (PET) yarns,
which are used for textile (e.g., clothing materials) and industrial purposes

2The datafile PET.txt can be downloaded from the book’s website. It was originally
provided by Erik Swierenga and is available as an R data set as part of The pls Package.
see www.maths.lth.se/help/R/.R/library/pls/html/NIR.html.
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FIGURE 5.3. Raman NIR spectra of a sample of 21 polyethylene tereph-
thalate (PET) yarns. The 21 spectra are each measured at 268 frequencies.
Note that the horizontal axis is variable number, not frequency.

(e.g., tires, seat belts, and ropes). PET yarns are produced by a process of
melt-spinning, whose settings largely determine the final semi-crystalline
structure of the yarn (i.e., its physical structure), which, in turn, determines
its thermo-mechanical properties. As a result, parameters that characterize
the physical structure of PET yarns are important quality parameters for
the end use of the yarn.

Raman near-infrared (NIR) spectroscopy has recently become an impor-
tant tool in the pharmaceutical and semiconductor industries for investi-
gating structural information on polymers; in particular, it is used to reveal
information on the chemical nature, conformational order, state of the or-
der, and orientation of polymers. Thus, Raman spectra are used to predict
the physical structure parameters of polymers.

In this example, we study the relationship between the overall density of
a PET yarn to its NIR spectrum. The data consist of a sample of n = 21
PET yarns having known mechanical and structural properties. For each
PET yarn, the Y -variable is the density (measured in kg/m3) of the yarn,
and the r = 268 X-variables (measured at 268 frequencies in the range
598–1900 cm−1) are selected from the NIR spectrum of that yarn. This
example is quite representative of data sets in the chemometrics literature,
in that r � n. The 21 NIR spectra are displayed graphically in Figure 5.3;
the spectra appear to have very similar characteristics, although there are
noticeable differences in some curves.
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5.6.2 Principal Components Regression

An obvious way of dealing with a matrix X τX that is singular (or nearly
singular) is to substitute a generalized inverse G in place of (X τX )−1.
Suppose X τX has known rank t (1 ≤ t ≤ r), so that the smallest r − t
eigenvalues of X τX are all zero. Then, the spectral decomposition of X τX
can be written as X τX = VΛVτ , where Λ = diag{λ1, . . . , λt} is a diagonal
matrix of the first t eigenvalues of X τX with diagonal elements ordered in
magnitude from largest to smallest, and V = (v1, . . . ,vt) is an (r × t)-
matrix whose columns are the eigenvectors associated with the eigenvalues
in Λ. The unique rank-t Moore–Penrose inverse G of X τX is, therefore,
given by

G = (X τX )+ = VΛ−1Vτ =
t∑

j=1

λ−1
j vjvτ

j , (5.84)

and the generalized-inverse regression (GIR) estimator is

β̂
(t)
gir = GX τY =

t∑
j=1

λ−1
j vjvτ

j s, (5.85)

where s = X τY. The GIR fitted values are then given by

Ŷ(t)
gir = X β̂

(t)
gir = XV(Λ−1Vτs). (5.86)

Marquardt (1970) showed that β̂gir minimizes the error sum of squares,
ESS(β), in (5.22) within the t-dimensional linear subspace spanned by V.
It follows that β̂gir is a constrained least-squares estimator of β and so is
said to be conditionally unbiased. If X τX actually has a rank greater than
t and we incorrectly use G in (5.85) to define the estimator of β, then β̂

(t)
gir

is a biased estimator of β.
The rows of the (n × t)-matrix Zt = XV are the scores of the first t

principal components of X (see Chapter 7). Regressing Y on Zt is a tech-
nique usually referred to as principal components regression (PCR) (Massy,
1965). This regression method is popularly used in chemometrics, where,
for example, we may be interested in calibrating the fat concentration in n
chemical samples to highly collinear absorbance measurements recorded at
r fixed wavelength channels of an X-spectrum (Martens and Naes, 1989,
sec. 3.4). In such situations, the number of variables r will likely be much
greater than the number of observations n. PCR can be used to reduce the
dimensionality of the regression by dropping those dimensions that con-
tribute to the collinearity problem. PCR has also been used for mapping
quantitative trait loci in statistical genetics, where Y repesents a quanti-
tative trait value (e.g., blood pressure, yield) and X consists of the geno-
types of a mouse or plant, etc., at each of r molecular markers (Hwang and
Nettleton, 2003).
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The estimated regression coefficients for the t principal components are
given by the t-vector,

β̂(t)
pcr = (Zτ

t Zt)−1Zτ
tY = Λ−1Vτs, (5.87)

where we have used VτV = It. Note that because of the orthogonality of
the columns of V, the elements of (5.87) do not change as t increases. Thus,
(5.85) and (5.87) are related by β̂

(t)
gir = Vβ̂

(t)
pcr, and the corresponding fitted

values are given by

Ŷ(t)
pcr = Ztβ̂

(t)
pcr = XV(Λ−1Vτs) = X β̂

(t)
gir = Ŷ(t)

gir , (5.88)

So, the fitted values obtained by GIR and PCR are identical.
It is usual to transform the PCR coefficients (5.87) into coefficients of

the original input variables. Given β̂
(t)
pcr = (β̂pcr,1, · · · , β̂pcr,t)τ , we compute

the r-vectors,
β̂∗

pcr,j = β̂pcr,jvj , j = 1, 2, . . . , t. (5.89)

Then, the first k partial sums of the {β̂∗
pcr,j} give the k-component PCR

coefficients of the original input variables; that is,

β̂∗(k)
pcr =

k∑
j=1

β̂∗
pcr,j = Vβ̂(k)

pcr, 1 ≤ k ≤ t. (5.90)

Note that β̂
∗(t)
pcr = β̂ols.

In practice, the rank of X τX and, hence, the number of components is
an unknown metaparameter to be determined from the data. If we extract
principal components from the correlation matrix, Kaiser’s rule (Kaiser,
1960) suggests we retain only those principal components whose eigenvalues
are greater than one. Another way of determining t is by cross-validation
(Wold, 1978).

A caveat: Although PCR aims to relate Y and the {Xj} in the presence
of severe collinearity, there is also the potential for PCR to fail dramatically.
The principal components, Z1, . . . , Zt (1 ≤ t < r), which are used as inputs
to a multiple regression, are chosen to correspond to the t highest-variance
directions of X = (X1, · · · ,Xr)τ while dropping the remaining r − t (low-
variance) directions. Because the extraction of the principal components
is accomplished without any reference to the output variable Y , we have
no reason to expect Y to be highly correlated with any of the principal
components, in particular those having the largest eigenvalues. Indeed, Y
may actually have its highest correlation with one of the last few principal
components (Jolliffe, 1982) or even only the last one (Hadi and Ling, 1998)
which is always dropped from the regression equation.
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Example: The PET Yarn Data (Continued)

Each variable (Y and all the Xs) from the PET yarn data has been
centered. The (21 × 268)-matrix X yields at most t = min{20, 268} =
20 principal components. The 20 nonzero eigenvalues from the correlation
matrix in descending order of magnitude are

11.86 8.83 6.75 1.61 0.76 0.54 0.40 0.25 0.24 0.19
0.14 0.11 0.08 0.07 0.06 0.05 0.05 0.04 0.03 0.02

There are four eigenvalues larger than one. The first component accounts for
52.5% of total variance, the first two components account for 81.6% of total
variance, the first three components account for 98.6% of total variance,
and the first four components account for 99.5% of total variance.

Figure 5.4 displays the PCR coefficients for t = 1, 3, 4, 20 components.
This figure shows that a single component yields regression estimates with
almost no structure. By three components, the final structure is certainly
visible, and the graph appears to settle down when we use four compo-
nents. After four components, all that is added to the graph of the coeffi-
cient estimates is noise, which reinforces the information gained from the
eigenvalues.

5.6.3 Partial Least-Squares Regression

In partial least-squares regression (PLSR), the derived variables (usually
referred to as latent variables, components, or factors) are specifically con-
structed to retain most of the information in the X variables that helps
predict Y , while at the same time reducing the dimensionality of the regres-
sion. Whereas PCR constructs its latent variables using only data on the
input variables, PLSR uses data on both the input and output variables.
Chemometricians have adopted the name PLSR1 to refer to PLSR using a
single output variable and PLSR2 to refer to PLSR using multiple output
variables.

PLSR is typically obtained using an algorithm rather than as the re-
sult of an optimization procedure. The are several such algorithms. The
most popular one is sequential, starting with an empty set and adding a
single latent variable at each subsequent step of the process. The result
is a sequence of prediction models, M1, . . . ,Mt, where Mk predicts the
output variable Y through a linear function of the first k latent variables.
The “best” of these PLSR models is that model that minimizes a cross-
validation estimate of prediction error. (How well cross-validation actually
selects the best model is as yet unknown, however.)
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FIGURE 5.4. Principal component regression estimates for the PET yarn
data. There are 268 coefficients. The numbers of PCR components are t = 1
(upper-left panel), t = 3 (upper-right panel), t = 4 (lower-left panel), t = 20
(lower-right panel). The horizontal axis is coefficient number.

The PLSR algorithm in Table 5.6 (Wold, Martens, and Wold, 1983)
uses only a series of simple linear regression routines. We build the latent
variables, Z1, . . . , Zt, in a stepwise fashion. At the kth step, Zk is a weighted
average of the X-residuals from the previous step, where the weights are
proportional to covariances of the X-residuals from the previous step with
the Y -residuals from the previous step. The resulting PLSR function is a
linear combination of the Z1, . . . , Zt.

Empirical studies (Frank and Friedman, 1993) show that PLSR gives
slightly better overall performance than does PCR, that fewer components
are needed in PLSR than in PCR to provide a similar fit to the data, and
that as the problem becomes increasingly more ill-conditioned, both biased
methods yield substantial improvements in predictive ability over OLS. De
Jong (1995) also showed that, in an R2 sense and using t components, the
PLSR fitted values are closer to the OLS fitted values than are the PCR
fitted values.

The PLSR estimator, β̂
(t)
plsr, where t is the number of components, is

a shrinkage estimator. This is a difficult result to prove. De Jong (1995)
showed that, for 1 ≤ k ≤ t, ‖β̂(k)

plsr‖ is a strictly nondecreasing function of
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TABLE 5.6. PLSR algorithm (Wold, Martens, and Wold, 1983).

1. Standardize each n-vector xj of data on Xj so that it has mean 0 and

standard deviation 1, and set x
(0)
j = xj , j = 1, 2, . . . , r. Center the n-vector

Y of data on Y so that it has mean 0, and set Y(0) = Y. Set Ŷ(0) = ȳ1n.

2. For k = 1, 2, . . . , t:

• For j = 1, 2, . . . , r, regress Y(k−1) on x
(k−1)
j to get the OLS regression

coefficient

β̂k−1,j = cov(x
(k−1)
j ,Y(k−1))/var(x

(k−1)
j ),

where, for any n-vectors x and y, cov(x,y) = xτy and var(x) = xτx.

Compute β̂k−1,jx
(k−1)
j .

• Compute the weighted average zk =
∑r

j=1
wk−1,j β̂k−1,jx

(k−1)
j as a

predictor of Y, where wk−1,j ∝ var(x
(k−1)
j ). Thus,

zk ∝
r∑

j=1

cov(x
(k−1)
j ,Y(k−1)) · x(k−1)

j .

• Regress Y(k−1) on zk to get the OLS regression coefficient

θ̂k = cov(zk,Y(k−1))/var(zk)

and the residual vector Y(k) = Y(k−1) − θ̂kzk.

• Set Ŷ(k) = Ŷ(k−1) + θ̂kzk.

• For j = 1, 2, . . . , r, regress x
(k−1)
j on zk to get the OLS regression

coefficient
φ̂kj = cov(zk,x

(k−1)
j )/var(zk)

and residual vector x
(k)
j = x

(k−1)
j − φ̂kjzk.

• Stop when
∑r

j=1
var(x

(k)
j ) = 0.

3. The PLSR function fitted with t components is, therefore, given by

Ŷ(t)
plsr = ȳ1n +

t∑
k=1

θ̂kzk.
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k, which implies that every PLSR iterate improves upon OLS; that is,

‖β̂(1)
plsr‖ ≤ ‖β̂

(2)
plsr‖ ≤ · · · ≤ ‖β̂

(t)
plsr‖ = ‖β̂ols‖. (5.91)

Goutis (1996) used a geometric argument to give a direct proof that, for
every 1 ≤ k ≤ t, ‖β̂(k)

plsr‖ ≤ ‖β̂ols‖, and Phatak and de Hoog (2002) derived
an explicit expression relating the PLSR estimator to the OLS estimator.
The shrinkage behavior of individual PLSR coefficients turns out to be quite
“peculiar”: Frank and Friedman (1993) noted from empirical evidence and
certain heuristics that whereas PLSR shrunk some OLS coefficients, it also
expanded others. This shrinkage behavior was further studied by Butler
and Denham (2000) and Lingjaerde and Christophersen (2000).

The orthogonal loadings algorithm uses a sequence of multiple regressions
to arrive at the same PLSR solution as Wold’s algorithm (Helland, 1988).
Also, Exercise 5.11 provides the theory behind the S-Plus PLSR algorithm
given in Brown (1993, Appendix E). The PLSR algorithm in Table 5.6 is
an extension of the NIPALS algorithm (Wold, 1975). See also the SIMPLS
algorithm (de Jong, 1993).

Example: The PET Yarn Data (Continued)

Each variable in the PET yarn data was centered. The PLSR estimates of
all 268 regression coefficients in the vector β̂

(t)
plsr for the PET yarn data are

displayed in Figure 5.5. for t = 1, 3, 4, 20 components. The 20-component
PLSR estimate is the minimum-length LS estimator of the regression coef-
ficient vector β.

We see from Figure 5.5 that using only one PLSR component results
in a set of regression estimates with little visible structure. Most of the
variability in the regression coefficients occurs in the first 150 coefficients.
The final shape of the coefficient estimates can already be discerned by 3
components, and a useful representation is given by 4 components. As addi-
tional components are added to the model, more and more high-frequency
noise is added to the PLSR estimates.

5.6.4 Ridge Regression

Hoerl and Kennard (1970a) proposed that potential instability in the
OLS estimator, β̂ols = (X τX )−1X τY, of β could be tracked by adding a
small constant value k to the diagonal entries of the matrix X τX before
taking its inverse. The result is the ridge regression estimator (or ridge
rule),

β̂rr(k) = (X τX + kIr)−1X τY = W(k)β̂ols, (5.92)

where
W(k) = (X τX + kIr)−1X τX . (5.93)
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FIGURE 5.5. Partial least-squares regression estimates for the PET yarn
data. There are 268 coefficients. The numbers of PLSR components are
t = 1 (upper-left panel), t = 3 (upper-right panel), t = 4 (lower-left panel),
t = 20 (lower-right panel). The horizontal axis is coefficient number.

Thus, we have a class of estimators (5.92), indexed by a parameter k. When
k > 0, β̂rr(k) is a biased estimator of β. In the special case X τX = Ir (the
orthonormal design case), (5.92) reduces to β̂rr(k) = (1 + k)−1β̂ols. When
k = 0, (5.92) reduces to the OLS estimator.

Properties

The ridge regression estimator (5.92) can be characterized in three dif-
ferent ways — as an estimator with restricted length that minimizes the
residual sum of squares, as a shrinkage estimator that shrinks the least-
squares estimator toward the origin, and, given suitable priors, as a Bayes
estimator.

1. A ridge regression estimator is the solution of a penalized least-squares
problem. Specifically, it is the r-vector β that minimizes the error sum of
squares,

ESS(β) = (Y − Xβ)τ (Y − Xβ), (5.94)

subject to ‖β‖2 ≤ c, (5.95)
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FIGURE 5.6. The ridge regression estimator, β̂rr(k), as the solution of a
penalized least-squares problem. The ellipses show the contours of the error
sum-of-squares function, and the circle shows the boundary of the penalty
function, β2

1+β2
2 ≤ c, where c is the radius of the circle. The ridge estimator

is the point at which the innermost elliptical contour touches the circular
penalty.

where ‖β‖2 = βτβ and c > 0 is an arbitrary constant. To see this, form
the function

φ(β) = (Y − Xβ)τ (Y − Xβ)− λβτβ, (5.96)
where λ > 0 is a Lagrangian multiplier (or ridge parameter) that regularizes
the stability of a ridge regression estimator, and βτβ is a penalty function.
Differentiate φ with repect to β, set the result equal to zero, and at the
minimum, set β = β̂rr(λ) to get

(X τX − λIr)β̂rr(λ) = X τY. (5.97)

The result is obtained by solving this last equation for β̂rr(λ) and then

setting k = λ. Note that the restriction βτβ ≤ c on β is a hypersphere
centered at the origin with bounded squared radius c, where the value of c
determines the value of k. Figure 5.6 shows the two-parameter case.

2. A ridge regression estimator is a shrinkage estimator that shrinks
the OLS estimator toward zero. The singular value decomposition of the
(n× r)-matrix X is given by X = UΛ1/2Vτ , where Λ = diag[λj ], UUτ =
UτU = In, VVτ = VτV = Ir, and X τX = VΛVτ . The {λj} are the
ordered eigenvalues of X τX . Let P = XV = UΛ1/2 so that PτP = Λ.
Then, we can write (5.92) as follows:

β̂rr(k) = (X τX τ + kIr)−1X τY
= (VΛVτ + kVVτ )−1VΛ1/2UτY
= V(Λ + kIr)−1Λ1/2UτY
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= V(Λ + kIr)−1PτY. (5.98)

Now, if we let α = Vτβ (so that β = Vα), then, the canonical form of the
multiple regression model is

Y = Xβ + e = Pα + e, (5.99)

whence the OLS estimator of α is α̂ols = (PτP)−1PτY = Λ−1Vτs, where
s = X τY. Set

α̂rr(k) = Vτ β̂rr(k)
= (Λ + kIr)−1PτY
= (Λ + kIr)−1Λα̂ols. (5.100)

The jth component in the r-vector α̂rr(k) is, therefore, given by

α̂rr,j(k) =
(

λj

λj + k

)
α̂ols,j = fk(λj)α̂ols,j , (5.101)

say, where 0 < fk(λj) ≤ 1, j = 1, 2, . . . , r. For k > 0, α̂rr,j(k) < α̂ols,j ,
so that α̂rr,j(k) shrinks α̂ols,j toward zero. Also, α̂rr,j(k) can be written as
α̂rr,j(k) = wj · 0 + (1 − wj)α̂ols,j , with weight 0 < wj = k/(λj + k) < 1,
whence it follows that the smaller the value of λj (for a given k > 0), the
larger the value of wj , and, hence, the greater is the shrinkage toward zero.
Thus, ridge regression shrinks low-variance directions (small λj) more than
it does high-variance directions (large λj).

Note that these conclusions hold for the canonical form of the regression
model with α as the coefficient vector. We can transform back by setting
β̂rr(k) = Vα̂rr(k). However, β̂rr(k) may not shrink every component of
β̂ols. Indeed, for some j, the jth component, β̂rr,j(k), of β̂rr(k) may actually
have the opposite sign from the corresponding component, β̂ols,j , of β̂ols,
or that |β̂rr,j(k)| > |β̂ols,j |. What we can say, however, is that

‖β̂rr(k)‖2 = ‖α̂rr(k)‖2 =
r∑

j=1

(
λj

λj + k

)2

α̂2
ols,j , (5.102)

which is monotonically decreasing function of k. Thus, ‖β̂rr(k)‖ < ‖β̂ols‖,
so that β̂rr(k) is a shrinkage estimator.

3. A ridge regression estimator is a Bayes estimator when β is given a
suitable multivariate Gaussian prior. Suppose Y = Xβ + e, where now
e ∼ Nn(0, σ2In) and σ2 is known. In other words, Y ∼ Nn(Xβ, σ2In).
The likelihood is

L(Y|β, σ) ∝ exp
{
− 1

2σ2
(Y − Xβ)τ (Y − Xβ)

}

∝ exp
{
− 1

2σ2
(β − β̂)τX τX (β − β̂)

}
, (5.103)
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which has the form Nr(β̂, σ2(X τX )−1). Next, assume that the components
of β are each independently distributed as Gaussian with mean 0 and
known variance σ2

β , so that β ∼ Nr(0, σ2
βIr) with prior density

π(β) ∝ exp

{
−βτβ

2σ2
β

}
. (5.104)

The posterior density of β is proportional to the likelihood times the prior,
that is,

p(β|Y, σ) = L(Y|β, σ)π(β) (5.105)

∝ exp
{
− 1

2σ2

[
(β − β̂)τX τX (β − β̂) + kβτβ

]}
, (5.106)

where k = σ2/σ2
β . Now, for the first term in the exponent, set β − β̂ =

(β− β̂(k)) + (β̂(k)− β̂), and, for the second term, β = (β− β̂(k)) + β̂(k).
Multiplying out both expressions and gathering like terms, we find that the
posterior density of β is given by

p(β|Y, σ) ∝ exp
{
− 1

2σ2

[
(β − β̂(k))τ (X τX + kIr)(β − β̂(k))

]}
. (5.107)

In other words, the posterior density of β is multivariate Gaussian with
mean vector (and posterior mode) β̂(k) and covariance matrix σ2(X τX +
kIr)−1, where k = σ2/σ2

β . Note that if σ2
β is very large, the prior den-

sity becomes vague, and a ridge regression estimator approaches the OLS
estimator.

The Bias-Variance Trade-off

Consider the mean squared error of the ridge regression estimator,

MSE(k) = E{(β̂rr(k)− β)τ (β̂rr(k)− β)} (5.108)
= VAR(k) + BIAS2(k), (5.109)

where the first term on the right-hand side is the variance and the second
term is the bias-squared. The variance term is

VAR(k) = tr{σ2(X τX + kIr)−1X τX (X τX + kIr)−1}
= σ2tr{(Λ + kIr)−1Λ(Λ + kIr)−1}

= σ2
r∑

j=1

λj

(λj + k)2
. (5.110)

The bias is

E(β̂rr(k)− β) = E{(X τX + kIr)−1X τY − β}
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= {(X τX + kIr)−1X τX − Ir}β
= {(VΛVτ + kIr)−1VΛVτ − Ir}Vα

= V{(Λ + kIr)−1Λ− Ir}α, (5.111)

whence the bias-squared term is

BIAS2(k) = (E(β̂rr(k)− β))τ (E(β̂rr(k)− β))
= ατ{Λ(Λ + kIr)−1 − Ir}{(Λ + kIr)−1Λ− Ir}τα

= k2
r∑

j=1

α2
j

(λj + k)2
. (5.112)

Thus, the mean squared error for a ridge estimator (5.92) is given by

MSE(k) =
r∑

j=1

σ2λj + k2α2
j

(λj + k)2
, (5.113)

where λj is the jth largest eigenvalue of X τX , αj is the jth element of
α (the orthogonally transformed β), and σ2 is the error variance, j =
1, 2, . . . , r.

When k = 0, the squared-bias term is zero. The variance term decreases
monotonically as k increases from zero, whereas the squared-bias term in-
creases. For large values of k, the squared-bias term dominates the mean
squared error. For these reasons, k has often been called the bias parameter.

Estimating the Ridge Parameter

We can use very small values of k to study how the OLS estimates
would behave if the input data were mildly perturbed. If we observe large
fluctuations in ridge estimates for very small k, such instability would reflect
the presence of collinearity in the input variables. The main problem of
ridge regression is to decide upon the best value of k. Choice of k is supposed
to balance the “variance vs. bias” components of the mean squared error
when estimating β by (5.92); the larger the value of k, the larger the bias,
but the smaller the variance. In applications, k is determined from the data
in X .

Hoerl and Kennard recommend use of the ridge trace, a graphical dis-
play of all components of the vector β̂rr(k) plotted on the same scatterplot
against a range of values of k. The ridge trace is often touted as a diagnos-
tic tool that exhibits the degree of stability of the regression coefficients.
Because k controls the amount of bias in the ridge estimate, the value of k
is estimated (albeit subjectively) by the smallest value at which the trace
stabilizes for all coefficients. Thisted (1976, 1980) argues that choosing an
estimate of k to reflect stability of the ridge trace does not necessarily yield
a meaningful reduction in mean squared error.
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The ridge trace is also used as a variable selection procedure. If an es-
timated regression coefficient changes sign in the graph of its ridge trace,
this is taken to mean that the OLS estimator of that coefficient has an in-
correct sign, so that that variable should not be included in the regression
model. Such a variable selection rule has been criticized as being “danger-
ous” (Thisted, 1976) because it eliminates variables without taking into
account their virtues as predictors. Thisted argues that it is possible for a
variable to be a poor predictor but have a small stable ridge trace, and,
vice versa, to have a very unstable ridge trace but be an important variable
for the regression model.

spaceskip3pt plus2pt minus2pt In an alternative version of the ridge
trace, Hastie, Tibshirani, and Friedman (2001, Section 3.4.3) choose in-
stead to plot the components of β̂rr(k) against what they call the effective
degrees of freedom,

df(k) = tr(W(k)) =
r∑

j=1

λj/(λj + k), (5.114)

where the matrix W(k) in (5.93) shrinks the OLS estimator.
The ridge parameter k can also be estimated using cross-validation tech-

niques. A prescription for determining a V -fold cross-validatory choice of
the ridge parameter k is given in Table 5.7.

Example: The PET Yarn Data (Continued)

As before, all variables in the PET yarn data are centered. The ridge
trace for the first 60 RR coefficients is displayed in Figure 5.7. We see
that several of the coefficient estimates change sign as k increases. The
ridge trace (not shown here) for all 268 curves indicates that the ridge
parameter k stabilizes for the centered PET yarn data at about the value
0.9.

Figure 5.8 shows the 268 ridge regression coefficient estimates for selected
values of the ridge parameter k. The values of k are, from the top panel, k =
0.00001, 0.01, 0.1, and 1.0. We see that the smaller the value of k, the more
noisy the estimates, whereas the larger the value of k, the less noisy the
estimates. If k = 0 (which is not possible in this application, where r >> n),
then we would have the minimum-length LS estimate. The computations
for this example were carried out using the data augmentation algorithm
(see Exercise 5.8).

5.7 Variable Selection

It’s very easy to include too many input variables in a regression equa-
tion. When that happens, too many parameters will be estimated, the
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TABLE 5.7. V -fold cross-validatory choice of ridge parameter k.

1. Standardize each xj so that it has mean 0 and standard deviation 1, j =
1, 2, . . . , r.

2. Partition the data into V learning and test sets corresponding to one of
the versions of cross-validation (V = 5, 10, or n).

3. Choose k1, k2, . . . , kN to be N (possibly equally spaced) values of k.

4. For i = 1, 2, . . . , N , and for v = 1, 2, . . . , V ,

• Use the vth learning set to compute the ridge regression coefficients
β̂−v(ki), say.

• Obtain an estimate of prediction error, P̂Ev(ki), say, by applying

β̂−v(ki) to the corresponding vth test set.

5. For i = 1, 2, . . . , N ,

• Average the V prediction error estimates to get an overall estimate

of prediction error, P̂ECV/V (ki) = V −1
∑

v
P̂Ev(ki), say.

• Plot the value of P̂ECV/V (ki) against ki.

6. Choose that value of k that minimizes prediction error. In other words, the
V -fold cross-validatory choice of k is given by

k̂CV/V = arg min
ki

P̂ECV/V (ki).

regression function will have an inflated variance, and overfitting will take
place. At the other extreme, if too few variables are included, the variance
will be reduced, but the regression function will have increased bias, it
will give a poor explanation of the data, and underfitting will occur. Some
compromise between these extremes is, therefore, desirable. The notion of
what makes a variable “important” is still not well understood, but one
interpretation (Breiman, 2001b) is that a variable is important if dropping
it seriously affects prediction accuracy.

The driving force behind variable selection is a desire for a parsimonious
regression model (one that is simpler and more easily interpretable than
is the model with the entire set of variables) combined with a need for
greater accuracy in prediction. Selecting variables in regression models is a
complicated problem, and there are many conflicting views on which type
of variable selection procedure is best. In this section, we discuss several of
these procedures.
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FIGURE 5.7. Ridge trace of the first 60 ridge estimates of the 268 regres-
sion coefficients for the centered PET yarn data. Each curve represents a
ridge regression coefficient estimate for varying values of k.

5.7.1 Stepwise Methods

There are two main types of stepwise procedures in regression: backwards
elimination, forwards selection, and a hybrid version that incorporates ideas
from both main types.

Backwards elimination (BE) begins with the full set of variables. At each
step, we drop that variable whose F -ratio,

F =
(RSS0 −RSS1)/(df0 − df1)

RSS1/df1
, (5.115)

is smallest, where RSS0 is the residual sum of squares (with df0 degrees of
freedom) for the reduced model, and RSS1 is the residual sum of squares
(with df1 degrees of freedom) for the larger model, where the “reduced”
model is a submodel of the “larger” model. Then, we refit the reduced model
and iterate again. Here, df0 − df1 = 1 and df1 = n− k − 1, where k is the
number of variables in the larger model.

Because of the relationship between the t and F distribution (t2ν = F1,ν),
this procedure is equivalent to dropping that variable with the smallest
ratio of the least-squares regression coefficient estimate to its respective
estimated standard error. For large samples, this ratio behaves like a stan-
dard Gaussian deviate Z. A regression coefficient is, therefore, declared
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FIGURE 5.8. Ridge regression estimates of the 268 regression coefficients
for the centered PET yarn data. The values of the ridge parameter k are
k=0.00001 (top-left panel), 0.01 (top-right panel), 0.1 (lower-left panel),
1.0 (lower-right panel). The horizontal axis is coefficient number.

significant at the 5% level if the absolute value of its Z-ratio is larger than
2.0, and nonsignificant otherwise. Those variables having nonsignificant co-
efficients (using either the F or Z definition) are dropped from the model.
We stop when all variables retained in the model are larger than some pre-
determined value Fdelete, usually taken as the 10% point of the F1,n−k−1

distribution.
Forwards selection (FS) begins with an empty set of variables. At each

step, we select from the variable list that variable with the largest F value
(5.115) with df0 − df1 = 1 and df1 = n − k − 2, where k is the number of
variables in the smaller model, add that variable to the regression model,
and then refit the enlarged model. We stop selecting variables for the model
when the F value for each variable not currently in the model is smaller
than some predetermined value Fenter, which is typically taken to be equal
to 2 or 4 or the 25% point of the F1,n−k−2 distribution.

A hybrid stepwise procedure alternates backwards and forwards in its
model selection and stops when all variables have either been retained for
inclusion or removed.
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For the bodyfat data, when we use Fenter = Fdelete = 4.0, only four input
variables (abdomen, weight, wrist, and forearm) appear in the final model
using any of the above stepwise procedures. If we set Fenter = Fdelete = 2.0,
three further variables, neck, age, and thigh, are retained for the equation,
although neck and thigh each have t-values smaller than 2.0.

Criticisms of Stepwise Methods. Stepwise procedures have been severely
criticized for the following reasons: (1) When the input variables are highly
correlated, stepwise methods can yield confusing conclusions. (2) The max-
imum (or minimum) of a set of correlated F statistics is not an F statistic.
Hence, the decision rules used in stepwise regression to add or drop an
input variable can be misleading, We should be very cautious in evaluat-
ing the significance (or not) of a regression coefficient when the associated
variable is a candidate for inclusion or exclusion in a stepwise regression
procedure. (3) There is no guarantee that the subsets obtained from either
forwards selection or backwards elimination stepwise procedures will con-
tain the same variables or even be the “best” subset. (4) When there are
more variables than observations (r > n), backwards elimination is typi-
cally not a feasible procedure. (5) A stepwise procedure produces a single
answer (a very specific subset) to the variable selection problem, although
several different subsets may be equally good for regression purposes.

5.7.2 All Possible Subsets

An alternative method of variable selection involves examining all possi-
ble subsets of a given size and evaluating their powers of prediction. Thus, if
we start out with r variables, each variable can be in or out of the subset;
this implies that there are 2r − 1 different possible subsets that have to
be examined (ignoring the empty subset). This number of candidate sub-
sets quickly becomes very large even for moderate r (e.g., with 20 variables,
there are more than a million subsets). Branch-and-bound algorithms (e.g.,
Furnival and Wilson, 1974) reduce this number to a more manageable size
by eliminating large numbers of candidate models from consideration.

Let k ∈ {0, 1, 2, . . . , r} be the number of variables in a given regression
submodel P with |P | = p = k+1 parameters (k variables and an intercept).
There are

(
r
k

)
different subsets each having k variables. Using a variable

selection criterion, each of those subsets may be compared and ranked.
Most subset selection procedures choose the best submodel by minimiz-

ing a selection criterion of the form,

RSSP

n
+ λ · p · σ̂

2

n
, (5.116)

where λ is a penalty coefficient, σ̂2 is the residual variance from the full
model R+, and RSSP is the residual sum of squares for submodel P . In
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the neural networks literature, RSSP /n is called the learning (or training)
error; we saw it before as the apparent error rate or resubstitution error
rate. The term λpσ̂2/n is called the complexity term. Special cases of (5.116)
are Akaike Information Criterion (AIC) (Akaike, 1973) and Mallows CP

(Mallows, 1973, 1995), both of which have λ = 2, and the Bayesian Infor-
mation Criterion (BIC) (Akaike, 1978; Schwarz, 1978) with λ = log n. The
best submodel found using minimum-BIC will have fewer variables than
by using minimum-CP . Asymptotically, AIC and CP are equivalent but
have different properties than BIC.

The most popular of these criteria is CP = RSSP /σ̂2 − (n − 2p). To
compare submodels, we draw a scatterplot of CP values against p. (Usually,
we only plot the smallest few CP values for each p.) Certain regions of the
CP -plot deserve special mention. For the full model,

CR+ = |R+| = r + 1, (5.117)

“good” subsets (those with small bias) will have CP ≈ p, and those subsets

with large bias will have CP values greater than p. Furthermore, any subset
with CP ≤ r + 1 also has F ≤ 2 (a criterion used in stepwise regression for
adding or eliminating a variable) and so is a candidate for a good subset.
Analytical and empirical results suggest that CP (and related criteria) tend
to overfit when the full model has very high dimensionality.

The CP plot for the bodyfat data is given in Figure 5.9, where we have
plotted those subsets with the five smallest CP values for each value of p.
There are 27 subsets with CP < p. The overall lowest CP = 5.9 is obtained
from a 7-variable subset with variables age, weight, neck, abdomen, thigh,
forearm, and wrist.

5.7.3 Criticisms of Variable Selection Methods

There have been many criticisms leveled at variable selection methods in
general. These include (1) inferential methods applied to a regression model
assume that the variables are selected à priori. Subset selection procedures,
however, use the data to add or delete variables and, hence, change the
model. As such, they violate the inferential model and should be considered
only as “heuristic data analysis tools” (Breiman, Friedman, Olshen, and
Stone, 1984, p. 227). (2) When subset selection is data-driven, then the OLS
estimates of the regression coefficients based upon the same data will be
biased (even for large sample sizes) on the order 1–2 standard errors (Miller,
2002). (3) If the (learning) data are changed a small amount, this may
drastically change the variables chosen for the optimal regression subset,
rendering subset selection procedures very “unstable” (Breiman, 1996).
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FIGURE 5.9. Subset selection for the bodyfat data. The smallest five val-
ues of CP are plotted against the number of parameters p in the subset
model P .

5.8 Regularized Regression

Both ridge regression and variable selection have their advantages and
disadvantages. It would, therefore, be useful if we could construct a hybrid
of these two ideas that would combine the best properties of each method
— subset selection, shrinkage to improve prediction accuracy, and stability
in the face of data perturbations.

Consider the general form of the penalized least-squares criterion, which
can be written as

φ(β) = (Y − Xβ)τ (Y − Xβ) + λp(β), (5.118)

for a given penalty function p(·) and regularization parameter λ. We can
define a family (indexed by q > 0) of penalized least-squares estimators in
which the penalty function,

pq(β) =
r∑

j=1

|βj |q, (5.119)

bounds the Lq-norm of the parameters in the model as
∑

j

|βj |q ≤ c (5.120)
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FIGURE 5.10. Two-dimensional contours of the symmetric penalty func-
tion pq(β) = |β1|q + |β2|q = 1 for q = 0.2, 0.5, 1, 2, 5. The case q = 1 (blue
diamond) yields the lasso and q = 2 (red circle) yields ridge regression.

(Frank and Friedman, 1993). The two-dimensional contours of this sym-
metric penalty function for different values of q are given in Figure 5.10.

If we substitute the penalty function pq(β) in (5.119) in place of p(β) in
(5.118), we can write the criterion as φq(β), q > 0. Then, φq(β) is a smooth,
convex function when q > 1, and is convex for q = 1, so that we can use
classical optimization methods to minimize φq(β). By contrast, φq(β) is not
convex when q < 1, and so its minimization is more complicated, especially
when r is large.

Ridge regression corresponds to q = 2, and its corresponding penalty
function is a circular disk (r = 2) or sphere (r = 3), or, for general r, a
rotationally invariant hypersphere centered at the origin. The ridge regres-
sion estimator is that point on the elliptical contours of ESS(β), centered
at β̂, which first touches the hypersphere

∑
j β2

j ≤ c. The tuning parameter
c controls the size of the hypersphere and, hence, how much we shrink β̂
toward the origin.

If q �= 2, the penalty is no longer rotationally invariant. The most in-
teresting case is q < 2, where the penalty function collapses toward the
coordinate axes, so that not only does it shrink the coefficients toward
zero, but it also sets some of them to be exactly zero, thus combining el-
ements of ridge regression and variable selection. When q is set very close
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to 0, the penalty function places all its mass along the coordinate axes,
and the contours of the elliptical region of ESS(β) touch an undetermined
number of axes (so that the resulting regression function has an unknown
number of zero coefficients); the result is variable selection. The case q = 1
produces the lasso method having a diamond-shaped penalty function with
the corners of the diamond on the coordinate axes.

A hybrid penalized LS regression method called the elastic net (Zou and
Hastie, 2005) uses as p(β) a linear combination of the ridge regression L2

penalty function and the Lasso L1 penalty function.

The Lasso
The Lasso (least absolute shrinkage and selection operator) is a con-

strained OLS minimization problem in which

ESS(β) = (Y − Xβ)τ (Y − Xβ) (5.121)

is minimized for β = (βj) subject to the diamond-shaped condition that∑r
j=1 |βj | ≤ c (Tibshirani, 1996b). The regularization form of the problem

is to find β to minimize

φ(β) = (Y − Xβ)τ (Y − Xβ) + λ
r∑

j=1

|βj |. (5.122)

This problem can be solved using complicated quadratic programming
methods subject to linear inequality constraints.

The Lasso has a number of desirable features that have made it a popular
regression algorithm. Just like ridge regression, the Lasso is a shrinkage
estimator of β, where the OLS regression coefficients are shrunk toward
the origin, the value of c controlling the amount of shrinkage. At the same
time, it also behaves as a variable-selection technique: for a given value of c,
only a subset of the coefficient estimates, β̂j , will have nonzero values, and
reducing the value of c reduces the size of that subset. The coefficient values
will be exactly zero when one of the elliptical contours of the function

ESS(β) = RSS + (β − β̂ols)
τX τX (β − β̂ols), (5.123)

where RSS = ESS(β̂) is a constant, touches a corner of the diamond-
shaped penalty function.

In Figure 5.11, we display all 13 Lasso paths for the bodyfat data, both
for the coefficients (left panel) and for the standardized coefficients (right
panel). Variables are added to the regression model in the following order:
6 (abdomen), 3 (height), 1 (age), 13 (wrist), 4 (neck), 12 (forearm), 7
(hip), 11 (biceps), 8 (thigh), 2 (weight), 10 (ankle), 5 (chest), and 9
(knee). None of the coefficient paths cross zero and so no variables are
dropped from the regression model at any stage of the Lasso process.



5.8 Regularized Regression 151

0.0 0.2 0.4 0.6 0.8 1.0

|beta|/max|beta|

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

C
oe

ffi
ci

en
ts

0.0 0.2 0.4 0.6 0.8 1.0

|beta|/max|beta|

-50

0

50

100

150

S
ta

nd
ar

di
ze

d 
C

oe
ffi

ci
en

ts

FIGURE 5.11. Lasso paths for the bodyfat data. The paths are plots of
the coefficients {β̂j} (left panel) and the standardized coefficients, {β̂j ‖
Xj ‖2} (right panel) plotted against

∑
j |β̂j |/max

∑
j |β̂j |. The variables

are added to the regression model in the order: 6, 3, 1, 13, 4, 12, 7, 11, 8,
2, 10, 5, 9.

The Garotte
A different type of penalized least-squares estimator is due to Breiman

(1995). Let β̂ols be the OLS estimator and let W = diag{w} be a diagonal
matrix with nonnegative weights w = (wj) along the diagonal. The problem
is to find the weights w that minimize

φ(w) = (Y − XWβ̂ols)
τ (Y − XWβ̂ols) (5.124)

subject to one of the following two constraints,

1. w ≥ 0, 1τ
rw =

∑r
j=1 wj ≤ c (nonnegative garotte)

2. wτw =
∑r

j=1 w2
i ≤ c (garotte).

Either version of the garotte seeks to find some desirable scaling of the
regression coefficients. As c is decreased, more of the wj become 0 (thus
eliminating those particular variables from the regression function), while
the nonzero β̂ols,j shrink toward 0. Note that both versions of the garotte,
which depend upon the existence of the OLS estimator, β̂ols, fail in situa-
tions where r > n.

The regularization parameter λ effects a compromise between how well
the regression function fits the data and a size constraint on the coefficient
vector. A large value of λ means that the size constraint dominates, whereas
a small value of λ allows the OLS estimator to dominate. The value of λ
can be determined in an objective fashion by V -fold cross-validation (see,
e.g., Table 5.7).



152 5. Model Assessment and Selection in Multiple Regression

Comparisons Extensive simulations comparing prediction accuracy under
a wide variety of conditions and models (see, e.g., Breiman, 1995, 1996;
Tibshirani, 1996b; Öjelund, Brown, Madsen, and Thyregod, 2002) show
that ridge regression is very stable and is more accurate when there are
many small coefficients, but does not do well when faced with a mixture
of large and small coefficients; the nonnegative garotte is relatively stable
and is more accurate when there are a few nonzero coefficients; the lasso
performs well when there are a small-to-medium number of moderate-sized
coefficients (while its estimates tend to have large biases); and subset se-
lection, although very unstable, performs well only when there are a few
nonzero coefficients.

5.9 Least-Angle Regression

The least-angle regression (LAR) algorithm (Efron, Hastie, Johnstone,
and Tibshirani, 2004) is an automatic variable-selection method that im-
proves upon Forwards Selection in multiple regression. It can also be used
for situations in which r � n. Simple modifications of LAR enable the
Lasso and Forwards-Stagewise algorithms to be computed efficiently. The
three algorithms are referred to jointly as LARS.

In this section, we describe the LARS and Forwards-Stagewise algo-
rithms and relate them to the Lasso. For these algorithms, X = (Xij) is an
(n× r)-matrix and Y = (Y1, · · · , Yn)τ . We assume that the input variables
have been standardized to have mean zero,

∑n
i=1 Xij = 0, and length one,∑n

i=1 X2
ij = 1, j = 1, 2, . . . , r, and that the output variable has mean zero,∑n

i=1 Yi = 0. The “current” estimate of the regression function µ = Xβ

is given by µ̂ = X β̂, where the jth column, Xj = (X1j , · · · ,Xnj)τ , of
X = (X1, · · · ,Xr) represents n observations on the jth covariate Xj . The
vector of “current” correlations of X with the “current” residual vector
r = Y− µ̂ is given by ĉ = (ĉ1, · · · , ĉr)τ = X τr. The LARS algorithm builds
up µ̂ sequentially by piecewise-linear steps, where Forwards-Stagewise steps
are much smaller than LARS steps.

5.9.1 The Forwards-Stagewise Algorithm

1. Initialize β̂ = 0, so that µ̂ = 0 and r = Y.
2. Find the covariate vector, Xj1 , say, most highly correlated with r,

where j1 = arg maxj |ĉj |.
3. Update β̂j1 β̂j1 ← β̂j1 + δj1 , where δj1 = ε · sign(ĉj1) and ε is a small

constant that controls the step-length.
4. Update µ̂← µ̂ + δj1Xj1 and r← r− δj1Xj1 .
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5. Repeat steps 2 and 3 many times until ĉ = 0. This is the OLS solution.

5.9.2 The LARS Algorithm

1. Initialize β̂ = 0, so that µ̂ = 0 and r = Y. Start with the “active” set
A an empty subset of indices of the set {1, 2, . . . , r}.

2. Find the covariate vector, Xj1 , say, most highly correlated with r,
where j1 = arg maxj |ĉj |; the new active set is A ← A ∪ {j1}, and Xj1 is
added to the regression model.

3. Move β̂j1 toward sign(ĉj1) (see Step 3 of Forwards-Stagewise algo-
rithm) until some other covariate vector, Xj2 , say, has the same correlation
with r as does Xj1 ; the new active set is A ← A ∪ {j2}, and Xj2 is added
to the regression model.

4. Update r and move (β̂j1 , β̂j2) toward the joint OLS direction for the
regression of r on (Xj1 ,Xj2) (i.e., equiangular between Xj1 and Xj2), until
a third covariate vector, Xj3 , say, is as correlated with r as are the first
two variables; the new active set is A ← A∪{j3}, and Xj3 is added to the
regression model.

5. After k LARS steps, A = {j1, j2, . . . , jk}, µ̂A is the current LARS esti-
mate (where exactly k estimated coefficients, β̂j1 , β̂j2 , . . . , β̂jk

, are nonzero
and Xj1 ,Xj2 , . . . , Xjk

define the linear regression model), and the current
vector of correlations is ĉ = X τ (Y − µ̂A).

6. Continue until all r covariates have been added to the regression model
and ĉ = 0. This is the OLS solution.

Modifications for LARS

LARS-Lasso The entire Lasso sequence of paths can be generated by
a slight modification of the LARS algorithm. We start with the LARS
algorithm; then, if a nonzero estimated coefficient becomes 0 (e.g., changes
its sign), stop and remove that variable from A and from the calculation
of the next equiangular direction. The LARS algorithm recomputes the
best direction and continues on its way. All additions and subtractions of
variables are made “one-at-a-time,” so that the number of steps for the
LARS-Lasso algorithm can be larger than that of the LARS algorithm.

The LARS algorithm is efficient, involving of the order O(r3 +nr2) com-
putations, equivalent to carrying out OLS on the r input variables. The
LARS-Lasso algorithm, in which we may need to drop a variable (costing
at most an additional O(r2) computational operations for each variable
dropped), generates the Lasso solution without difficulty.
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Figure 5.11 was computed by the LARS-Lasso algorithm applied to the
bodyfat data. The LARS algorithm yielded the same paths.

LARS-Stagewise A modified LARS algorithm in which A can drop one
or more indices yields the Forwards-Stagewise algorithm, so that more steps
than the LARS algorithm are needed to arrive at the OLS solution.

For the bodyfat data, the Forwards-Stagewise algorithm took the fol-
lowing sequence of steps: variables 6, 3, 1, 13, 4, 12, and 7 were added
successively to the model; variables 3 and 1 were dropped; then variable 3
was added back, but in the next step was dropped again. Then, variables
11, 8, and 2 were added, but variable 13 was dropped. Variables 1, 10, 3, 13,
5, and 9 were next added. Then, variable 4 was dropped, then added back,
then dropped again, and added back again; and variable 1 was dropped,
added, dropped again, and then finally added back in. Thus, 29 modified
LARS steps were needed to reach the OLS solution.

The R package lars includes a CP -type statistic as a stopping rule to
choose between possible LARS models. Because of its propensity to overfit
in high-dimensional problems, however, there is some doubt as to how
reliable CP can be in selecting a parsimonious model.

Bibliographical Notes

There is a huge literature on multiple linear regression, and it is the area
of statistics about which most is known. See, for example, Weisberg (1985)
and Draper and Smith (1981, 1998).

The material on prediction error (Sections 5.4 and 5.5) is based upon the
work of Efron (1983, 1986). The use of cross-validation for model selection
purposes was introduced by Stone (1974) and Geisser (1975). (It is amusing
to read that one discussant of Stone’s article likened cross-validation to
witchcraft!) Based upon a conviction that “prediction is generally more
relevant for inference than parameter estimation,” Geisser (1974, 1975)
called the cross-validation technique the predictive sample-reuse method.

Book-length accounts of the bootstrap include Efron (1982), Hall (1992),
Efron and Tibshirani (1993), and Chernick (1999). The names “uncon-
ditional” and “conditional” bootstrap were taken from Breiman (1992).
Freedman (1981) distinguishes the two regression models for bootstrapping
by calling the fixed-X case the “regression model” and the random-X case
the “correlation model.” An account of regression problems with collinear
data from an econometric point of view is given by Belsley, Kuh, and Welsch
(1980).

The ridge regression estimator first appeared in 1962 in an article in a
chemical engineering journal by A.E. Hoerl. This was followed by Hoerl
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and Kennard (1970a,b). For the Bayesian characterization of the ridge es-
timator, see Lindley and Smith (1972), Chipman (1964), and Goldstein and
Smith (1974).

In many texts, it is common to recommend standardizing (centering and
scaling) the input variables prior to carrying out ridge regression. Such
recommendations are not accepted by everyone, however. Thisted (1976),
for example, states that “no argument has ever been advanced, nor does a
single theorem in the ridge literature require, that X τX be in ‘correlation
form’.” He goes on to argue that “because ridge rules are not invariant with
respect to changes in origin of the predictor variables, it is important to
recognize that origins are not arbitrary and that centering, taken as a rule
of thumb always to be followed, can lead to misleading results and poor
mean square error behavior.”

Some notes on terminology and notation origins . . . The penalized least-
squares regressionwith penalty function (5.125) is widely referred to as bridge
regressionwith the origin of the name ascribed toFrank andFriedman (1993).
Although this name never appears in that reference, it apparently was first
usedbyFriedmaninatalk(Tibshirani,personalcommunication). . . . Mallows
(1973) states that the use of the letter C in CP was specifically chosen to
honor Cuthbert Daniel, who helped Mallows develop the idea behind CP

at the end of 1963. . . . In an interview (Findley and Parzen, 1995), Akaike
explains how AIC was named. Akaike had previously used the notation
IC (for information criterion) in a 1974 article, and for another article had
asked his assistant to compute some values of the IC. His assistant knew
that if she called the quantity “IC,” Fortran would assume that it was
integer-valued, which it was not. So, she put an A in front of IC to turn it
into a noninteger-valued quantity. Akaike apparently thought that calling
it AIC was a “good idea” because it could then be used as the first of a
sequence of information criteria, AIC, BIC, etc.

Exercises

5.1 From the solution (5.12) to the least-squares problem in the random-X
case, use the formula for inverting a partitioned matrix to show that (5.13)
and (5.14) follow.

5.2 From the solution (5.26) to the least-squares problem in the fixed-X
case, use the same matrix-inversion formula to show that (5.27) and (5.28)
follow.

5.3 Show that cov((aτ −dτZτ )Y,dτZτY) = 0 for the multiple regression
model, where a is an n-vector and d is an (r + 1)-vector.
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5.4 (Gauss–Markov Theorem) Assume that β̂ols is any solution of the
normal equations (5.25) and that Z is a matrix of fixed constants. Make
no assumption that ZτZ has full rank. Call cτβ estimable if we can find a
vector a such that E(aτY) = cτβ. If cτβ is estimable, show that cτ β̂ols is
linear in Y and is unbiased for cτβ. Using Exercise 5.3 or otherwise, show
also that cτ β̂ols has minimum variance among all linear (in Y) unbiased
estimators of cτβ.

5.5 Suppose ZτZ is nonsingular and that the solution of the normal
equations is β̂ols = (ZτZ)−1ZτY. Show that the Gauss–Markov Theorem
holds.

5.6 Let G be a generalized inverse of ZτZ and let a solution of the
normal equations be given by the generalized-inverse regression estimator,
β̂∗ = GZτY. Show that the Gauss–Markov Theorem holds.

5.7 Show that a generalized ridge regression estimator,

β̂rr(k) = (X τX + kΩ)−1X τy,

can be obtained as a solution of minimizing ESS(β) subject to the elliptical
restriction that βτΩβ ≤ c.

5.8 (Marquardt, 1970) Consider the following operation of data aug-
mentation. Center and scale all input and output variables. Augment the
(n× r)-matrix X with r additional rows of the form Hk =

√
kIr, where k

is given, and denote the resulting ((n+ r)× r)-matrix by X ∗. Augment the
n-vector Y using r 0s, and denote the resulting (n+ r)-vector by Y∗. Show
that the ridge estimator can be obtained by applying OLS to the regression
of Y∗ on X ∗. Thus, one can carry out ridge regression using standard OLS
regression software and obtain the correct ridge estimator. However, much
of the rest of the regression output will be inappropriate for the original
data (X ,Y).

5.9 In the PET yarn example, the variables were all centered, but not
scaled. Standardize the input variables (the spectrum values) by centering
and dividing each input variable by its standard deviation, and center the
output variable (density). For the standardized data, recompute: (1) the
PCR coefficient estimates, (2) the PLSR coefficient estimates, and (3) the
RR coefficient estimates for various values of k (including k > 1), and
redraw the ridge trace. What effect does standardizing have on the results
that is not provided by centering alone? How would the results be affected
by neither centering nor standardizing the variables?

5.10 Consider data on the composition of a liquid detergent. The datafile
detergent can be downloaded from the book’s website. There are five Y
output variables, representing four compounds in an aqueous solution (the
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fifth Y variable is the amount of water in the solution), and they sum
to unity. The X input variables consist of mid-infrared spectrum values
recorded as the absorbances at r = 1168 equally spaced frequencies in the
range 3100–759 cm−1. The data consist of n = 12 sample preparations of
the detergent. Graph the 12 absorbance spectra and apply PCR, PLSR,
and RR to the data using each of the first four Y variables in separate
regressions.

5.11 (Mallows, 1973) Consider the CP statistic. Let P ∗ be a subset with
p+1 parameters that contains P . Show that CP∗−CP is distributed as 2−t21,
where t1 is the Student’s t variable having 1 degree of freedom. Show also
that if the additional variable is unimportant, then the difference CP∗−CP

has mean and variance approximately equal to 1 and 2, respectively.

5.12 What is the relationship between R2 and CP ?

5.13 If the regression model is correct, show that CP can be used as an
estimate of |P |, the number of parameters in the model.

5.14 For the OLS estimator β̂ in the linear regrssion model Y = Xβ + e,
where e has mean zero, show that ESS(β) = RSS + (β− β̂ols)τX τX (β−
β̂ols), where RSS = ESS(β̂).

5.15 Consider the matrix X . Center and scale each column of X so that
X τX is the correlation matrix. Regress the kth column of X on the other
r − 1 columns of X in a multiple regression. Compute the residual sum of
squares, RSSk, k = 1, 2, . . . , r, for each column. Near collinearity exhibits
irself when at least one of the RSS1, RSS2, . . . , RSSr is small. Show that
RSSk is the square-root of the kth diagonal element of (X τX )−1, which
is referred to as the reciprocal square-root of V IFk. Show that V IFk =
(1−R2

k)−1, where R2
k is the squared multiple correlation coefficient of the

kth column of X regressed on the other r−1 columns of X , k = 1, 2, . . . , r.

5.16 Suppose the error component e of the linear regression model has
mean 0, but now has var(e) = σ2V, where V is a known (n× n) positive-
definite symmetric matrix and σ2 > 0 may not be necessarily known. Let
β̂gls denote the generalized least-squares (GLS) estimator:

β̂gls = arg min
β

(Y − Zβ)τV−1(Y − Zβ).

Show that
β̂gls = (ZτV−1Z)−1ZτV−1Y

has expectation β and covariance matrix

var(β̂gls) = σ2(ZτV−1Z)−1.
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5.17 What would be the consequences of incorrectly using the ordinary
least-squares estimator β̂ols = (ZτZ)−1ZτY, of β when var(e) = σ2V?

5.18 The Boston housing data can be downloaded from the StatLib

website lib.stat.cmu.edu/datasets/boston corrected.txt. There are
506 observations on census tracts in the Boston Standard Metropolitan
Statistical Area (SMSA) in 1970. The response variable is the logarithm of
the median value of owner-occupied homes in thousands of dollars; there
are 13 input variables (plus information on location of each observation).
Compute the OLS estimates and compare them with those obtained from
the following variable-selection algorithms: Forwards Selection (stepwise),
Cp, the Lasso, LARS, and Forwards Stagewise.

5.19 Repeat comparisons between variable-selection algorithms in Exer-
cise 5.18 for The Insurance Company Benchmark data set. The data gives
information on customers of an insurance company and contains 86 vari-
ables on product-usage data and socio-demographic data derived from zip
area codes. There are 5,822 customers in the learning set and another 4,000
in the test set. The data were collected to answer the following question:
Can you predict who would be interested in buying a caravan insurance
policy and give an explanation why? The data can be downloaded from
kdd.ics.uci.edu/databases/tic/tic.html.



6
Multivariate Regression

6.1 Introduction

Multivariate linear regression is a natural extension of multiple linear re-
gression in that both techniques try to interpret possible linear relation-
ships between certain input and output variables. Multiple regression is
concerned with studying to what extent the behavior of a single output
variable Y is influenced by a set of r input variables X = (X1, · · · ,Xr)τ .
Multivariate regression has s output variables Y = (Y1, · · · , Ys)τ , each
of whose behavior may be influenced by exactly the same set of inputs
X = (X1, · · · ,Xr)τ .

So, not only are the components of X correlated with each other, but in
multivariate regression, the components of Y are also correlated with each
other (and with the components of X). In this chapter, we are interested
in estimating the regression relationship between Y and X, taking into
account the various dependencies between the r-vector X and the s-vector
Y and the dependencies within X and within Y.

We describe two different multivariate regression scenarios, analogous to
the fixed-X and random-X scenarios of multiple regression. In particular,
we consider restricted versions of the multivariate regression problem based
upon constraining the relationship between Y and X in some way. Such
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constraints may be linear or nonlinear in form, and they may be known
or unknown to the researcher prior to statistical analysis. Our approach is
guided by the well-known principle that major theoretical, computational,
and practical advantages may result if one is able to express a wide variety
of statistics problems in terms of a common focus, especially where that
focus is regression analysis.

With this in mind, we describe the multivariate reduced-rank regression
model (RRR) (Izenman, 1975), which is an enhancement of the classical
multivariate regression model and has recently received research attention
in the statistics and econometrics literature. The following reasons explain
the popularity of this model: RRR provides a unified approach to many
of the diverse classical multivariate statistical techniques; it lends itself
quite naturally to analyzing a wide variety of statistical problems involv-
ing reduction of dimensionality and the search for structure in multivariate
data; and it is relatively simple to program because the regression esti-
mates depend only upon the sample covariance matrices of X and Y and
the eigendecomposition of a certain symmetric matrix that generalizes the
multiple squared correlation coefficient R2 from multiple regression.

6.2 The Fixed-X Case

Let Y = (Y1, · · · , Ys)τ be a random s-vector-valued output variate with
mean vector µY and covariance matrix ΣY Y , and let X = (X1, · · · ,Xr)τ

be a fixed (nonstochastic) r-vector-valued input variate. The components
of the output vector Y will typically be continuous responses, and the
components of the input vector X may be indicator or “dummy” variables
that are set up by the researcher to identify known groupings of the data
associated with distinct subpopulations or experimental conditions.

Suppose we observe n replications,

(Xτ
j ,Yτ

j )τ , j = 1, 2, . . . , n, (6.1)

on the (r + s)-vector (Xτ ,Yτ )τ . We define an (r × n)-matrix X and an
(s× n)-matrix Y by

r×n

X = (X1, · · · ,Xn),
s×n

Y = (Y1, · · · ,Yn). (6.2)

Form the mean vectors,

r×1

X̄ = n−1
n∑

j=1

Xj ,
s×1

Ȳ = n−1
n∑

j=1

Yj , (6.3)

and let
r×n

X̄ = (X̄, · · · , X̄),
s×n

Ȳ = (Ȳ, · · · , Ȳ) (6.4)
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be an (r × n)-matrix and an (s × n)-matrix, respectively. The centered
versions of X and Y are defined by

r×n

Xc = X − X̄ = (X1 − X̄, · · · ,Xn − X̄), (6.5)

s×n

Yc = Y − Ȳ = (Y1 − Ȳ, · · · ,Yn − Ȳ), (6.6)

respectively.

6.2.1 Classical Multivariate Regression Model

Consider the multivariate linear regression model
s×n

Y =
s×n
µ +

s×r

Θ
r×n

X +
s×n

E , (6.7)

where µ is an (s×n)-matrix of unknown constants, Θ = (θjk) is an (s×r)-
matrix of unknown regression coefficients, and E = (E1, E2, · · · , En) is the
(s× n) error matrix whose columns are each random s-vectors with mean
0 and the same unknown nonsingular (s× s) error covariance matrix ΣEE ,
and pairs of column vectors, (Ej , Ek), j �= k, are uncorrelated with each
other.

When the Xs are considered to be fixed in repeated sampling (e.g., in
designed experiments), the so-called design matrix X consists of known
constants and possibly also observed values of covariates, Θ is a full-rank
matrix of unknown fixed effects, and µ = µ01

τ
n, where µ0 is an unknown

s-vector of constants.
Consider the problem of estimating arbitrary linear combinations of the
{θjk},

tr(AΘ) =
∑

j

∑
k

Ajkθjk, (6.8)

where A = (Ajk) is an arbitrary matrix of constants. There are two equiv-
alent ways to proceed. On the one hand, we can write

µ + ΘX = Θ∗X ∗, (6.9)

where Θ∗ = (µ0

... Θ) and X ∗ = (1n

... Xτ )τ , and then estimate Θ∗.
The other way is to remove µ from the equation by centering X and Y
and then estimate Θ directly. It is the latter procedure we give here. The
reader should verify that both procedures lead to the same results (see
Exercise 6.7).

LS Estimation

If we set µ = Ȳ −ΘX̄ , the model (6.7) reduces to

s×n

Yc =
r×n

Θ
r×n

Xc +
s×n

E . (6.10)
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Applying the “vec” operation to equation (6.10), we get

sn×1

vec(Yc)=
sn×sr

(Is ⊗X τ
c )

sr×1

vec(Θ) +
sn×1

vec(E) . (6.11)

We see that the relationship (6.11) is just a multiple linear regression.
The error variate vec(E) has mean vector 0 and (sn × sn) block-diagonal
covariance matrix,

cov(vec(E)) = E{(vec(E))(vec(E))τ} = ΣEE ⊗ In. (6.12)

Assuming that XcX τ
c is nonsingular and using Exercise 5.16, the generalized

least-squares estimator of vec(Θ) is given by

vec(Θ̂) = (6.13)
((Is ⊗Xc)(ΣEE ⊗ In)−1(Is ⊗X τ

c ))−1(Is ⊗Xc)(ΣEE ⊗ In)−1vec(Yc)
= (Is ⊗ (XcX τ

c )−1Xc)vec(Yc), (6.14)

using results on Kronecker products of matrices. By “un-vec’ing” (6.14), it
follows that

Θ̂ = YcX τ
c (XcX τ

c )−1, (6.15)

µ̂ = Ȳ − Θ̂X̄ , (6.16)

so that µ̂0 = Ȳ − Θ̂X̄.
Thus, under the above conditions and if XcX τ

c is nonsingular, then the

minimum-variance linear unbiased estimator of tr(AΘ) is given by tr(AΘ̂).
This is the multivariate form of the Gauss–Markov theorem.

We can interpret the estimator Θ̂ in an important way. Suppose we
transpose the regression equation (6.10) so that

n×s

Z =
n×r

W
r×s

β +
n×s

E , (6.17)

where Z = Yτ
c , W = X τ

c , β = Θτ , and E = Eτ . The ith row vector, Yc(i),
of Yc corresponds to the ith column vector, zi, of Z and represents all the
n (mean-centered) observations on the ith output variable Ycij = Yij −Ȳi,
j = 1, 2, . . . , n. Thus, the n-vector zi can be modeled by the multiple
regression equation,

n×1
zi =

n×r

W
r×1

βi +
n×1
ei , (6.18)

where βi is the ith column of β, and ei is the ith column of E. The OLS
estimate of βi is

β̂i = (WτW)−1Wτzi. (6.19)

Transforming back, we get that the least-squares estimator of θ(i) (i.e., the
ith row of Θ) is

θ̂(i) = Yc(i)X τ
c (XcX τ

c )−1, (6.20)
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which is the ith row of Θ̂.
Thus, simultaneous (unrestricted) least-squares estimation applied to all

the s equations of the multivariate regression model yields the same results
as does equation-by-equation least-squares. As a result, nothing is gained
by estimating the equations jointly, even though the output variables Y
may be correlated.

In other words, even though the variables in Y may be correlated, per-
haps even heavily correlated, the LS estimator, Θ̂, of Θ does not contain
any reference to that correlation. Indeed, the result says that in order to
estimate the matrix of regression coefficients Θ in a multivariate regression,
all we need to do is (1) run s multiple regressions, each using a different
Y variable, on all the X variables, (2) compute the vector of regression
coefficient estimates, θ̂(i), i = 1, 2, . . . , s, from each multiple regression,
and then (3) arrange those estimates together into a matrix, which will be
Θ̂. To those who encounter this result for the first time, it can be quite
surprising!

In its basic classical formulation, therefore, we see that multivariate re-
gression is a procedure that has no true multivariate content. That is, there
is no reason to create specialized software to carry out a multivariate regres-
sion of Y on X when the same result can more easily be obtained by using
existing multiple regression routines. This is one reason why many books
on multivariate analysis do not contain a separate chapter on multivariate
regression and also why the topics of multiple regression and multivariate
regression are so often confused with each other.

Covariance Matrix of Θ̂

Using the “vec” operation and Kronecker products, it is not difficult to
obtain the covariance matrix for Θ̂. Substituting (6.10) for Yc into (6.15),
we have that

Θ̂ = (ΘXc + E)X τ
c (XcX τ

c )−1 = Θ + EX τ
c (XcX τ )−1. (6.21)

Using the fact that Xc is a fixed matrix and that E has mean zero, we have
that vec(Θ̂) has mean vec(Θ). Now, from (6.21),

vec(Θ̂−Θ) = vec(EX τ
c (XcX τ

c )−1) = (Is ⊗ (XcX τ )−1Xc)vec(E),

whence,

cov(vec(Θ̂)) = E{(vec(Θ̂−Θ))(vec(Θ̂−Θ))τ}
= (Is ⊗ (XcX τ

c )−1Xc)(ΣEE ⊗ In)(Is ⊗X τ
c (XcX τ

c )−1)
= ΣEE ⊗ (XcX τ

c )−1, (6.22)

by using the multiplicative properties of Kronecker products.
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So far, we have obtained the LS estimators of the multivariate linear
regression model without imposing any distributional assumptions on the
errors. If we now assume that the errors in the model are distributed as iid
Gaussian random vectors,

Ej iid∼ Ns(0,ΣEE), j = 1, 2, . . . , n, (6.23)

then,
vec(Θ̂) ∼ Nrs(vec(Θ),ΣEE ⊗ (XcX τ

c )−1). (6.24)

Furthermore, the distribution of the least-squares estimator (6.20) is

θ̂(i) ∼ Nr(θ(i), σ
2
i (XcX τ

c )−1), (6.25)

where σ2
i is the ith diagonal entry of ΣEE , i = 1, 2, . . . , s. Compare with

(5.42).
If Xc has less than full rank, then the (r×r)-matrix XcX τ

c will be singular.
In this case, we can replace the (XcX τ

c )−1 term either by a generalized
inverse (XcX τ

c )− or by a ridge-regression-like term such as (XcX τ
c +kIr)−1,

where k is a positive constant; see Section 5.6.4.

Fitted Values and Multivariate Residuals

The (s× n) matrix Ŷ of fitted values is given by

Ŷ = µ̂ + Θ̂X = Ȳ + Θ̂(X − X̄ ), (6.26)

or
Ŷc = Θ̂Xc = YcX τ

c (XcX τ
c )−1Xc = YcH, (6.27)

where the (n× n) matrix H = X τ
c (XcX τ

c )−1Xc is the hat-matrix.

The (s×n) residual matrix Ê is the difference between the observed and
fitted values of Y, namely,

Ê = Y − Ŷ = Yc − Θ̂Xc = Yc − Ŷc = Yc(In −H), (6.28)

and, using (6.27), can also be written as

Ê = Yc − Θ̂Xc

= (ΘXc + E)− (Θ + EX τ
c (XcX τ

c )−1)Xc

= E(In −H). (6.29)

It follows immediately that E(vec(Ê)) = 0. A straightforward calculation
shows that

cov(vec(Ê)) = ΣEE ⊗ (In −H). (6.30)
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The (s× s) matrix version of the residual sum of squares is

Se = Ê Êτ = (Yc − Θ̂Xc)(Yc − Θ̂Xc)τ = Yc(In −H)Yτ
c . (6.31)

It is not difficult to show that Se = E(In −H)Eτ . Let E(j) be the jth row
of E . Then, the jkth element of Se can be written as

(Se)jk = E(j)(In −H)Eτ
(k),

whence,

E{(Se)jk} = E{tr((In −H)Eτ
(k)E(j))}

= tr(In −H) · (ΣEE)jk

= (n− r)(ΣEE)jk.

We can now state the statistical properties of an estimate of the error
covariance matrix. The residual covariance matrix,

Σ̂EE =
1

n− r
Se, (6.32)

is statistically independent of Θ̂ and has a Wishart distribution with n− r
degrees of freedom and expectation ΣEE . We see that the residual covariance
matrix Σ̂EE is an unbiased estimator for the error covariance matrix ΣEE .

The covariance matrix of Θ̂ can, therefore, be estimated by

ĉov(vec(Θ̂)) = Σ̂EE ⊗ (XcX τ
c )−1, (6.33)

where Σ̂EE is given by (6.32).

Confidence Intervals

We can now construct confidence intervals for arbitrary linear combina-
tions of vec(Θ). Let γ be an arbitrary sr-vector and consider γτvec(Θ̂).
Assuming the error vectors are s-variate Gaussian as in (6.23), the inde-
pendence of (6.15) and (6.32) means that the pivotal quantity

t =
γτ (vec(Θ̂−Θ))

{γτ (Σ̂EE ⊗ (XcX τ
c )−1)γ}1/2

(6.34)

has the Student’s t-distribution with n − r degrees of freedom. Thus, a
(1− α)× 100% confidence interval for γτvec(Θ) can be given by

γτvec(Θ̂) ± t
α/2
n−r {γτ (Σ̂EE ⊗ (XcX τ

c )−1)γ}1/2, (6.35)

where t
α/2
n−r is the (1− α/2)× 100%-point of the tn−r-distribution.
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FIGURE 6.1. Three-variable Box–Behnken design for the Norwegian Pa-
per Quality experiment. The three variables, X1,X2, and X3, each have
values −1, 0, or 1. There are 13 design points consisting of the midpoints
of each of the 12 edges of a three-dimensional cube and a point at the center
of the cube. Source: NIST/SEMATECH e-Handbook of Statistical Methods,
www.itl.nist.gov/div898/handbook/pri/section3/pri3362.htm.

6.2.2 Example: Norwegian Paper Quality

These data1 were obtained from a controlled experiment carried out in
the paper-making factory of Norske Skog located in Skogn, Norway (Aldrin,
2000), which is the world’s second-largest producer of publication paper.
There are s = 13 response variables, Y1, . . . , Y13, which measure different
characteristics of paper.

The purpose of the experiment was to uncover how these response vari-
ables were influenced by three predictor variables, X1,X2,X3, each of which
is controlled exactly with values −1, 0, or 1 according to a 3-variable Box–
Behnken design (Box and Behnken, 1960). See Figure 6.1. The 13-point
design can be represented as the midpoints of each of the 12 edges of a
three-dimensional cube and a point (0, 0, 0) at the center of the cube.

At each of 11 design points, the response variables were measured twice;
at the design point (0, 1, 1), the response variables were measured only once;
at the center point, the response variables were measured six times. To allow
for interactions and nonlinear effects, the standard model for such designs
includes an additional six predictor variables defined as X4 = X2

1 ,X5 =
X2

2 ,X6 = X2
3 ,X7 = X1X2,X8 = X1X3,X9 = X2X3, so that r = 9.

The data set, therefore, consists of 29 observations measured on each of
r + s = 9 + 13 = 22 variables.

1The data, which originally appeared in Aldrin (1996), can be found in the file
norwaypaper1.txt on the book’s website or can be downloaded from the StatLib website
lib.stat.cmu.edu/datasets.
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TABLE 6.1. Norwegian paper quality data. This is the (13× 9)-matrix of
estimated regression coefficients, Θ̂. The number of X-variables is r = 9,
the number of Y -variables is s = 13, and the number of observations is
n = 29.

0.752 -0.449 -0.365 0.105 -0.291 0.545 0.111 0.390 0.217

-0.844 0.350 0.369 -0.039 0.226 -0.567 -0.141 -0.537 -0.324
0.286 -0.670 -0.572 0.044 -0.283 0.534 0.065 0.408 -0.163
0.497 -0.491 -0.666 0.142 -0.391 0.450 0.068 0.195 0.020
0.515 0.143 -0.570 -0.182 -0.372 0.420 -0.158 0.792 0.602
-0.717 0.039 -0.215 0.346 -0.362 0.055 0.139 0.462 0.125
0.878 0.051 -0.269 -0.324 -0.015 0.228 -0.243 0.126 0.255
-0.564 0.194 -0.357 -0.002 -0.427 0.046 0.236 -0.446 0.257

0.287 0.497 -0.600 -0.382 -0.011 0.837 0.143 0.380 -0.121
-0.654 -0.145 0.111 0.221 -0.354 -0.524 0.057 -0.682 0.336
0.174 -0.714 0.329 0.146 0.143 -0.144 0.086 -0.826 -0.731
-0.526 0.283 0.541 -0.832 0.428 0.339 0.214 0.125 0.173
0.505 0.052 0.428 -0.704 0.561 0.557 -0.231 -0.245 -0.181

Regressing Y = (Y1, · · · , Y13)τ on X = (X1, · · · ,X9)τ , using formulas
(6.15) and (6.16), yields the estimated mean vector µ̂,

µ̂ = (32.393, 31.678, 7.034, 7.826, 14.734, 12.455, 9.996, 18.502,

22.414, 17.817, 21.405, 90.166, 23.547)τ , (6.36)

and the (13×9)-matrix of estimated regression coefficients Θ̂, which is given
in Table 6.1. Each row of Table 6.1 can also be obtained by regressing the
Y variable corresponding to that row on all nine X variables; see Ex. 6.8.

6.2.3 Separate and Multivariate Ridge Regressions

As we have seen, multivariate OLS regression reduces to a collection of
s separate multiple OLS regressions. We can improve substantially upon
OLS while still pursuing an equation-by-equation regression strategy by
applying a biased regression procedure, such as ridge regression, separately
to each output variable.

Using the penalized least-squares formulation of uniresponse ridge re-
gression (see Section 5.8.3), let

φj(β) = (yj −Xβ)τ (yj −Xβ) + λjβ
τβ, j = 1, 2, . . . , s, (6.37)

where we allow the possibility for different ridge parameters, {λj}, for each
equation. Separate ridge-regression estimators are the solutions to

β̂(λj) = arg min
β

φj(β), j = 1, 2, . . . , s, (6.38)
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and the separate ridge parameters can be estimated using leave-one-out
cross-validation,

λ̂j = arg min
λ

{
n∑

i=1

(yj,i − ŷj,−i(λ))2
}

, j = 1, 2, . . . , s, (6.39)

where ŷj,−i(λ) is the predicted value (using ridge regression with ridge pa-
rameter λ) of the ith case of the jth response variable when the entire ith
case is deleted from the learning set (Breiman and Friedman, 1997). Varia-
tions on this idea have been used to predict the outcome on election night
in every British general election (and British elections to the European
parliament) since 1974 (Brown, Firth, and Payne, 1999).

Although ridge regression can be predictively more accurate than is OLS
in the case of a single output variable, this equation-by-equation strategy
is unsatisfactory because it circumvents the issue that the output variables
are correlated and that the combined ridge estimators do not yield a proper
Bayes procedure.

Several extensions of (5.99) for the multivariate case have since been
proposed that recognize the true multivariate nature of the problem. From
(6.15), we have that

vec(Θ̂) = (Is ⊗XcX τ
c )−1(Is ⊗Xc)vec(Yc). (6.40)

A multivariate analogue of (5.99) can be based upon (6.40) by introducing
a positive-definite (s× s) ridge matrix K so that

vec(Θ̂(K)) = ((Is ⊗XcX τ
c ) + (K⊗ Ir))−1(Is ⊗Xc)vec(Yc) (6.41)

is a multivariate ridge regression estimator of vec(Θ) (Brown and Zidek,
1980, 1982). The application of (6.41) to predicting British elections uses
a diagonal K. Even if XcX τ

c is almost singular, (6.41) is still computable.
Note that (6.41) reduces to (6.40) if K = 0. If K is chosen from the data,
then the multivariate ridge estimator (6.41) becomes adaptive. A more
complicated version of (6.41) was proposed by Haitovsky (1987).

6.2.4 Linear Constraints on the Regression Coefficients

It is sometimes necessary to consider a more restricted model than the
classical multivariate regression model. In certain practical situations, we
might need the elements of the regression coefficient matrix Θ in the clas-
sical model Yc = ΘXc + E to satisfy a set of known linear constraints.

A variety of applications can be based upon the general set of linear
constraints,

m×s

K
s×r

Θ
r×u

L =
m×u

Γ , (6.42)
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where the matrix K (m ≤ s) and the matrix L (u ≤ r) are full-rank
matrices of known constants, and Γ is a matrix of parameters (known or
unknown). We often take Γ = 0.

In (6.42), the matrix K is used to set up relationships between the differ-
ent columns of Θ (e.g., treatments), whereas L generates possible relation-
ships between the different responses. In many problems of this kind, it is

common to take L = (Iu

... 0)τ , where 0 is a (u× (r− u))-matrix of zeroes.
There are also situations in which L can be made more specific; in fact, L
is peculiar to the multiresponse problem and does not have any analogue
in the uniresponse situation.

Variable Selection

For example, suppose we wish to study whether a specific subset of the r
input variables has little or no effect on the behavior of the output variables.
Suppose we arrange the rows of Xc so that

r×n

Xc = (
n×r1

X τ
c1

...
n×r2

X τ
c2 )τ , (6.43)

where Xc1 has r1 rows and Xc2 has r2 = r−r1 rows. Suppose we believe that
the variables included in Xc2 do not belong in the regression. Corresponding

to the partition of Xc, we set Θ = (Θ1

... Θ2), so that

s×n

Yc =
s×r1

Θ1

r1×n

Xc1 +
s×r2

Θ2

r2×n

Xc2 +
s×n

E . (6.44)

To study whether the input variables included in Xc2 can be eliminated

from the model, we set K = Is and L = (0
... Iτ

r2×u)τ , where 0 is a (u× r1)-
matrix of zeroes and Ir2×u is an (r2×u)-matrix of ones along the “diagonal”
and zeroes elsewhere, so that KΘL = Θ2 = 0.

Profile Analysis

The constraints (6.42) can be used to handle a variety of experimen-
tal design problems. Such problems include profile analysis, where scores
on a battery of tests (e.g., different treatments) are recorded on several
independent groups of subjects and compared with each other. Typically,
profile analysis is carried out on multivariate data obtained from longitu-
dinal studies or clinical trials, where the components of each data vector
are ordered by time.

The simplest form of profile analysis deals with a one-way layout in which
there are r groups of subjects, where the jth group consists of nj subjects
selected randomly to receive one of r treatments, and n1+n2+· · ·+nr = n.
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The scores, which are assumed to be expressed in comparable units, on the
s tests by the ith subject are given by the ith column in the (s×n)-matrix
Y = (Y1, · · · ,Yn). We assume the model,

Yi = µ + µi + Ei, i = 1, 2, . . . , n, (6.45)

where Yi is a random s-vector, µ is an s-vector of constants that represents
an overall mean vector, (µ1, · · · ,µn) = ΘX is an (s × n)-matrix of fixed
constants, and Ei is a random s-vector with mean 0 and covariance matrix
ΣEE , i = 1, 2, . . . , n. For convenience, we assume µ = 0.

The design matrix X is constructed using n dummy variables as columns,
where the jth row value of the ith column equals 1 if the ith subject is in
the jth group, and 0 otherwise:

r×n

X =

⎛
⎜⎜⎜⎝

1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎞
⎟⎟⎟⎠ . (6.46)

The matrix of regression coefficients Θ is given by:

s×r

Θ =

⎛
⎜⎝

θ11 · · · θ1r

...
...

θs1 · · · θsr

⎞
⎟⎠ . (6.47)

The treatment-mean profile for the jth group is defined as the s-vector

s×1

θj = (θ1j , · · · , θsj)τ , j = 1, 2, . . . , r. (6.48)

The profile of the jth group is displayed as a graph of the points (k, θkj),
k = 1, 2, . . . , s; we connect successive points, (k, θkj) and (k + 1, θk+1,j),
k = 1, 2, . . . , s − 1, by straight lines. All group profiles are plotted on the
same graph for visual comparison.

The population profiles of the r groups are said to be similar if the line
segments joining successive points of each group’s profile are parallel to
the corresponding line segments of the profiles of all the other groups. In
other words, the population profiles of the different groups are identical but
with a constant difference between each pair of profiles. Figure 6.2 displays
an example of parallel treatment-mean profiles of three groups (r = 3) at
five different timepoints (s = 5). Restricting the profiles to be similar is
equivalent to asserting that there is no interaction between treatments and
groups.
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FIGURE 6.2. Profile plots of population treatment means at five time-
points (s = 5) on each of three hypothetical groups (r = 3), where the
group profiles are parallel to each other.

This similarity of the r profiles can be expressed as a set of linear con-
straints on Θ. To do this, we set the matrix K to be

(s−1)×s

K =

⎛
⎜⎜⎜⎝

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
0 0 0 · · · −1

⎞
⎟⎟⎟⎠ (6.49)

and the matrix L to be

r×(r−1)

L =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
...

...
0 0 0 · · · −1

⎞
⎟⎟⎟⎟⎟⎠

, (6.50)

so that K1s = 0 and Lτ1r = 0. Setting KΘL = 0 gives constraints on Θ
that reduce to

⎛
⎜⎝

θ11 − θ12

...
θ1,r−1 − θ1r

⎞
⎟⎠ = · · · =

⎛
⎜⎝

θs1 − θs2

...
θs,r−1 − θsr

⎞
⎟⎠ . (6.51)

Thus, the r treatment mean profiles are to be piecewise-parallel to each
other. Alternative K and L for this problem are
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K = (Is−1

...− 1s), L = (Ir−1

...− 1r)τ , (6.52)

where 1s is an s-vector of ones.
We can constrain the population treatment mean profiles further, so that

not only are they parallel, but also we could require them to be “coinciden-
tal” (i.e., identical). To do this, take K = 1τ

s and L as in (6.52), whence,
KΘL = 0 translates to 1τ

sθ1 = 1τ
sθ2 = · · · = 1τ

sθr, which is the condition
needed for coincidental profiles.

Constrained Estimation

Consider the problem of finding Θ∗ that solves the following constrained
minimization problem:

Θ̂∗ = arg min
Θ

KΘL=Γ

tr{(Yc −ΘXc)τ (Yc −ΘXc)}. (6.53)

Let Λ = (λij) be a matrix of Lagrangian coefficients. The normal equations
are:

Θ̂∗XcX τ
c + KτΛLτ = YcX τ

c (6.54)

KΘ̂∗L = Γ. (6.55)

From (6.54), we get

Θ̂∗ = Θ̂−KτΛLτ (XcX τ
c )−1, (6.56)

where Θ̂ is given by (6.15). Substituting (6.56) into (6.55) gives

KKτΛLτ (XcX τ
c )−1L = KΘ̂L− Γ. (6.57)

Solving this last expression for Λ gives

Λ = (KKτ )−1(KΘ̂L− Γ)(Lτ (XcX τ
c )−1L)−1, (6.58)

assuming the appropriate inverses exist. Substituting (6.58) into (6.56)
yields

Θ̂∗ = Θ̂−Kτ (KKτ )−1(KΘ̂L−Γ)(Lτ (XcX τ
c )−1L)−1Lτ (XcX τ

c )−1. (6.59)

Check that premultiplying (6.59) by K and postmultiplying by L leads to
KΘ̂∗L = Γ as required by the constraint in (6.55).

It is common practice in profile analysis to plot the points (k, θ̂∗kj), k =
1, 2, . . . , s, corresponding to the jth group, and connect them by straight
lines. The treatment-mean profiles for all r groups are usually plotted on
the same graph for easy visual comparison.
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Multivariate Analysis of Variance (MANOVA)

We now set up the multivariate analysis of variance (MANOVA) table for
the constrained model. The matrix version of the residual sum of squares,
S∗

e, under the constrained model is given by

S∗
e = (Yc − Θ̂∗Xc)(Yc − Θ̂∗Xc)τ

= ((Yc − Θ̂Xc) + (Θ̂− Θ̂∗)Xc)((Yc − Θ̂Xc) + (Θ̂− Θ̂∗)Xc)τ

= (Yc − Θ̂Xc)(Yc − Θ̂Xc)τ + (Θ̂− Θ̂∗)XcX τ
c (Θ̂− Θ̂∗)τ , (6.60)

where the first term on the rhs of (6.60) is the matrix version of the residual
sum of squares, Se, for the unconstrained model, and the second term is
the additional source of variation, Sh = Se − S∗

e, due to dropping the
constraints. The cross-product terms disappear because (Yc−Θ̂Xc)X τ

c = 0.
Note that Se is given by (6.31). Furthermore, the matrix version of the
regression sum of squares, Sreg, for the unconstrained model is given by

Sreg = Θ̂XcX τ
c Θ̂τ

= (Θ̂∗ + (Θ̂− Θ̂∗))XcX τ
c (Θ̂∗ + (Θ̂− Θ̂∗))τ

= Θ̂∗XcX τ
c Θ̂∗τ + (Θ̂− Θ̂∗)XcX τ

c (Θ̂− Θ̂∗)τ , (6.61)

where the cross-product terms disappear. The first term on the rhs of (6.61)
is S∗

reg, the matrix version of the regression sum of squares for the con-
strained model, and the second term is, again, Sh.

We can collect these results in a MANOVA table — see Table 6.2 — in
which both the constrained and unconstrained regression models are set out
so that their sums of squares and degrees of freedom add up appropriately.

Using (6.58), we can write Sh more explicitly as follows:

Sh = Kτ (KKτ )−1(KΘ̂L− Γ)(Lτ (XcX τ
c )−1L)−1(KΘ̂L− Γ)τ (KKτ )−1K.

(6.62)
Substituting (6.15) into (6.62), expanding, and taking expectations, we get

E(Sh) = D(KΘL− Γ)(Lτ (XcX τ
c )−1L)−1(KΘL− Γ)τDτ

+ F · E(EGEτ ) · Fτ , (6.63)

where D = Kτ (KKτ )−1, F = DK, and

G = X τ
c (XcX τ

c )−1L(Lτ (XcX τ
c )−1L)−1Lτ (XcX τ

c )−1X τ
c . (6.64)

Notice that F2 = F = Fτ and G2 = G = Gτ , so that F and G are
both projections. Now, the jkth entry in the (s×s)-matrix EGEτ in (6.63)
is the quadratic form E(j)GEτ

(k) =
∑

u

∑
v GuvEjuEkv, where E(j) = (Eju)
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TABLE 6.2. MANOVA table for the constrained and unconstrained mul-
tivariate regression models, where u = rank(K).

Source of Variation df Sum of Squares

Constrained model r − u S∗
reg = Θ̂∗XcX τ

c Θ̂∗τ

Due to dropping constraints u Sh = (Θ̂ − Θ̂∗)XcX τ
c (Θ̂ − Θ̂∗)τ

Unconstrained model r Sreg = Θ̂XcX τ
c Θ̂τ

Residual n − r − 1 Se = (Yc − Θ̂Xc)(Yc − Θ̂Xc)
τ

Total n − 1 YcYτ
c

is the jth row of E . So, its expected value is given by E(E(j)GE(k)τ ) =∑
u Guu(ΣEE)jk = (ΣEE)jk · tr(G). Thus, E(EGEτ ) = uΣEE , because

tr(G) = tr(Iu) = u.

General Linear Hypothesis

From Table 6.2, we can test the general linear hypothesis,

H0 : KΘL = Γ vs. H1 : KΘL �= Γ. (6.65)

Under H0, E{Sh/u} = FΣEEFτ . Furthermore, E{Se/(n − r − 1)} = ΣEE .
A formal significance test of H0 vs. H1 can, therefore, be realized through
a function (e.g., determinant, trace, or largest eigenvalue) of the quantity
FShFτ (FSeFτ )−1, where we use the fact that F is a projection matrix.
Related test statistics have been proposed in the literature, including the
following functions of Sh and Se:

1. Hotelling–Lawley trace statistic: tr{ShS−1
e }

2. Roy’s largest root: λmax{ShS−1
e }

3. Wilks’s lambda (likelihood ratio criterion): |Se|/|Sh + Se|

Under H0 and appropriate distributional assumptions, Hotelling–Lawley’s
trace statistic and Roy’s largest root should both be small, whereas Wilk’s
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lambda should be large (i.e., close to 1) under H0. In other words, we would
reject H0 in favor of H1 if the trace statistic or largest root were large and
if Wilk’s lambda were small (i.e., close to 0). Properties of these statistics
are given in Anderson (1984, Chapter 8).

We can also compute an appropriate confidence region for KΘL − Γ
by using the statistic KΘ̂L − Γ. A formal significance test can be con-
structed from the resulting confidence region; if the confidence region does
not contain 0, we say that the evidence from the data favors H1 rather
than H0.

6.3 The Random-X Case

In this section, we treat the case where

r×1

X = (X1, · · · ,Xr)τ ,
s×1

Y = (Y1, · · · , Ys)τ , (6.66)

are jointly distributed, with X having mean vector µX and Y having mean
vector µY , and with joint covariance matrix,

(
ΣXX ΣXY

ΣY X ΣY Y

)
. (6.67)

For convenience in exposition, we assume s ≤ r. Although X is presumed to
be the larger of the two sets of variates, this reflects purely a mathematical
convenience, and similar expressions as appear here can be obtained in the
case in which r ≤ s. The variables X and Y are assumed to be continuous
but may also include transformations (e.g., logs, square-roots, reciprocals),
powers (e.g., squares, cubes), products, or ratios of the input variables.
Notice that we have not assumed that the joint distribution of (6.66) is
Gaussian.

6.3.1 Classical Multivariate Regression Model

Suppose Y is related to X by the following multivariate linear model:

s×1

Y =
s×1
µ +

s×r

Θ
r×1

X +
s×1

E , (6.68)

where µ and the regression coefficient matrix Θ are the unknown parame-
ters and E is the unobservable error component of the model with mean
E(E) = 0 and unknown (s× s) error covariance matrix cov(E) = ΣEE , and
E is distributed independently of X. Our first goal is to obtain suitable
expressions for µ, Θ, and ΣEE that are optimal in a least-squares sense.
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We are interested in finding the s-vector µ and (s × r)-matrix Θ that
minimize the (s× s)-matrix,

W (µ,Θ) = E{(Y − µ−ΘX)(Y − µ−ΘX)τ}, (6.69)

where the expectation is taken over the joint distribution of (Xτ ,Yτ )τ . Set
Yc = Y − µY and Xc = X − µX , and assume that ΣXX is nonsingular.
Expanding the right-hand-side of (6.69), we get that

W (µ,Θ) = E{YcYτ
c −YcXτ

cΘ
τ −ΘXcYτ

c + ΘXcXτ
cΘ

τ}
+ (µ− µY + ΘµX)(µ− µY + ΘµX)τ

= (ΣY Y −ΣY XΣ−1
XXΣXY )

+ (ΣY XΣ−1/2
XX −ΘΣ1/2

XX)(ΣY XΣ−1/2
XX −ΘΣ1/2

XX)τ

+ (µ− µY + ΘµX)(µ− µY + ΘµX)τ

≥ ΣY Y −ΣY XΣ−1
XXΣXY , (6.70)

with equality when
µ = µY −ΘµX (6.71)

Θ = ΣY XΣ−1
XX . (6.72)

The minimum achieved is ΣY Y −ΣY XΣ−1
XXΣXY . The µ and Θ given by

(6.71) and (6.72), respectively, minimize (6.69) and also minimize the trace,
determinant, and jth largest eigenvalue of (6.69).

The (s×r)-matrix Θ is called the (full-rank) regression coefficient matrix
of Y on X, and

Y = µY + ΣY XΣ−1
XX(X− µX) (6.73)

is the (full-rank) linear regression function of Y on X, where “full rank”
refers to the rank of Θ. At the minimum, the error variate is

E = Y − µY −ΣY XΣ−1
XX(X− µX) = Yc −ΣY XΣ−1

XXXc. (6.74)

From (6.74), we see that E(E) = 0, ΣEE = ΣY Y − ΣY XΣ−1
XXΣXY , and

E(EXτ
c ) = 0.

6.3.2 Multivariate Reduced-Rank Regression

In Section 6.2.4, we described how to place constraints on Θ when X
is considered fixed. An alternative way of constraining a multivariate re-
gression model is through a rank condition on the matrix of regression
coefficients. The resulting model is called the multivariate reduced-rank
regression (RRR) model (Izenman, 1972, 1975). In this section, we de-
scribe the RRR scenario in which X and Y are jointly distributed (i.e.,
the random-X case). The reader is encouraged to develop the RRR model
for the fixed-X case (see Exercises 6.4, 6.5, and 6.6).



6.3 The Random-X Case 177

Most applications of reduced-rank regression have been directed toward
problems in time series (time domain and frequency domain) and econo-
metrics. This development has led to the introduction of the related topic
of cointegration into the econometric literature.

The Reduced-Rank Regression Model

Consider the multivariate linear regression model given by

s×1

Y =
s×1
µ +

s×r

C
r×1

X +
s×1

E , (6.75)

where µ and C are unknown regression parameters, and the unobservable
error variate, E , of the model has mean E(E) = 0 and covariance matrix
cov(E) = E{EEτ} = ΣEE , and is distributed independently of X. The dif-
ference between this model and that of (6.68) is that we allow the possibility
that the rank of the regression coefficient matrix C is deficient; that is,

rank(C) = t ≤ min(r, s). (6.76)

The “reduced-rank” condition (6.76) on the regression coefficient matrix
C brings a true multivariate feature into the model. The rank condition
implies that there may be a number of linear constraints on the set of re-
gression coefficients in the model. Unlike the model studied in Section 6.2.4,
however, the value of t and, hence, the number and nature of those con-
straints may not be known prior to statistical analysis. The name reduced-
rank regression was introduced to distinguish the case 1 ≤ t < s from
full-rank regression, where t = s.

When C has reduced-rank t, then, there exist two (nonunique) full-rank
matrices, an (s × t) matrix A and a (t × r) matrix B, such that C =
AB. The nonuniqueness occurs because we can always find a nonsingular
(t×t)-matrix T such that C = (AT)(T−1B) = DE, which gives a different
decomposition of C. The model (6.75) can now be written as

s×1

Y =
s×1
µ +

s×t

A
t×r

B
r×1

X +
s×1

E . (6.77)

Given a sample, (Xτ
1 ,Yτ

1 )τ , . . . , (Xτ
n,Yτ

n)τ of observations on (Xτ ,Yτ )τ ,
our goal is to estimate the parameters µ, A, and B (and, hence, C) in
some optimal manner.

Such a setup can be motivated within a time-series context (Brillinger,
1969). Suppose we wish to send a message based upon the r components
of a vector X so that the message received, Y, will be composed of s com-
ponents. Suppose, further, that such a message can only be transmitted
using t channels (t ≤ s). We would, therefore, first need to encode X into
a t-vector ξ = BX, where B is a (t× r)-matrix, and then on receipt of the
coded message to decode it using an (s× t)-matrix A to form the s-vector
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Aξ, which, it would be hoped, would be as “close” as possible to the
desired Y.

One of the primary aspects of reduced-rank regression is to assess the
unknown value of the metaparameter t, which we call the effective dimen-
sionality of the multivariate regression (Izenman, 1980).

Minimizing a Weighted Sum-of-Squares Criterion

We, therefore, wish to find an s-vector µ, an (s × t)-matrix A, and a
(t× r)-matrix B to minimize a weighted sum-of-squares criterion,

W (t) = E{(Y − µ−ABX)τΓ(Y − µ−ABX)}, (6.78)

where Γ is a positive-definite symmetric (s× s)-matrix of weights and the
expectation is taken over the joint distribution of (Xτ ,Yτ )τ . In practice,
we try out different forms of Γ.

We minimize W (t) in two steps. As before, let Xc and Yc denote the
centered versions of X and Y, respectively. The first step makes no rank
condition on C. The minimizing criterion becomes:

W (t) ≥ E{(Yc −CXc)τΓ(Yc −CXc)}
= E{Yτ

c ΓYc + Yτ
c ΓCXc + Xτ

cC
τΓYc + Xτ

cC
τΓCXc}

= tr{Σ∗
Y Y −C∗Σ∗

XY −Σ∗
Y XC∗τ + C∗Σ∗

XXC∗τ}
= tr{(Σ∗

Y Y −Σ∗
Y XΣ∗−1

XXΣ∗
XY )

+ (C∗Σ∗1/2
XX −Σ∗

Y XΣ∗−1/2
XX )(C∗Σ∗1/2

XX −Σ∗
Y XΣ∗−1/2

XX )τ},
(6.79)

where Σ∗
XX = ΣXX , Σ∗

Y Y = Γ1/2ΣY Y Γ1/2, Σ∗
XY = ΣXY Γ1/2, and

C∗ = Γ1/2C. Next, we assume that C has rank t. From the Eckart–Young
Theorem (see Section 3.2.10), the last expression is minimized by setting

C∗Σ∗1/2
XX =

t∑
j=1

λ
1/2
j vjwτ

j , (6.80)

where vj is the eigenvector associated with the jth largest eigenvalue λj of
the matrix

Σ∗
Y XΣ∗−1

XXΣ∗
XY = Γ1/2ΣY XΣ−1

XXΣXY Γ1/2 (6.81)

and

wj = λ
−1/2
j Σ∗−1/2

XX Σ∗
XY vj = λ

−1/2
j Σ−1/2

XX ΣXY Γ1/2vj . (6.82)

Thus, the minimizing C with reduced-rank t is given by

C(t) = Γ−1/2

⎛
⎝

t∑
j=1

vjvτ
j

⎞
⎠Γ1/2ΣY XΣ−1

XX . (6.83)
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The matrix C(t) in (6.83) is called the reduced-rank regression coefficient
matrix with rank t and weight matrix Γ.

It follows that W (t) in (6.78) is minimized by taking µ, A, and B to be
the following functions of t,

µ(t) = µY −A(t)B(t)µX , (6.84)
A(t) = Γ−1/2Vt, (6.85)
B(t) = Vτ

t Γ
1/2ΣY XΣ−1

XX , (6.86)

respectively, where Vt = (v1, . . . ,vt) is an (s × t)-matrix, where the jth
column, vj , is the eigenvector associated with the jth largest eigenvalue λj

of the (s× s) symmetric matrix

Γ1/2ΣY XΣ−1
XXΣXY Γ1/2. (6.87)

A stronger result (Rao, 1979) uses the Poincaré Separation Theorem (see
Section 3.2.10) to show that if Γ = Σ−1

Y Y , then all the eigenvalues of the
matrix

Γ1/2(Y − µ−ABX)(Y − µ−ABX)τΓ1/2 (6.88)
are simultaneously minimized by the above µ(t), A(t), and B(t). Hence, any
function of those eigenvalues, which is increasing in each argument (e.g.,
trace or determinant), is also minimized by that choice.

The minimum value of the criterion W (t) is given by

Wmin(t) = E tr
{

(Yc −C(t)Xc)(Yc −C(t)Xc)τΓ
}

= tr

⎧⎨
⎩ΣY Y − Γ−1/2

⎛
⎝

t∑
j=1

λjvjvτ
j

⎞
⎠Γ−1/2Γ

⎫⎬
⎭

= tr

⎧⎨
⎩(ΣY Y −ΣY XΣ−1

XXΣXY )Γ +
s∑

j=t+1

λjvjvτ
j

⎫⎬
⎭

= tr
{
(ΣY Y −ΣY XΣ−1

XXΣXY )Γ
}

+
s∑

j=t+1

λj

= tr{ΣY Y Γ} −
t∑

j=1

λj . (6.89)

When t = s, we have that
∑s

j=1 vjvτ
j = Is, whence C(t) in (6.83) reduces

to the full-rank regression coefficient matrix Θ = C(s). Furthermore, for
any t and positive-definite matrix Γ, the matrices C(t) and Θ are related
by the expression C(t) = P(t)

Γ Θ, where

P(t)
Γ = Γ−1/2

⎛
⎝

t∑
j=1

vjvτ
j

⎞
⎠Γ1/2 (6.90)
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is an idempotent, but not symmetric (unless Γ = Is), (s× s)-matrix.

Special Cases of RRR

We have seen how the RRR model can be used to generalize the classical
multivariate regression model by relaxing the implicit constraint on the
rank of C. More importantly, by carefully choosing the input vector X, the
output vector Y, and the matrix Γ of weights, RRR can be used to play
an important role as a unifying treatment of several classical multivariate
procedures that were developed separately from each other.

The primary uses of RRR in the exploratory analysis of multivariate data
include the following special cases:
• If we set X ≡ Y (and r = s) by making the output variables identical

to the input variables, and set Γ = Is, then we have Harold Hotelling’s
principal component analysis (see Section 7.2) and exploratory factor
analysis (see Section 15.4).

• If we set Γ = Σ−1
Y Y , then we have Hotelling’s canonical variate and

correlation analysis (see Section 7.3).

• Using the canonical variate analysis setup for RRR, if we set Y to be a
vector of binary variables whose component values (0 or 1) indicate
the group or class to which an observation belongs, then we have
R.A. Fisher’s linear discriminant analysis (see Section 8.5).

• Using the canonical variate analysis setup for RRR, if we set X and
Y each to be a vector of binary variables whose component values (0
or 1) indicate the row and column of a two-way contingency table to
which an observation belongs, then we have correspondence analysis
(see Section 18.2).

These special cases of multivariate reduced-rank regression show that the
RRR model can be used as a general model for many different types of
multivariate statistical analysis. Extensions of this model in other directions
(e.g., to multiresponse generalized linear models, wavelets, functional data)
are currently undergoing development.

Sample Estimates

The mean vectors and covariance matrix of X and Y are typically un-
known and have to be estimated before we can draw any useful inferences
on the regression problem. Accordingly, we assume that a random sample
of n independent observations, (Xτ

j ,Yτ
j )τ , j = 1, 2, . . . , n, is obtained on

the (r + s)-vector (Xτ ,Yτ )τ .
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First, we estimate µX and µY by

µ̂X = X̄ = n−1
n∑

j=1

Xj , µ̂Y = Ȳ = n−1
n∑

j=1

Yj , (6.91)

respectively. We set

r×1

Xcj= Xj − X̄,
s×1

Ycj= Yj − Ȳ, j = 1, 2, . . . , n, (6.92)

and let
r×n

Xc = (Xc1, · · · ,Xcn),
s×n

Yc = (Yc1, · · · ,Ycn). (6.93)

Then, we estimate the components of the covariance matrix (6.67) by

Σ̂XX = n−1XcX τ
c (6.94)

Σ̂Y X = n−1YcX τ
c = Σ̂τ

XY (6.95)

Σ̂Y Y = n−1YcYτ
c . (6.96)

All estimates of the unknowns in the multivariate regression models are
based upon the appropriate elements of (6.94), (6.95), and (6.96).

Thus, A(t) in (6.85) and B(t) in (6.86) are estimated by

Â(t) = Γ−1/2V̂t, (6.97)

B̂(t) = V̂τ
t Γ

1/2Σ̂Y XΣ̂−1
XX , (6.98)

respectively, where
V̂t = (v̂1, . . . , v̂t) (6.99)

is an (s × t)-matrix, the jth column, v̂j , of which is the eigenvector as-
sociated with to the jth largest eigenvalue λ̂j of the (s × s) symmetric
matrix

Γ1/2Σ̂Y XΣ̂−1
XXΣ̂XY Γ1/2, (6.100)

j = 1, 2, . . . , s. The reduced-rank regression coefficient matrix C(t) in (6.83)
is estimated by

Ĉ(t) = Γ−1/2

⎛
⎝

t∑
j=1

v̂jv̂τ
j

⎞
⎠Γ1/2Σ̂Y XΣ̂−1

XX , (6.101)

and the full-rank regression coefficient matrix Θ is estimated by

Θ̂ = Ĉ(s) = Σ̂Y XΣ̂−1
XX . (6.102)

The sample estimators (6.97), (6.98), (6.100), (6.101), and (6.102) are iden-
tical to the estimators that appear in the reduced-rank regression solution
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and full-rank regression solution when X is fixed (Exercise 6.4). It fol-
lows that the matrix of fitted values and the matrix of residuals for the
random-X case are identical to those for the fixed-X case. Although the
two formulations of the regression model are different, they yield identical
sample estimates.

In many applications, it is not unusual to find that the matrix Σ̂XX

and/or the matrix Σ̂Y Y are singular, or at least difficult to invert. This
happens, for example, when r, s > n. We could replace their inverses by
generalized inverses, but, based upon practical experience with the methods
described in Section 6.3.4, we suggest the following alternative solution.

We borrow an idea from ridge regression, where we replace Σ̂XX and
Σ̂Y Y in the RRR computations by a slight perturbation of their diagonal
entries,

Σ̂(k)
XX = Σ̂XX + kIr, Σ̂(k)

Y Y = Σ̂Y Y + kIs, (6.103)

respectively, where k > 0. The estimates (6.103) of ΣXX and ΣY Y are now
invertible. The matrix (6.100) is then replaced by

Γ1/2Σ̂Y XΣ̂(k)−1
XX Σ̂XY Γ1/2, (6.104)

where Σ̂(k)−1
XX is the inverse of Σ̂(k)

XX , and its eigenvalues and eigenvectors
are denoted by

(λ̂(k)
j , v̂(k)

j ), j = 1, 2, . . . , t. (6.105)

The estimated reduced-rank regression coefficient matrix Ĉ(t) is replaced by

Ĉ(t)(k) = Γ−1/2

⎛
⎝

t∑
j=1

v̂(k)
j v̂(k)τ

j

⎞
⎠Γ1/2Σ̂Y XΣ̂(k)−1

XX , (6.106)

and the full-rank regression coefficient matrix Θ̂ is replaced by

Θ̂(k) = Ĉ(s)(k) = Σ̂Y XΣ̂(k)−1
XX . (6.107)

How to choose k will be discussed in Section 6.3.4.

Asymptotic Distribution of Estimates

Because of the form of the LS estimates of matrices involved in the RRR
solution, exact distribution results are not available. Fortunately, asymp-
totic results are available in some generality.

The asymptotic distribution of Ĉ(t) is Gaussian with mean zero; that is,

√
n vec(Ĉ(t) −C) D→ Nsr(0,Ψ(t)), as n→∞, (6.108)
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where convergence is in distribution. This result has been proved by sev-
eral authors for the fixed-X case with Gaussian assumptions on the error
variate. The most general result (Anderson, 1999), which applies to both
fixed-X and random-X cases without any assumption of Gaussian errors,
expresses the asymptotic covariance matrix, Ψ(t), in the form

Ψ(t) = (ΣEE ⊗Σ−1
XX)− (M(t) ⊗N(t)), (6.109)

where

M(t) = ΣEE −A(t)(A(t)τΣ−1
EEA(t))−1A(t)τ (6.110)

N(t) = Σ−1
XX −B(t)τ (B(t)ΣXXB(t)τ )−1B(t). (6.111)

Thus, Ψ(t) consists of the full-rank covariance matrix, ΣEE ⊗ Σ−1
XX , with

an adjustment by the matrix M(t) ⊗ N(t) for reduced-rank t. Anderson
also notes that Ψ(t) is invariant wrt any decomposition C(t) = A(t)B(t) =
(A(t)T)(T−1B(t)), where T is an arbitrary nonsingular matrix. Such gen-
eral results allow asymptotic confidence regions to be constructed in situ-
ations when the errors are non-Gaussian.

6.3.3 Example: Chemical Composition of Tobacco

This is a small worked example designed to show the computations of
RRR. The data2 are taken from a study on the chemical composition of to-
bacco leaf samples (Anderson and Bancroft, 1952, p. 205). There are n = 25
observations on r = 6 input variables, percent nitrogen (X1), percent chlo-
rine (X2), percent potassium (X3), percent phosphorus (X4), percent cal-
cium (X5), and percent magnesium (X6), and s = 3 output variables, rate
of cigarette burn in inches per 1,000 seconds (Y1), percent sugar in the leaf
(Y2), and percent nicotine in the leaf (Y3). The covariance matrices are as
follows:

Σ̂XX =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.0763 −0.0150 −0.0005 −0.0010 0.0682 0.0211
−0.0150 0.3671 −0.0145 0.0015 0.0330 0.0091
−0.0005 −0.0145 0.0659 −0.0017 −0.0595 −0.0198
−0.0010 0.0015 −0.0017 0.0011 0.0002 0.0006

0.0682 0.0330 −0.0595 0.0002 0.1552 0.0380
0.0211 0.0091 −0.0198 0.0006 0.0380 0.0160

⎞
⎟⎟⎟⎟⎟⎟⎠

Σ̂Y Y =

⎛
⎝

0.0279 −0.1098 0.0189
−0.1098 4.2277 −0.7565

0.0189 −0.7565 0.2747

⎞
⎠

2These data are available in the file tobacco.txt, which can be downloaded from the
book’s website.
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Σ̂XY =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.0104 −0.4004 0.1112
−0.0631 0.5355 −0.0859

0.0209 0.1002 −0.0396
−0.0018 0.0164 −0.0008
−0.0080 −0.3904 0.1417
−0.0066 −0.1364 0.0486

⎞
⎟⎟⎟⎟⎟⎟⎠

= Σ̂τ
Y X .

We run these data through a reduced-rank regression using the weight
matrix Γ = Is. First, we compute (6.100):

Σ̂Y XΣ̂−1
XXΣ̂XY =

⎛
⎝

0.019 −0.101 0.013
−0.101 3.090 −0.760

0.013 −0.760 0.221

⎞
⎠ ,

which has eigenvalues λ̂1 = 3.2821, λ̂2 = 0.0378, and λ̂3 = 0.0102, and
matrix of eigenvectors

V̂ = (v̂1, v̂2, v̂3) =

⎛
⎝

0.031 −0.470 0.882
−0.970 0.198 0.140

0.241 0.860 0.450

⎞
⎠ .

For the rank-1 solution, V̂1 is the first column of V̂; for the rank-2 solution,
V̂2 is the first two columns of V̂; and the full-rank solution is V̂3 = V̂.

The matrices Â = Â(3) = V̂ and B̂ = B̂(3) = V̂Σ̂Y XΣ̂−1
XX are given by:

Â =

⎛
⎝

0.031 −0.470 0.882
−0.970 0.198 0.140

0.241 0.860 0.450

⎞
⎠

B̂ =

⎛
⎝

4.324 −1.359 −1.481 −13.729 −0.453 3.867
−0.411 0.099 0.365 2.457 0.306 1.230
−0.302 −0.081 0.578 1.048 0.375 0.034

⎞
⎠ ,

respectively. The matrix Â(1) is the first column of Â, and Â(2) is the first
two columns of Â. Similarly, the matrix B̂(1) is the first row of B̂, and
B̂(2) is the first two rows of B̂. Estimates of the RRR coefficient matrices,
Ĉ(t) = Â(t)B̂(t), t = 1, 2, 3, are given by

Ĉ(1) =

⎛
⎝

0.134 −0.042 −0.046 −0.427 −0.014 0.120
−4.195 1.318 1.436 13.318 0.439 −3.751

1.042 −0.327 −0.357 −3.308 −0.109 0.932

⎞
⎠ ,

Ĉ(2) =

⎛
⎝

0.328 −0.089 −0.218 −1.582 −0.158 −0.459
−4.276 1.338 1.509 13.806 0.500 −3.507

0.688 −0.242 −0.043 −1.195 0.154 1.989

⎞
⎠ ,

Ĉ(3) = Θ̂ =

⎛
⎝

0.062 −0.160 0.292 −0.658 0.173 −0.428
−4.319 1.326 1.590 13.953 0.553 −3.502

0.552 −0.279 0.218 −0.723 0.323 2.005

⎞
⎠ .
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and the vectors µ̂(t), t = 1, 2, 3, by

µ̂(1) =

⎛
⎝

1.750
14.688
2.640

⎞
⎠ , µ̂(2) =

⎛
⎝

3.474
13.961
−0.512

⎞
⎠ , µ̂(1) =

⎛
⎝

1.411
13.633
−1.565

⎞
⎠ .

6.3.4 Assessing the Effective Dimensionality

The most difficult part of the reduced-rank regression procedure is to
assess the value of the metaparameter, t, of the multivariate regression.
In order to determine t for a given multivariate sample, we recognize that
such data will introduce noise into the relationship and, hence, will tend to
obscure the actual structure of the matrix C, so that rank determination
for any particular problem will be made more dificult.

We, therefore, distinguish between the “true” or “mathematical” rank
of C, which will always be full (because it will be based upon a sample
estimate of C) and the “practical” or “statistical” rank of C — the one
of real interest — which will typically be unknown. We refer to t as the
“effective dimensionality” of the multivariate regression.

The problem of determining the value of t is a selection problem. From
the integers 1 through s (assuming without loss of generality that s ≤ r),
we are to choose the smallest integer such that the reduced-rank regression
of Y on X with that integer as rank will be close (in some sense) to the
corresponding full-rank regression.

From (6.89), Wmin(t) denotes the minimum value of (6.78) for a fixed
value of t. The reduction in Wmin(t) obtained by increasing the rank from
t = t0 to t = t1, where t0 < t1, is given by

Wmin(t0)−Wmin(t1) =
t1∑

j=t0+1

λj . (6.112)

Note that (6.112) depends upon Γ only through the eigenvalues, {λj}, of
the matrix (6.86). As a result, the rank of C can be assessed through
some monotone function of the sequence of ordered sample eigenvalues
{λ̂j , j = 1, 2, . . . , s}, in which λ̂j is compared with suitable reference values
for each j, or by using the sum of some monotone function of the smallest
s− t0 sample eigenvalues. For example, Bartlett’s likelihood-ratio statistic
for testing whether the last s − t0 eigenvalues are zero is proportional to∑s

j=t0+1 log(1 + λ̂j).
An obvious disadvantage of relying solely on such formal testing pro-

cedures is that any routine application of them might fail to take into
account the possible need for a preliminary screening of the data. Robust-
ness of sample estimates of the eigenvalues and hence of the various tests
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TABLE 6.3. Algorithm for using the rank trace to assess the effective
dimensionality of a multivariate regression.

1. Define Ĉ(0) = 0 and Σ̂
(0)
EE = Σ̂Y Y .

2. Carry out a sequence of s reduced-rank regressions for specific values of t.
For t = 1, 2, . . . , s,

• compute Ĉ(t) and Σ̂
(t)
EE , and set Ĉ(s) = Θ̂ and Σ̂

(s)
EE = Σ̂EE .

• compute

∆Ĉ(t) =
‖ Θ̂ − Ĉ(t) ‖

‖ Θ̂ ‖
, ∆Σ̂

(t)
EE =

‖ Σ̂EE − Σ̂
(t)
EE ‖

‖ Σ̂EE − Σ̂Y Y ‖
,

where ‖ A ‖= (tr(AAτ ))1/2 =
(∑

i

∑
j
a2

ij

)1/2

is the classical

Euclidean norm.

3. Make a scatterplot of the s points

(∆Ĉ(t), ∆Σ̂
(t)
EE), t = 0, 1, 2, . . . , s,

and join up successive points on the plot. This is called the rank trace for
the multivariate reduced-rank regression of Y on X.

4. Assess the rank of C as the smallest rank for which both coordinates from
step (3) are approximately zero.

when outliers or distributional peculiarities are present in the data can be
a serious statistical obstacle to overcome.

Rank Trace

Suppose t∗ is the true rank of C. The basic idea behind the rank trace
(Izenman, 1980) is that for 1 ≤ t < t∗, the entries in both the esti-
mated regression coefficient matrix and the residual covariance matrix will
“change” quite significantly each time we increase the rank in our sequence
of reduced-rank regressions; as soon as the true rank is reached, these ma-
trices will then cease to change significantly and will stabilize.

Let t̂ be an estimate of t. We expect the estimated rank-t̂ regression
coefficient matrix, Ĉ(̂t), to be very close to the estimated full-rank regres-
sion coefficient matrix Θ̂ when t̂ = t∗. Similarly, we can expect the rank-t̂

residual covariance matrix, Σ̂(̂t)
EE , to be very close to the full-rank residual
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covariance matrix, Σ̂EE , when t̂ = t∗. The steps in the computation of the
rank trace and the estimation of t are detailed in Table 6.3.

Thus, the first point (corresponding to t = 0) is always plotted at (1,1)
and the last point (corresponding to t = s) is always plotted at (0,0).
The horizontal coordinate, ∆Ĉ(t), gives a quantitative representation of
the difference between a reduced-rank regression coefficient matrix and
its full-rank analogue, whereas the vertical coordinate, ∆Σ̂(t)

EE , shows the
proportionate reduction in the residual variance matrix in using a simple
full-rank model rather than the computationally more elaborate reduced-
rank model. The reason for including a special point for t = 0 is that
without such a point, it would be impossible to assess the statistical rank
of C at t = 1. In this formulation, t = 0 corresponds to the completely
random model Y = µ + E .

Assessing the effective dimensionality of the multivariate regression by
using step (4) in Table 6.3 involves a certain amount of subjective judgment,
but from experience with many of these types of plots, the choice should not
be too difficult. Because of the nature of Ĉ(t), the sequence of values for the
horizontal coordinate is not guaranteed to decrease monotonically from 1 to
0. It does appear, however, that in many of the applications of this method,
and especially when we take Γ = Is as the weight matrix, the plotted points
appear within the unit square, but below the (1,1)–(0,0) diagonal line,
indicating that the residual covariance matrices typically stabilize faster
than do the regression coefficient matrices.

For example, the estimated RRR coefficient matrices, Ĉ(1), Ĉ(2), and
Ĉ(3), for the tobacco data (see Section 6.3.3) do not appear to have stabi-
lized at any specific rank t ≤ 3. In Figure 6.3, we display the rank trace for
the tobacco data with weight matrix the identity. Note that dC is short-
hand for ∆Ĉ(t) and dE is shorthand for Σ̂(t)

EE . The rank-trace plot shows
that a RRR solution with rank 1 is best, with no discernible difference
between that solution and the full-rank solution. In this simple example,
this conclusion agrees with the dominant magnitude of the largest sample
eigenvalue, λ̂1, of Σ̂Y XΣ̂−1

XXΣ̂XY , which accounts for 98.6% of the trace of
that matrix.

In certain applications, and when the weight matrix Γ is more compli-
cated than Is (e.g., Γ = Σ̂−1

Y Y ), the rank trace often displays a different
shape; for example, we may see points plotted outside the unit square or a
non-monotonic pattern within the unit square. In such situations, we fix a
positive constant k and replace the sample covariance matrices, Σ̂XX and
Σ̂XX by Σ̂(k)

XX = Σ̂XX + kIr and Σ̂(k)
Y Y = Σ̂Y Y + kIs, respectively, as in

(6.103). Then, we compute Ĉ(t)(k) as in (6.106) and Σ̂(t)
EE(k) from the resid-

uals. Using these adjusted estimates, we plot ∆Ĉ(t)(k) against ∆Σ̂(t)
EE(k).

This gives us a rank trace for a specific value of k. Start with k = 0; if
the rank trace has monotonic shape, stop, and estimate the value of t as
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FIGURE 6.3. Rank trace for the tobacco data.

in Table 6.3. If the rank trace does not have monotonic shape, increase the
value of k slightly and draw the resulting rank trace; if that rank trace is
monotonic, stop, and estimate t. Continue increasing k until the associated
rank trace is monotonic, at which point, stop and estimate t.

Cross-Validation

An alternative method for assessing the value of t is the use of cross-
validation. For each rank t, compute a sequence of estimates of prediction
error using any of CV/5, CV/10, or CV/n. Then, identify the smallest rank
such that, for larger ranks, the prediction error has stabilized and does not
decrease significantly; this is similar to saying that at t̂, there is an elbow
in the plot of prediction error vs. rank.

6.3.5 Example: Mixtures of Polyaromatic Hydrocarbons

This example refers to the data on the polyaromatic hydrocarbons (PAHs)
and digitized spectra that were described in Section 2.2.2. The 50 spectra
are displayed in Figure 2.2 and the scatterplot matrix of the 10 PAHs is
displayed in Figure 2.3.

We use these data to carry out a reduced-rank regression of the PAH
mixture concentrations (the Y variables) on the values of the digitized
spectra (the X variables), where we treat the X variables as random. For
this example, we take Γ = Is. Because of the high correlations between
neighboring spectrum values, collinearities in the X variables may make
the (27×27)-matrix Σ̂XX difficult to invert. So, we replace Σ̂XX and Σ̂Y Y
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in the RRR computations by Σ̂(k)
XX and Σ̂(k)

Y Y respectively, as in (6.102).
These covariance matrix estimates and the RRR estimates now depend
upon the constant k > 0.

The rank trace for Γ = Is and k = 0 is plotted in Figure 6.4 (top-left
panel). We see the rank trace is monotone within the unit square and so
we estimate t as t̂ = 5. In the other panels, we show rank-trace plots for
Γ = Σ̂−1

Y Y , the weight matrix for canonical variate analysis (CVA). In the
top-right panel, the rank-trace plot for k = 0 (i.e., no regularization) is
not monotonic; so, we increase the value of k slightly away from k = 0.
The bottom-left and bottom-right panels show the rank-trace plot for k =
0.000001 and for k = 0.001, respectively. At k = 0.000001, the rank trace
is monotone but not smooth, whereas at k = 0.001, the rank trace is a
smooth, monotone sequence of points. The most appropriate estimate for
t if we apply the weight matrix Γ = Σ̂−1

Y Y is t̂ = 5, which agrees with our
estimate for Γ = Is.

Applying CV to the PAH data yields the CV prediction errors (PEs) as
a function of the rank t, and these are given in Table 6.4 and Figure 6.5. As
a method for estimating the true rank, t, of C, the CV PEs appear to level
off at t = 5, which agrees with the rank assessments from the rank-trace
plots.

6.4 Software Packages

A good source for SAS programs and discussion of SAS output for multi-
variate regression and MANOVA is Khattree and Naik (1999). It should be
noted that although there is an RRR method implemented in the SAS pro-
cedure PROC PLS, it is not the same as and has no connection to the RRR
method discussed in this book. The examples in this chapter were computed
using the R program Multanl+RRR (written by Charles Miller), which
can be downloaded from the book’s website. An S-Plus package rrr.s
(written by Magne Aldrin) for carrying out RRR can be downloaded from
the StatLib website at lib.stat/cmu.edu/S/.

Bibliographical Notes

In textbooks, multivariate regression is usually discussed within the con-
text of the multivariate general linear model or multivariate analysis of vari-
ance (MANOVA), where the emphasis is most often placed on the fixed-X
case.

The reduced-rank regression model has its origins in the work of Anderson
(1951), Rao (1965), and Brillinger (1969). The deliberately alliterative
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FIGURE 6.4. Rank trace for reduced-rank regression on the PAH data.
There are r = 27 wavelengths, s = 10 PAHs, and n = 50 mixtures. Top-
left panel: Γ = Is. Other panels have Γ = Σ̂−1

Y Y and k = 0 (top-right);
k = 0.000001 (bottom-left); k = 0.001 (bottom-right).
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TABLE 6.4. CV prediction errors for reduced-rank regression of the PAH
data.

Rank CV/5 CV/10 CV/n

1 0.254 0.242 0.248
2 0.186 0.171 0.166
3 0.143 0.124 0.117
4 0.102 0.086 0.082
5 0.077 0.060 0.054
6 0.070 0.054 0.047
7 0.070 0.054 0.047
8 0.070 0.053 0.047
9 0.068 0.052 0.046

10 0.064 0.047 0.040

name “reduced-rank regression” was coined by Izenman (1972). Since then,
the amount of research into the theory of reduced-rank regression models
has steadily increased, leading to the monographs by van der Leeden (1990)
and Reinsel and Velu (1998).

Because many authors mistakenly omit the hyphen in the name “reduced-
rank regression,” we give reasons why it should be included. The terms
“reduced-rank” and “full-rank” are compound adjectives describing the type
of regression and, therefore, must take a hyphen. Further, without hyphens
the methodology is apt to be confused with the topic of “rank regression,”
which deals with multivariate regression of rank data (see, e.g., Davis and
McKean, 1993). Of course, we could also study reduced-rank regression of
rank data.

Exercises

6.1 Using the result in the fixed-X case that the covariance matrix of
the matrix of residuals E is cov(vec(Ê)) = ΣEE ⊗ (In − H), find expres-
sions for the means, variances, and covariances of the elements of the
rows and columns of the matrix E . Simplify your results when ΣEE =
diag{σ2

1 , · · · , σ2
s}.

6.2 If ΣXX and ΣY Y are nonsingular, show that the eigenvalues of R lie
between 0 and 1.

6.3 Let X′ = Ψ+ΛX and Y′ = Φ+∆Y, where Λ and ∆ are nonsingular.
Show that the minimizing criterion (6.79) with Γ = Σ−1

Y Y is invariant under
these nonsingular transformations.

6.4 Develop a theory of reduced-rank regression for the “fixed-X” case.
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FIGURE 6.5. Prediction errors for PAH example (n=50, r=27, s=10)
plotted against rank of the regression coefficient matrix. The PEs were
computed using cross-validation: CV/5 (red dots), CV/10 (blue dots), and
CV/n (purple dots). The results show a leveling-off of the PE at rank t = 5.

6.5 Use the results from Exercise 6.1 to develop a theory of residual diag-
nostics from a multivariate reduced-rank regression (RRR) for the “fixed-
X” case. In particular, derive the distribution theory for RRR residuals
and the distribution of quadratic forms in RRR residuals. How could you
use this theory to detect outliers?

6.6 Consider the likelihood-ratio test statistic for the dimensionality of
a multivariate regression. Let the null hypothesis be that the true rank is
at most t with the alternative that the regression is full-rank. Let Q

(t)
e =

ê(t)ê(t)τ and Qe = ê êτ denote the residual sum of squares matrices for a
rank-t reduced-rank regression and a full-rank regression, respectively. Let
Λ(t)

LR = det{Q(t)
e }/det{Qe}. Show that

−2 loge Λ(t)
LR = −n

s∑
j=t+1

loge(1− λ̂j),

where λ̂j is the jth largest eigenvalue of R̂. (Asymptotically, under the null
hypothesis, −2 loge Λ(t)

LR ∼ χ2
(s−t)(r−t).)

6.7 Show that the two procedures described in Section 6.2.1 lead to the
same results in estimating tr(AΘ). The two procedures are (1) write µ +

ΘX = Θ∗X ∗, where Θ∗ = (µ0

... Θ) and X ∗ = (1n

... Xτ )τ , and then
estimate Θ∗; (2) remove µ by centering X and Y, and then estimate Θ
directly.
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6.8 Using the data from the Norwegian paper quality example (Section
6.2.2), show that Table 6.1 can also be derived by regressing each of the 13
Y s on all the 9 Xs.

6.9 In the classical multivariate regression model (Section 6.2.1), show
that Se = Yc(In−H)Yτ

c , where H = X τ
c (XcX τ

c )−1Xc. Hence, or otherwise,
show that Se = E(In −H)Eτ .

6.10 Write a computer program to carry out a multivariate ridge regres-
sion, and then apply it to the Norwegian paper quality data. Compare the
results with those obtained from separate univariate ridge regressions.

6.11 The data for this exercise is Table 60.1 in Andrews and Herzberg
(1985, pp. 357–360), which can be downloaded from the StatLib website
lib.stat.cmu.edu/datasets/Andrews/. The data consist of 8 measure-
ments on each of 4 variates on 13 different types of root-stocks of apple
trees. The 4 variates are: trunk girth in mm (Y1) and extension growth in
cm (Y2) at 4 years after planting, and trunk girth in mm (Y3) and weight of
tree above ground in lb (Y4) at 15 years after planting. So, there are s = 4
measurements on each of n = 8 × 13 = 104 trees. Rescaling each variable
might be appropriate. The design matrix X is a (13×104)-matrix of 0s and
1s depending upon which tree is derived from which root-stock. Regress the
(4 × 104)-matrix Y on X and estimate the (4 × 13) regression coefficient
matrix Θ. Estimate the (4 × 4) error covariance matrix ΣEE . Estimate
the standard errors for these regression coefficient estimates. Compute the
(unconstrained) MANOVA table for these data.

6.12 Extend the MANOVA analysis to a two-way layout of vector obser-
vations Y = (Yij), where i denotes the row and j denotes the column. The
two-way model with one observation in each cell is defined by

Yij = µ + µi· + µ·j + Eij , i = 1, 2, . . . , I, j = 1, 2, . . . , J,

where we assume that
∑

i µi· =
∑

j µ·j = 0, and the Eij are random s-
vectors with mean 0. Write down the design matrix X and the matrix of
regression coefficients Θ. Write down the partition of Yij − Ȳ, where Ȳ is
the average of all IJ observations, in terms of the ith row effect Ȳi· − Ȳ,
the jth column effect Ȳ·j − Ȳ, and the residual effect Yij − Ȳi· − Ȳ·j +
Ȳ, where Ȳi· is the average over all columns for the ith row, and Ȳ·j
is the average over all rows for the jth column. Derive the corresponding
partition in terms of sums-of-squares and determine their respective degrees
of freedom. Write down the corresponding two-way MANOVA table.

6.13 Generalize Exercise 6.11 to the case of m observations Yijk in each
cell (k = 1, 2, . . . ,m), where an interaction term µij satisfying

∑
i µij =∑

j µij = 0 is added to the model. The error term now becomes Eijk. The
ith row effect is Ȳi··− Ȳ, the jth column effect is Ȳ·j·− Ȳ, the interaction
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effect is Ȳij· − Ȳi·· − Ȳ·j· + Ȳ, and the residual is Yijk − Ȳij·. Derive the
two-way MANOVA table for this case.

6.14 Write a program to carry out a constrained multivariate regression
including the MANOVA Table 6.2.

6.15 Run a RRR on the Norwegian paper quality data. Plot the rank trace
using Γ = Is as the weight matrix. Estimate the effective dimensionality
of the multivariate regression. Compare the estimate with one obtained
using CV.

6.16 Using the results (6.109), (6.110), and (6.111), show that the asymp-
totic covariance of the regression coefficient matrix vec(Ĉ(t)) reduces to
ΣEE ⊗Σ−1

XX when t = s (i.e., full rank).



7
Linear Dimensionality Reduction

7.1 Introduction

When faced with situations involving high-dimensional data, it is natural
to consider the possibility of projecting those data onto a lower-dimensional
subspace without losing important information regarding some character-
istic of the original variables. One way of accomplishing this reduction of
dimensionality is through variable selection, also called feature selection (see
Section 5.7). Another way is by creating a reduced set of linear or nonlin-
ear transformations of the input variables. The creation of such composite
variables (or features) by projection methods is often referred to as feature
extraction. Usually, we wish to find those low-dimensional projections of
the input data that enjoy some sort of optimality properties.

Early examples of projection methods were linear methods such as prin-
cipal component analysis (PCA) (Hotelling, 1933) and canonical variate
and correlation analysis (CVA or CCA) (Hotelling, 1936), and these have
become two of the most popular dimensionality-reducing techniques in use
today. Both PCA and CVA are, at heart, eigenvalue-eigenvector problems.
Furthermore, both can be viewed as special cases of multivariate reduced-
rank regression. This latter connection to regression is fortuitous. Whereas
PCA and CVA were once regarded as isolated statistical tools, their now
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being part of such a well-traveled tool as regression means that we should
be able to carry out feature selection and extraction, as well as outlier
detection within an integrated framework.

7.2 Principal Component Analysis

Principal component analysis (PCA) (Hotelling, 1933) was introduced
as a technique for deriving a reduced set of orthogonal linear projections
of a single collection of correlated variables, X = (X1, · · · ,Xr)τ , where the
projections are ordered by decreasing variances. Variance is a second-order
property of a random variable and is an important measurement of the
amount of information in that variable. PCA has also been referred to as a
method for “decorrelating” X; as a result, the technique has been indepen-
dently rediscovered by many different fields, with alternative names such
as Karhunen–Loève transform and empirical orthogonal functions, which
are used in communications theory and atmospheric sciences, respectively.

PCA is used primarily as a dimensionality-reduction technique. In this
role, PCA is used, for example, in lossy data compression, pattern recogni-
tion, and image analysis. We have already seen in Section 5.7.2 how PCA
is used in chemometrics to construct derived variables in biased regres-
sion situations, when the number of input variables is too large for useful
analysis.

In addition to reducing dimensionality, PCA can be used to discover im-
portant features of the data. Discovery in PCA takes the form of graphical
displays of the principal component scores. The first few principal compo-
nent scores can reveal whether most of the data actually live on a linear
subspace of 
r and can be used to identify outliers, distributional pecu-
liarities, and clusters of points. The last few principal component scores
show those linear projections of X that have smallest variance; any princi-
pal component with zero or near-zero variance is virtually constant, and,
hence, can be used to detect collinearity, as well as outliers that pop up
and alter the perceived dimensionality of the data.

7.2.1 Example: The Nutritional Value of Food

Nutritional data from 961 food items are listed alphabetically in this data
set.1 The nutritional components of each food item are given by the follow-
ing seven variables: fat (grams), food energy (calories), carbohydrates

1The data are given in the file food.txt, which can be downloaded from the book’s
website or from http://www.ntwrks.com/~mikev/chart1.html.
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TABLE 7.1. Coefficients of the six principal components of the covariance
matrix of the transformed food nutrition data.

Food Component PC1 PC2 PC3 PC4 PC5 PC6

Fat 0.557 0.099 0.275 0.130 0.455 0.617
Food energy 0.536 0.357 –0.137 0.075 0.273 -0.697

Carbohydrates –0.025 0.672 –0.568 –0.286 –0.157 0.344
Protein 0.235 –0.374 –0.639 0.599 –0.154 0.119

Cholesterol 0.253 –0.521 –0.326 –0.717 0.210 –0.003
Saturated fat 0.531 –0.019 0.261 –0.150 -0.791 0.022

Variance 2.649 1.330 1.020 0.680 0.267 0.055

% Total Variance 44.1 22.2 17.0 11.3 4.4 0.9

(grams), protein (grams), cholesterol (milligrams), weight (grams),
and saturated fat (grams). Food items are listed according to very dis-
parate serving sizes, which include teaspoon, tablespoon, cup, loaf, slice,
cake, cracker, package, piece, pie, biscuit, muffin, spear, pat, wedge, stalk,
cookie, and pastry. To equalize out the different types of servings for each
food, we first divide each variable by weight of the food item (which leaves
us with 6 variables), and then, because of wide variations in the different
variables, each variable is standardized by subtracting its mean and divid-
ing the result by its standard deviation. The resulting data are X = (Xij).

A PCA of the transformed data yields six principal components or-
dered by decreasing variances. The first three principal components, PC1,
PC2, and PC3, which account for more than 83% of the total variance,
have coefficients given in Table 7.1. Notice that PC1 puts little weight on
carbohydrates, and PC2 puts little weight on fat and saturated fat.

The scatterplot of the first two principal components is given in Figure 7.1.
The scatterplot appears to show a number of interesting features. Notice the
almost straight-line edge to the plotted points at the upper left-hand corner.
We also can identify various groups of points in this display, where the food
items in each group have been ordered by magnitude of that nutritional
component, starting at the largest value:

1. Cholesterol: 318 (raw egg yolk), 189 (chicken liver), 62 (beef liver), 312
(fried egg), 313 (hard-cooked egg), 314 (poached egg), 315 (scrambled
egg), and 317 (raw whole egg).

2. Protein: 357 (dry gelatin), 778 (raw seaweed), 952 and 953 (yeast),
and 578–580 (parmesan cheese).

3. Saturated fat: 124–129 (butter), 441 and 442 (lard), 212 (bitter choco-
late), 224–226 (coconut), 326 and 327 (cooking fat), and 166–168
(cheddar cheese).
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FIGURE 7.1. Scatterplot of the first two principal components of the
food nutrition data. Numbers next to certain points indicate the food item
corresponding to that point. Multiple food items may be plotted at the same
point.

4. Fat and food energy: 326 and 327 (cooking fat), 441 and 442 (lard),
603 and 604 (peanut oil), 549–550 (olive oil), 248 and 249 (corn oil),
764 and 765 (safflower oil), 810–813 (soybean cottonsead oil), 841 and
842 (sunflower oil), 124–129 (salted butter), and 488–492 (margarine).

5. Carbohydrates: 837–840 (white sugar), 393 (hard candy), 836 (brown
sugar), 553 (onion powder), 339 (fondant), 834 (Kellogg Sugar Frosted
Flakes), 843 (sunflower seeds), 844 (Super Sugar Crisp Cereal), 427
(jelly beans), 141 (carob flour), and 221 (coca powder).

Most of these points are identified in the scatterplot, but some are covered
too well to be displayed clearly. We see that food item 318 (raw egg yolk) is
an outlier along an imaginary cholesterol axis and 124–129 (butter) and 441
and 442 (lard) are outliers along an imaginary saturated-fat axis. Similarly,
in scatterplots of PC1 and PC3, and of PC2 and PC3 (not shown here),
we see that food items 357 (dry gelatin) and 779 (raw seaweed) are outliers
along an imaginary protein axis.
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7.2.2 Population Principal Components

Assume that the random r-vector

X = (X1, · · · ,Xr)τ (7.1)

has mean µX and (r×r) covariance matrix ΣXX . PCA seeks to replace the
set of r (unordered and correlated) input variables, X1,X2, . . . , Xr, by a
(potentially smaller) set of t (ordered and uncorrelated) linear projections,
ξ1, . . . , ξt (t ≤ r), of the input variables,

ξj = bτ
j X = bj1X1 + · · ·+ bjrXr, j = 1, 2, . . . , t, (7.2)

where we minimize the loss of information due to replacement.
In PCA, “information” is interpreted as the “total variation” of the orig-

inal input variables,
r∑

j=1

var(Xj) = tr(ΣXX). (7.3)

From the spectral decomposition theorem (Section 3.2.4), we can write

ΣXX = UΛUτ , UτU = Ir, (7.4)

where the diagonal matrix Λ has diagonal elements the eigenvalues, {λj},
of ΣXX , and the columns of U are the eigenvectors of ΣXX . Thus, the
total variation is tr(ΣXX) = tr(Λ) =

∑r
j=1 λj .

The jth coefficient vector, bj = (b1j , · · · , brj)τ , is chosen so that:
• The first t linear projections ξj , j = 1, 2, . . . , t, of X are ranked in

importance through their variances {var{ξj}}, which are listed in
decreasing order of magnitude: var{ξ1} ≥ var{ξ2} ≥ . . . ≥ var{ξt}.

• ξj is uncorrelated with all ξk, k < j.

The linear projections (7.2) are then known as the first t principal compo-
nents of X.

There are two popular derivations of the set of principal components of
X: PCA can be derived using a least-squares optimality criterion, or it can
be derived as a variance-maximizing technique. In the next two subsections,
we discuss these two definitions.

7.2.3 Least-Squares Optimality of PCA

Let
B = (b1, · · · ,bt)τ , (7.5)

be a (t × r)-matrix of weights (t ≤ r). The linear projections (7.2) can be
written as a t-vector,

ξ = BX, (7.6)
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where ξ = (ξ1, · · · , ξt)τ . We want to find an r-vector µ and an (r×t)-matrix
A such that the projections ξ have the property that X ≈ µ+Aξ in some
least-squares sense. We use the least-squares error criterion,

E{(X− µ−Aξ)τ (X− µ−Aξ)}, (7.7)

as our measure of how well we can reconstruct X by the linear projection ξ.
We can write the criterion (7.7) in a more transparent manner by sub-

stituting BX for ξ. The criterion is now a function of an (r × t)-matrix A
and a (t × r)-matrix B (both of full rank t), and an r-vector µ. The goal
is to choose A, B, and µ to minimize

E{(X− µ−ABX)τ (X− µ−ABX)}. (7.8)

For example, when t = 1, we can write (7.8) as the least-squares problem,

min
µ,A,B

E
r∑

j=1

(Xj − µj − aj1bτ
1X)2, (7.9)

where µ = (µ1, · · · , µr)τ , A = a1 = (a11, · · · , ar1)τ , and B = bτ
1 .

The criterion (7.8) is just (6.80) with Y ≡ X, s = r, and Γ = Ir. Hence,
(7.8) is minimized by the reduced-rank regression solution,

A(t) = (v1, · · · ,vt) = B(t)τ , (7.10)

µ(t) = (Ir −A(t)B(t))µX , (7.11)

where vj = vj(ΣXX) is the eigenvector associated with the jth largest
eigenvalue, λj , of ΣXX . Thus, our best rank-t approximation to the original
X is given by

X̂(t) = µ(t) + C(t)X = µX + C(t)(X− µ), (7.12)

where

C(t) = A(t)B(t) =
t∑

j=1

vjvτ
j (7.13)

is the reduced-rank regression coefficient matrix with rank t for the princi-
pal components case. From (6.91), the minimum value of (7.8) is given by∑r

j=t+1 λj , the sum of the smallest r − t eigenvalues of ΣXX .
It may be helpful to think of these results in the following way. Let V =

(v1, · · · ,vr) be the (r× r)-matrix whose columns are the complete set of r
ordered eigenvectors of ΣXX . We have shown that the most accurate rank-t
least-squares reconstruction of X can be obtained by using the composition
of two linear maps L′ ◦ L. The first map L : 
r → 
t takes the first
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t columns of V to form t linear projections of X, and then the second
map L′ : 
t → 
r uses those same t columns of V to carry out a linear
reconstruction of X from those projections.

The first t principal components (also known as the Karhunen–Loève
transform) of X are given by the linear projections, ξ1, . . . , ξt, where

ξj = vτ
j X, j = 1, 2, . . . , t. (7.14)

The covariance between ξi and ξj is

cov(ξi, ξj) = cov(vτ
i X,vτ

j X) = vτ
i ΣXXvj = λjvτ

i vj = δijλj , (7.15)

where δij is the Kronecker delta, which equals 1 if i = j and zero otherwise.
Thus, λ1, the largest eigenvalue of ΣXX , is var{ξ1}; λ2, the second-largest
eigenvalue of ΣXX , is var{ξ2}; and so on, while all pairs of derived variables
are uncorrelated, cov(ξi, ξj) = 0, i �= j.

A goodness-of-fit measure of how well the first t principal components
represent the r original variables in the lower-dimensional space is given by
the ratio

λt+1 + · · ·+ λr

λ1 + · · ·+ λr
(7.16)

which is the proportion of the total variation in the input variables that
is explained by the last r − t principal components. If the first t principal
components explain a large proportion of the total variation in X, then the
ratio (7.16) should be small.

Actually, more is true. Not only do µ(t), A(t), and B(t) minimize the
scalar criterion (7.8), but also they simultaneously minimize all the eigen-
values of the (r × r)-matrix

Ψ(t) = E{(X− µ−ABX)(X− µ−ABX)τ}, (7.17)

thereby also minimizing any function of those eigenvalues, such as their
sum (trace of (7.17) and, hence, (7.8)) and their product (determinant of
(7.17)). We can see this as follows. From (6.80), setting Y ≡ X, s = r, and
Γ = Ir, we have that

Ψ(t) ≥ ΣXX −ΣX,ABXΣ−1
ABX,ABXΣABX,X

= ΣXX −D, (7.18)

where
D = ΣXXBτAτ (ABΣXXBτAτ )−1ABΣXX . (7.19)

Note that the (r × r)-matrix D has rank at most t (≤ r). We wish to
find µ, A, and B to minimize the jth largest eigenvalue of D. From the
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Courant–Fischer Min-Max theorem (see Section 3.2.10),

λj(ΣXX −D) = min
L:rank(L)≤j−1

max
α:Lα=0

ατ (ΣXX −D)α
ατα

≥ min
L

max
α:Lα=0,Dα=0

ατΣXXα

ατα

= min
L

max
α:(L|D)α=0

ατΣXXα

ατα

≥ min
L,D

max
α:(L|D)α=0

ατΣXXα

ατα

= λt+j(ΣXX), (7.20)

because rank((L|D)) ≤ j − 1 + t. Thus,

λj(Φ(t)) ≥ λj+t(ΣXX). (7.21)

By plugging in the above µ(t), A(t), and B(t) into the expression for Ψ(t),
it follows immediately that the minimum value of λj(Ψ(t)) is actually given
by λt+j(ΣXX).

7.2.4 PCA as a Variance-Maximization Technique

In the original derivation of principal components (Hotelling, 1933). the
coefficient vectors,

bj = (bj1, bj2, . . . , bjr)τ , j = 1, 2, . . . , t, (7.22)

in (7.5) were chosen in a sequential manner so that the variances of the
derived variables (var{ξj} = bτ

j ΣXXbj) are arranged in descending order
subject to the normalizations bτ

j bj = 1, j = 1, 2, . . . , t, and that they
are uncorrelated with previously chosen derived variables (cov(ξi, ξj) =
bτ

i ΣXXbj = 0, i < j).
The first principal component, ξ1, is obtained by choosing the r coef-

ficients, b1, for the linear projection ξ1, so that the variance of ξ1 is a
maximum. A unique choice of {ξj} is obtained through the normalization
constraint bτ

j bj = 1, for all j = 1, 2, . . . , t. Form the function

f(b1) = bτ
1ΣXXb1 − λ1(1− bτ

1b1), (7.23)

where λ1 is a Lagrangian multiplier. Differentiating f(b1) with respect to
b1 and setting the result equal to zero for a maximum yields

∂f(b1)
∂b1

= 2(ΣXX − λ1Ir)b1 = 0. (7.24)
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This is a set of r simultaneous equations. If b1 �= 0, then λ1 must be chosen
to satisfy the determinantal equation

|ΣXX − λ1Ir| = 0. (7.25)

Thus, λ1 has to be the largest eigenvalue of ΣXX , and b1 the eigenvector,
v1, associated with λ1.

The second principal component, ξ2, is then obtained by choosing a sec-
ond set of coefficients, b2, for the next linear projection, ξ2, so that the
variance of ξ2 is largest among all linear projections of X that are also
uncorrelated with ξ1 above. The variance of ξ2 is var(ξ2) = bτ

2ΣXXb2, and
this has to be maximized subject to the normalization constraint bτ

2b2 = 1
and orthogonality constraint bτ

1b2 = 0. Form the function

f(b2) = bτ
2ΣXXb2 + λ2(1− bτ

2b2) + µbτ
1b2, (7.26)

where λ2 and µ are the Lagrangian multipliers. Differentiating f(b2) with
respect to b2 and setting the result equal to zero for a maximum yields

∂f(b1)
∂b1

= 2(ΣXX − λ2Ir)b2 + µb1 = 0. (7.27)

Premultiplying this derivative by bτ
1 and using the orthogonality and nor-

malization constraints, we have that 2bτ
1ΣXXb2 + µ = 0. Premultiplying

the equation (ΣXX − λ1Ir)b1 = 0 by bτ
2 yields bτ

2ΣXXb1 = 0, whence
µ = 0. Thus, λ2 has to satisfy (ΣXX − λ2Ir)b2 = 0. This means that λ2 is
the second largest eigenvalue of ΣXX , and the coefficient vector b2 for the
second principal component is the eigenvector, v2, associated with λ2.

In this sequential manner, we obtain the remaining sets of coefficients for
the principal components ξ3, ξ4, . . . , ξr, where the ith principal component
ξi is obtained by choosing the set of coefficients, bi, for the linear projection
ξi so that ξi has the largest variance among all linear projections of X that
are also uncorrelated with ξ1, ξ2, . . . , ξi−1. The coefficients of these linear
projections are given by the ordered sequence of eigenvectors {vj}, where
vj associated with the jth largest eigenvalue, λj , of ΣXX .

7.2.5 Sample Principal Components

In practice, we estimate the principal components using n independent
observations, {Xi, i = 1, 2, . . . , n}, on X. We estimate µX by

µ̂X = X̄ = n−1
n∑

i=1

Xi. (7.28)

As before, let Xci = Xi−X̄, i = 1, 2, . . . , n, and set Xc = (Xc1, · · · ,Xcn) to
be an (r× n)-matrix. We estimate ΣXX by the sample covariance matrix,

Σ̂XX = n−1S = n−1XcX τ
c . (7.29)
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The ordered eigenvalues of Σ̂XX are denoted by λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂r ≥ 0,
and the eigenvector associated with the jth largest sample eigenvalue λ̂j is
the jth sample eigenvector v̂j , j = 1, 2, . . . , r.

We estimate A(t) and B(t) by

Â(t) = (v̂1, · · · , v̂t) = B̂(t)τ , (7.30)

where v̂j is the jth sample eigenvector of Σ̂XX , j = 1, 2, . . . , t (t ≤ r). The
best rank-t reconstruction of X is given by

X̂(t) = X̄ + Ĉ(t)(X− X̄), (7.31)

where

Ĉ(t) = Â(t)B̂(t) =
t∑

j=1

v̂jv̂τ
j (7.32)

is the reduced-rank regression coefficient matrix corresponding to the prin-
cipal components case.

The jth sample PC score of X is given by

ξ̂j = v̂τ
j Xc, (7.33)

where Xc = X − X̄. The variance, λj , of the jth principal component is
estimated by the sample variance λ̂j , j = 1, 2, . . . , t. A sample estimate of
the measure (7.16) of how well the first t principal components represent
the r original variables is given by the statistic

λ̂t+1 + · · ·+ λ̂r

λ̂1 + · · ·+ λ̂r

, (7.34)

which is the proportion of the total sample variation that is explained by
the last r − t sample principal components.

It is hoped that the sample variances of the first few sample PCs will be
large, whereas the rest will be small enough for the corresponding set of
sample PCs to be omitted. A variable that does not change much (relative
to other variables) in independent measurements may be treated approxi-
mately as a constant, and so omitting such low-variance sample PCs and
putting all attention on high-variance sample PCs is, therefore, a conve-
nient way of reducing the dimensionality of the data set.

The exact distribution of the eigenvalues of the random matrix XX τ ∼
Wr(n, Ir) was discovered independently and simultaneously in 1939 by
Fisher, Girshick, Hsu, and Roy and in 1951 by Mood and has the form,

p(x1, . . . , xr) = cr,n

r∏
j=1

[w(xj)]1/2
∏
j<k

(xj − xk), (7.35)
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where x1 ≥ x2 ≥ · · · ≥ xr are the ordered eigenvalues of XX τ , w(x) =
xn−r−1e−x is the weight function for the Laguerre family of orthogonal
polynomials, and cr,n is a normalizing constant dependent upon r and n.
For a proof, see, for example, Anderson (1984, Section 13.3). The second
product in (7.35) involving the pairwise differences of eigenvalues is the
Jacobian term, also known as the Vandermonde determinant (Johnstone,
2006). In the case when the population eigenvalues are not all equal, the
exact distribution of the sample eigenvalues is known (James, 1960) but is
extremely complicated.

When the dimensionality, r, is very large, maybe even larger than the
sample size n, then the exact distribution result (7.35) does not hold. In
such situations, random-matrix theory has proved to be very useful in pro-
viding asymptotic results; see, e.g., Johnstone (2001, 2006). As before, sup-
pose XX τ ∼ Wr(n, Ir). The empirical distribution function computes the
proportion of sample eigenvalues that are less than a given value of k,

Gr(k) =
1
r
#{xj ≤ k}. (7.36)

It can be shown that if r/n→ γ ∈ (0,∞), then, Gr(k)→ G(k) a.s., where
the limiting distribution G(k) has density g(k) = G′(k), and

g(k) =

√
(b+ − k)(k − b−)

2πγk
, b± = (1±√γ)2. (7.37)

This so-called Quarter-Circle Law is due to Marc̆enko and Pastur (1967);
it also holds in more general situations.

In Figure 7.2, we display the density g(k) for γ = 1/4 and γ = 1. The
larger is r/n, the more spread out is the limiting density. When r = n/4,
the density is concentrated on the interval [14 , 9

4 ], and when r = n, the
density is spread out over the interval [0, 4].

7.2.6 How Many Principal Components to Retain?

Probably the main question asked while carrying out a PCA is how many
principal components to retain. Because the criterion for a good projection
in PCA is a high variance for that projection, we should only retain those
principal components with large variances. The question, therefore, boils
down to one involving the magnitudes of the eigenvalues of Σ̂XX : how
small can an eigenvalue be while still regarding the corresponding principal
component as significant?

Scree Plot: The sample eigenvalues from a PCA are ordered from largest
to smallest. It is usual to plot the ordered sample eigenvalues against their
order number; such a display is called a “scree plot” (Cattell, 1966), after
the break between a mountainside and a collection of boulders usually found
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FIGURE 7.2. Density g(k) of eigenvalues of a Wishart matrix in the lim-
iting case when r/n→ γ ∈ (0,∞). The two curves correspond to the values
γ = 1/4 and γ = 1. The larger r/n, the more spread out are the eigenval-
ues.

at its base. If the largest few sample eigenvalues dominate in magnitude,
with the remaining sample eigenvalues very small, then the scree plot will
exhibit an “elbow” in the plot corresponding to the division into “large”
and “small” values of the sample eigenvalues. The order number at which
the elbow occurs can be used to determine how many principal components
to retain. It is usually recommended to retain those PCs up to the elbow
and also the first PC following the elbow. A related popular criterion for
use when an elbow may not be present in the scree plot is to use a cutoff
point of 90% of total variance.

What would a scree plot look like for the eigenvalues of the covariance
matrix of Gaussian data? We display two scenarios, where the only differ-
ence is the sample size. Generate an (r × n)-matrix Z all of whose entries
are iid N (0, 1), let D be an (r × r) diagonal matrix, and set X = DZ.
Let Σ̂XX = n−1XX τ be an (r × r) covariance matrix. Let r = 30 and set
D2 = Diag(12, 11, 10, 9, 8, 7, 3, 3, 3, · · · , 3). Then, XX τ ∼ Wr(n,D2). The
scree plot of the eigenvalues of Σ̂XX in the case that n = 300 is given in
the left panel of Figure 7.3, where there is an elbow at 7. Now, suppose
n = 30. Then, the scree plot of the eigenvalues is given in the right panel
of Figure 7.3 and shows no discernible elbow. This example suggests that
the relationship between n and r can determine whether or not the scree
plot is useful in determining how many PCs to retain.

In the food nutrition example, the eigenvalues of the covariance matrix
of the transformed data are given in Table 7.1. The scree plot of these



7.2 Principal Component Analysis 207

0 5 10 15 20 25 30
Order Number

0

4

8

12

O
rd

er
ed

 S
am

pl
e 

E
ig

en
va

lu
e

0 5 10 15 20 25 30
Order Number

0

5

10

15

20

O
rd

er
ed

 S
am

pl
e 

E
ig

en
va

lu
e

FIGURE 7.3. Scree plots of the ordered eigenvalues of Σ̂XX = n−1XX τ ,
where X = DZ, D is a diagonal (r × r)-matrix, and the elements of the
(r × n)-matrix Z are each independent Gaussian deviates. In this simula-
tion, r = 30 and D2 = Diag(12, 11, 10, 9, 8, 7, 3, 3, 3, · · · , 3). The left panel
corresponds to n = 300 and has an elbow at 7, and the right panel corre-
sponds to n = 30 and shows no elbow.

eigenvalues, which is given in the left panel of Figure 7.4, shows no elbow.
This may be explained by the fact that the leading PC explains only a 44%
share of the total variance, there is no really dominant group of eigenvalues,
and it takes four PCs to pass 90% of total variance.

PC Rank Trace: The problem of deciding how many principal compo-
nents to retain is equivalent to obtaining a useful estimate of the rank of
the regression coefficient matrix C in the principal components case. So, if
we can obtain a good estimate of the rank, we should have a solution to
this problem.

We saw in Chapter 6 that the rank trace plots the loss of information
when approximating the full-rank regression by a sequence of reduced-rank
regressions having increasing ranks. When the true rank of the regression,
t0, say, is reached, the points in the rank trace plot following that rank
(i.e., ranks t0 +1, . . . , r) should cease to change significantly from both the
point for t0 and the full-rank point (rank r).

In the principal components case, the expressions for the points in the
rank trace simplify greatly and are very simple to compute. It is not difficult
to show (see Exercise 7.6) that

∆Ĉ(t) =
(

1− t

r

)1/2

, (7.38)

∆Σ̂(t)
EE =

(
λ̂2

t+1 + · · ·+ λ̂2
r

λ̂2
1 + · · ·+ λ̂2

r

)1/2

, (7.39)
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FIGURE 7.4. Food nutrition example. Left panel: Scree plot. Right panel:
PC rank-trace plot with values of t placed next to the plotted point. The scree
plot for the sample covariance matrix of the transformed data does not offer
any advice on the number of principal components to retain, whereas the
rank trace plot suggests retaining 4 or 5 principal components. The modified
version of Kaiser’s rule recommends retaining three PCs.

t = 0, 1, 2, . . . , r. Comparing (7.39) with (7.34), we see that we are again
looking at the smallest r − t sample eigenvalues (although this time they
are each squared). A plot of (7.39) against (7.38) is called a PC rank trace
plot (Izenman, 1980). All the information regarding the dimensionality of
the regression is, therefore, contained in the residual covariance matrices
and not in the regression coefficients. Furthermore, the r+1 plotted points
decrease monotonically from (1, 1) to (0, 0). We assess the rank t of C by
t̂, the smallest integer value between 1 and r at which an “elbow” can be
detected in the PC rank trace plot.

In Figure 7.4, the right panel shows the PC rank trace plot for the sample
covariance matrix of the food nutrition data. We assess the rank from the
rank-trace plot as t̂ = 4 or 5.

Kaiser’s Rule: When dealing with the PCA of a sample correlation ma-
trix, Kaiser (1960) suggested (in the context of exploratory factor analysis)
that only those principal components be retained whose eigenvalues exceed
unity. This decision guideline is based upon the argument that because the
total variation of all r standardized variables is equal to r, it follows that
a principal component should account for at least the average variation of
a single standardized variable. This rule is popular but controversial; there
is evidence that the cutoff value of 1 is too high. A modified rule retains
all PCs whose eigenvalues of the sample correlation matrix exceed 0.7.

For the food nutrition data, the eigenvalues of the sample correlation ma-
trix are 2.6486, 1.3301, 1.0201, 0.6801, 0.2665, and 0.00546. Three of these
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eigenvalues are greater than 0.7, and so the modified version of Kaiser’s
rule says that we should retain the first three principal components.

7.2.7 Graphical Displays

For diagnostic and data analytic purposes, it is usual to plot the first
sample PC scores against the second sample PC scores,

(ξ̂i1, ξ̂i2), i = 1, 2, . . . , n, (7.40)

where ξ̂ij = v̂τ
j Xi, i = 1, 2, . . . , n, j = 1, 2. A more general graphical tool

for displaying the sample PC scores associated with the largest few sample
eigenvalues (variances) is the scatterplot matrix, in which all possible pairs
of variables are plotted in two dimensions.

See Figure 7.1 for a graphical display of the first two PCs of the food
nutrition data and Figure 7.6 for a graphical display of the first three PCs
of the pendigits data.

A three-dimensional scatterplot of the first three sample PC scores is also
strongly recommended, especially if a “brush and spin” feature is available.

7.2.8 Example: Face Recognition Using Eigenfaces

In this example, we apply PCA to a single face photographed under
n = 11 illumination and expression conditions; see Figure 2.4. Recall from
Section 2.3.3 that each face, as a picture image, starts out as a (320×243)-
matrix of intensity values, which are quantized to 8-bit grayscale (0–255,
with 0 as black and 255 as white), and then translated into a stacked vector
of length r = 77, 760.

From a PCA of the n r-vectors, X1, . . . ,Xn, of stacked images, we com-
pute the first t PC scores, ξ̂

(t)
1 , . . . , ξ̂

(t)
n , where ξ̂

(t)
i = B̂(t)Xi = (ξ̂i1, · · · , ξ̂it)τ

is a t-vector, 1 ≤ t ≤ r. It is usual to plot the points (ξ̂i1, ξ̂i2), i = 1, 2, . . . , n,
and annotate the scatterplot with face identifiers. Faces corresponding to
the same individual should project to points very close to each other in
the scatterplot, whereas faces corresponding to different individuals should
project to more distant points. Also, faces of the same individual with very
similar poses should be plotted close to each other, whereas different poses
should be plotted far away from each other.

The best rank-t reconstruction of the ith original face is obtained by com-
puting X̂(t)

i = X̄ + Ĉ(t)(Xi − X̄), i = 1, 2, . . . , n, where X̄ is the “average”
face given by (7.28) and Ĉ(t) is given by (7.33). The average of all the faces
can be seen in the left panel of Figure 7.5. If the r-vectors X̂(t)

1 , . . . , X̂(t)
n

are unstacked and displayed as images, they each have the appearance of
a “ghostly” face. The reconstructed face image improves as we increase
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FIGURE 7.5. The cumulative effect of the nine principal components,
adding one PC at a time, for eigenface 6 (“sad”). The sad face starts to
appear by the fifth PC. The average eigenface is given in the left panel.

t. Each face image in the data set can be represented exactly as a linear
combination of all r such ghostly faces or eigenfaces, or approximately as a
linear combination of the first t eigenfaces, which are ordered by decreasing
eigenvalues.

In the right panel of Figure 7.5, we see the effect of increasing the number
of principal components on the reconstruction of face 6 (“sad”). The first
eigenface is fuzzy but recognizable as a face. Adding PCs increases the
sharpness of the image, and the “sad” face starts to emerge at eigenface 5.

7.2.9 Invariance and Scaling

A shortcoming of PCA is that the principal components are not invariant
under rescalings of the initial variables. In other words, a PCA is sensitive
to the units of measurement of the different input variables. Standardizing
(centering and then scaling) the X-variables,

Z← (diag{Σ̂XX})−1/2(X− µ̂X), (7.41)

is equivalent to carrying out PCA using the correlation (rather than the
covariance) matrix. When using the correlation matrix, the total variation
of the standardized variables is r, the trace of the correlation matrix. The
lack of scale invariance implies that a PCA using the correlation matrix may
be very different from a similar analysis using the corresponding covariance
matrix, and no simple relationship exists between the two sets of results.
In the initial formulation and application of PCA, we note that Hotelling
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(1933), who was dealing with a battery of test scores, extracted principal
components from the correlation matrix of the data.

Standardization in the PCA context has its advantages. In some fields,
standardization is customary. In heterogeneous situations, where the units
of measurement of the input variables are not commensurate or the ranges
of values of the variables differ considerably, standardization is especially
relevant. If the variables have heterogeneous variances, it is a good idea to
standardize the variables before carrying out PCA because the variables
with the greatest variances will tend to overwhelm the leading principal
components with the remaining variables contributing very little.

On statistical inference grounds, standardization is usually regarded as
a nuisance because it complicates the distributional theory. Indeed, the
asymptotic distribution theory for the eigenvalues and eigenvectors of a
sample correlation matrix turns out to be extremely difficult to derive.
Furthermore, certain simplifications, such as pretending that the sample
correlation matrix has the same distributional properties as the sample
covariance matrix, tend not to work and, hence, lead to incorrect inference
results for principal components.

7.2.10 Example: Pen-Based Handwritten Digit Recognition

These data2 were obtained from 44 writers, each of whom handwrote 250
examples of the digits 0, 1, 2, . . . , 9 in a random order (Alimoglu, 1995).
The digits were written inside boxes of 500 × 500 pixel resolution on a
pressure-sensitive tablet with an integrated LCD screen. The subjects were
monitored only during the first entry screens. Each screen contained five
boxes with the digits to be written displayed above. Subjects were told
to write only inside these boxes. If they made a mistake or were unhappy
with their writing, they were instructed to clear the contents of a box by
using an on-screen button. Unknown to the writers, the first 10 digits were
ignored as writers became familiar with the input device.

The raw data on each of n = 10, 992 handwritten digits consisted of a
sequence, (xt, yt), t = 1, 2, . . . , T , of tablet coordinates of the pen at fixed
time intervals of 100 milliseconds, where xt and yt were integers in the
range 0–500. These data were then normalized to make the representations
invariant to translation and scale distortions. The new coordinates were
such that the coordinate that had the maximum range varied between 0
and 100. Usually xt stays in this range, because most integers are taller than
they are wide. Finally, from the normalized trajectory of each handwritten

2These data are available in the file pendigits on the book’s website. The description
was obtained from www.ics.uci.edu/~learn/databases/pendigits.
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digit, 8 regularly spaced measurements, (xt, yt), were chosen by spatial
resampling, which gave a total of r = 16 input variables.

A PCA of the correlation matrix (i.e., the covariance matrix of normal-
ized variables) reveals that the variances of the first five principal compo-
nent (PC) scores are larger than unity: 4.717, 3.229, 2.577, 1.230, 1.063;
thus, the first five PCs together explain about 80% of the total variation, 16,
in the data. A reduction in dimensionality from 16 to 5, therefore, retains
a substantial amount of the total variation. Scatterplots of the first three
PC scores, which explain about 66% of the total variation, are displayed in
Figure 7.6, where the points are colored by type of digit.

From these three 2D scatterplots, we can make the following observa-
tions: the majority of handwritten examples of each digit cluster together,
although there is a great deal of overlapping of clusters; each scatterplot
has a distinctive shape, with strong suggestions of circular or torus-like
appearance; and there appears to be lots of outlying points. A 3D-rotating
scatterplot of the first three principal components reveals a hollow, hemi-
spherical point configuration with crab-like arms.

7.2.11 Functional PCA

In some situations, we may need to analyze data consisting of functions
or curves. Although such functional data are often time-dependent, we do
not assume that time itself plays a special role. In fact, functional data from
different and independent individuals may be recorded at different sets of
time points, and in each of those instances, the data may not be equally
spaced. In such cases, it is advantageous to view an individual’s functional
observations as a continuously defined record observed at a set of discrete
points, so that a single data point is the entire function (rather than each
observed data value). In other cases, we may be able to view independent
replications of the entire curve.

Given a set of sample curves from a number of individuals, where each
curve represents repeated measurements on the same individual, we may
wish to characterize the main features of those curves. One method of
doing this is through a functional version of PCA (see, e.g., Ramsay and
Silverman, 1997, Chapters 6 and 7). Because we are observing curves rather
than individual values, the vector-valued observations X1, . . . ,Xn are re-
placed by the univariate functions X1(t), . . . , Xn(t), where t may indicate
time, but in general is to be thought of as a continuous index varying within
a closed interval [0, T ].

In functional PCA, each sample curve is considered to be an indepen-
dent realization of a univariate stochastic process X(t) (having possibly
cyclical or periodic form) with smooth mean function E{X(t)} = µ(t) and
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FIGURE 7.6. Scatterplots of the first three principal components (PCs)
of the correlation matrix from the pendigits data, where r = 16 and n =
10, 992. The top-left panel displays the scatterplot of the first three principal
component scores. The top-right panel shows the first and second PCs, the
bottom-right panel shows the first and third PCs, and the bottom-left panel
shows the second and third PCs. The 10 digits are shown by the following
colors: green (0), brown (1), light blue (2), light magenta (3), purple (4),
blue (5), light red (6), light green (7), orange (8), and light cyan (9).

covariance function
cov{X(s),X(t)} = σ(s, t). (7.42)

By a spectral decomposition of the covariance function, we can express σ
as an orthogonal expansion (in the L2 sense) in terms of its eigenvalues
{λj} and associated eigenfunctions {Vj(t)}, so that

σ(s, t) =
∞∑

j=1

λjVj(s)Vj(t), (7.43)

where the eigenvalues quickly tend to zero and the first few eigenfunctions
are slowly varying. The covariance function σ is positive-definite and, hence,
we can take the eigenvalues to be nonnegative and ordered: λ1 ≥ λ2 ≥
· · · ≥ 0. The goal is to determine the primary components of functional
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variation in σ(s, t), where the eigenvalues indicate the amount of total
variance attributed to each component.

A random curve can then be expressed as

X(t) = µ(t) +
∞∑

j=1

ξjVj(t), (7.44)

where the coefficient

ξj =
∫

[X(t)− µ(t)]Vj(t)dt (7.45)

is a scalar random variable (called the jth functional PC score) with E{ξj} =
0, var{ξj} = λj ,

∑
j λj < ∞, and cov{ξj , ξk} = 0, j �= k. The eigenfunc-

tions {Vj(t)} (called PC functions) satisfy
∫

[Vj(t)]2dt = 1,

∫
Vj(t)Vk(t)dt = 0, j �= k, (7.46)

where the integrals are taken over [0, T ], which may be periodic. The ex-
pansion (7.42) is the well-known Karhunen–Loève expansion of X(t). Thus,
X(t) − µ(t) may be thought of as a finite sum of orthogonal curves each
having uncorrelated random amplitudes.

Although a scientific phenomenon may be viewed as functional, in reality
we typically only have a finite amount of knowledge about that phenomenon
through sampling. Consequently, estimates of the mean curve µ(t) and
the covariance function σ are based upon a collection of n sample curves,
X1(t), . . . , Xn(t), where Xi(t) = µ(t) +

∑
j ξijVj(t) is the ith individual

curve. The kth point on the ith curve is denoted by Xik = Xi(tk).
We briefly mention possible estimation procedures and refer the inter-

ested reader to the excellent books by Ramsay and Silverman on this topic.
One approach to analyzing such data is, first, to smooth each individual
sample curve (e.g., using spline methods or local-linear smoothers), and
then apply functional PCA assuming that the smooth curves are the com-
pletely observed curves. This gives a set of eigenvalues {λ̂j} and (smooth)
eigenfunctions {V̂j(t)} extracted from the sample covariance matrix of the
smoothed data. The first and second estimated eigenfunctions are then
graphed with a view to examining the extent and location of individual
curve variation.

Other approaches to functional PCA have been developed, including the
use of roughness penalties and regularization, which optimize the selection
of smoothing parameter and choice of the number of PCs simultaneously
rather than separately in two stages.



7.3 Canonical Variate and Correlation Analysis 215

7.2.12 What Can Be Gained from Using PCA?

The short answer is that it depends on what we are trying to accomplish
and the nature of the application in question. PCA is a linear technique
built for several purposes: it enables us, first, to decorrelate the original
variables in the study, regardless of whether r < n or n < r; second,
to carry out data compression, where we pay decreasing attention to the
numerical accuracy by which we encode the sequence of principal compo-
nents; third, to reconstruct the original input data using a reduced number
of variables according to a least-squares criterion; and fourth, to identify
potential clusters in the data.

In certain applications, PCA can be misleading. PCA is heavily influ-
enced when there are outliers in the data (e.g., in computer vision, images
can be corrupted by noisy pixels), and such considerations have led to the
construction of robust PCA. In other situations, the linearity of PCA may
be an obstacle to successful data reduction and compression, and so in
Chapter 16, we consider nonlinear versions of PCA.

7.3 Canonical Variate and Correlation Analysis

Canonical variate and correlation analysis (CVA or CCA) (Hotelling,
1936) is a method for studying linear relationships between two vector
variates, which we denote by X = (X1, · · · ,Xr)τ and Y = (Y1, · · · , Ys)τ .
As such, it has been used to solve theoretical and applied problems in
econometrics, business (primarily, finance and marketing), psychometrics,
geography, education, ecology, and atmospheric sciences (e.g., weather pre-
diction).

Hotelling applied CVA to the relationship between a set of two read-
ing test scores (X1 = reading speed, X2 = reading power) and a set of
two arithmetic test scores (Y1 = arithmetic speed, Y2 = arithmetic power)
obtained from 140 fourth-grade children, so that r = s = 2.

7.3.1 Canonical Variates and Canonical Correlations

We assume that (
X
Y

)
(7.47)

is a collection of r+s variables partitioned into two disjoint subcollections,
where X and Y are jointly distributed with mean vector and covariance
matrix given by

E
{(

X
Y

)}
=

(
µX

µY

)
, (7.48)
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E
{(

X− µX

Y − µY

)(
X− µX

Y − µY

)τ}
=

(
ΣXX ΣXY

ΣY X ΣY Y

)
, (7.49)

respectively, where ΣXX and ΣY Y are both assumed to be nonsingular.
CVA seeks to replace the two sets of correlated variables, X and Y, by

t pairs of new variables,

(ξi, ωi), i = 1, 2, . . . , t, t ≤ min(r, s), (7.50)

where
ξj = gτ

j X = g1jX1 + g2jX2 + · · ·+ grjXr

ωj = hτ
j Y = h1jY1 + h2jY2 + · · ·+ hsjYs

⎫⎬
⎭ (7.51)

j = 1, 2, . . . , t, are linear projections of X and Y, respectively. The jth
pair of coefficient vectors, gj = (g1j , · · · , grj)τ and hj = (h1j , · · · , hrj)τ ,
are chosen so that
• the pairs {(ξj , ωj)} are ranked in importance through their correla-

tions,

ρj = corr{ξj , ωj} =
gτ

j ΣXY hj

(gτ
j ΣXXgj)1/2(hτ

j ΣY Y hj)1/2
, j = 1, 2, . . . , t,

(7.52)
which are listed in descending order of magnitude: ρ1 ≥ ρ2 ≥ · · · ≥ ρt.

• ξj is uncorrelated with all previously derived ξk:

cov{ξj , ξk} = gτ
j ΣXXgk = 0, k < j. (7.53)

• ωj is uncorrelated with all previously derived ωk:

cov{ωj , ωk} = hτ
j ΣY Y hk = 0, k < j. (7.54)

The pairs (7.44) are known as the first t pairs of canonical variates of X
and Y and their correlations (7.45) as the t largest canonical correlations.

The CVA technique ensures that every bit of correlation is wrung out
of the original X and Y variables and deposited in an orderly fashion
into pairs of new variables, (ξj , ωj), j = 1, 2, . . . , t, which have a special
correlation structure. If the notion of correlation is regarded as the primary
determinant of information in the system of variables, then CVA is a major
tool for reducing the dimensionality of the original two sets of variables.

7.3.2 Example: COMBO-17 Galaxy Photometric
Catalogue

The data for this example consist of a subset of a public catalogue of a
large number of astronomical objects (e.g., stars, galaxies, quasars) with
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TABLE 7.2. Variables used to analyze 3,438 galaxies from the Chandra
Deep Field South area of the sky. The variables are divided into r = 23
X-variables and s = 6 Y -variables.

X-variables
UjMag, BjMag, VjMag, usMag, gsMag, rsMag,

UbMag, BbMag, VbMag, S280Mag,
W420F E, W462F E, W485F D, W518F E, W571F S,
W604F E, W646F D, W696F E, W753F E, W815F S,

W856F D, W914F D, W914F E

Y -variables
Rmag, ApD Rmag, mu max, MC z, MC z ml, chi2red

brightness measurements in 17 passbands covering the range 350–930 nm
(Wolf, Meisenheimer, Kleinheinrich, Borch, Dye, Gray, Wisotski, Bell, Rix,
Cimatti, Hasinger, and Szokoly, 2004).3 All objects in the catalogue are
found in the Chandra Deep Field South, one of the most popularly studied
areas of the sky. Figure 7.7 shows a high-resolution composite image of
the Chandran Deep Field South, based upon images obtained in 2003 with
the Wide Field Imager on the ground-based 2.2-m MPG/ESO telescope
located at the European Southern Observatory (ESO) on La Silla, Chile.
The image displays more than 100,000 galaxies, several thousand stars, and
hundreds of quasars. COMBO-17 (“Classifying Objects by Medium-Band
Observations in 17 filters”) is an international collaboration project whose
mission is to study the evolution of galaxies.

This particular subset of the data set consists of the n = 3,438 objects
in the Chandra Deep Field South that are classified as “Galaxies” and for
which there are no missing values for any of the 65 variables (24 observa-
tions were omitted because of missing data). We also omitted five redundant
variables and all error variables in the data set; the 29 remaining variables
were then divided into a group of r = 23 X-variables and a group of s = 6
Y -variables, which are listed in Table 7.2.

Of the Y -variables, Rmag is the total R-band magnitude (magnitudes are
inverted logarithmic measures of brightness), ApD Rmag is the aperture
difference of Rmag, mu max is the central surface brightness in Rmag,
MC z is the mean redshift in the distribution p(z), MC z ml is the peak

3The complete catalogue of 63,501 astronomical objects can be obtained from
the website vizier.u-strasbg.fr/viz-bin/VizieR-4 or from the COMBO-17 website
www.mpia.de/COMBO/combo index.html. The data set used in this example is a subset
and can be downloaded from astrostatistics.psu.edu/datasets/COMBO17.html. The
author thanks Donald Richards for very helpful discussions on this data set.
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FIGURE 7.7. High-resolution three-color composite image of the
Chandra Deep Field South, obtained in January 2003 with the Wide
Field Imager camera on the 2.2m MPG/ESO telescope at the Euro-
pean Southern Observatory (ESO), La Silla, Chile. This image is based
upon a total exposure time of nearly 50 hours and displays more than
100,000 galaxies, several thousand stars, and hundreds of quasars. Source:
www.eso.org/public/outreach/press-rel/pr-2003/phot-02-03.html.

of the redshift distribution p(z), and chi2red is the reduced χ2-value of the
best-fitting template.

Of the X-variables, UjMag, BjMag, VjMag, usMag, gsMag, rsMag, Ub-
Mag, BbMag, VbMag, and S280Mag are all absolute magnitudes of the
galaxy in 10 bands. The first nine of these magnitudes are very highly cor-
related with each other, with all pairwise correlations greater than 0.93.
They are based upon the measured magnitudes and the redshifts and rep-
resent the intrinsic luminosities of the galaxies. The other variables are the
observed brightnesses in 13 bands in sequence from 420 nm in the ultra-
violet to 915 nm in the far red; these variables are also highly correlated
with each other, with correlations decreasing as distance between bands
increases.

The pairwise plots of all six pairs of canonical variates of the COMBO-17
data are displayed in Figure 7.8. The canonical correlations are, in decreas-
ing order of magnitude, 0.942, 0.538, 0.077, 0.037, 0.030, and 0.020; two of
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FIGURE 7.8. Pairwise canonical variate plots of COMBO-17 galaxy data.
There are n =3,438 galaxies with r = 23 and s = 6 variables. Top-left panel:
First pair of canonical variates (CVs), canonical correlation (CC) = 0.942.
Top-center panel: Second pair of CVs, CC = 0.538. Top-right panel: Third
pair of CVs, CC = 0.077. Bottom-left panel: Fourth pair of CVs, CC =
0.037. Bottom-center panel: Fifth pair of CVs, CC = 0.030. Bottom-right
panel: Sixth pair of CVs, CC = 0.020. For the jth CV plot, ξj is plotted
on the horizontal axis, and ωj is plotted on the vertical axis.

these correlations are large, whereas the rest are very small. We also see
many outliers in these plots. For example, galaxy Nr = 3605 is prominent
in all six plots, and galaxies Nr = 3033, 3277, and 6423 are prominent in
at least three plots.

7.3.3 Least-Squares Optimality of CVA

Let the (t×r)-matrix G and the (t×s)-matrix H, with 1 ≤ t ≤ min(r, s),
be such that X and Y are linearly projected into new vector variates,

ξ = GX, ω = HY, (7.55)

respectively. Consider the problem of finding ν, G, and H so that

HY ≈ ν + GX (7.56)

in some least-squares sense. More precisely, we wish to find ν, G, and H
to minimize the (t× t)-matrix,

E{(HY − ν −GX)(HY − ν −GX)τ}, (7.57)

where we assume that the covariance matrix of ω is Σωω = HΣY Y Hτ = It.
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Fix the matrix H and minimize the error criterion (7.57) first with respect
to ν and G. We set ωc = ω − µω = ω −GµX , and write ω − ν −GX as
ωc + (HµY − ν −GµX)−GXc, where Xc = X− µX . Then,

min
ν,G

E{(ω − ν −GX)(ω − ν −GX)τ}

≥ min
G

E{(ωc −GXc)(ωc −GXc)τ}

= tr{Σωω −ΣωXΣ−1
XXΣXω}

+ min
G

tr{(GΣ1/2
XX −ΣωXΣ−1/2

XX )(GΣ1/2
XX −ΣωXΣ−1/2

XX )τ}

≥ tr{Σωω −ΣωXΣ−1
XXΣXω}

= tr{HΣY Y Hτ −HΣY XΣ−1
XXΣXY Hτ}

= t−
t∑

j=1

λj(HΣY XΣ−1
XXΣXY Hτ ), (7.58)

where the first inequality becomes an equality iff ν = HµY −GµX , and the
second inequality becomes an equality iff G = ΣωXΣ−1

XX = HΣY XΣ−1
XX .

Now set Uτ = HΣ1/2
Y Y , so that UτU = It. Then, by the Poincaré Sepa-

ration Theorem (see Section 3.2.10), (7.58) becomes

t−
t∑

j=1

λj(UτRU) ≥ t−
t∑

j=1

λj(R),

where
R = Σ−1/2

Y Y ΣY XΣ−1
XXΣXY Σ−1/2

Y Y , (7.59)

with equality only when the columns of U are the eigenvectors associated
with the first t eigenvalues of R.

To summarize: The ν, G, and H that minimize (7.57) are given by

ν(t) = H(t)µY −G(t)µX , (7.60)

G(t) =

⎛
⎜⎝

vτ
1
...

vτ
t

⎞
⎟⎠Σ−1/2

Y Y ΣY XΣ−1
XX =

⎛
⎜⎝

λ1uτ
1

...
λtuτ

t

⎞
⎟⎠Σ−1/2

XX , (7.61)

H(t) =

⎛
⎜⎝

vτ
1
...

vτ
t

⎞
⎟⎠Σ−1/2

Y Y , (7.62)

respectively, where uj is the eigenvector associated with the jth largest
eigenvalue λ2

j of

R∗ = Σ−1/2
XX ΣXY Σ−1

Y Y ΣY XΣ−1/2
XX , (7.63)
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and vj is the eigenvector associated with the jth largest eigenvalue λ2
j of

R in (7.59), j = 1, 2, . . . , t.
Let gτ

j = (g1j , . . . , grj) and hτ
j = (h1j , . . . , hsj) be the jth rows of G(t)

and H(t), respectively, j = 1, 2, . . . , t. The r-vector gj and the s-vector
hj are generally assumed to have unit length; that is, gτ

j gj = hτ
j hj = 1,

j = 1, 2, . . . , t. The jth pair of canonical variates scores, (ξj , ωj), is given by

ξj = gτ
j X, ωj = hτ

j Y, (7.64)

where
gj = Σ−1

XXΣXY Σ−1/2
Y Y vj = λjΣ

−1/2
XX uj , (7.65)

hj = Σ−1/2
Y Y vj , (7.66)

j = 1, 2, . . . , t. The covariance matrix of the canonical variates scores,

ξ(t) = G(t)X, ω(t) = H(t)Y, (7.67)

is given by

cov{ξ(t),ω(t)} =
(

Λ Λ
Λ It

)
, (7.68)

where

Λ =

⎛
⎜⎜⎝

λ2
1 0 . . . 0
0 λ2

2 . . . 0
...

...
. . .

...
0 0 . . . λ2

t

⎞
⎟⎟⎠ , (7.69)

and the correlation matrix is

corr{ξ(t),ω(t)} =
(

It Λ1/2

Λ1/2 It

)
. (7.70)

If we set ρj = λj , j = 1, 2, . . . , t, then, (7.68) shows us that
• corr{ξj , ξk} = δjk, j, k = 1, 2, . . . , t,

• corr{ξj , ωk} = ρjδjk, j, k = 1, 2, . . . , t,

• corr{ωj , ωk} = δjk, j, k = 1, 2, . . . , t,

where δjk is the Kronecker delta (i.e., δjj = 1, δjk = 0, j �= k).
We can, therefore, view the coefficients, {gij} and {hij}, of the linear

combinations (7.51) as being chosen in the following sequential manner.
The first pair (ξ1, ω1) has the largest possible correlation ρ1 among all
such linear combinations of X and Y. The second pair, (ξ2, ω2), has the
largest possible correlation ρ2 among all linear combinations of X and Y
in which ξ2 is uncorrelated with ξ1 and ω2 is uncorrelated with ω1. The
jth pair, (ξj , ωj), has the largest possible correlation ρj among all linear
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combinations of X and Y in which ξj is uncorrelated with ξl, ξ2, . . . , ξj−1

and ωj is uncorrelated with ωl, ω2, . . . , ωj−1. See Exercise 7.1. It follows
that

1 > ρ1 > ρ2 > ρ3 > · · · > ρt > 0. (7.71)

The pairs of canonical variates, (ξj , ωj), j = 1, 2, . . . , t, are usually arranged
in computer output in the form of two groups, ξl, ξ2, . . . , ξt and
ωl, ω2, . . . , ωt. The correlation, ρj , between ξj and ωj is called the canoni-
cal correlation coefficient associated with the jth pair of canonical variates,
j = 1, 2, . . . , t.

7.3.4 Relationship of CVA to RRR

Compare the expressions (7.60), (7.61), and (7.62) with those of the
reduced-rank regression solutions, (6.86), (6.87), and (6.88).

When Γ = Σ−1
Y Y , the matrices B(t) in (6.88) and G(t) in (7.61) are

identical. Furthermore, the matrices A(t) in (6.87) and H(t) in (7.62) are
related by

H(t)A(t)H(t) = H(t), A(t)H(t)A(t) = A(t). (7.72)

Thus, A(t) is a g-inverse of H(t), and vice versa. That is,

H(t) = A(t)−. (7.73)

Thus, in a least-squares sense,

A(t)−Y ≈ A(t)−µ(t) + B(t)X. (7.74)

When t = s, two further relations hold,

(A(s)H(s))τ = A(s)H(s), (H(s)A(s))τ = H(s)A(s). (7.75)

Hence, in the full-rank case only, H(s) = A(s)+, the unique Moore–Penrose
generalized inverse of A(s) (see Section 3.2.7). Also, ν(s) = A(s)+µ(s).
Computationally, the CVA solution, ν(t), G(t), and H(t), can be obtained
directly from the RRR solution, µ(t), A(t), and B(t) (and, of course, vice
versa).

This relationship allows us to carry out a CVA using reduced-rank regres-
sion (RRR) routines. Moreover, the number t of pairs of canonical variates
with nonzero canonical correlations is equal to the rank t of the regres-
sion coefficient matrix C. This is a very important point. We have shown
that the pairs of canonical variates can be computed using a multivariate
RRR routine. Instead of having an isolated methodology for dealing with
two sets of correlated variables (as Hotelling developed), we can incorpo-
rate canonical variate analysis as an integral part of multivariate regression
methodology.
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The reduced-rank regression coefficient matrix corresponding to CVA is
given by

C(t)
CV A = Σ1/2

Y Y

⎛
⎝

t∑
j=1

vjvτ
j

⎞
⎠Σ−1/2

Y Y ΣY XΣ−1
XX , (7.76)

where vj is the eigenvector associated with the jth largest eigenvalue λj

of R.
Because the (s × s)-matrix R plays such a major role in CVA, the fol-

lowing special cases may aid in its interpretation.
• When s = 1, R reduces to the squared multiple correlation coefficient

(also called the population coefficient of determination) of Y with the
best linear predictor of Y using X1,X2, . . . , Xr,

R = ρ2
Y.X,···,Xr

=
στ

Y XΣ−1
XXσXY

σ2
Y

, (7.77)

where σ2
Y is the variance of Y and σXY is the r-vector of covariances

of Y with X.

• When r = s = 1, R is the squared correlation coefficient between Y
and X,

R = ρ2 =
σ2

XY

σ2
Xσ2

Y

, (7.78)

where σ2
X and σ2

Y are the variances of X and Y , respectively, and
σXY is the covariance between X and Y .

The jth canonical correlation coefficient, ρj , can, therefore, be inter-
preted as the multiple correlation coefficient of either ξj with Y or ωj with
X. Using a multiple regression analogy, we can interpret ρj either as that
proportion of the variance of ξj that is attributable to its linear regression
on Y or as that proportion of the variance of ωj that is attributable to its
linear regression on X.

7.3.5 CVA as a Correlation-Maximization Technique

Hotelling’s approach to CVA maximized correlations between linear com-
binations of X and of Y. Consider, again, the arbitrary linear projections
ξ = gτX and ω = hτY, where, for the sake of convenience and with no
loss of generality, we assume that E(X) = µX = 0 and E(Y) = µY = 0.
Then, both ξ and ω have zero means. We further assume that they both
have unit variances; that is, gτΣXXg = 1 and hτΣY Y h = 1.

The first step is to find the vectors g and h such that the random variables
ξ and ω have maximal correlation,

corr(ξ, ω) = gτΣXY h, (7.79)
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among all such linear functions of X and Y. To find g and h to maximize
(7.79), we set

f(g,h) = gτΣXY h− 1
2
λ(gτΣXXg − 1)− 1

2
µ(hτΣY Y h− 1), (7.80)

where λ and µ are Lagrangian multipliers. Differentiate f(g,h) with respect
to g and h, and then set both partial derivatives equal to zero:

∂f

∂g
= ΣXY h− λΣXXg = 0, (7.81)

∂f

∂h
= ΣY Xg − µΣY Y h = 0. (7.82)

Multiplying (7.81) on the left by gτ and (7.82) on the left by hτ , we obtain

gτΣXY h− λgτΣXXg = 0, (7.83)

hτΣY Xg − µhτΣY Y h = 0, (7.84)

respectively, whence, the correlation between ξ and ω satisfies

gτΣXY h = λ = µ. (7.85)

Rearranging terms in (7.83), and then substituting λ for µ into (7.84), we
get that

−λΣXXg + ΣXY h = 0, (7.86)

ΣY Xg − λΣY Y h = 0. (7.87)

Premultiplying (7.86) by ΣY XΣ−1
XX , then substituting (7.87) into the re-

sult, and rearranging terms gives

(ΣY XΣ−1
XXΣXY − λ2ΣY Y )h = 0. (7.88)

which is equivalent to

(Σ−1/2
Y Y ΣY XΣ−1

XXΣXY Σ−1/2
Y Y − λ2Is)h = 0. (7.89)

For there to be a nontrivial solution to this equation, the following deter-
minant has to be zero:

|Σ−1/2
Y Y ΣY XΣ−1

XXΣXY Σ−1/2
Y Y − λ2Is| = 0. (7.90)

It can be shown that the determinant in (7.90) is a polynomial in λ2 of
degree s, having s real roots, λ2

1 ≥ λ2
2 ≥ · · · ≥ λ2

s ≥ 0, say, which are the
eigenvalues of

R = Σ−1/2
Y Y ΣY XΣ−1

XXΣXY Σ−1/2
Y Y (7.91)

with associated eigenvectors v1,v2, . . . ,vs. The maximal correlation be-
tween ξ and ω would, therefore, be achieved if we took λ = λ1, the largest
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eigenvalue of R. The resultant choice of coefficients g and h of ξ and ω,
respectively, are given by the vectors

g1 = Σ−1
XXΣXY Σ−1/2

Y Y v1, h1 = Σ−1/2
Y Y v1; (7.92)

compare with (7.65) and (7.66). In other words, the first pair of canonical
variates is given by (ξ1, ω1), where ξ1 = gτ

1X and ω1 = hτ
1Y, and their

correlation is corr(ξ1, ω1) = gτ
1ΣXY h1 = λ1.

Given (ξ1, ω1), let ξ = gτX and ω = hτY denote a second pair of ar-
bitrary linear projections with unit variances. We require (ξ, ω) to have
maximal correlation among all such linear combinations of X and Y, re-
spectively, which are also uncorrelated with (ξ1, ω1). This last condition
translates into gτΣXXg1 = hτΣY Y h1 = 0. Furthermore, by (7.86) and
(7.87), we require

corr(ξ, ω1) = gτΣXY h1 = λ1gτΣXXg1 = 0, (7.93)

corr(ω, ξ1) = hτΣY Xg1 = λ1hτΣY Y h1 = 0. (7.94)

We choose g and h to maximize (7.79) subject to the above conditions. Set

f(g,h) = gτΣXY h− 1
2
λ(gτΣXXg − 1)− 1

2
µ(hτΣY Y h− 1)

+ ηgτΣXXg1 + νhτΣY Y h1, (7.95)

where λ, µ, η, and ν are Lagrangian multipliers. Differentiate f(g,h) with
respect to g and h, and then set both partial derivatives equal to zero:

∂f

∂g
= ΣXY h− λΣXXg + ηΣXXg1 = 0, (7.96)

∂f

∂h
= ΣY Xg − µΣY Y h + νΣY Y h1 = 0. (7.97)

Multiplying (7.96) on the left by gτ and (7.97) on the left by hτ , and
taking note of (7.93) and (7.94), these equations reduce to (7.86) and (7.87),
respectively. We, therefore, take the second pair of canonical variates to be
(ξ2, ω2), where

g2 = Σ−1
XXΣXY Σ−1/2

Y Y v2, h2 = Σ−1/2
Y Y v2, (7.98)

and their correlation is corr(ξ2, ω2) = gτ
2ΣXY h2 = λ2.

We continue this sequential procedure, deriving eigenvalues and eigen-
vectors, until no further solutions can be found. This gives us sets of co-
efficients for the pairs of canonical variates, (ξ1, ω1), (ξ2, ω2), . . . , (ξk, ωk),
k = min(r, s), where the ith pair of canonical variates (ξi, ωi) is obtained
by choosing the coefficients gi and hi such that (ξi, ωi) has the largest cor-
relation among all pairs of linear combinations of X and Y that are also
uncorrelated with all previously derived pairs, (ξj , ωj), j = 1, 2, . . . , i− 1.
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7.3.6 Sample Estimates

Thus, G and H are estimated by

Ĝ(t) =

⎛
⎜⎝

v̂τ
1
...

v̂τ
t

⎞
⎟⎠ Σ̂−1/2

Y Y Σ̂Y XΣ̂−1
XX =

⎛
⎜⎝

λ̂1ûτ
1

...
λ̂tûτ

t

⎞
⎟⎠ Σ̂−1/2

XX , (7.99)

Ĥ(t) =

⎛
⎜⎝

v̂τ
1
...

v̂τ
t

⎞
⎟⎠ Σ̂−1/2

Y Y , (7.100)

respectively, where ûj is the eigenvector associated with the jth largest
eigenvalue λ̂2

j of the (r × r) symmetric matrix

R̂∗ = Σ̂−1/2
XX Σ̂XY Σ̂−1

Y Y Σ̂Y XΣ̂−1/2
XX , (7.101)

j = 1, 2, . . . , t, and v̂j is the eigenvector associated with the jth largest
eigenvalue λ̂2

j of the (s× s) symmetric matrix

R̂ = Σ̂−1/2
Y Y Σ̂Y XΣ̂−1

XXΣ̂XY Σ̂−1/2
Y Y , (7.102)

j = 1, 2, . . . , t. The jth row of ξ̂ = Ĝ(t)X and the jth row of ω̂ = Ĥ(t)Y
together form the jth pair of sample canonical variates (ξ̂j , ω̂j) given by

ξ̂j = ĝτ
j X, ω̂j = ĥτ

j Y, (7.103)

with values (or canonical variate scores) of

ξ̂ij = ĝτ
j Xi, ω̂ij = ĥτ

j Yi, i = 1, 2, . . . , n, (7.104)

where
ĝτ

j = v̂τ
j Σ̂

−1/2
Y Y Σ̂Y XΣ̂−1

XX = λ̂jûτ
j Σ̂

−1/2
XX (7.105)

is the jth row of Ĝ = Ĝ(t) and

ĥτ
j = vτ

j Σ̂
−1/2
Y Y (7.106)

is the jth row of Ĥ = Ĥ(t). The sample canonical correlation coefficient for
the jth pair of sample canonical variates, (ξ̂j , ω̂j), is given by

ρ̂j = λ̂j =
ĝτ

j Σ̂XY ĥj

(ĝτ
j Σ̂XX ĝj)1/2(ĥτ

j Σ̂Y Y ĥj)1/2
, j = 1, 2, . . . , t, (7.107)

It is usually hoped that the first t pairs of sample canonical variates will
be the most important, exhibiting a major proportion of the correlation
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present in the data, whereas the remainder can be neglected without losing
too much information concerning the correlational structure of the data.
Thus, only those pairs of canonical variates with high canonical correlations
should be retained for further analysis.

An estimator of the rank-t regression coefficient matrix corresponding to
the canonical variates case is given by

Ĉ(t) = Σ̂1/2
Y Y

⎛
⎝

t∑
j=1

v̂jv̂τ
j

⎞
⎠ Σ̂−1/2

Y Y Σ̂Y XΣ̂−1
XX , (7.108)

where v̂j is the eigenvector associated with the jth largest eigenvalue of
R̂, j = 1, 2, . . . , s. When X and Y are jointly Gaussian, the asymptotic
distribution of Ĉ(t) in (7.108) is available (Izenman, 1975).

The exact distribution of the sample canonical correlations when X and
Y are jointly Gaussian and some of the population canonical correlations
are nonzero is extremely complicated, having the form of a hypergeometric
function of two matrix arguments (Constantine, 1963; James, 1964). In the
null case, when X and Y are independent and all the population canonical
correlations are zero, the exact density of the squares of the nonzero sample
canonical correlations is given by

p(x1, . . . , xt) = cr,s,n

s∏
j=1

[w(xj)]1/2
∏
j<k

(xj − xk), (7.109)

where the x1,≥ x2 ≥ · · · ≥ xs are the eigenvalues of R, w(x) = xr−s−1(1−
x)n−r−s−2 is the weight function corresponding to the Jacobi family of
orthogonal polynomials, and cr,s,n is a normalization constant depending
upon r, s, and n. For details, see, for example, Anderson (1984, Section
13.4). The second product in (7.106) is the Jacobian, also known as the
Vandermonde determinant (Johnstone, 2006). Asymptotic distribution re-
sults are also available when the first t canonical correlations are positive,
smaller than unity, and distinct.

7.3.7 Invariance

Unlike principal component analysis, canonical correlations are invari-
ant under simultaneous nonsingular linear transformation of the random
vectors X and Y. Suppose we consider linear transformations of X and Y:

X→ DX, Y → FY, (7.110)

where the (r×r)-matrix D and the (s×s)-matrix F are nonsingular. Then,
the canonical correlations of DX and FY are identical to those of X and
Y. See Exercise 7.11. A consequence of this result is that a CVA using the
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covariance matrix will yield the same canonical correlations as a CVA using
the corresponding correlation matrix.

7.3.8 How Many Pairs of Canonical Variates to Retain?

Because the question of how many pairs of canonical variates to retain is
equivalent to determining the rank t of the regression coefficient matrix C(t)

in a reduced-rank regression for CVA, we approach this problem as a rank-
determination problem. Although X and Y are treated symmetrically in
CVA, the RRR formulation turns CVA into a supervised learning technique.
Prediction error can be used as a measure of how good X is in predicting
Y using cross-validation. In the case of the rank trace, no reductions of the
expressions for the coordinates of the plotted points can be obtained for
the CV case as we were able to do for the PC case. The CV rank trace can
have points plotted on the exterior to the unit square, and the sequence of
points may not be monotonically decreasing; we can, however, introduce
a regularization parameter into the rank-trace computations to keep the
plotted points within the unit square.

7.4 Projection Pursuit

Projection pursuit (PP) was motivated by the desire to discover “interest-
ing” low-dimensional (typically, one- or two-dimensional) linear projections
of high-dimensional data (Friedman and Tukey, 1974). The Gaussian dis-
tribution, which has always occupied a central place in statistical theory
and application, turns out to be “least interesting” when dealing with low-
dimensional projections of multivariate data. This is due to the fact that
each of the marginals of a multivariate Gaussian distribution is Gaussian
and that most low-dimensional projections of high-dimensional data look
approximately Gaussian-distributed (Diaconis and Freedman, 1984). We
should, therefore, not expect to see unusual patterns or structure in low-
dimensional projections of highly multivariate data.

PP was originally driven by the desire to expose specific non-Gaussian
features (variously referred to as “local concentration,” “clusters of distinct
groups,” “clumpiness,” or “clottedness”) of the data. An exhaustive search
for such features is clearly impossible, and so the search was automated.
Indexes of interestingness were created and optimized numerically in an
attempt to imitate how users instinctively (by eye) choose interesting pro-
jections. This formulation was later replaced by a search for projections
that are as far from Gaussianity as possible.

The general strategy behind PP consists of the following two-step pro-
cess:
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1. Set up a projection index I to judge the merit of a particular one-
or two-dimensional (or sometimes three-dimensional) projection of a
given set of multivariate data.

2. Use an optimization algorithm to find the global and local extrema of
that projection index over all m-dimensional projections of the data
(m = 1, 2 or 3).

For a given m, the optimization step determines the most informative m-
dimensional projection of the data. A graphical display of the projections
is the output of choice in practice.

7.4.1 Projection Indexes

Huber (1985) argues that projection indexes should be chosen to pos-
sess certain computational and analytical properties, especially that of
affine invariance (location and scale invariance). Examples of affine invari-
ant indexes include absolute cumulants (e.g., skewness and kurtosis), and
Shannon negative entropy (negentropy), both of which are nonnegative in
general, but are equal to zero if the underlying distribution is Gaussian.
If, however, the data are centered and sphered (having mean zero and
covariance matrix the identity), then there is no reason to require affine
invariance of the projection index because every projection of the sphered
data inherits its properties (i.e., also has mean zero and covariance matrix
the identity).

A special case of PP occurs when the projection index is the variance,
var(Y ) = wτΣXXw, of the unit-length projection Y = wτx. In this case,
maximizing the variance with respect to w reduces PP to PCA, and the
resulting projections are the leading principal components of X. Bolton
and Krzanowski (1999) show that maximizing the variance is equivalent to
minimizing the corresponding Gaussian log-likelihood; in other words, the
projection is most interesting (in a variance sense) when X is least likely
to be Gaussian.

Cumulant-Based Index

The absolute value of kurtosis, |κ4(Y )|, of the one-dimensional projection
Y = wτX has been widely used as a measure of non-Gaussianity of Y . It
has value zero for a Gaussian variable and is positive for a non-Gaussian
variable. An unbiased estimate of κ4(Y ) is given by the so-called k-statistic
k4 (see, e.g., Kendall and Stuart, 1969, p. 280). Although κ4(Y ) is affine
invariant and fast to compute, it is not robust, and outliers can have a
pretty drastic effect on estimates of |κ4(Y )|.
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In fact, maximizing or minimizing the kurtosis, κ4(Y ), of projected data
Y with respect to direction w has been advocated as a way of detecting
multivariate outliers (Gnanadesikan and Kettenring, 1972; Peña and Prieto,
2001). A maximal value of kurtosis would result from a small, concentrated
amount of outlier contamination, whereas a minimal value of kurtosis would
be due to a large amount of contamination.

Polynomial-Based Indexes

Let Y = wτX denote a continuous random variable having probabil-
ity density function pY (y). Polynomial-based projection indexes take the
general form of weighted versions of integrated squared error,

I(Y ) =
∫

[φ(y)− pY (y)]2w(y)dy, (7.111)

where w(y) is a given weight function on 
. Examples of w(y) include
w(y) = 1/φ(y), 1, and φ(y), where φ(y) is the standard Gaussian density
with zero mean and unit variance.

Now, Y is standard Gaussian with density φ(y) iff U = 2Φ(Y ) − 1 is
uniformly distributed on the interval [−1, 1], where Φ(Y ) =

∫ Y

−∞ φ(y)dy
(see Exercise 7.12). Hence, the integrated squared error between the density
of U , pU (u), say, and the uniform density,

IF (Y ) =
∫ 1

−1

[pU (u)− 1
2
]2du =

∫ 1

−1

[pU (u)]2du− 1
2

, (7.112)

can be used as a projection index (Friedman, 1987). The idea is that the
further pU (u) is from the uniform density, the further Y would be from
Gaussianity. It turns out that this index, if transformed back to the orig-
inal scale, can be reexpressed as (7.111) with w(y) = 1/φ(y), assuming
pY (y)/[φ(y)]1/2 is square-integrable. For heavy-tailed pY (y), IF (Y ) can be
infinite, and so will not be very useful as a projection index. It can be
shown that IF (Y ) can be approximated by

IF (Y ) ≈ [κ3(Y )]2

12
+

[κ4(Y )]2

48
, (7.113)

which is the moment-based projection index of Jones and Sibson (1987).
Interestingly enough, it turns out that outliers in projected data are not

unusual. In simulation experiments using a moment-based index similar
to (7.113) (see Friedman and Johnstone’s discussions of Jones and Sibson,
1987), outliers were observed to appear repeatedly in projections of even
well-behaved multivariate Gaussian data. Furthermore, there is no obvious
way to robustify (7.113).
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Another possibility is take w(y) = 1 in I(Y ) (Hall, 1989). It is not
difficult to show that Hall’s index, IH(Y ), can be approximated by

I0
H(Y ) ∝ (E{φ(Y )} − E{φ(Z)})2, (7.114)

where Z is standard Gaussian and E{φ(Z)} = (2π1/2)−1. Hall’s index (and
its two-dimensional analogue) appears to identify projections of the data
that have a “hole” in their center (Cook, Buja, Cabrera, and Hurley, 1995).

Taking w(y) = φ(y) in I(Y ) puts more weight around the center of
the distribution, rather than at the tails (Cook, Buja, and Cabrera, 1993).
It can be shown that ICBC(Y ) can also be approximated by (7.114). We
shall see a generalized form of (7.114) again when we discuss independent
component analysis.

Two-dimensional projection indexes are generally built by simple exten-
sions of their one-dimensional versions. Suppose X has been centered and
sphered as before. Let Y = (Y1, Y2)τ be a bivariate projection of X, where
Y1 = wτ

1X and Y2 = wτ
2X. We want to find w1 and w2 so that Y1 and Y2 are

uncorrelated (i.e., wτ
1w2 = 0) and that the joint distribution, pY (y1, y2), of

(Y1, Y2) has some interesting structure. Furthermore, we require the pro-
jections to have equal variances (i.e., wτ

1w1 = wτ
2w2 = 1). In this case,

the bivariate Gaussian density, φ(y1, y2), is deemed the least-interesting
two-dimensional structure.

Shannon Negentropy

The entropy of a random variable, which was introduced by Claude
E. Shannon in 1948, has become a valuable concept in information the-
ory. The entropy of the random variable Y gives us a notion of how much
information is contained in Y . Essentially, entropy is largest when Y has
greatest variance (i.e., when Y is most unpredictable). If Y is a contin-
uous random variable with probability density function pY (y), then the
(differential) entropy H(Y ) of Y is defined by

H(Y ) = −
∫

pY (y) log pY (y)dy. (7.115)

Among all random variables having equal variance, the largest value of
H(Y ) occurs when Y has a Gaussian distribution (Rao, 1965, p. 132).
Small values of H(Y ) occur when the distribution of Y is concentrated on
specific values. Huber (1985) had the idea of using differential entropy as
a measure of non-Gaussianity and, hence, as a projection index.

If we normalize H(Y ) so that it has the value zero for a Gaussian variable
and otherwise is always nonnegative, we arrive at negentropy defined by

J (Y ) = H(Z)−H(Y ), (7.116)
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where Z is a Gaussian random variable having the same variance as Y . If
Z ∼ N (0, 1), it is easy to show that H(Z) = 1

2 [1 + log 2π] ≈ 1.419. Jones
and Sibson (1987) derive an efficient projection index based upon J (Y ).

7.4.2 Optimizing the Projection Index

Given a projection index, the next step is to optimize that index, if pos-
sible using an algorithm with high speed and low memory requirements.
Researchers have preferred different types of optimizing algorithms, includ-
ing steepest ascent and genetic algorithms. In fact, projection indexes are
notorious for getting trapped in numerous local maxima. Getting trapped
repeatedly in suboptimal local maxima can delay convergence to the global
maximum. It is important, therefore, to use a numerical optimizer that has
the ability to avoid such local maxima.

7.5 Visualizing Projections Using Dynamic
Graphics

Graphical methods are vital tools for exploring multivariate data. Most
statistical graphics methods in common use today can be classified as static
graphics, such as scatterplots, scatterplot matrices, and displays of projec-
tion pursuit results. Additional details from statistic displays can be visu-
alized by using a range of colors or different shapes, characters, or symbols
for various levels or characteristics of the data.

Innovative and more informative dynamic graphics were devised by John
W. Tukey during the early 1970s for visually searching for low-dimensional
structure within multivariate data. Such searches were enhanced by the
development of custom-designed computer hardware and software (PRIM-
9) to carry out the operations of picturing (“an ability to look at data
from several different directions in multidimensional space”), rotation (“at
a minimum, the ability to turn the data so that it can be viewed from any
direction that is chosen”), masking (“the ability to select suitable subre-
gions of the multidimensional space for consideration”), and isolation (“the
ability to select any subsample of the data points for consideration”) in up
to 9 dimensions (Fisherkeller, Friedman, and Tukey, 1974).

The graphical data analysis concepts embedded in PRIM-9 have been
upgraded and enhanced by the XGobi/GGobi data visualization system
(Swayne, Cook, and Buja, 1998; Cook, Buja, Cabrera, and Hurley, 1995).
Examples of the types of dynamic graphics included in the XGobi/GGobi

system are
• The grand tour (Asimov, 1985) of data recorded on an r-dimensional

set of variables, X, seeks to generate a continuous sequence of
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low-dimensional projections of the X-data, where projections are vi-
sualized in one, two, or three dimensions and are designed to be rep-
resentative of all possible projections of the data.

• The correlation tour of data recorded on two nonoverlapping sets of
variables, an r-dimensional set X and an s-dimensional set Y, seeks
to generate a continuous sequence of one-dimensional projections of
the X-data and of the Y-data in order to display the amount of
correlation in those projections.

The grand tour can be regarded as a dynamic version of PCA and the cor-
relation tour as a dynamic version of CVA. The main problem is the huge
number of potentially interesting projections. Some guidance is, therefore,
needed. For both tours, “interesting” projections can be automatically se-
lected by optimizing one of the objective functions associated with projec-
tion pursuit methods. The objective functions discussed above are included
in a menu of indexes in the XGobi/GGobi system.

7.6 Software Packages

PCA is included in R, S-Plus, SAS, SPSS, Matlab, and Minitab. CVA
(or CCA) is usually confused with linear discriminant analysis (see, e.g.,
Venables and Ripley, 2002, p. 332), which is a special case of CVA (see
Chapter 8). CVA — in the sense of this chapter — is not included in most
major software packages.

PCA and CVA are included as special cases of multivariate reduced-
rank regression in the RRR+Multanl package, which can be downloaded
from the book’s website. Versions of this package are available for use with
R, S-Plus, and Matlab.

Bibliographical Notes

Classical descriptions of PCA and CVA can be found in any text on mul-
tivariate analysis; in particular, we recommend Anderson (1984, Chapters
11 and 12) and Seber (1984, Chapter 5) for theoretical treatments and
Gnanadesikan (1977, Chapters 2 and 3) and Lattin, Carroll, and Green
(2003, Chapters 4 and 9) for applied viewpoints. Detailed treatments of
PCA can be found in Jackson (2003) and Jolliffe (1986). The relationships
between multivariate reduced-rank regression and PCA and CVA can be
found in Izenman (1975).

The original concept of projection pursuit was formulated by Kruskal
(1969, 1972), but it was Friedman and Tukey (1974) who gave it the catchy
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name. The development of PP was based upon the experience (and frus-
trations) of working with an interactive computer graphics program called
PRIM-9 (Fisherkeller, Friedman, and Tukey, 1974), which was the first pro-
gram to use operations such as picturing, rotation, isolation, and masking
for visually exploring multivariate data in up to 9 dimensions. The high-
point of PRIM-9 was a 25-minute movie taken in 1974 of Tukey analyzing
high-dimensional particle physics data. Friedman and Stuetzle (2002) give
an historical account of the origins and development of PRIM-9 and PP.
The XGobi/GGobi computer graphics programs are the improved and
enhanced descendants of PRIM-9. PP has recently been rediscovered by
researchers in independent component analysis (see Chapter 15).

Exercises

7.1 Generate a random sample of size n = 100 from a three-dimensional
(r = 3) Gaussian distribution, where one of the variables has very high
variance (relative to the other two). Carry out PCA on these data using
the covariance matrix and the correlation matrix. In each case, find the
eigenvalues and eigenvectors, draw the scree plot, compute the PC scores,
and plot all pairwise PC scores in a matrix plot. Compare results.

7.2 Carry out a RRR on the data from Exercise 7.1 using the PCA for-
mulation (i.e., Y = X, Γ = Ir). Compute the rank trace and determine
the number of principal components to retain. Compare results with those
of Exercise 7.1.

7.3 In the file turtles.txt, there are three variables, length, width, and
height, of the carapaces of 48 painted turtles, 24 female and 24 male.
Take logarithms of all three variables. Estimate the mean vector and co-
variance matrix of the male turtles and of the female turtles separately.
Find the eigenvalues and eigenvectors of each estimated covariance matrix
and carry out a PCA of each data set. Find an expression for the volume
of a turtle carapace for males and for females. (Hint: use the fact that the
variables are logarithms of the original measurements.) Compare volumes
of male and female carapaces.

7.4 In the pen-based handwritten digit recognition (pendigits) exam-
ple of Section 7.2.1, compute the variance of each of the 16 variables and
show that they are very similar. Then, carry out PCA using the covari-
ance matrix. How many PCs explain 80% and 90% of the total variation
in the data? Display the first three PCs using pairwise scatterplots as in
Figure 7.1. Do you see any differences between a covariance-based and a
correlation-based PCA for this example?
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7.5 For the pendigits data, draw the scree plot and the rank trace plot.
How many PCs would you retain based upon each plot? Do you get the
same answer from both plots?

7.6 For the principal components case, show that the points in the PC
rank trace are given by (7.38) and (7.39).

7.7 The file SwissBankNotes.txt consists of six variables measured on 200
old Swiss 1,000-franc bank notes. The first 100 are genuine and the second
100 are counterfeit. The six variables are length of the bank note, height
of the bank note, measured on the left, height of the bank note, measured
on the right, distance of inner frame to the lower border, distance of inner
frame to the upper border, and length of the diagonal. Carry out a PCA
of the 100 genuine bank notes, of the 100 counterfeit bank notes, and of all
200 bank notes combined. Do you notice any differences in the results?

7.8 In Section 5.5, condition number and condition indices were discussed
as a means of detecting and identifying ill-conditioned data and collinearity
in regression problems. How would such measures help in PCA or CVA?
Compute these various statistics for the pendigits data.

7.9 Carry out a PCA of Fisher’s iris data. These data consist of 50
observations on each of three species of iris: Iris setosa, Iris versicolor, and
Iris virginica. The four measured variables are sepal length, sepal width,
petal length, and petal width. Ignore the species labels. Compute the PC
scores and plot all pairwise sets of PC scores in a matrix plot. Explain your
results, taking into consideration the species labels.

7.10 Consider an (r × r) correlation matrix with the same correlation,
ρ, say, in the off-diagonal entries. Find the eigenvalues and eigenvectors of
this matrix when r = 2, 3, 4. Generalize your results to any r variables. As
examples, set ρ = 0.1, 0.3, 0.5, 0.7, 0.9.

7.11 Show that the set of canonical variates is invariant under simultaneous
nonsingular linear transformations of the random vectors X and Y.

7.12 Let r = s = 2 and suppose the equicorrelation model holds for X

and Y. Then, ΣXX = ΣY Y =
(

1 ρ
ρ 1

)
and ΣXY =

(
ρ ρ
ρ ρ

)
. Find the

canonical correlations and the canonical variates. Generalize your results
to general r and s. Find the matrix R and the RRR solutions for t = 1, 2.

7.13 For the COMBO-17 galaxy data, compute a rank-2 multivariate RRR
of Y on X in which Γ = Σ−1

Y Y for the CV situation. Compute the multi-
variate residuals from the regression, plot them in any way you regard as
interesting, and try to find the outliers mentioned in the example.
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7.14 Show that Y is standard Gaussian with density φ(y) iff U = 2Φ(Y )−1
is uniformly distributed on the interval [−1, 1], where Φ(Y ) =

∫ Y

−∞ φ(y)dy.

7.15 Draw the density of the eigenvalues of a Wishart matrix, XX τ ∼
Wr(n, Ir), where r/n→ γ ∈ (0,∞), for γ equal to 0.2, 0.5, 1, 4, 9, 16.
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Linear Discriminant Analysis

8.1 Introduction

Suppose we are given a learning set L of multivariate observations (i.e., in-
put values in 
r), and suppose each observation is known to have come from
one of K predefined classes having similar characteristics. These classes may
be identified, for example, as species of plants, levels of credit worthiness
of customers, presence or absence of a specific medical condition, differ-
ent types of tumors, views on Internet censorship, or whether an e-mail
message is spam or non-spam. To distinguish the known classes from each
other, we associate a unique class label (or output value) with each class;
the observations are then described as labeled observations.

In each of these situations, there are two main goals:

Discrimination: Use the information in a learning set of labeled observa-
tions to construct a classifier (or classification rule) that will separate
the predefined classes as much as possible.

Classification: Given a set of measurements on a new unlabeled observa-
tion, use the classifier to predict the class of that observation.

A classifier is a combination of the input variables. In the machine learn-
ing literature, discrimination and classification are described as supervised

A.J. Izenman, Modern Multivariate Statistical Techniques,
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learning techniques; together, they are also referred to as tasks of class
prediction.

Whether these goals are at all achievable depends upon the information
provided by the input variables. When there are two classes (i.e., K = 2),
we need only one classifier, and when there are more than two classes, we
need at least two (and at most K − 1) classifiers to differentiate between
the classes and to predict the class of a future observation.

Consider the following medical diagnosis example. If a patient enters the
emergency room with severe stomach pains and symptoms consistent with
both food poisoning and appendicitis, a decision has to be made as to which
illness is more likely for that patient; only then can the patient be treated.
For this example, the problem is that the appropriate treatment for one
cause of illness is the opposite treatment for the other: appendicitis requires
surgery, whereas food poisoning does not, and an incorrect diagnosis could
lead to a fatal result. In light of the results from the clinical tests, the
physician has to decide upon a course of treatment to maximize the like-
lihood of success. If the combination of test results points in a particular
direction, surgery is recommended; otherwise, the physician recommends
a non-surgical treatment. A classifier is constructed from past experience
based upon the test results of previously treated patients (the learning
set). The more reliable the classifier, the greater the chance for a successful
diagnostic outcome for a future patient.

Similarly, a credit card company or a bank uses loan histories of past cus-
tomers to decide whether a new customer would be a good or bad credit
risk; a post office uses handwriting samples of a large number of individ-
uals to design an automated method for distinguishing between different
handwritten digits and letters; molecular biologists use gene expression
data to distinguish between known classes of tumors; political scientists
use frequencies of word usage to identify the authorship of different politi-
cal tracts; and a person who uses e-mail would certainly like to have a filter
that recognizes whether a message is spam or not.

In this chapter, we focus upon the most basic type of classifier: a linear
combination of the input variables. This problem has been of interest to
statisticians since R.A. Fisher introduced the linear discriminant function
(Fisher, 1936).

8.1.1 Example: Wisconsin Diagnostic Breast Cancer Data

Breast cancer is the second largest cause of cancer deaths among women.
Three methods of diagnosing breast cancer are currently available: mam-
mography; fine needle aspirate (FNA) with visual interpretation; and sur-
gical biopsy. Although biopsies are the most accurate in distinguishing
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TABLE 8.1. Ten variables for the Wisconsin breast cancer study.

radius Radius of an individual nucleus
texture Variance of gray levels inside the boundary of the nucleus
peri Distance around the perimeter of the nucleus
area Area of the nucleus
smooth Smoothness of the contour of a nucleus as measured by the

local variation of radial segments
comp A measure of the compactness of a cell nucleus using the

formula (peri)2/area
scav Severity of concavities or indentations in a cell nucleus using a

size measurement that emphasizes small indentations
ncav Number of concave points or indentations in a cell nucleus
symt Symmetry of a cell nucleus
fracd Fractal dimension (of the boundary) of a cell

malignant lumps from benign ones, they are invasive, time consuming, and
costly.

A computer imaging system has recently been developed at the Uni-
versity of Wisconsin-Madison (Street, Wolberg, and Mangasarian, 1993;
Mangasarian, Street, and Wolberg, 1995) with the goal of developing a
procedure that diagnoses FNAs with very high accuracy. A small-gauge
needle is used to extract a fluid sample (i.e., FNA) from a patient’s breast
lump or mass (detected by self-examination and/or mammography); the
FNA is placed on a glass slide and stained to highlight the nuclei of the
constituent cells; an image from the FNA is transferred to a workstation
by a video camera mounted on a microscope; and the exact boundaries of
the nuclei are determined.

Ten variables of the nucleus of each cell are computed from fluid samples.
They are listed in Table 8.1. The variables are constructed so that larger
values would typically indicate a higher likelihood of malignancy. For each
image consisting of 10–40 nuclei, the mean value (mv), extreme value (i.e.,
largest or worst value, biggest size, most irregular shape) (ev), and standard
deviation (sd) of each of these cellular features are computed, resulting in
a total of 30 real-valued variables. The 30 variables are

(1) radius.mv, (2) texture.mv, (3) peri.mv, (4) area.mv, (5) smooth.mv,
(6) comp.mv, (7) scav.mv, (8) ncav.mv, (9) symt.mv, (10) fracd.mv, (11)
radius.sd, (12) texture.sd, (13) peri.sd, (14) area.sd, (15) smooth.sd,
(16) comp.sd, (17) scav.sd, (18) ncav.sd, (19) symt.sd, (20) fracd.sd,
(21) radius.ev, (22) texture.ev, (23) peri.ev, (24) area.ev, (25)
smooth.ev, (26) comp.ev, (27) scav.ev, (28) ncav.ev, (29) symt.ev, (30)
fracd.ev.
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Because all 30 variables consist of nonnegative measurements with skewed
histograms, we took natural logarithms of each variable before analyzing
the data. Data values of zero were replaced by the value 0.001 prior to
transforming. When we refer to variables in this example, we mean the
transformed variables.

The data set1 consists of 569 cases (images), of which 212 were diagnosed
as malignant (confirmed by biopsy) and 357 as benign (confirmed by biopsy
or by subsequent periodic medical examinations). Many pairs of the 30
variables are highly correlated; for example, 19 correlations are between 0.8
and 0.9, and 25 correlations are greater than 0.9 (six of which are greater
than 0.99). The problem is how best to separate the malignant from the
benign lumps (without performing surgery); a secondary problem is how
to do this using as few variables as possible.

To discriminate between the benign and malignant lumps, a linear dis-
criminant function (LDF) can be derived by estimating the coefficients for
an optimal linear combination of the 30 input variables. From the resulting
LDF, we compute a score for each of the 569 tumors, and we then separate
the scores by group.

Histograms of the scores on the LDF for the benign (group 0) and ma-
lignant (group 1) tumors are displayed in the left panel of Figure 8.1, and
kernel density estimates of the scores of the two groups (group 0 is the
left curve and group 1 is the right curve) are displayed in the right panel.
We can see a certain amount of overlap in the distribution of the LDF of
the two groups, showing that perfect discrimination between benign and
malignant tumors cannot be attained using the LDF with these data.

8.2 Classes and Features

We assume that the population P is partitioned into K unordered classes,
groups, or subpopulations, which we denote by Π1,Π2, . . . ,ΠK . Each item
in P is classified into one (and only one) of those classes. Measurements on
a sample of items are to be used to help assign future unclassified items to
one of the designated classes. The random r-vector X, given by

X = (X1, · · · ,Xr)τ , (8.1)

represents the r measurements on an item (i.e., X ∈ 
r). The variables
X1,X2, . . . , Xr are likely to be chosen because of their suspected ability

1The original data can be found in the file wdbc at the book’s website and in the
file breast-cancer-wisconsin/wdbc.data at the website http://www.ics.uci.edu/pub/

machine-learning-databases/.
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FIGURE 8.1. Left panel: Histograms of the scores on the (first) linear
discriminant function of the wdbc data set. Upper panel shows the histogram
for the benign images (group 0) and the lower panel shows the histogram for
the malignant images (group 1). Right panel: Kernel density estimates of
the two sets of scores on the (first) linear discriminant function (LD1).

to distinguish between the K classes. The variables in (8.1) are called dis-
criminating or feature variables, and the vector X is the feature vector.

It may sometimes be appropriate to include in an analysis the additional
classes of ΠD and ΠO to signify that decisions could not be made due to ei-
ther an element of doubt in the assignment or indications that certain items
constitute outliers and could not possibly belong to any of the designated
classes.

8.3 Binary Classification

Consider, first, the binary classification problem (K = 2) where we wish
to discriminate between two classes Π1 and Π2, such as the “malignant”
and “benign” tumors in the breast cancer example.

8.3.1 Bayes’s Rule Classifier

Let
P(X ∈ Πi) = πi, i = 1, 2, (8.2)

be the prior probabilities that a randomly selected observation X = x
belongs to either Π1 or Π2. Suppose also that the conditional multivariate
probability density of X for the ith class is

P(X = x|X ∈ Πi) = fi(x), i = 1, 2. (8.3)

We note that there is no requirement that the {fi(·)} be continuous; they
could be discrete or be finite mixture distributions or even have singular
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covariance matrices. From (8.2) and (8.3), Bayes’s theorem yields the pos-
terior probability,

p(Πi|x) = P(X ∈ Πi|X = x) =
fi(x)πi

f1(x)π1 + f2(x)π2
, (8.4)

that the observed x belongs to Πi, i = 1, 2.
For a given x, a reasonable classification strategy is to assign x to

that class with the higher posterior probability. This strategy is called the
Bayes’s rule classifier. In other words, we assign x to Π1 if

p(Π1|x)
p(Π2|x)

> 1, (8.5)

and we assign x to Π2 otherwise. The ratio p(Π1|x)/p(Π2|x) is referred to
as the “odds-ratio” that Π1 rather than Π2 is the correct class given the
information in x. Substituting (8.4) into (8.5), the Bayes’s rule classifier
assigns x to Π1 if

f1(x)
f2(x)

>
π2

π1
, (8.6)

and to Π2 otherwise. On the boundary {x ∈ Rr|f1(x)/f2(x) = π2/π1}, we
randomize (e.g., by tossing a fair coin) between assigning x to either Π1

or Π2.

8.3.2 Gaussian Linear Discriminant Analysis

We now make the Bayes’s rule classifier more specific by following Fisher’s
(1936) assumption that both multivariate probability densities in (8.3) are
multivariate Gaussian (see Section 3.3.2) having arbitrary mean vectors and
a common covariance matrix. That is, we take f1(·) to be a Nr(µ1,Σ1) den-
sity and f2(·) to be a Nr(µ2,Σ2) density, and we make the homogeneity
assumption that Σ1 = Σ2 = ΣXX .

The ratio of the two densities is given by

f1(x)
f2(x)

=
exp{− 1

2 (x− µ1)τΣ−1
XX(x− µ1)}

exp{− 1
2 (x− µ2)τΣ−1

XX(x− µ2)}
, (8.7)

where the normalization factors (2π)−r/2|ΣXX |−1/2 in both numerator and
denominator cancel due to the equal covariance matrices of both classes.
Taking logarithms (a monotonically increasing function) of (8.7), we have
that

loge

f1(x)
f2(x)

= (µ1 − µ2)
τΣ−1

XXx− 1
2
(µ1 − µ2)

τΣ−1
XX(µ1 + µ2) (8.8)

= (µ1 − µ2)
τΣ−1

XX(x− µ̄), (8.9)
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where µ̄ = (µ1 + µ2)/2. The second term in the right-hand side of (8.8)
can be written as

(µ1 − µ2)
τΣ−1

XX(µ1 + µ2) = µτ
1Σ

−1
XXµ1 − µτ

2Σ
−1
XXµ2. (8.10)

It follows that

L(x) = loge

{
f1(x)π1

f2(x)π2

}
= b0 + bτx (8.11)

is a linear function of x, where

b = Σ−1
XX(µ1 − µ2) (8.12)

b0 = −1
2
{µτ

1Σ
−1
XXµ1 − µτ

2Σ
−1
XXµ2}+ loge(π2/π1). (8.13)

Thus, we assign x to Π1 if the logarithm of the ratio of the two posterior
probabilities is greater than zero; that is,

if L(x) > 0, assign x to Π1. (8.14)

Otherwise, we assign x to Π2. Note that on the boundary {x ∈ Rr|L(x) =
0}, the resulting equation is linear in x and, therefore, defines a hyperplane
that divides the two classes. The rule (8.14) is generally referred to as
Gaussian linear discriminant analysis (LDA).

The part of the function L(x) in (8.11) that depends upon x,

U = bτx = (µ1 − µ2)
τΣ−1

XXx, (8.15)

is known as Fisher’s linear discriminant function (LDF). Fisher actually
derived the LDF using a nonparametric argument that involved no distri-
butional assumptions. He looked for that linear combination, aτX, of the
feature vector X that separated the two classes as much as possible. In
particular, he showed that a ∝ Σ−1

XX(µ1 −µ2) maximized the squared dif-
ference of the two class means of aτX relative to the within-class variation
of that difference (see Exercise 8.3).

Total Misclassification Probability

The LDF partitions the feature space 
r into disjoint classification re-
gions R1 and R2. If x falls into region R1, it is classified as belonging to Π1,
whereas if x falls into region R2, it is classified into Π2. We now calculate
the probability of misclassifying x.

Misclassification occurs either if x is assigned to Π2, but actually belongs
to Π1, or if x is assigned to Π1, but actually belongs to Π2. Define

∆2 = (µ1 − µ2)
τΣ−1

XX(µ1 − µ2) (8.16)
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to be the squared Mahalanobis distance between Π1 and Π2. Then,

E(U |X ∈ Πi) = bτµi = (µ1 − µ2)
τΣ−1

XXµi (8.17)

and
var(U |X ∈ Πi) = bτΣXXb = ∆2, (8.18)

for i = 1, 2. The total misclassification probability is, therefore,

P(∆) = P(X ∈ R2|X ∈ Π1)π1 + P(X ∈ R1|X ∈ Π2)π2, (8.19)

where

P(X ∈ R2|X ∈ Π1) = P(L(X) < 0|X ∈ Π1)

= P
(

Z < −∆
2
− 1

∆
loge

π2

π1

)

= Φ
(
−∆

2
− 1

∆
loge

π2

π1

)
(8.20)

and

P(X ∈ R1|X ∈ Π2) = P(L(X) > 0|X ∈ Π2)

= P
(

Z >
∆
2
− 1

∆
loge

π2

π1

)

= Φ
(
−∆

2
+

1
∆

loge

π2

π1

)
. (8.21)

In calculating these probabilities, we use the fact that L(X) = b0 + U , and
then standardize U by setting

Z =
U − E(U |X ∈ Πi)√

var(U |X ∈ Πi)
∼ N (0, 1).

In (8.20) and (8.21), Φ(·) is the cumulative standard Gaussian distribution
function. If π1 = π2 = 1/2, then

P(X ∈ R2|X ∈ Π1) = P(X ∈ R1|X ∈ Π2) = Φ(−∆/2),

and, hence, P(∆) = 2Φ (−∆/2).
A graph of P(∆) against ∆ shows a downward-sloping curve, as one

would expect; it has the value 1 when ∆ = 0 (i.e., the two populations
are identical) and tends to zero as ∆ increases. In other words, the greater
the distance between the two population means, the less likely one is to
misclassify x.

Sampling Scenarios

Usually, the 2r + r(r + 1)/2 distinct parameters in µ1, µ2, and ΣXX will
be unknown, but can be estimated from learning data on X. Assume, then,
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that we have available independent learning samples from the two classes
Π1 and Π2. Let {X1j} be a learning sample of size n1 taken from Π1 and
let {X2j} be a learning sample of size n2 taken from Π2.

The following different scenarios are possible when sampling from popu-
lation P:

1. Conditional sampling, where a sample of fixed size n = n1 + n2 is
randomly selected from P, and at a fixed x there are ni(x) observations
from Πi, i = 1, 2. This sampling scenario often appears in bioassays.

2. Mixture sampling, where a sample of fixed size n = n1+n2 is randomly
selected from P so that n1 and n2 are randomly selected. This is quite
common in discrimination studies.

3. Separate sampling, where a sample of fixed size ni is randomly selected
from Πi, i = 1, 2, and n = n1+n2. Overall, this is the most popular scenario.

In all three cases, ML estimates of b0 and b can be obtained (Anderson,
1982).

Sample Estimates

The ML estimates of µi, i = 1, 2, and ΣXX are given by

µ̂i = X̄i = n−1
i

ni∑
j=1

Xij , i = 1, 2, (8.22)

Σ̂XX = n−1SXX , (8.23)

respectively, where
SXX = S(1)

XX + S(2)
XX , (8.24)

and

S(i)
XX =

ni∑
j=1

(Xij − X̄i)(Xij − X̄i)τ , i = 1, 2, (8.25)

where n = n1 + n2. If we wish to compute an unbiased estimator of ΣXX ,
we can divide SXX in (8.24) by its degrees of freedom n− 2 = n1 + n2 − 2
(rather than by n) to make Σ̂XX .

The prior probabilities, π1 and π2, may be known or can be closely
approximated in certain situations from past experience. If π1 and π2 are
unknown, they can be estimated by

π̂i =
ni

n
, i = 1, 2, (8.26)

respectively. Substituting these estimates into L(x) in (8.11) yields

L̂(x) = b̂0 + b̂τx, (8.27)
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where
b̂ = Σ̂−1

XX(X̄1 − X̄2) (8.28)

b̂0 = −1
2
{X̄τ

1Σ̂
−1
XXX̄1 − X̄τ

2Σ̂
−1
XXX̄2}+ loge

n1

n
− loge

n2

n
(8.29)

are the ML estimates of b and b0, respectively. The classification rule as-
signs x to Π1 if L̂(x) > 0, and assigns x to Π2 otherwise.

The second term of L̂(x),

b̂τx = (X̄1 − X̄2)τ Σ̂−1
XXx, (8.30)

estimates Fisher’s LDF. For large samples (ni →∞, i = 1, 2), the distribu-
tion of b̂ in (8.28) is Gaussian (Wald, 1944). This result allows us to study
the separation of two given training samples, as well as the assumptions of
normality and covariance matrix homogeneity, by drawing a histogram or
normal probability plot of the LDF evaluated for every observation in the
training samples. Nonparametric density estimates of the LDF scores for
each class are especially useful in this regard; see, for example, Figure 8.1.

Example: Wisconsin Breast Cancer Data (Continued)

For the Wisconsin Diagnostic Breast Cancer Data, we estimate the priors
π1 and π2 by π̂1 = n1/n = 357/569 = 0.6274 and π̂2 = n2/n = 212/569 =
0.3726, respectively. The coefficients of the LDF are estimated by first
computing X̄1, X̄2, and the pooled covariance matrix Σ̂XX , and then using
(8.28). The results are given in Table 8.2.

The leave-one-out cross-validation (CV/n) procedure drops one obser-
vation from the data set, reestimates the LDF from the remaining n − 1
observations, and then classifies the omitted observation; the procedure is
repeated 569 times for each observation in the data set. The confusion table
for classifying the 569 observations is given in Table 8.3. In this table, the
row totals are the true classifications, and the column totals are the pre-
dicted classifications using Fisher’s LDF and leave-one-out cross-validation.

From Table 8.3, we see that LDA leads to too many malignant tumors
being misdiagnosed as “benign”: of the 212 malignant tumors, 192 are
correctly classified and 20 are not; and of the 357 benign tumors, 353 are
correctly classified and 4 are not. The misclassification rate for Fisher’s
LDF in this example is, therefore, estimated by CV/n as 24/569 = 0.042,
or 4.2%.

For comparison, the apparent error rate (i.e., the error rate obtained by
classifying each observation using the LDF, then dividing the number of
misclassified observations by n) is given by 19/569 = 0.033, or 3.3%, which
is clearly an overly optimistic estimate of the LDF misclassification rate.
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TABLE 8.2. Estimated coefficients of Fisher’s linear discriminant func-
tion for the Wisconsin diagnostic breast cancer data. All variables are log-
arithms of the original variables.

Variable Coeff. Variable Coeff. Variable Coeff.

radius.mv –30.586 radius.sd –2.630 radius.ev 6.283
texture.mv –0.317 texture.sd –0.602 texture.ev 2.313

peri.mv 35.215 peri.sd 0.262 peri.ev –3.176
area.mv –2.250 area.sd –3.176 area.ev –1.913

smooth.mv 0.327 smooth.sd 0.139 smooth.ev 1.540
comp.mv –2.165 comp.sd –0.398 comp.ev 0.528
scav.mv 1.371 scav.sd 0.047 scav.ev –1.161
ncav.mv 0.509 ncav.sd 0.953 ncav.ev –0.947
symt.mv –1.223 symt.sd –0.530 symt.ev 2.911
fracd.mv –3.585 fracd.sd –0.521 fracd.ev 4.168

8.3.3 LDA via Multiple Regression

The above results on LDA can also be obtained using multiple regression.
We create an indicator variable Y showing which observations fall into
which class, and then regress that Y on the feature vector X. Let

Y =
{

y1 if X ∈ Π1

y2 if X ∈ Π2
(8.31)

be the class labels and let

Y = (y11τ
n1

... y21τ
n2

) (8.32)

be the (1 × n) row vector whose components are the values of Y for all n
observations. Let

X = (X1

... X2) (8.33)

be an (r×n)-matrix, where X1 is the (r×n1)-matrix of observations from
Π1 and X2 is the (r × n2)-matrix of observations from Π2.

TABLE 8.3. Confusion table for the Wisconsin Diagnostic Breast Cancer
Data. Row totals are the true classifications and column totals are predicted
classifications using leave-one-out cross-validation.

Predicted Predicted
benign malignant Row total

True benign 353 4 357
True malignant 20 192 212

Column total 373 196 569
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Let
Xc = X − X̄ = XHn (8.34)

Yc = Y − Ȳ = YHn, (8.35)

where Hn = In − n−1Jn is the “centering matrix” and Jn = 1n1τ
n is an

(n× n)-matrix of ones.
If we regress the row vector Yc on the matrix Xc, the OLS estimator of

the multiple regression coefficient vector β is given by

β̂τ = YcX τ
c (XcX τ

c )−1. (8.36)

We have the following cross-product matrices:

XcX τ
c = SXX + kddτ , (8.37)

YcX τ
c = k(y1 − y2)dτ , (8.38)

YcYτ
c = k(y1 − y2)2, (8.39)

where
d = n−1

1 X11n1 − n−1
2 X21n2 = X̄1 − X̄2, (8.40)

SXX = X1Hn1X τ
1 + X2Hn2X τ

2 , (8.41)

and k = n1n2/n. See (8.23). Thus,

β̂τ = k(y1 − y2)dτ (SXX + kddτ )−1

= k(y1 − y2)dτS−1
XX(Ir + kddτS−1

XX)−1. (8.42)

From the matrix result (3.4), setting A = Ir, u = kd, and vτ = dτS−1
XX ,

we have that

(Ir + kddτS−1
XX)−1 = Ir −

kddτS−1
XX

1 + kdτS−1
XXd.

=
Ir

1 + kdτS−1
XXd

,

whence,

β̂ =
(

k(y1 − y2)
n− 2 + T 2

)
Σ̂−1

XXd, (8.43)

where Σ̂XX = SXX/(n− 2) and

T 2 = kdτ Σ̂−1
XXd =

n1n2

n
(X̄1 − X̄2)τ Σ̂−1

XX(X̄1 − X̄2) (8.44)

is Hotelling’s T 2 statistic, which is used for testing the hypothesis that
µ1 = µ2. Assuming multivariate normality,

(
n− r − 1
r(n− 2)

)
T 2 ∼ Fr,n−r−1 (8.45)
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when this hypothesis is correct (see, e.g., Anderson, 1984, Section 5.3.4).

Note that D2 = dτ Σ̂−1
XXd is proportional to an estimate of ∆2 (see

(8.16)). From (8.28) and (8.43), it follows that

β̂ ∝ Σ̂−1
XX(X̄1 − X̄2) = b̂. (8.46)

where the proportionality constant is n1n2(y1 − y2)/n(n1 + n2 − 2 + T 2).
This fact was first noted by Fisher (1936). Thus, we can obtain Fisher’s es-
timated LDF (8.28) (up to a constant of proportionality) through multiple
regression using an indicator response variable.

How should we choose the values y1 and y2? Four different choices are
given in Table 8.4. In choosing the values of y1 and y2, researchers were
initially concerned about ease of computation. The only part of β̂ in (8.43)
that depends upon y1 and y2 is y1 − y2. Thus, Fisher wanted y1 − y2 = 1
and Ȳ = 0; Bishop wanted k(y1 − y2) = n; Ripley wanted Ȳ = 0 and
the total sum of squares n1y

2
1 + n2y

2
2 = n; and Lattin, Carroll, and Green

wanted YcX τ
c = dτ . With the public availability of high-speed computers,

more simplistic choices are used, including (y1, y2) = (1, 0) or (1,−1). For-
tunately, it does not matter which values of (y1, y2) we pick: these different
choices of (y1, y2) yield β̂s that are proportional to each other.

Example: Wisconsin Diagnostic Breast Cancer Data (Continued)

When we regress Y (1 if the patient’s tumor is malignant and 0 otherwise)
on each of the 30 (log-transformed) variables one at a time, all but four of
the coefficients are declared to be significant. (A coefficient is “significant”
at the 5% level if its absolute t-ratio is greater than the value 2.0 and is
nonsignificant otherwise.)

At the other extreme, regressing Y on all 30 variables results in only
eight significant coefficients. Table 8.5 gives the multiple regression of Y on
the 30 (log-transformed) variables. The estimated coefficients in this table
are proportional to those given in Table 8.2 for the LDF. The ordered
magnitudes of the ratio of estimated coefficient to its estimated standard
error for all 30 variables is displayed in Figure 8.2.

Such conflicting behavior is probably due to high pairwise correlations
among the variables: 19 correlations are between 0.8 and 0.9, and 25 cor-
relations are greater than 0.9 (six of which are greater than 0.99).

8.3.4 Variable Selection

High-dimensional data often contain pairs of highly correlated variables,
which introduce collinearity into discrimination and classification problems.
So, variable selection becomes a priority. The connection between Fisher’s
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TABLE 8.4. Proposed values of (y1, y2) for LDA via multiple regression.

Author(s) (y1, y2)

Fisher (1936) (n2/n,−n1/n)
Bishop (1995, p. 109) (n/n1,−n/n2)

Ripley (1996, p. 102) ±(−(n2/n1)
1/2, (n1/n2)

1/2)
Lattin et al (2003, p. 437) (1/n1,−1/n2)

LDF and multiple regression provides us with a vehicle for selecting im-
portant discriminating variables. Thus, the variable selection techniques of
FS and BE stepwise procedures, Cp, LARS, and Lasso can all be used in
the discrimination context as well as in regression; see Exercise 8.10.

8.3.5 Logistic Discrimination

We see from (8.11) and the fact that p(Π2|x) = 1 − p(Π1|x) at X = x,
that the posterior probability density satisfies

logit p(Π1|x) = loge

(
p(Π1|x)

1− p(Π1|x)

)
= β0 + βτx, (8.47)

which has the form of a logistic regression model. The logistic approach to
discrimination assumes that the log-likelihood ratio (8.11) can be modeled
as a linear function of x. Inverting the relationship (8.47), we have that

p(Π1|x) =
eL(x)

1 + eL(x)
, (8.48)

p(Π2|x) =
1

1 + eL(x)
, (8.49)

where
L(x) = β0 + βτx. (8.50)

We can write (8.48) as

p(Π1|x) =
1

1 + e−L(x)
= σ(L(x)), (8.51)

say, where σ(u) = 1/(1+ e−u) in (8.51) is a sigmoid function (“S-shaped”)
(see Figure 8.3), taking values of u ∈ R onto (0, 1).

Maximum-Likelihood Estimation

In light of (8.50), we now write p(Π1|x) as p1(x, β0,β), and similarly for
p2(x, β0,β). Thus, instead of first estimating µ1, µ2, and ΣXX as we did
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TABLE 8.5. Multiple regression results for linear discriminant analysis on
the Wisconsin diagnostic breast cancer data. All variables are logarithms of
the original variables. Y is taken to be 1 if the patient’s tumor is malig-
nant and 0 if benign. Listed are the estimated regression coefficients, their
respective estimated standard errors, and the Z-ratio of those two values.
The multiple R2 is 0.777 and the F -statistic is 62.43 on 30 and 538 degrees
of freedom.

Coeff. S.E. Ratio

(Intercept) –14.348 3.628 –3.955
radius.mv –6.168 2.940 –2.098
texture.mv –0.064 0.217 –0.294

peri.mv 7.102 2.385 2.978
area.mv –0.454 1.654 –0.274

smooth.mv 0.066 0.233 0.284
comp.mv –0.437 0.162 –2.690
scav.mv 0.277 0.104 2.669
ncav.mv 0.103 0.094 1.096
symt.mv –0.247 0.167 –1.473
fracd.mv –0.723 0.353 –2.047

radius.sd –0.530 0.277 –1.915
texture.sd –0.122 0.080 –1.527

peri.sd 0.053 0.131 0.405
area.sd 0.691 0.271 2.555

smooth.sd 0.028 0.074 0.377
comp.sd –0.080 0.100 –0.800
scav.sd 0.010 0.096 0.100
ncav.sd 0.192 0.098 1.970
symt.sd –0.107 0.085 –1.255
fracd.sd –0.105 0.069 –1.516

radius.ev 1.267 1.922 0.659
texture.ev 0.467 0.283 1.647

peri.ev –0.641 0.800 –0.801
area.ev –0.386 1.012 –0.381

smooth.ev 0.311 0.259 1.200
comp.ev 0.106 0.173 0.617
scav.ev –0.234 0.135 –1.730
ncav.ev –0.191 0.126 –1.517
symt.ev 0.587 0.209 2.816
fracd.ev 0.841 0.255 3.292
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FIGURE 8.2. Multiple regression results for linear discriminant analysis
on the Wisconsin diagnostic breast cancer data. All input variables are
logarithms of the original variables. Listed are the variable names on the
vertical axis and the absolute value of the t-ratio for each variable on
the horizontal axis. The variables are listed in descending order of their
absolute t-ratios.

in (8.24) and (8.25) in order to estimate β0 and the coefficient vector β, we
can estimate β0 and β directly through (8.47).

We define a response variable Y that identifies the population to which
X belongs,

Y =
{

1 if X ∈ Π1
0 otherwise. (8.52)

The values of Y are the class labels. Conditional on X, the Bernoulli random
variable Y has P(Y = 1) = π1 and P(Y = 0) = 1 − π1 = π2. Thus, we
are interested in modeling binary data, and the usual way we do this is
through logistic regression.

Given n observations, (Xi, Yi), i = 1, 2, . . . , n, on (X, Y ), the conditional
likelihood for (β0,β) can be written as

L(β0,β) =
n∏

i=1

(p1(xi, β0,β))yi(1− p1(xi, β0,β))1−yi , (8.53)

whence, the conditional log-likelihood is

�(β0,β) =
n∑

i=1

{yi loge p1(xi, β0,β) + (1− yi) loge(1− p1(xi, β0,β))}
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FIGURE 8.3. Graph of σ(u) = 1/(1+e−u), the logistic sigmoid activation
function. For |u| small, σ(u) is very close to linear.

=
n∑

i=1

{
yi(β0 + βτxi)− loge(1 + eβ0+βτ

xi)
}

. (8.54)

The ML estimates, (β̃0, β̃), of (β0,β) are obtained by maximizing �(β0,β)
with respect to β0 and β. The maximization algorithm boils down to an
iterative version of a weighted least-squares procedure in which the weights
and the responses are updated at each iteration step. The details of the
iteratively reweighted least-squares algorithm are given below.

The maximum-likelihood estimates (β̃0, β̃) can be plugged into (8.50) to
give another estimate of the LDF,

L̃(x) = β̃0 + β̃ τx. (8.55)

The classification rule,

if L̃(x) > 0, assign x to Π1, (8.56)

otherwise, assign x to Π2, is referred to as logistic discriminant analysis. We
note that maximizing (8.54) will not, in general, yield the same estimates
for β0 and β as we found in (8.28) and (8.29) for Fisher’s LDF.

An equivalent classification procedure is to use L̃(x) in (8.55) to estimate
the probability p(Π1|x) in (8.48). Substituting L̃(x) into (8.48) yields the
estimate

p̃(Π1|x) =
eL̃(x)

1 + eL̃(x)
, (8.57)

so that x is assigned to Π1 if p̃(Π1|x) is greater than some cutoff value, say
0.5, and x is assigned to Π2 otherwise.
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Iteratively Reweighted Least-Squares Algorithm

It will be convenient (temporarily) to redefine the r-vectors xi and β as
the following (r +1)-vectors: xi ← (1,xτ

i )τ , and β ← (β0,β
τ )τ . Thus, β0 +

βτxi can be written more compactly as βτxi. We also write p1(xi, β0,β)
as p1(xi,β) and �(β0,β) as �(β).

Differentiating (8.54) and setting the derivatives equal to zero yields the
score equations:

�̇(β) =
∂�(β)
∂β

=
n∑

i=1

xi{yi − p1(xi,β)} = 0. (8.58)

These are r + 1 nonlinear equations in the r + 1 logistic parameters β.
From (8.58), we see that n1 =

∑n
i=1 p1(xi,β) and, hence, also that n2 =∑n

i=1 p2(xi,β).
The nonlinear equations (8.58) are solved using an algorithm known as

iteratively reweighted least-squares (IRLS). The second derivatives of �(β)
are given by the ((r + 1)× (r + 1)) Hessian matrix:

�̈(β) =
∂2�(β)
∂β∂βτ = −

n∑
i=1

xixτ
i p1(xi,β)(1− p1(xi,β)). (8.59)

The IRLS algorithm is based upon using the Newton–Raphson iterative
approach to finding ML estimates. Starting values of β̃(0) = 0 are recom-
mended. Then, the (k + 1)st step in the algorithm replaces the kth iterate
β̃(k) by

β̃(k+1) = β̃(k) − (�̈(β))−1�̇(β), (8.60)

where the derivatives are evaluated at β̃(k).
Using matrix notation, we set

X = (X1, · · · ,Xn), Y = (Y1, · · · , Yn)τ ,

to be an ((r + 1)×n) data matrix and n-vector, respectively, and let W =
diag{wi} be an (n× n) diagonal weight-matrix with ith diagonal element

wi = p1(xi, β̃)(1− p1(xi, β̃)), i = 1, 2, . . . , n.

The score vector of first derivatives (8.58) and the Hessian matrix (8.59)
can be written as

�̇(β) = X (Y − p1), �̈(β) = −XWX τ , (8.61)

respectively, where p1 is the n-vector
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p1 = (p1(x1, β̃), · · · , p1(xn, β̃))τ . (8.62)

Then, (8.60) can be written as:

β̃(k+1) = β̃(k) + (XWX τ )−1X (y − p1)

= (XWX τ )−1XW{X τ β̃(k) + W−1(y − p1)}
= (XWX τ )−1XWz, (8.63)

where
z = X τ β̃(k) + W−1(y − p1) (8.64)

is an n-vector. The ith element of z is given by

zi = xτ
i β̃(k) +

yi − p1(xi, β̃
(k))

p1(xi, β̃(k))(1− p1(xi, β̃(k))
. (8.65)

The update (8.63) has the form of a generalized least-squares estimator (see
Exercise 5.17) with W as the diagonal matrix of weights, z as the response
vector, and X as the data matrix. Note that p1 = p(k)

1 , z = z(k), and
W = W(k) have to be updated at every step in the algorithm because they
each depend upon β̃(k). Furthermore, the update formula (8.63) assumes
that the ((r + 1) × (r + 1))-matrix XWX τ can be inverted, a condition
that will be violated in applications where n < r + 1.

Despite the fact that convergence of the IRLS algorithm to the maxi-
mum of �(β) cannot be guaranteed, the algorithm does converge for most
practical situations. We refer the reader to Thisted (1988, Section 4.5.6)
for a detailed discussion of IRLS and its properties. The algorithm is used
extensively in fitting generalized linear models (see, e.g., McCullagh and
Nelder, 1989, Section 2.5).

Example: Wisconsin Diagnostic Breast Cancer Data (Continued)

Carrying out a logistic regression on all 30 transformed variables in the
Wisconsin diagnostic breast cancer study results in huge values for both
the estimated regression coefficients and their estimated standard errors.
This, in turn, yields tiny values for all 30 t-ratios. This situation is caused
by the high collinearity present in the data.

To reduce the number of variables, we apply BE stepwise regression to
these data. Table 8.6 lists the parameter estimates and their estimated
standard errors for a final model consisting of nine variables. Most of the
pairwise correlations between these nine variables are quite moderate, with
the only correlations greater than 0.8 being those of 26 (ncav.mv) with 29
(scav.ev) and 6 (comp.mv).
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TABLE 8.6. BE stepwise logistic regression results for the Wisconsin di-
agnostic breast cancer data.

Coeff. S.E. Ratio

(Intercept) –66.251 19.504 –3.397
smooth.mv 15.179 7.469 2.032
comp.mv –14.774 4.890 –3.022
ncav.mv 10.476 3.377 3.102

texture.sd –6.963 2.304 –3.022
area.sd 12.943 3.070 4.216
fracd.sd –5.476 1.754 –3.122

texture.ev 23.224 5.753 4.036
scav.ev 4.986 1.568 3.180
fracd.ev 17.166 5.912 2.904

8.3.6 Gaussian LDA or Logistic Discrimination?

Theoretical and empirical comparisons have been carried out between
Gaussian LDA and logistic discriminant analysis. Some of the differences
are the following:

1. The conditional log-likelihood (8.54) is valid under general expo-
nential family assumptions on f(·) (which includes the multivariate
Gaussian model with common covariance matrix). This suggests that
logistic discrimination is more robust to nonnormality than Gaussian
LDA.

2. Simulation studies have shown that when the Gaussian distributional
assumptions or the common covariance matrix assumption are not
satisfied, logistic discrimination performs much better.

3. Sensitivity to gross outliers can be a problem for Gaussian LDA,
whereas outliers are reduced in importance in logistic discrimination,
which essentially fits a sigmoidal function (rather than a linear func-
tion).

4. Logistic discriminant analysis is asymptotically less efficient than is
Gaussian LDA because the latter is based upon full ML rather than
conditional ML.

5. At the point when we would expect good discrimination to take place,
logistic discrimination requires a much larger sample size than does
Gaussian LDA to attain the same (asymptotic) error rate distribution
(Efron, 1975), and this result extends to LDA using an exponential
family with plug-in estimates.
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8.3.7 Quadratic Discriminant Analysis

How is the classification rule (8.14) affected if the covariance matrices
of the two Gaussian populations are not equal to each other? That is, if
Σ1 �= Σ2. In this case, (8.8) becomes

loge

f1(x)
f2(x)

=

c0 −
1
2
{(x− µ1)

τΣ−1
1 (x− µ1)− (x− µ2)

τΣ−1
2 (x− µ2)} (8.66)

= c1 −
1
2
xτ (Σ−1

1 −Σ−1
2 )x + (µτ

1Σ
−1
1 − µτ

2Σ
−1
2 )x, (8.67)

where c0 and c1 are constants that depend only upon the parameters µ1,
µ2, Σ1, and Σ2. The log-likelihood ratio (8.67) has the form of a quadratic
function of x. In this case, set

Q(x) = β0 + βτx + xτΩx, (8.68)

where
Ω = −1

2
(Σ−1

1 −Σ−1
2 ) (8.69)

β = Σ−1
1 µ1 −Σ−1

2 µ2 (8.70)

β0 = −1
2

{
loge

|Σ1|
|Σ2|

+ µτ
1Σ

−1
1 µ1 − µτ

2Σ
−1
2 µ2

}
− loge(π2/π2). (8.71)

Note that Ω is an (r × r) symmetric matrix. The classification rule is to
assign x to Π1 if (8.67) is greater than loge(π2/π1); that is,

if Q(x) > 0, assign x to Π1, (8.72)

and assign x to Π2 otherwise.
The function Q(x) of x is called a quadratic discriminant function (QDF)

and the classification rule (8.72) is referred to as quadratic discriminant
analysis (QDA). The boundary {x ∈ Rr|Q(x) = 0} that divides the two
classes is a quadratic function of x.

An approximation to the boundaries obtained by QDA can be obtained
using an LDA approach that enlists the aid of the linear terms, squared
terms, and all pairwise products of the feature variables. For example, if
we have two feature variables X1 and X2, then “quadratic LDA” would use
X1,X2,X

2
1 ,X2

2 , and X1X2 in the linear discriminant function with r = 5.

Maximum-Likelihood Estimation

If the r(r + 3) distinct parameters in µ1, µ2, Σ1, and Σ2 are all un-
known, and π1 and π2 are also unknown (1 additional parameter), they
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can be estimated using learning samples as above, with the exception of
the covariance matrices, where the ML estimator of Σi is

Σ̂i = n−1
i

ni∑
j=1

(Xij − X̄i)(Xij − X̄i)τ , i = 1, 2. (8.73)

Substituting the obvious estimators into Q(x) in (8.68) gives us

Q̂(x) = β̂0 + β̂τx + xτ Ω̂x, (8.74)

where
Ω̂ = −1

2
(Σ̂−1

1 − Σ̂−1
2 ), (8.75)

β̂ = Σ̂−1
1 X̄1 − Σ̂−1

2 X̄2 (8.76)

β̂0 = −ĉ1 − loge

n2

n
+ loge

n1

n
, (8.77)

and where ĉ1 is the estimated version of the first term in (8.67).

Because the classifier Q̂(x) depends upon the inverses of both Σ̂1 and
Σ̂2, it follows that if either n1 or n2 is smaller than r, then Σ̂i (i = 1 or 2,
as appropriate) will be singular and QDA will fail.

8.4 Examples of Binary Misclassification Rates

In this section, we compare the two-class discriminant analysis methods
LDA and QDA on a number of well-known data sets.2 These data sets,
which are listed in Table 8.7, are

BUPA liver disorders These data are the results of blood tests consid-
ered to be sensitive to liver disorders arising from excessive alchohol
consumption. The first five variables are all blood tests: mcv (mean
corpuscular volume), alkphos (alkaline phosphotase), sgpt (alamine
aminotransferase), sgot (aspartate aminotransferase), and gammagt
(gamma-glutamyl transpeptidase); the sixth variable is drinks (num-
ber of half-pint equivalents of alchoholic beverages drunk per day).
All patients are males: 145 subjects in class 1 and 200 in class 2.

Ionosphere These are radar data collected by a system of 16 high-frequency
phased-array antennas in Goose Bay, Labrador, with a total transmit-
ted power of the order 6.4 kilowatts. The targets were free electrons

2These data sets can be found in the files ionosphere, bupa, sonar, and spambase on
the book’s website. More details can be found in the UCI Machine Learning Repository
at archive.ics.uci.edu/ml/datasets.html.
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in the ionosphere. The two classes are “Good” for radar returns that
show evidence of some type of structure in the ionosphere and “Bad”
for those that do not and whose signals pass through the ionosphere.
The received electromagnetic signals are complex-valued and were
processed using an autocorrelation function whose arguments are the
time of a pulse and the pulse number. There were 17 pulse numbers,
which are described by two measurements per pulse number. One
variable (#2) was removed from the data set because its value for all
observations was zero.

Sonar Sonar signals are bounced off a metal cylinder (representing a mine)
or a roughly cylindrical rock at various aspect angles and under
various conditions. There are 111 observations obtained by bounc-
ing sonar off a metal cylinder and 97 obtained from the rock. The
transmitted sonar signal is a frequency-modulated chirp, rising in
frequency. The data set contains signals ontained from a variety of
aspect angles, spanning 90 degrees for the cylinder and 180 degrees
for the rock. Each observation is a set of 60 numbers in the range
0–1, where each number represents the energy within a particular
frequency band, integrated over a certain period of time.

Spambase This data set derives from a collection of spam e-mails (unso-
licited commercial e-mail, which came from a postmaster and individ-
uals who had filed spam) and non-spam e-mails (which came from filed
work and personal e-mails). Most of the variables indicate whether a
particular word or character was frequently occurring in the e-mail: 48
variables have the form “word freq WORD,” that gives the percent-
age of the words in the e-mail which match WORD; 6 variables have
the form “word freq CHAR,” that gives the percentage of charac-
ters in the e-mail which match CHAR; and 3 “run-length” variables,
measuring the average length, length of longest, and sum of length of
uninterupted sequences of consecutive capital letters. There are 1813
spam (39.4%) and 2788 non-spam observations in the data set.

Table 8.7 lists the CV misclassification rates for LDA and QDA for each
data set. These two-class data sets have quite varied CV misclassifica-
tion rates and, in three out of the five data sets (the exceptions are the
ionosphere and sonar data sets), LDA is a better classifier than QDA.

Figure 8.4 displays the kernel density estimates of the class-conditional
scores of the linear discriminant function (LD1) for the binary classifica-
tion data sets spambase, ionosphere, sonar, and bupa. These data sets are
arranged in order of LDA misclassification rates, from smallest to largest.
The less overlap between the two density estimates, the smaller the misclas-
sification rate; the greater the overlap between the two density estimates,
the larger the misclassification rate.
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TABLE 8.7. Summary of data sets with two classes. Listed are the sample
size (n), number of variables (r), and number of classes (K). Also listed
for each data set are leave-one-out cross-validation (CV/n) misclassifica-
tion rates for linear discriminant analysis (LDA) and quadratic discrimi-
nant analysis (QDA). The data sets are listed in increasing order of LDA
misclassification rates.

Data Set n r K LDA QDA

Breast cancer (wdbc) 569 30 2 0.042 0.062
Spambase 4601 57 2 0.113 0.170

Ionosphere 351 33 2 0.137 0.128
Sonar 208 60 2 0.245 0.240

BUPA liver disorders 345 6 2 0.301 0.406

8.5 Multiclass LDA

Assume now that the population of interest is divided into K > 2
nonoverlapping (disjoint) classes. For example, in a database made pub-
licly available by the U.S. Postal Service, each item is a (16 × 16) pixel
image of a digit extracted from a real-life zip code that is handwritten onto
an envelope. The database consists of thousands of these handwritten dig-
its, each of which is viewed as a point in an input space of 256 dimensions.
The classification problem is to assign each digit to one of the 10 classes
0, 1, 2, . . . , 9.

We could carry out
(
K
2

)
different two-class linear discriminant analyses,

where we set up a sequence of “one class versus the rest” classification
scenarios. Such a solution does not work because it would produce regions
that do not belong to any of the K classes considered (see Exercise 8.13).

Instead, the two-class methodology carries over in a straightforward way
to the multiclass situation. Specifically, we wish to partition the sample
space into K nonoverlapping regions R1, R2, . . . , RK , such that an obser-
vation x is assigned to class Πi if x ∈ Ri. The partition is to be determined
so that the total misclassification rate is a minimum.

Text Categorization

A note of caution is in order here: not all multiclass classification prob-
lems fit this description. Text categorization is an important example. At
the simplest level of information processing, we save and categorize files,
e-mail messages, and URLs; in more complicated activities, we assign news
items, computer FAQs, security information, author identification, junk
mail identification, and so on, to predefined categories. For example, about
810,000 documents of newswire stories in the Reuters Business Briefing
database RCV1 (Lewis, Yang, Rose, and Li, 2004) are assigned by topic
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FIGURE 8.4. Kernel density estimates of the class-conditional scores
for the linear discriminant function (LD1) for the following two-class data
sets: spambase (upper-left panel). ionosphere (upper-right panel). sonar
(lower-left panel). bupa (lower-right panel). The amount of overlap in the
density estimates is directly related to the estimated misclassification rate
between the data in the two groups.

into 103 categories. The classification problem is to assign each document
to a topic based solely upon the textual content of that document (repre-
sented as a vector of words). Because documents can be assigned to more
than one topic, text categorization does not fit the standard description of
a classification problem.

8.5.1 Bayes’s Rule Classifier

Let

Prob(X ∈ Πi) = πi, i = 1, 2, . . . ,K, (8.78)
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be the prior probabilities of a randomly selected observation X belonging
to each of the different classes in the population, and let

Prob(X = x|X ∈ Πi) = fi(x), i = 1, 2, . . . ,K, (8.79)

be the multivariate probability density for each class. The resulting poste-
rior probability that an observed x belongs to the ith class is given by

p(Πi|x) = Prob(X ∈ Πi|X = x) =
fi(x)πi∑K

k=1 fk(x)πk

, i = 1, 2, . . . ,K.

(8.80)
The Bayes’s rule classifier for K classes assigns x to that class with the

highest posterior probability. Because the denominator of (8.80) is the same
for all Πi, i = 1, 2, . . . ,K, we assign x to Πi if

fi(x)πi = max
1≤j≤K

fj(x)πj . (8.81)

If the maximum in (8.81) does not uniquely define a class assignment for
a given x, then use a random assignment to break the tie between the
appropriate classes.

Thus, x gets assigned to Πi if fi(x)πi > fj(x)πj , for all j �= i, or,
equivalently, if loge(fi(x)πi) > loge(fj(x)πj), for all j �= i. The Bayes’s
rule classifier can be defined in an equivalent form by pairwise comparisons
of posterior probabilities. We define the “log-odds” that x is assigned to
Πi rather than to Πj as follows:

Lij(x) = loge

{
p(Πi|x)
p(Πj |x)

}
= loge

{
fi(x)πi

fj(x)πj

}
. (8.82)

Then, we assign x to Πi if Lij(x) > 0 for all j �= i. We define classification
regions, R1, R2, . . . , RK , as those areas of 
r such that

Ri = {x ∈ 
r|Lij(x) > 0, j = 1, 2, . . . ,K, j �= i},
i = 1, 2, . . . ,K. (8.83)

This argument can be made more specific by assuming for the ith class
Πi that fi(·) is the Nr(µi,Σi) density, where µi is an r-vector and Σi is
an (r × r) covariance matrix, i = 1, 2, . . . ,K. We further assume that the
covariance matrices for the K classes are identical, Σ1 = · · · = ΣK , and
equal to a common covariance matrix ΣXX .

Under these multivariate Gaussian assumptions, the log-odds of assigning
x to Πi (as opposed to Πj) is a linear function of x,

Lij(x) = b0ij + bτ
ijx, (8.84)

where
bij = (µi − µj)

τΣ−1
XX (8.85)
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b0ij = −1
2
{µτ

i Σ
−1
XXµi − µτ

j Σ
−1
XXµj}+ loge(πi/πj). (8.86)

BecauseLij(x) is linear inx, the regions{Ri} in (8.83)partitionr-dimensional
space by means of hyperplanes.

Maximum-Likelihood Estimates

Typically, the mean vectors and common covariance matrix will all be
unknown. In that case, we estimate the Kr+r(r+1)/2 distinct parameters
by taking learning samples from each of the K classes. Thus, from the ith
class, we take ni observations, Xij , j = 1, 2, . . . , ni, on the r-vector (8.1),
that are then collected into the data matrix,

r×ni

Xi = (Xi1, · · · ,Xi,ni
), i = 1, 2, . . . ,K. (8.87)

Let n =
∑K

i=1 ni be the total number of observations. The K data matrices
(8.87) are then arranged into a single data matrix X which has the form

r×n

X = (
r×n1

X1

... · · ·
...

r×nK

XK )
= (X11, · · · ,X1,n1 , · · · ,XK1, · · · ,XK,nK

). (8.88)

The mean of each variable for the ith class is given by the r-vector,

X̄i = n−1
i Xi1ni

= n−1
i

ni∑
j=1

Xij i = 1, 2, . . . ,K, (8.89)

and these K vectors are arranged into the matrix,

r×n

X̄ = (X̄1, · · · , X̄1︸ ︷︷ ︸
n1

, · · · , X̄K , · · · , X̄K︸ ︷︷ ︸
nK

). (8.90)

Let
r×n

Xc = X − X̄ = (X1Hn1

... · · ·
... XHnK

), (8.91)

where Hnj
is the (nj × nj) “centering matrix.” Then, we compute

r×r

SXX= XcX τ
c =

K∑
i=1

ni∑
j=1

(Xij − X̄i)(Xij − X̄i)τ . (8.92)

Now, consider the following standard decomposition,

Xij − X̄ = (Xij − X̄i) + (X̄i − X̄), (8.93)
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TABLE 8.8. Multivariate decomposition of the total covariance matrix for
K classes Π1,Π2, . . . ,ΠK , when a random learning sample of ni observa-
tions is drawn from Πi, i = 1, 2, . . . ,K.

Source of Variation df Sum of Squares Matrix

Between classes K − 1 SB =
∑K

i=1
ni(X̄i − X̄)(X̄i − X̄)τ

Within classes n − K SW =
∑K

i=1

∑ni

j=1
(Xij − X̄i)(Xij − X̄i)

τ

Total n − 1 Stot =
∑K

i=1

∑ni

j=1
(Xij − X̄)(Xij − X̄)τ

for the jth observation within the ith class, where

X̄ = n−1X1n = n−1
K∑

i=1

ni∑
j=1

Xij = (X̄1, · · · , X̄r)τ (8.94)

is the overall mean vector ignoring class identifiers. Postmultiplying each
side of (8.93) by their respective transposes, multiplying out the right-hand
side, then summing over all n observations, and noting that the cross-
product term vanishes (see Exercise 8.3), we arrive at the well-known mul-
tivariate analysis of variance (MANOVA) identity,

Stot = SB + SW, (8.95)

where Stot, SB, and Stot are given in Table 8.8.
Thus, the total covariance matrix of the observations, Stot, having n− 1

degrees of freedom and calculated by ignoring class identity, is partitioned
into a part representing the between-class covariance matrix, SB , having
K− 1 degrees of freedom, and another part representing the pooled within-
class covariance matrix, SW (= SXX), having n − K degrees of freedom.
An unbiased estimator of the common covariance matrix, ΣXX , of the K
classes is, therefore, given by

Σ̂XX = (n−K)−1SW = (n−K)−1SXX . (8.96)

If we let fi(x) = fi(x,ηi), where ηi is an r-vector of unknown parame-
ters, and assume that the {πi} are known, the posterior probabilities (8.80)
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are estimated by

p̂(Πi|x) =
fi(x, η̂i)πi∑K

j=1 fj(x, η̂j)πj

, i = 1, 2, . . . ,K, (8.97)

where η̂i is an estimate of ηi. The classification rule, therefore, assigns x
to Πi if

fi(x, η̂i)πi = max
1≤j≤K

fj(x, η̂j)πj , (8.98)

which is often referred to as the plug-in classifier.
If the {fi(·)} are multivariate Gaussian densities and ηi = (µi,ΣXX),

then, the sample version of Lij(x) is given by

L̂ij(x) = b̂0ij + b̂τ
ijx, (8.99)

where
b̂ij = (X̄i − X̄j)τ Σ̂−1

XX (8.100)

b̂0ij = −1
2
{X̄τ

i Σ̂
−1
XXX̄i − X̄τ

j Σ̂
−1
XXX̄j}+ loge

{ni

n

}
− loge

{nj

n

}
, (8.101)

where we have estimated the prior πi by the proportionality estimate, π̂i =
ni/n, i = 1, 2, . . . ,K. The classification rule reduces to:

Assign x to Πi if L̂ij(x) > 0, j = 1, 2, . . . ,K, j �= i. (8.102)

In other words, we assign x to that class Πi with the largest value of L̂ij(x).
In the event that the covariance matrices cannot be assumed to be equal,

estimates of the mean vectors are obtained using (8.89), and the ith class
covariance matrix, Σi, is estimated by its maximum-likelihood estimate,

Σ̂i = n−1
i

ni∑
j=1

(Xij − X̄i)(Xij − X̄i)τ , i = 1, 2, . . . , K. (8.103)

There are Kr+Kr(r+1)/2 distinct parameters that have to be estimated,
and, if r is large, this is a huge increase over carrying out LDA. The resulting
quadratic discriminant analysis (QDA) is similar to that of the two-class
case if we make our decisions based upon comparisons of loge fi(x), i =
1, 2, . . . ,K − 1, with loge fK(x), say.

8.5.2 Multiclass Logistic Discrimination

The logistic discrimination method extends to the case of more than two
classes. Setting ui = loge{fi(x)πi}, we can express (8.80) in the form

p(Πi|x) =
eui

∑K
k=1 euk

= σi, (8.104)
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say. In the statistical literature, (8.104) is known as a multiple logistic
model, whereas in the neural network literature, it is known as a normalized
exponential (or softmax) activation function. Because we can write

σi =
1

1 + e−wi
, (8.105)

where wi = ui−log{
∑

k �=i euk}, σi is a generalization of the logistic sigmoid
activation function (Figure 8.2).

Suppose we arbitrarily designate the last class (ΠK) to be a reference
class and assume Gaussian distributions with common covariance matrices.
Then, we define

Li(x) = ui − uK = b0i + bτ
i x, (8.106)

where
bi = (µi − µK)τΣ−1

XX (8.107)

b0i = −1
2
{µτ

i Σ
−1
XXµi − µτ

KΣ−1
XXµK}+ loge{πi/πK}. (8.108)

If we divide the numerator and denominator of (8.104) by euK and use
(8.106), the posterior probabilities can be written as

p(Πi|x) =
eLi(x)

1 +
∑K−1

k=1 eLk(x)
, i = 1, 2, . . . ,K − 1, (8.109)

p(ΠK |x) =
1

1 +
∑K−1

k=1 eLk(x)
(8.110)

If we write fi(x) = fi(x,ηi), where ηi is an r-vector of unknown pa-
rameters, then we estimate ηi by η̂i and fi(x) by f̂i(x) = fi(x, η̂i). As
before, we assign x to that class that maximizes fi(x, η̂i), i = 1, 2, . . . ,K.
This classification rule is known as multiple logistic discrimination.

8.5.3 LDA via Reduced-Rank Regression

We now generalize to the multiclass case the idea for the two-class case
(K = 2), in which we showed that the LDF can be obtained (up to a pro-
portionality constant) by using multiple regression with a single indicator
variable as the response variable.

In the multiclass case, we take the response variables to be a set of
distinct indicator variables whose number is one fewer than the number of
classes. If we know which observations fall into the first K−1 classes, then
the remaining observations automatically fall into the Kth class, and so we
do not need an additional indicator variable to document that fact. The
observations in the Kth class are instead each specified by a zero variable.
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Some have used the Kth class (which could actually be any class, not just
the last one) as a reference class to which all other classes may be compared.

As in the two-class case, the indicator variables are taken to be response
variables. We now show that multiclass LDA is a special case of canonical
variate analysis, which, as we saw in Chapter 7, is itself a special case of
multivariate reduced-rank regression. It is for this reason that many authors
refer to LDA as canonical variate analysis.

Identifying Classes Using Indicator Variables

In the following development, we set K = s + 1, where s is to be the
number of output variables. Each observation in (8.88) is associated with its
corresponding class by defining an indicator response s-vector Yij , which
has a 1 in the ith position if the jth observation r-vector, Xij , comes from
Πi, and zeroes in all other positions, j = 1, 2, . . . , ni, i = 1, 2, . . . , s + 1. In
other words, if Yij = (Yijk), then, Yijk = 1 if k = i and Yijk = 0 otherwise.

For the ith class Πi, we have the matrix,

s×ni

Yi = (Yi1, . . . ,Yi,ni
) =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0
...

...
1 · · · 1
...

...
0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

, (8.111)

in which all ni columns are identical, i = 1, 2, . . . , s+1. Thus, the indicator
response matrix Y is given by

s×n

Y = (
s×n1

Y1

... · · ·
...

s×ns+1

Ys+1 )
= (Y11, . . . ,Y1,n1 , . . . ,Ys+1,1, . . . ,Ys+1,ns+1)

=

⎛
⎝

1 · · · 1 · · · 0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 0 · · · 1 · · · 1 0 · · · 0

⎞
⎠ . (8.112)

Each column of Y has a single 1 with the exception of the last set of ns+1

columns, whose every entry is equal to zero.
The s-vector of row means of Y is given by

Ȳ = n−1Y1n = (n1/n, · · · , ns/n)τ . (8.113)

The ith component of Ȳ estimates the prior probability, πi, that a randomly
selected observation belongs to Πi; that is, π̂i = ni/n, i = 1, 2, . . . , s, and
π̂s+1 = ns+1/n. Let

s×n

Ȳ = (Ȳ, . . . , Ȳ) (8.114)
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denote the matrix whose columns are n copies of the s-vector (8.113),
and let

s×n

Yc = Y − Ȳ = YHn, (8.115)

where Hn is the (n×n) centering matrix. Then, the entries of Yc are either
1− (ni/n) or −ni/n. The cross-product matrix

s×s

SY Y = YcYτ
c = diag{n1, . . . , ns} − nȲȲτ (8.116)

has ith diagonal entry ni(1−ni/n) and off-diagonal entry −nini′/n for the
ith row and i′th column, i �= i′, i, i′ = 1, 2, . . . , s. We invert SY Y to get

S−1
Y Y = diag{n−1

1 , . . . , n−1
s }+ n−1

s Js, (8.117)

where Js = 1s1τ
s is an (s× s)-matrix of 1s.

Generating Canonical Variates

We now have all the ingredients to carry out a canonical variate analysis
of X and Y. The central computation involves the eigenvalues and associ-
ated eigenvectors (λ̂j , v̂j), j = 1, 2, . . . , s, of the matrix,

s×s

R̂ = S−1/2
Y Y SY XS−1

XXSXY S−1/2
Y Y , (8.118)

where

s×r

SXY = XcYτ
c = (n1(X̄1 − X̄), · · · , ns(X̄s − X̄)) = Sτ

Y X . (8.119)

We recall the following fact from Section 7.3. The jth largest eigenvalue,
λ̂∗

j , and associated eigenvector, v̂∗
j , of the matrix

r×r

R̂∗= S−1/2
XX SXY S−1

Y Y SY XS−1/2
XX (8.120)

are related to those of R̂ by
λ̂j = λ̂∗

j , (8.121)

v̂j = S−1/2
Y Y SY XS−1/2

XX v̂∗
j , (8.122)

j = 1, 2, . . . ,min(r, s). Notice that R̂∗ depends upon Yc through the pro-
jection matrix

n×n

Py = Yτ
c S−1

Y Y Yc (8.123)

onto the columns of Yc. So, for any set of vectors that spans Yc, R̂∗ will
be unchanged.



8.5 Multiclass LDA 269

We rescale v̂∗
j by setting

γj = S−1/2
XX v̂∗

j (8.124)

= λ̂−1
j S−1

XXSXY S−1/2
Y Y v̂j , (8.125)

j = 1, 2, . . . ,min(r, s). From (8.122) and (8.125), we have that the (r × r)-
matrix SB in Table 8.5 can be more easily expressed as

r×r

SB= SXY S−1
Y Y SY X (8.126)

(see Exercise 8.4). Writing out the jth eigenequation R̂v̂j = λ̂jv̂j , premul-
tiplying both sides by S−1/2

XX SXY S−1/2
Y Y , and then using (8.126), we obtain

SBγj = λ̂j(SB + SW)γj , (8.127)

which shows that γj is the eigenvector associated with the jth largest
eigenvalue λ̂j of the (r × r)-matrix (SB + SW )−1SB . Rearranging (8.127),
we have that

SBγj = µjSWγj , (8.128)

where

µj =
λ̂j

1− λ̂j

, j = 1, 2, . . . ,min(r, s) . (8.129)

In other words, the eigenvalues and eigenvectors of R̂ are equivalent to
the eigenvalues and eigenvectors of S−1

W SB (or of its symmetric version
S−1/2

W SBS−1/2
W ). In general, the (s × r)-matrix S−1

W SB has min(r, s) =
min(r,K − 1) nonzero eigenvalues. If K ≤ r, then SB will not have full
rank, resulting in r − s = r −K + 1 zero eigenvalues.

From (7.72) and (7.73), we set

ĝτ
j = v̂τ

j S
−1/2
Y Y SY XS−1

XX , (8.130)

ĥτ
j = v̂τ

j S
−1/2
Y Y , (8.131)

j = 1, 2, . . . , t. Then, from (7.69), we calculate the jth pair of canonical
variates (ξ̂j , ω̂j), where

ξ̂j = ĝτ
j Xc = γτ

j Xc, (8.132)

ω̂j = ĥτ
j Yc = γτ

j SXY S−1
Y Y Yc, (8.133)

j = 1, 2, . . . , t. In (8.132), X is an observed r-vector, while in (8.133), Y is
an indicator response s-vector, and Xc = X − X̄ and Yc = Y − Ȳ. The
coefficient vector

γj = (γj1, · · · , γjr)τ (8.134)
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is the jth discriminant vector, j = 1, 2, . . . ,min(r, s).
The first LDF evaluated at Xc is given by

ξ̂1 = γτ
1Xc (8.135)

and has the property that, among all such linear combinations of the xs,
it alone can discriminate best between the K classes. The second LDF is
given by

ξ̂2 = γτ
2Xc (8.136)

and is the best discriminator between the K classes among all such linear
combinations of the xs that are uncorrelated with ξ̂1. The jth LDF,

ξ̂j = γτ
j Xc, (8.137)

is the best discriminator between the K classes among all those linear
combinations of Xc that are also uncorrelated with ξ̂1, ξ̂2, . . . , ξ̂j−1.

There are at most min(r,K − 1) such linear discriminant functions. One
problem is to determine the smallest number t < min(r, s) of linear discrim-
inant functions that discriminates most efficiently between the K classes.
In practice, it is usual to take t = 2, so that only ξ̂1 and ξ̂2 are used in
deciding whether sufficient discrimination has been obtained.

Graphical Display

Consider the kth observation Xik (in Πi) and its associated indicator
response vector Yik. We evaluate ξ̂j and ω̂j at X = Xik and Y = Yik,
respectively. Set

ξ̂
(i)
jk = γτ

j (Xik − X̄), (8.138)

ω̂
(i)
jk = γτ

j SXY S−1
Y Y (Yik − Ȳ), (8.139)

k = 1, 2, . . . , ni, i = 1, 2, . . . , s + 1. Then, we form the row vectors

ξτ
j = (ξ̂(1)

j1 , · · · , ξ̂(1)
jn1

, · · · , ξ̂(r+1)
j1 , · · · , ξ̂(r+1)

jnr+1
), (8.140)

ωτ
j = (ω̂(1)

j1 , · · · , ω̂(1)
jn1

, · · · , ω̂(r+1)
j1 , · · · , ω̂(r+1)

jnr+1
), (8.141)

of jth discriminant scores, j = 1, 2, . . . ,min(r, s). From (8.117) and (8.119),
we have that

SXY S−1
Y Y = (X̄1 − X̄s+1, · · · , X̄s − X̄s+1), (8.142)

whence, from (8.138) and (8.139),

ξ̂
(i)
jk = γτ

j (Xik − X̄), ω̂
(i)
jk = γτ

j (X̄i − X̄), (8.143)
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are the kth components of the jth pair of canonical variates evaluated for
Πi. But,

X̄i − X̄ = n−1
i

ni∑
k=1

(Xik − X̄), (8.144)

so that

ω̂
(i)
jk = n−1

i

ni∑
a=1

ξ̂
(i)
ja = ξ̄

(i)
j , k = 1, 2, . . . , ni. (8.145)

In other words, the canonical variates evaluated at the indicator response
variables are the class averages of the canonical variates for the discrim-
inating variables. The {ξ̂(i)

jk } are called discriminant coordinates and the
space generated by these coordinates is called the discriminant space. To
visualize graphically whether the discriminant coordinates emphasize dif-
ferences in class means, it is customary to plot the n points

(ξ̂(i)
1k , ξ̂

(i)
2k ), k = 1, 2, . . . , ni, i = 1, 2, . . . , s + 1, (8.146)

on a scatterplot and, taking note of (8.145), we also plot a point represent-
ing the respective mean of each class,

(ω̂(i)
1k , ω̂

(i)
2k ), k = 1, 2, . . . , ni, i = 1, 2, . . . , s + 1, (8.147)

superimposed on the same scatterplot.

8.6 Example: Gilgaied Soil

These data3 were collected in a study of gilgaied soil at Meandarra,
Queensland, Australia (Horton, Russell, and Moore, 1968). Three micro-
topographic classes based upon relative contours were classified as follows:
top (>60 cm); slope (30–60 cm); and depression (<30 cm). The area was
divided into four blocks, and soil samples were taken randomly within each
microtopographic class at depths of 0–10, 10–30, 30–60, and 60–90 cm. See
Table 8.9.

Chemical analyses on nine variables were carried out for each soil sam-
ple in the four blocks of the (3 positions × 4 depths) 12 groups, yielding
a total of 48 soil samples. The variables are pH; total nitogen (N); bulk-
density (BD); total phosphorus (P); exchangeable + soluble calcium (Ca);
exchangeable + soluble magnesium (Mg); exchangeable + soluble potassium
(K); exchangeable + soluble sodium (Na); and conductivity of the saturation
extract (cond).

3These data can be found in the file gilgaied.soil on the book’s website.



272 8. Linear Discriminant Analysis

TABLE 8.9. Group numbers by depth and microtopographic position
(T.P.) of gilgaied soil.

Soil Depth
T.P. 0–10 cm 10–30 cm 30–60 cm 60–90 cm

Top A B C D
Slope E F G H

Depression I J K L

The first two LDF scores are computed using (8.143) and plotted in
Figure 8.5. Also plotted on the same graph are the projected class averages
(i.e., the letters A–L) of the 12 classes. We see that the projected class av-
erages are plotted in roughly the same two-way position as given in Table
8.9 (with curvature). There is quite a bit of overlap of class points in this
2D discriminant space. In fact, the apparent error rate is 7/48 = 0.146,
and the leave-one-out CV misclassification rate is 31/48 = 0.646. The cur-
vature in the plot suggests that QDA may be more appropriate than LDA,
but with only four observations in each class, QDA would fail. Another
possible explanation is that the soil depths are not uniformly spaced; see
Exercise 8.1.

8.7 Examples of Multiclass Misclassification Rates

In this section, we summarize how well LDA and QDA perform when
applied to a wide variety of well-known multiclass data sets.4 These data
sets, which are listed in Table 8.10, are

Diabetes These data resulted from a study conducted at the Stanford
Clinical Research Center of the relationship between chemical sub-
clinical and overt nonketotic diabetes in non-obese adult subjects.
The three primary variables are glucose area (a measure of glucose
intolerance), insulin area (a measurement of insulin response to
oral glucose), and SSPG (steady-state plasma glucose, a measure of
insulin resistance). In addition, the relative weight and fasting
plasma glucose were measured for each individual in the study. The
three clinical classifications are overt diabetic (Class 1, 33 individu-
als), chemical diabetic (Class 2, 36), and normal (Class 3, 76).

4These data sets can be found at the book’s website. The data and descriptions
are taken from the UCI website, with the exception of diabetes, which originated from
Andrews and Herzberg (1985, Table 36.1, pp. 215–219) and can be found in the Andrews
subdirectory at the StatLib website, and primate scapulae, details of which can be
found in Section 12.3.6.
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FIGURE 8.5. LDA plot of the gilgaied soil data. There are 12 classes,
A–L, and each class has four points. The projected class means are over-
plotted as letters and appear in roughly the same two-way position as given
in Table 8.7, albeit with some curvature.

E-coli These data were obtained in a study of protein localization sites for
336 examples of E. coli. The variables are mvg (McGeoch’s method for
signal sequence recognition), gvh (von Heijne’s method for signal se-
quence recognition), lip (von Heijne’s Signal Peptidase II consensus
sequence score), chg (presence of charge on N -terminus of predicted
lipoproteins), aac (score of discriminant analysis of the amino-acid
content of outer membrane and periplasmic proteins), alm1 (score
of the ALOM membrane spanning region prediction program), and
alm2 (score of the ALOM program after excluding putative cleav-
able signal regions from the sequence). There are 8 localization sites
(classes): cp (cytoplasm, 143 examples), im (inner membrane without
signal sequence, 77), pp (perisplasm, 52), imU (inner membrane, un-
cleavable signal sequence, 35), om (outer membrane, 20), omL (outer
membrane lipoprotein, 5), imL (inner membrane lipoprotein, 2), and
imS (inner membrane, cleavable signal sequence, 2).

Forensic glass These data were collected for forensic purposes to deter-
mine whether a sample of glass is a type of “float” glass or not.
There are 6 types of glass used in this data set: building windows
float processed (70 examples), building windows non–float processed
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(76), vehicle windows float processed (17), containers (13), tableware
(9), and headlamps (29). The variables are RI (refractive index), Na
(sodium), Mg (magnesium), Al (aluminum), Si (silicon), K (potas-
sium), Ca (calcium), Ba (barium), and Fe (iron).

Iris These are Edgar Anderson’s iris data made famous by R.A. Fisher.
There are 150 observations made on three classes of the iris flower.
The classes are Iris setosa, Iris versicolour, and Iris virginica, with
50 observations on each class. Four measurements (in cm) are made
on each iris: sepal length, sepal width, petal length, and petal
width.

Letter recognition The 26 capital letters of the English alphabet were
converted into black-and-white rectangular pixel displays by using
20 different fonts, and each letter with these 20 fonts was randomly
distorted to produce a file of 20,000 unique observations. Each ob-
servation was converted into 16 primitive numerical variables, which
were then scaled to fit into a range of integer values of 0–15. The
number of observations for each letter ranged from 734 to 813.

Pendigits These data were obtained from 44 writers, each of whom hand-
wrote 250 examples of the digits 0, 1, 2, . . . , 9 in a random order. See
Section 7.2.1 for a detailed description.

Primate scapulae These data consist of measurements of indices and an-
gles on the scapulae (shoulder bones) of five genera of adult primates
representing Hominoidae: gibbons (Hylobates), orangutangs (Pongo),
chimpanzees (Pan), gorillas (Gorilla), and man (Homo). The vari-
ables are 5 indices (AD.BD, AD.CD, EA.CD, Dx.CD, and SH.ACR) and 2
angles (EAD, β). Of the 105 measurements on each variable, 16 were
from Hylobates, 15 from Pongo, 20 from Pan, 14 from Gorilla, and
40 from Homo.

Shuttle These space-shuttle data contain 43,500 observations on 8 uniden-
tified variables, and the observations are divided into 7 classes: Rad
Flow (1), Fpv Close (2), Fpv Open (3), High (4), Bypass (5), Bpv
Close (6), and Bpv Open (7). Class 1 contains about 78% of the data.

Vehicle This data set was collected by the Turing Institute, Glasgow,
Scotland, in a study of how to distinguish 3D objects from a 2D im-
age. The classes in this data set are the silhouettes of four types of
Corgi model vehicles, an Opel Manta car (240 images), a Saab 9000
car (240), a double-decker bus (240), and a Chevrolet van (226), as
viewed by a camera from many different angles and elevations. The
variables are scaled variance, skewness, and kurtosis about the ma-
jor/minor axes, and heuristic measures such as hollows ratio, circular-
ity, elongatedness, rectangularity, and compactness of the silhouettes.
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Wine Thesedataaretheresultsofachemicalanalysisof178winesgrownover
the decade 1970–1979 in the same region of Italy, but derived from three
different cultivars (Barolo, Grignolino, Barbera). The Barbera wines
were predominately from a period that was much later than that of the
Barolo and Grignolino wines. The analysis determined the quantities
of 13 constituents found in each of the three types of wines: Alcohol,
MalicAcid, Ash, AlcAsh (Alcalinity ofAsh), Mg (Magnesium), Phenols
(Total Phenols), Flav (Flavanoids), NonFlavPhenols (Non-Flavanoid
Phenols) Proa (Proanthocyanins), Color (Color Intensity), Hue, OD
(OD280/OD315 of Diluted Wines), and Proline. There are 59 Barolo
wines, 71 Grignolino wines, and 48 Barbera wines.

Yeast These data were obtained in a study of protein localization sites
for 1,484 examples of yeast. The variables are mcg, gvh, alm (see E-
coli), mit (score of discriminant analysis of the amino-acid content of
the N -terminal region, 20 residues long, of mitochondrial and non-
mitochondrial proteins), erl (presence of HDEL substring, thought
to act as a signal for retention in the endoplasmic reticulum lumen),
pox (peroxisomal targeting signal in the C-terminus), vac (score of
discriminant analysis of the amino-acid content of vacuolar and ex-
tracellular proteins), and nuc (score of discriminant analysis of nu-
clear localization signals of nuclear and non-nuclear proteins). There
are 10 localization sites (classes): cyt (cytosolic or cytoskeletal, 463
examples), nuc (nuclear, 429), mit (mitochondrial, 244), me3 (mem-
brane protein, no N -terminal signal, 163), me2 (membrane protein,
uncleaved signal, 51), me1 (membrane protein, cleaved signal, 44),
exc (extracellular, 37), vac (vacuolar, 30), pox (peroxisomal, 20), and
erl (endoplasmic reticulum lumen, 5).

Table 8.10 lists the leave-one-out CV misclassification rates for LDA and
QDA for each data set. The prior πi was estimated using the proportion-
ality estimate, π̂i = ni/n, i = 1, 2, . . . ,K. These multiclass data sets have
quite varied CV misclassification rates. For the diabetes, glass, letter
recognition, pendigits, vehicle, and wine data sets, the QDA misclas-
sification rate is smaller than the LDA rate, whereas the reverse happens for
the iris and primate scapulae data sets. Note that if any data set has a
class with fewer observations than r, then that class’s estimated covariance
matrix is singular, and QDA fails.

In Figure 8.6, we display the LDA plots corresponding to the six data
sets iris, primate.scapulae, shuttle, pendigits, vehicle, and glass.
They are arranged according to their estimated misclassification rates, as
listed in Table 8.10.

We will be comparing these methods with other classification methods
using the same data sets in later chapters.
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FIGURE 8.6. LDA plot of Fisher’s iris data, primate.scapulae data,
shuttle data, pendigits data, vehicle data, and glass data.
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TABLE 8.10. Summary of multiclass data sets. Listed are the sample size
(n), number of variables (r), and number of classes (K). Also listed for each
data set are leave-one-out cross-validation (CV/n) misclassification rates
for linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA). The data sets are ordered by size of the LDA misclassification rate.
For each data set, the proportionality estimate was used for the priors. If
a class has fewer than r members, QDA will fail.

Data Set n r K LDA QDA

Wine 178 13 3 0.011 0.006
Iris 150 4 3 0.020 0.027

Primate scapulae 105 7 5 0.029 0.057
Shuttle 43,500 8 7 0.056

Diabetes 145 5 3 0.110 0.097
Pendigits 10,992 16 10 0.124 0.017

E-coli 336 7 8 0.128
Vehicle 846 18 4 0.221 0.144

Letter recognition 20,000 16 26 0.298 0.114
Glass 214 9 6 0.350 0.140
Yeast 1,484 8 10 0.411

8.8 Software Packages

All the major statistical software packages contain routines for carrying
out LDA and QDA. Misclassification rates are computed in these pack-
ages by a number of methods, including the apparent error rate and cross-
validation. Logistic regression is usually included within the regression
methods in the packages. LDA is included as a special case of multivari-
ate reduced-rank regression in the RRR+Multanl package, which can be
downloaded from the book’s website.

Bibliographical Notes

Since Fisher (1936), LDA has seen applications in many different ar-
eas. Theoretical accounts of linear discriminant analysis may be found in
Anderson (1984, Chapter 6) and Seber (1984, Chapter 6). More recent ac-
counts are given in Ripley (1996, Chapter 3), Johnson and Wichern (1998,
Chapter 11), Hastie, Tibshirani, and Friedman (2001, Chapter 4), Rencher
(2002, Chapters 8, 9), and Bishop (2006, Chapter 4). A Bayesian approach
is outlined in Press (1989, Chapter 7) and a nonparametric (kernel) ap-
proach in Hand (1982). The idea of using a regression model to carry out
LDA can be found in Fisher (1936).
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Exercises

8.1 How would you use the information in Table 8.9 to carry out a two-way
LDA on the gilgaied soil data? Would your results change if you took into
account the fact that the soil depths are not equally spaced?

8.2 Consider the wine data. Compute a LDA, draw a 2D-scatterplot of the
first two LDF coordinates, and color-code the points by wine type. What
do you notice?

8.3 Suppose X1 ∼ Nr(µ1,ΣXX) and X2 ∼ Nr(µ2,ΣXX) are indepen-
dently distributed. Consider the statistic

{E(aτX1)− E(aτX2)}2
var(aτX1 − aτX2)

as a function of a. Show that a ∝ Σ−1
XX(µ1 − µ2) maximizes the statistic

by using a Lagrange multiplier approach.

8.4 Consider the following alternative to QDA. Suppose you start with two
variables, X1 and X2. Now, expand the data set by adding squares, X3 =
X2

1 and X4 = X2
2 , and cross-product, X5 = X1X2. These five variables

are to be used as input to an LDA procedure. Derive the LDA boundaries
from this procedure and compare them to the QDA procedure. Generalize
to r > 2. Try this alternative procedure out on a data set of your choice.

8.5 Consider the diabetes data. Draw a scatterplot matrix of all five
variables with different colors or symbols representing the three classes of
diabetes. Do these pairwise plots suggest multivariate Gaussian distribu-
tions for each class with equal covariance matrices? Carry out an LDA and
draw the 2D-scatterplot of the first two discriminating functions. Using the
leave-one-out CV procedure, find the confusion table and identify those ob-
servations that are incorrectly classified based upon the LDA classification
rule. Do the same for the QDA procedure.

8.6 Try the following transformation on the iris data. Set X5 = X1/X2

and X6 = X3/X4. Then, X5 is a measure of sepal shape and X6 is a measure
of petal shape. Take logarithms of X5 and of X6. Plot the transformed data,
and carry out an LDA on X5 and X6 alone. Estimate the misclassification
rate for the transformed data. Do the same for the QDA procedure.

8.7 Carry out a stepwise logistic regression of the spambase data. Which
variables are chosen to be in the final subset?

8.8 Consider The Insurance Company Benchmark data, which can be
downloaded from kdd.ics.uci.edu/databases/tic. There are 86 vari-
ables on product-usage data and socio-demographic data derived from zip
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area codes of customers of an insurance company. There is a learning set
ticdata2000.txt of 5,822 customers and a test set ticeval2000.txt
of 4,000 customers. Customers in the learning set are classified into two
classes, depending upon whether they bought a caravan insurance policy.
The problem is to predict who in the test set would be interested in buy-
ing a caravan insurance policy. Use any of the classification methods on
the learning data and then apply them to the test data. Compare your
predictions for the test set with those given in the file tictgts2000.txt
and estimate the test set error rate. Which variables are most useful in
predicting the purchase of a caravan insurance policy?

8.9 These data (covertype) were obtained from the U.S. Forest Service
and are concerned with seven different types of forest cover. The data can
be downloaded from kdd.ics.uci.edu/databases/covertype. There are
581,012 observations (each a 30 × 30 meter cell) on 54 input variables (10
quantitative variables, 4 binary wilderness areas, and 40 binary soil type
variables). Divide these data randomly into a learning set and a test set.
Use any of the methods of this chapter on the learning set to predict the
forest cover type for the test set. Estimate the test set error rate.

8.10 Consider the Wisconsin diagnostic breast cancer data. Regress Y on
each of the 30 variables, one at a time. How many coefficients are signifi-
cant? Which are they? (A coefficient is declared to be “significantly different
from zero” at the 5% level if its absolute t-ratio is greater than the value 2
and is nonsignificant otherwise.) Now, regress Y on all 30 variables. How
many coefficients are significant? Which are they? Next, run the BE and
FS stepwise procedures, and the LAR and LARS-Lasso algorithms on these
data, and compare the variable subsets you obtain from these methods.

8.11 Consider the E-coli data. Draw a scatterplot matrix of the vari-
ables. What do you notice? Do they look Gaussian? Carry out an LDA of
the e-coli data by using the reduced-rank regression approach. Find the
estimated coefficients of the first two linear discriminant functions. Com-
pute the LD scores and plot them in a scatterplot.

8.12 Consider the yeast data. Draw a scatterplot matrix of the data and,
if possible, draw 3D plots of various subsets of the variables and rotate the
plot (“brush and spin” in S-Plus). What do you notice about the data?
Do they look Gaussian? Carry out an LDA of the yeast data by using the
reduced-rank regression approach. Find the estimated coefficients of the
first two linear discriminant functions. Compute the LD scores and plot
them in a scatterplot.

8.13 Consider the primate.scapulae data. Carry out five linear discrim-
inant analyses (one for each primate species), where each analysis is of the
“one class versus the rest” type. Find the spatial zone (known as an am-
biguous region) that does not correspond to any LDA assignment of a class



280 8. Linear Discriminant Analysis

of primate (out of the five considered). Are the results consistent with the
multiclass classification results?

8.14 Suppose LDA boundaries are found for the primate.scapulae data
by carrying out a sequence of

(
5
2

)
= 10 LDA problems, each involving a

distinct pair of primate species (Hylobates versus Pongo, Gorilla versus
Homo, etc.). Find the ambiguous region that does not correspond to any
LDA assignment of a class of primate (out of the five considered). Suppose
we classify each primate in the data set by taking a vote based upon those
boundaries. Estimate the resulting misclassification rate and compare it
with the rate from the multiclass classification procedure.



9
Recursive Partitioning
and Tree-Based Methods

9.1 Introduction

An algorithm known as recursive partitioning is the key to the nonpara-
metric statistical method of classification and regression trees (CART)
(Breiman, Friedman, Olshen, and Stone, 1984). Recursive partitioning is
the step-by-step process by which a decision tree is constructed by either
splitting or not splitting each node on the tree into two daughter nodes. An
attractive feature of the CART methodology (or the related C4.5 method-
ology; Quinlan, 1993) is that because the algorithm asks a sequence of
hierarchical Boolean questions (e.g., is Xi ≤ θj?, where θj is a threshold
value), it is relatively simple to understand and interpret the results.

As we described in previous chapters, classification and regression are
both supervised learning techniques, but they differ in the way their out-
put variables are defined. For binary classification problems, the output
variable, Y , is binary-valued, whereas for regression problems, Y is a con-
tinuous variable. Such a formulation is particularly useful when assessing
how well a classification or regression methodology does in predicting Y
from a given set of input variables X1,X2, . . . , Xr.

In the CART methodology, the input space, 
r, is partitioned into a
number of nonoverlapping rectangular (r = 2) or cuboid (r > 2) regions,

A.J. Izenman, Modern Multivariate Statistical Techniques,
doi: 10.1007/978-0-387-78189-1 9, 281
c© Springer Science+Business Media, LLC 2008



282 9. Recursive Partitioning and Tree-Based Methods

each of which is viewed as homogeneous for the purpose of predicting Y .
Each region, which has sides parallel to the axes of input space, is assigned
a class (in a classification problem) or a constant value (in a regression
problem). Such a partition corresponds to a classification or regression tree
(as appropriate).

Tree-based methods, such as CART and C4.5, have been used exten-
sively in a wide variety of fields. They have been found especially useful in
biomedical and genetic research, marketing, political science, speech recog-
nition, and other applied sciences.

9.2 Classification Trees

A classification tree is the result of asking an ordered sequence of ques-
tions, and the type of question asked at each step in the sequence depends
upon the answers to the previous questions of the sequence. The sequence
terminates in a prediction of the class.

The unique starting point of a classification tree is called the root node
and consists of the entire learning set L at the top of the tree. A node is a
subset of the set of variables, and it can be a terminal or nonterminal node.
A nonterminal (or parent) node is a node that splits into two daughter nodes
(a binary split). Such a binary split is determined by a Boolean condition
on the value of a single variable, where the condition is either satisfied
(“yes”) or not satisfied (“no”) by the observed value of that variable. All
observations in L that have reached a particular (parent) node and satisfy
the condition for that variable drop down to one of the two daughter nodes;
the remaining observations at that (parent) node that do not satisfy the
condition drop down to the other daughter node.

A node that does not split is called a terminal node and is assigned a
class label. Each observation in L falls into one of the terminal nodes. When
an observation of unknown class is “dropped down” the tree and ends up
at a terminal node, it is assigned the class corresponding to the class label
attached to that node. There may be more than one terminal node with the
same class label. A single-split tree with only two terminal nodes is called
a stump. The set of all terminal nodes is called a partition of the data.

Consider a simple example of recursive partitioning involving two input
variables, X1 and X2. Suppose the tree diagram is given in the top panel of
Figure 9.1. The possible stages of this tree are as follows: (1) Is X2 ≤ θ1?
If the answer is yes, follow the left branch; if no, follow the right branch.
(2) If the answer to (1) is yes, then we ask the next question: Is X1 ≤
θ2? An answer of yes yields terminal node τ1 with corresponding region
R1 = {X1 ≤ θ2,X2 ≤ θ1}; an answer of no yields terminal node τ2 with
corresponding region R2 = {X1 > θ2,X2 ≤ θ1}. (3) If the answer to (1) is
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FIGURE 9.1. Example of recursive partitioning with two input variables
X1 and X2. Top panel shows a decision tree with five terminal nodes, τ1−τ5,
and four splits. Bottom panel shows the partitioning of 
2 into five regions,
R1 −R5, corresponding to the five terminal nodes.
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no, we ask the next question: Is X2 ≤ θ3? If the answer to (3) is yes, then
we ask the next question: Is X1 ≤ θ4? An answer of yes yields terminal
node τ3 with corresponding region R3 = {X1 ≤ θ4, θ1 < X2 ≤ θ3}; if
no, follow the right branch to terminal node τ4 with corresponding region
R4 = {X1 > θ4, θ1 < X2 ≤ θ3}. (4) If the answer to (3) is no, we arrive
at terminal node τ5 with corresponding region R5 = {X2 > θ3}. We have
assumed that θ2 < θ4 and θ1 < θ3. The resulting 5-region partition of 
2

is given in the bottom panel of Figure 9.1. For a classification tree, each
terminal node and corresponding region is assigned a class label.

9.2.1 Example: Cleveland Heart-Disease Data

These data1 were obtained from a heart-disease study conducted by the
Cleveland Clinic Foundation (Robert Detrano, principal investigator). For
the study, the response variable is diag (diagnosis of heart disease: buff =
healthy, sick = heart disease). There were 303 patients in the study, 164
of them healthy and 139 with heart disease.

The 13 input variables are age (age in years), gender (male, fem), cp
(chest-pain type: angina=typical angina, abnang=atypical angina, notang
=non-anginal pain, asympt=asymptomatic), trestbps (resting blood pres-
sure), chol (serum cholesterol in mg/dl), fbs (fasting blood sugar < 120
mg/dl: true, false), restecg (resting electrocardiographic results: norm
=normal, abn=having ST-T wave abnormality, hyp=showing probable or
definite left ventricular hypertrophy by Estes’s criteria), thatach (maxi-
mum heart rate achieved), exang (exercise-induced angina: true, false),
oldpeak (ST depression induced by exercise relative to rest), slope (the
slope of the peak exercise ST segment: up, flat, down), ca (number of ma-
jor vessels (0–3) colored by flouroscopy), and thal (no description given:
norm=normal, fix=fixed defect, rev=reversable effect). Of the 303 pa-
tients in the original data set, seven had missing data, and so we reduced
the number of patients to 296 (160 healthy, 136 with heart disease).

The classification tree is displayed in Figure 9.2 (where we used the
entropy measure as the impurity function for splitting). The root node
with 296 patients is split according to whether thal = norm (163 patients)
or thal = fix or rev (133 patients). The node with the 163 patients, which
consists of 127 healthy patients and 36 patients with heart disease, is then
split by whether ca < 0.5 (114 patients), or ca > 0.5 (49 patients). The
node with 114 patients is declared a terminal node for buff because of the
102–12 majority in favor of buff. The node with 49 patients, which consists

1The data can be downloaded from file cleveland.data in the UCI repository

www.ics.uci.edu/~mlearn/databases/heart-disease.
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of 25 healthy patients and 24 with heart disease, is split by whether cp =
abnang, angina, notang (29 patients) or cp = asympt (20 patients). The
node with 29 patients, which consists of 22 healthy patients and 7 with
heart disease, is split by whether age ≤ 65.5 (7 patients) or age < 65.5
(22 patients). The node with 7 patients is declared a terminal node for
buff because of the 7–0 majority in favor of buff, and the node with 22
patients, which consists of 15 healthy patients and 7 with heart disease, is
split by whether age < 55.5 (13 patients) or age ≤ 55.5 (9 patients). The
node with 13 patients is declared a terminal node for buff because of the
12–1 majority in favor of buff, and the node with 9 patients is declared a
terminal node for sick because of the 6–3 majority in favor of sick. And
so on.

Thus, we see that there are four paths (sequence of splits) through this
tree for a patient to be declared healthy (buff) and five other paths for
a patient to be diagnosed with heart disease (sick). In fact, there are
10 splits (and 11 terminal nodes) in this tree. The variables used in the
tree construction are thal, ca, cp, age, oldpeak, thatach, and exang.
The resubstitution (or apparent) error rate (i.e., the error rate obtained
directly from the classification tree) is 37/296 = 0.125 (12 sick patients
who are classified as buff and 25 buff patients who are classified as sick).

9.2.2 Tree-Growing Procedure

In order to grow a classification tree, we need to answer four basic ques-
tions: (1) How do we choose the Boolean conditions for splitting at each
node? (2) Which criterion should we use to split a parent node into its two
daughter nodes? (3) How do we decide when a node become a terminal
node (i.e., stop splitting)? (4) How do we assign a class to a terminal node?

9.2.3 Splitting Strategies

At each node, the tree-growing algorithm has to decide on which vari-
able it is “best” to split. We need to consider every possible split over all
variables present at that node, then enumerate all possible splits, evaluate
each one, and decide which is best in some sense.

For a description of splitting rules, we need to make a distinction between
ordinal (or continuous) and nominal (or categorical) variables.

Ordinal or Continuous Variable

For a continuous or ordinal variable, the number of possible splits at a
given node is one fewer than the number of its distinctly observed values.
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FIGURE 9.2. Classification tree for the Cleveland heart-disease data,
where the entropy measure has been used as the impurity function. The
nodes (internal and terminal) are classified as buff (terminal nodes are col-
ored green) or sick (terminal nodes are colored pink) according to the ma-
jority diagnosis of patients falling into that node. The splitting variables
are displayed along the branches.

In the Cleveland heart-disease data, we have six continuous or ordinal
variables: age (40 possible splits), treatbps (48 possible splits), chol (151
possible splits), thatach (91 possible splits), ca (3 possible splits), and
oldpeak (39 possible splits). The total number of possible splits from these
continuous variables is, therefore, 372.

Nominal or Categorical Variable

Suppose that a particular categorical variable is defined by M distinct
categories, �1, . . . , �M . The set S of possible splits at that node for that
variable is the set of all subsets of {�1, . . . , �M}. Denote by τL and τR the
left daughter-node and right daughter-node, respectively, emanating from
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a (parent) node τ . If we let M = 4, then there are 2M − 2 = 14 possible
splits (ignoring splits where one of the daughter-nodes is empty). However,
half of those splits are redundant; for example, the split τL = {�1} and
τR = {�2, �3, �4} is the reverse of the split τL = {�2, �3, �4} and τR = {�1}.
So, the set S of seven distinct splits is given by the following table:

τL τR

�1 �2, �3, �4
�2 �1, �3, �4
�3 �1, �2, �4
�4 �1, �2, �3

�1, �2 �3, �4
�1, �3 �2, �4
�1, �4 �2, �3

In general, there are 2M−1 − 1 distinct splits in S for an M -categorical
variable.

In the Cleveland heart-disease data, there are seven categorical variables:
gender (1 possible split), cp (7 possible splits), fbs (1 possible split),
restecg (3 possible splits), exang (1 possible split), slope (3 possible
splits), and thal (3 possible splits). The total number of possible splits
from these categorical variables is, therefore, 19.

Total Number of Possible Splits

We now add the number of possible splits from categorical variables (19)
to the total number of possible splits from continuous variables (372) to get
391 possible splits over all 13 variables at the root node. In other words,
there are 391 possible splits of the root node into two daughter nodes. So,
which split is “best”?

Node Impurity Functions

To choose the best split over all variables, we first need to choose the
best split for a given variable. Accordingly, we define a measure of goodness
of a split.

Let Π1, . . . ,ΠK be the K ≥ 2 classes. For node τ , we define the node
impurity function i(τ) as

i(τ) = φ(p(1|τ), · · · , p(K|τ)), (9.1)

where p(k|τ) is an estimate of P(X ∈ Πk|τ), the conditional probability
that an observation X is in Πk given that it falls into node τ . In (9.1),
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we require φ to be a symmetric function, defined on the set of all K-
tuples of probabilities (p1, · · · , pK) with unit sum, minimized at the points
(1, 0, · · · , 0), (0, 1, 0, · · · , 0), . . . , (0, 0, · · · , 0, 1) and maximized at the point
( 1

K , · · · , 1
K ). In the two-class case (K = 2), these conditions reduce to a

symmetric φ(p) maximized at the point p = 1/2 with φ(0) = φ(1) = 0.
One such function φ is the entropy function,

i(τ) = −
K∑

k=1

p(k|τ) log p(k|τ), (9.2)

which is a discrete version of (7.113). When there are two classes, the
entropy function reduces to

i(τ) = −p log p− (1− p) log(1− p), (9.3)

where we set p = p(1|τ). Several other φ-functions have also been suggested,
including the Gini diversity index,

i(τ) =
∑
k �=k′

p(k|τ)p(k′|τ) = 1−
∑

k

{p(k|τ)}2. (9.4)

In the two-class case, the Gini index reduces to

i(τ) = 2p(1− p). (9.5)

This function can be motivated by considering which quadratic polynomial
satisfies the above conditions for the two-class case.

In Figure 9.3, the entropy function and the Gini index are graphed for
the two-class case. For practical purposes, there is not much difference
between these two types of node impurity functions. The usual default in
tree-growing software is the Gini index.

Choosing the Best Split for a Variable

Suppose, at node τ , we apply split s so that a proportion pL of the
observations drops down to the left daughter-node τL and the remaining
proportion pR drops down to the right daughter-node τR. For example,
suppose we have a data set in which the response variable Y has two
possible values, 0 and 1. Suppose that one of the possible splits of the
input variable Xj is Xj ≤ c vs. Xj > c, where c is some value of Xj . We
can write down the 2× 2 table in Table 9.1.

Consider, first, the parent node τ . We use the entropy function (9.3) as
our impurity measure. Estimate pL by n+1/n++ and pR by n+2/n++, and
then the estimated impurity function is

i(τ) = −
(

n+1

n++

)
loge

(
n+1

n++

)
−
(

n+2

n++

)
loge

(
n+2

n++

)
. (9.6)
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FIGURE 9.3. Node impurity functions for the two-class case. The entropy
function (rescaled) is the red curve, the Gini index is the green curve, and
the resubstitution estimate of the misclassification rate is the blue curve.

Note that i(τ) is completely independent of the type of proposed split.
Now, for the daughter nodes, τL and τR. For Xj ≤ c, we estimate pL by
n11/n1+ and pR by n12/n1+, and for Xj > c, we estimate pL by n21/n2+

and pR by n22/n2+. We then compute

i(τL) = −
(

n11

n1+

)
loge

(
n11

n1+

)
−
(

n12

n1+

)
loge

(
n12

n1+

)
(9.7)

i(τR) = −
(

n21

n2+

)
loge

(
n11

n1+

)
−
(

n22

n2+

)
loge

(
n22

n2+

)
. (9.8)

The goodness of split s at node τ is given by the reduction in impurity
gained by splitting the parent node τ into its daughter nodes, τR and τL,

∆i(s, τ) = i(τ)− pLi(τL)− pRi(τR). (9.9)

The best split for the single variable Xj is the one that has the largest
value of ∆i(s, τ) over all s ∈ Sj , the set of possible distinct splits for Xj .

Example: Cleveland Heart-Disease Data (Continued)

Consider the first variable age as a possible splitting variable at the root
node. There are 41 different values for age, and so there are 40 possible

TABLE 9.1. Two-by-two table for a split on the variable Xj, where the
response variable has value 1 or 0.

1 0 Row Total

Xj ≤ c n11 n12 n1+

Xj > c n21 n22 n2+

Column Total n+1 n+2 n++
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TABLE 9.2. Two-by-two table for the split on the variable age in the
Cleveland heart disease data: the left branch would be age ≤ 65 and the
right branch would be age > 65.

Buff Sick Row Total

age ≤ 65 143 120 263
age > 65 17 16 33

Column Total 160 136 296

splits. We set up the 2×2 table, Table 9.2, in which age is split, for example,
at 65.

Using the two-class entropy function as the impurity measure, we com-
pute (9.7) and (9.8), respectively, for the two possible daughter nodes:

i(τL) = −(143/263) loge(143/263)− (120/263) loge(120/263), (9.10)
i(τR) = −(17/33) loge(17/33)− (16/33) loge(16/33), (9.11)

whence, i(τL) = 0.6893 and i(τR) = 0.6927. Furthermore, from (9.6),

i(τ) = −(160/296) loge(160/296)− (136/296) loge(136/296) = 0.6899.
(9.12)

Using (9.9), the goodness of this split is given by:

∆i(s, τ) = 0.6899− (263/296)(0.6893)− (33/296)(0.6927) = 0.000162.
(9.13)

If we repeat these computations for all 40 possible splits for the variable
age, we arrive at Figure 9.4. In the left panel, we plot i(τL) (blue curve)
and i(τR) (red curve) against each of the 40 splits; for comparison, we have
the constant value of i(τ) = 0.6899. Note the large drop in the plot of i(τR)
at the split age > 70. In the right panel, we plot ∆i(s, τ) against each of
the 40 splits s. The largest value of ∆i(s, τ) is 0.04305, which corresponds
to the split age ≤ 54.

Recursive Partitioning

In order to grow a tree, we start with the root node, which consists of the
learning set L. Using the “goodness-of-split” criterion for a single variable,
the tree algorithm finds the best split at the root node for each of the
variables, X1 to Xr. The best split s at the root node is then defined as the
one that has the largest value of (9.9) over all r single-variable best splits
at that node.

In the case of the Cleveland heart-disease data, the best split at the root
node (and corresponding value of ∆i(s, τ)) for each of the 13 variables is
listed in Table 9.3. The largest value is 0.147 corresponding to the variable
thal. So, for these data, the best split at the root node is to split the



9.2 Classification Trees 291

20 30 40 50 60 70 80
Age at Split

0.41

0.46

0.51

0.56

0.61

0.66

i(t
au

_L
),

 i(
ta

u_
R

)

20 30 40 50 60 70 80

Age at Split

0.00

0.01

0.02

0.03

0.04

G
oo

dn
es

s 
of

 S
pl

it

FIGURE 9.4. Choosing the best split for the age variable in the Cleve-
land heart-disease study. The impurity measure is the entropy function.
Left panel: Plots of i(τL) (blue curve), and i(τR) (red curve) against age at
split. Note the sharp dip in the i(τR) plot at the split age > 70. Right panel:
Plot of the goodness of split s, ∆i(s, τ), against age at split. The peak of
this curve corresponds to the split age ≤ 54.

variable thal according to norm vs. (fix, rev); that is, first separate the 163
normal patients from the 133 patients who have (either fixed or reversible)
defects for the variable thal.

We next split each of the daughter nodes of the root node in the same way.
We repeat the above computations for the left daughter node, except that
we consider only those 163 patients having thal = norm, and then consider
the right daughter node, except we consider only those 133 patients having
thal = fix or rev. When those splits are completed, we continue to split
each of the subsequent nodes. This sequential splitting process of building
a tree layer-by-layer is called recursive partitioning. If every parent node
splits into two daughter nodes, the result is called a binary tree. If the
binary tree is grown until none of the nodes can be split any further, we
say the tree is saturated. It is very easy in a high-dimensional classification
problem to let the tree get overwhelmingly large, especially if the tree is
allowed to grow until saturation.

TABLE 9.3. Determination of the best split at the root node for the Cleve-
land heart-disease data. The impurity measure is the entropy function. Each
input variable is listed together with its maximum value of ∆i(s, τ) over all
possible splits of that variable.

age gender cp trestbps chol fbs restecg

0.043 0.042 0.133 0.011 0.011 0.00001 0.015

thatach exang oldpeak slope ca thal

0.093 0.093 0.087 0.077 0.124 0.147
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One way to counter this type of situation is to restrict the growth of the
tree. This was the philosophy of early tree-growers. For example, we can
declare a node to be terminal if it fails to be larger than a certain critical
size; that is, if n(τ) ≤ nmin, where n(τ) is the number of observations
in node τ and nmin is some previously declared minimum size of a node.
Because a terminal node cannot be split into daughter nodes, it acts as
a brake on tree growth; the larger the value of nmin, the more severe the
brake. Another early action was to stop a node from splitting if the largest
goodness-of-split value at that node is smaller than a certain predetermined
limit. These stopping rules, however, do not turn out to be such good ideas.
A better approach (Breiman et al., 1984) is to let the tree grow to saturation
and then “prune” it back; see Section 9.2.6.

How do we associate a class with a terminal node? Suppose at terminal
node τ there are n(τ) observations, of which nk(τ) are from class Πk,
k = 1, 2, . . . ,K. Then, the class which corresponds to the largest of the
{nk(τ)} is assigned to τ . This is called the plurality rule. This rule can be
derived from the Bayes’s rule classifier of Section 8.5.1, where we assign
the node τ to class Πi if p(i|τ) = maxk p(k|τ); if we estimate the prior
probability πk by nk(τ)/n(τ), k = 1, 2, . . . ,K, then this boils down to the
plurality rule.

9.2.4 Example: Pima Indians Diabetes Study

This Indian population lives near Phoenix, Arizona. All patients listed
in this data set2 are females at least 21 years old of Pima Indian heritage.
There are two classes: diabetic, if the patient shows signs of diabetes
according to World Health Organization criteria (i.e., if the 2-hour post-
load plasma glucose was at least 200 mg/dl at any survey examination, or
if found during routine medical care), and normal. In the original data,
there were 500 normal subjects and 268 diabetic subjects.

Thereareeight inputvariables:npregnant (numberof timespregnant),bmi
(body mass index, (weight in kg)/(height in m)2), glucose (plasma glucose
concentration at 2 hours in an oral glucose tolerance test), pedigree (di-
abetes pedigree function), diastolic.bp (diastolic blood pressure, mm Hg),
skinfold.thickness (triceps skin fold thickness, mm), insulin
(2-hour serum insulin, µU/ml), and age (age in years). We removed any
subject with a nonsense value of zero for the variables glucose, bmi,
diastolic.bp, skinfold.thickness; this reduced the data set to 532 pa-
tients (from 768), with 355 normal subjects and 177 diabetic subjects.

2These data are available on the book’s website (file pima) and are also available from
the UCI website.
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FIGURE 9.5. A classification tree for the Pima Indians diabetes data,
where the impurity measure is the Gini index. The terminal nodes are col-
ored green for normal and pink for diabetic. The splitting variables are
given on the branches of each split, and the number in each node is given as
number of normal/number of diabetic, with the node classification given
by the majority rule. Nodes were not split further unless they contained at
least 10 subjects.

We also did not use the variable insulin because it had so many zeros
(374 in the original data).

A classification tree was grown for the Pima Indians diabetes data using
Gini’s impurity measure (9.5). The classification tree appears in Figure
9.5, where nodes are declared to be terminal if they contain fewer than
10 patients. We see 14 splits and 15 terminal nodes; a patient is declared
to be normal at 8 terminal nodes and diabetic at 7 terminal nodes. The
assignment of each terminal node into “normal” or “diabetic” depends
upon the majority rule at that node; the numbers of normal and diabetic
patients in the learning set that fall into each terminal node are displayed
at that node.
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9.2.5 Estimating the Misclassification Rate

Next, we compute an estimate of the within-node misclassification rate.
The resubstitution estimate of the misclassification rate R(τ) of an obser-
vation in node τ is

r(τ) = 1−max
k

p(k|τ), (9.14)

which, for the two-class case, reduces to

r(τ) = 1−max(p, 1− p) = min(p, 1− p). (9.15)

The resubstitution estimate (9.15) in the two-class case is graphed in Figure
9.3 (the blue curve). If p < 1/2, the resubstitution estimate increases lin-
early in p, and if p > 1/2, it decreases linearly in p. Because of its poor
properties (e.g., nondifferentiability), (9.15) is not used much in practice.

Let T be the tree classifier and let T̃ = {τ1, τ2, . . . , τL} denote the set
of all terminal nodes of T . We can now estimate the true misclassification
rate,

R(T ) =
∑

τ∈T̃

R(τ)P (τ) =
L∑

�=1

R(τ�)P (τ�) (9.16)

for T , where P (τ) is the probability that an observation falls into node τ .
If we estimate P (τ�) by the proportion p(τ�) of all observations that fall
into node τ�, then, the resubstitution estimate of R(T ) is

Rre(T ) =
L∑

�=1

r(τ�)p(τ�) =
L∑

�=1

Rre(τ�), (9.17)

where Rre(τ�) = r(τ�)p(τ�).
Of the 532 subjects in the Pima Indians diabetes study, the classification

tree in Figure 9.5 misclassifies 29 of the 355 normal subjects as diabetic,
whereas of the 177 diabetic patients, 46 are misclassified as normal. So,
the resubstitution estimate is Rre(T ) = 75/532 = 0.141.

The resubstitution estimate Rre(T ), however, leaves much to be desired
as an estimate of R(T ). First, bigger trees (i.e., more splitting) have smaller
values of Rre(T ); that is, Rre(T ′) ≤ Rre(T ), where T ′ is formed by splitting
a terminal node of T . For example, if a tree is allowed to grow until every
terminal node contains only a single observation, then that node is classified
by the class of that observation and Rre(T ) = 0. Second, using only the
resubstitution estimate tends to generate trees that are too big for the given
data. Third, the resubstitution estimate Rre(T ) is a much-too-optimistic
estimate of R(T ). More realistic estimates of R(T ) are given below.
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9.2.6 Pruning the Tree

The Breiman et al. (1984) philosophy of growing trees is to grow the tree
“large” and then prune off branches (from the bottom up) until the tree is
the “right size.” A pruned tree is a subtree of the original large tree. How
to prune a tree, then, is the crucial part of the process. Because there are
many different ways to prune a large tree, we decide which is the “best” of
those subtrees by using an estimate of R(T ).

The pruning algorithm is as follows:

1. Grow a large tree, say, Tmax, where we keep splitting until the nodes
each contain fewer than nmin observations;

2. Compute an estimate of R(τ) at each node τ ∈ Tmax;

3. Prune Tmax upwards toward its root node so that at each stage of
pruning, the estimate of R(T ) is minimized.

Instead of using the resubstitution measure Rre(T ) as our estimate of
R(T ), we modify it for tree pruning by adopting a regularization approach.
Let α ≥ 0 be a complexity parameter. For any node τ ∈ T , set

Rα(τ) = Rre(τ) + α. (9.18)

From (9.18), we define a cost-complexity pruning measure for a tree as
follows:

Rα(T ) =
L∑

�=1

Rα(τ�) = Rre(T ) + α|T̃ |, (9.19)

where |T̃ | = L is the number of terminal nodes in the subtree T of Tmax.
Think of α|T̃ | as a penalty term for tree size, so that Rα(T ) penalizes
Rre(T ) for generating too large a tree. For each α, we then choose that
subtree T (α) of Tmax that minimizes Rα(T ):

Rα(T (α)) = min
T

Rα(T ). (9.20)

If T (α) satisfies (9.20), then it is called a minimizing subtree (or an optimally-
pruned subtree) of Tmax. For any α, there may be more than one minimizing
subtree of Tmax.

The value of α determines the tree size. When α is very small, the penalty
term will be small, and so the size of the minimizing subtree T (α), which
will essentially be determined by Rre(T (α)), will be large. For example,
suppose we set α = 0 and grow the tree Tmax so large that each terminal
node contains only a single observation; then, each terminal node takes on
the class of its solitary observation, every observation is classified correctly,
and Rre(Tmax) = 0. So, Tmax minimizes R0(T ). As we increase α, the
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minimizing subtrees T (α) will have fewer and fewer terminal nodes. When
α is very large, we will have pruned the entire tree Tmax, leaving only the
root node.

Note that although α is defined on the interval [0,∞), the number of
subtrees of T is finite. Suppose that, for α = α1, the minimizing subtree
is T1 = T (α1). As we increase the value of α, T1 continues to be the
minimizing subtree until a certain point, say, α = α2, is reached, and a
new subtree, T2 = T (α2), becomes the minimizing subtree. As we increase
α further, the subtree T2 continues to be the minimizing subtree until a
value of α is reached, α = α3, say, when a new subtree T3 = T (α3) becomes
the minimizing subtree. This argument is repeated a finite number of times
to produce a sequence of minimizing subtrees T1, T2, T3, . . ..

How do we get from Tmax to T1? Suppose the node τ in the tree Tmax

has daughter nodes τL and τR, both of which are terminal nodes. Then,

Rre(τ) ≥ Rre(τL) + Rre(τR) (9.21)

(Breiman et al., 1984, Proposition 4.2). For example, in the classification
tree for the Pima Indians diabetes study (Figure 9.5), the lowest subtree
has a root node with 13 normals and 8 diabetics, whereas its left daughter
node has 10 normals and 3 diabetics and its right daughter node has 3
normals and 5 diabetics. Thus, Rre(τ) = 8/532 > Rre(τL) + Rre(τR) =
(3 + 3)/532 = 6/532. If equality occurs in (9.21) at node τ , then prune the
terminal nodes τL and τR from the tree. Continue this pruning strategy
until no further pruning of this type is possible. The resulting tree is T1.

Next, we find T2. Let τ be any nonterminal node of T1, let Tτ be the
subtree whose root node is τ , and let T̃τ = {τ ′

1, τ
′
2, . . . , τ

′
Lτ
} be the set of

terminal nodes of Tτ . Let

Rre(Tτ ) =
∑

τ ′∈T̃τ

Rre(τ ′) =
Lτ∑

�′=1

Rre(τ ′
�′). (9.22)

Then, Rre(τ) > Rre(Tτ ) (Breiman et al., 1984, Proposition 3.8). For exam-
ple, from Figure 9.5, let τ be the nonterminal node on the right-hand side
of the tree near the center of the tree having 18 normals and 26 diabetics,
and let Tτ be the subtree with τ as its root node. Then, Rre(τ) = 18/532 >
Rre(Tτ ) = (3 + 3 + 3 + 2)/532 = 11/532. Now, set

Rα(Tτ ) = Rre(Tτ ) + α|T̃τ |. (9.23)

As long as Rα(τ) > Rα(Tτ ), the subtree Tτ has a smaller cost-complexity
than its root node τ , and, therefore, it pays to retain Tτ . For the previous
example, we retain Tτ as long as Rre

α (τ) = 18/532 + α > 11/532 + 4α =
Rre

α (Tτ ), or α < 7/(3 · 532) = 0.0044.
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Substituting (9.18) and (9.23) into this condition and solving for α yields

α <
Rre(τ)−Rre(Tτ )

|T̃τ | − 1
. (9.24)

So, the right-hand side of (9.24), which is positive, computes the reduction
in Rre (due to going from a single node to the subtree with that node as
root) relative to the increase in the number of terminal nodes. For τ ∈ T1,
define

g1(τ) =
Rre(τ)−Rre(T1,τ )

|T̃1,τ | − 1
. τ /∈ T̃ (α1), (9.25)

where T1,τ is the same as Tτ . Then, g1(τ) can be regarded as a critical
value for α: as long as g1(τ) > α1, we do not prune the nonterminal nodes
τ ∈ T1.

We define the weakest-link node τ̃1 as the node in T1 that satisfies

g1(τ̃1) = min
τ∈T1

g1(τ). (9.26)

As α increases, τ̃1 is the first node for which Rα(τ) = Rα(Tτ ), so that τ̃1

is preferred to T
τ̃1

. Set α2 = g1(τ̃1) and define the subtree T2 = T (α2) of
T1 by pruning away the subtree T

τ̃1
(so that τ̃1 becomes a terminal node)

from T1.
To find T3, we find the weakest-link node τ̃2 ∈ T2 through the critical

value

g2(τ) =
Rre(τ)−Rre(T2,τ )

|T̃2,τ | − 1
, τ ∈ T (α2), τ /∈ T̃ (α2), (9.27)

where T2,τ is that part of Tτ which is contained in T2. We set

α3 = g2(τ̃2) = min
τ∈T2

g2(τ), (9.28)

and define the subtree T3 of T2 by pruning away the subtree T
τ̃2

(so that τ̃2

becomes a terminal node) from T2. And so on for a finite number of steps.
As we noted above, there may be several minimizing subtrees for each

α. How do we choose between them? For a given value of α, we call T (α)
the smallest minimizing subtree if it is a minimizing subtree (i.e., satifies
(9.20)) and satisfies the following condition:

if Rα(T ) = Rα(T (α)), then T � T (α). (9.29)

In (9.29), T � T (α) means that T (α) is a subtree of T and, hence, has fewer
terminal nodes than T . This condition says that, in the event of any ties,
T (α) is taken to be the smallest tree out of all those trees that minimize
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Rα. Breiman et al. (1984, Proposition 3.7) showed that for every α, there
exists a unique smallest minimizing subtree.

The above construction gives us a finite increasing sequence of complexity
parameters,

0 = α0 < α1 < α2 < α3 < · · · < αM , (9.30)

which corresponds to a finite sequence of nested subtrees of Tmax,

Tmax = T0 � T1 � T2 � T3 � · · · � TM , (9.31)

where Tk = T (αk) is the unique smallest minimizing subtree for α ∈
[αk, αk+1), and TM is the root-node subtree. We start with T1 and in-
crease α until α = α2 determines the weakest-link node τ̃1; we then prune
the subtree T

τ̃1
with that node as root. This gives us T2. We repeat this

procedure by finding α = α3 and the weakest-link node τ̃2 in T2 and prune
the subtree T

τ̃2
with that node as root. This gives us T3. This pruning

process is repeated until we arrive at TM .

Example: Pima Indians Diabetes Study (Continued)

The sequence of seven pruned classification trees, Tk, corresponding to
their critical values, αk, are listed in Table 9.4. The tree displayed in Figure
9.5 has 14 splits (and, hence, 15 terminal nodes).

Any value of α < 0.0038 will produce a tree with 15 terminal nodes.
When α = 0.0038, the classification tree is pruned to have 11 splits (and 12
terminal nodes), which will remain the same for all 0.0038 ≤ α < 0.0047.
Increasing α to 0.0047 prunes the tree to 9 splits (and 10 terminal nodes).
And so on, until α is increased above 0.0883 when the tree consists only of
the root node.

9.2.7 Choosing the Best Pruned Subtree

Thus far, we have constructed a finite sequence of decreasing-size subtrees
T1, T2, T3, . . . , TM by pruning more and more nodes from Tmax. When do
we stop pruning? Which subtree of the sequence do we choose as the “best”
pruned subtree?

Choice of the best subtree depends upon having a good estimate of the
misclassification rate R(Tk) corresponding to the subtree Tk. Breiman et
al. (1984) offered two estimation methods: use an independent test sample
or use cross-validation. When the data set is very large, use of an inde-
pendent test set is straightforward and computationally efficient, and is,
generally, the preferred estimation method. For smaller data sets, cross-
validation is preferred.
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TABLE 9.4. Pruned classification trees for the Pima Indians diabetes
study. The impurity function is the Gini index. By increasing the complexity
parameter α, seven classification trees, Tk, k = 1, 2, . . . , 6, are derived,
where the tree details are listed so that Tk � Tk+1; i.e., largest tree to
smallest tree. Also listed for each tree are the number of terminal nodes
(|T̃k|), resubstitution error (Rre), and 10-fold cross-validation (CV) error
(RCV/10). The ± values on the CV error are the CV standard errors (ŜE).
The CV error estimate and its estimated standard error produce random
values according to the random CV-partition of the data.

k αk |T̃k| Rre(Tk) RCV/10(Tk)

1 15 0.141 0.258 ± 0.019
2 0.0038 12 0.152 0.233 ± 0.018
3 0.0047 10 0.162 0.233 ± 0.018
4 0.0069 6 0.190 0.235 ± 0.018
5 0.0085 4 0.207 0.256 ± 0.019
6 0.0188 2 0.244 0.256 ± 0.019
7 0.0883 1 0.333 0.333 ± 0.020

Independent Test Set

Randomly assign the observations in the data set D into a learning set
L and a test set T , where D = L∪T and L∩T = ∅. Suppose there are nT
observations in the test set and that they are drawn independently from
the same underlying distribution as the observations in L. Grow the tree
Tmax from the learning set only, prune it from the bottom up to give the
sequence of subtrees T1 � T2 � T3 � · · · � TM , and assign a class to each
terminal node.

Take each of the nT test-set observations and drop it down the subtree
Tk. Each observation in T is then classified into one of the different classes.
Because the true class of each observation in T is known, we estimate R(Tk)
by Rts(Tk), which is (9.19) with α = 0; that is, Rts(Tk) = Rre(Tk), the
resubstitution estimate computed using the independent test set. When
the costs of misclassification are identical for each class, Rts(Tk) is the
proportion of all test set observations that are misclassified by Tk. These
estimates are then used to select the best-pruned subtree T∗ by the rule

Rts(T∗) = min
k

Rts(Tk), (9.32)

and Rts(T∗) is its estimated misclassification rate.
We estimate the standard error of Rts(T ) as follows. When we drop the

test set T down a tree T , the chance that we misclassify any one of those
observations is p∗ = R(T ). Thus, we have a binomial sampling situation
with nT Bernoulli trials and probability of success p∗. If p = Rts(T ) is
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the proportion of misclassified observations in T , then, p is unbiased for p∗

and the variance of p is p∗(1 − p∗)/nT . The standard error of Rts(T ) is,
therefore, estimated by

ŜE(Rts(T )) =
{

Rts(T )(1−Rts(T ))
nT

}1/2

. (9.33)

Cross-Validation

In V -fold cross-validation (CV/V ), we randomly divide the data D into
V roughly equal-size, disjoint subsets, D =

⋃V
v=1Dv, where Dv ∩ Dv′ = ∅,

v �= v′, and V is usually taken to be 5 or 10. We next create V different
data sets from the {Dv} by taking Lv = D − Dv as the vth learning set
and Tv = Dv as the vth test set, v = 1, 2, . . . , V . If the {Dv} each have the
same number of observations, then each learning set will have (V −1

V )× 100
percent of the original data set.

Grow the vth “auxilliary” tree T
(v)
max using the vth learning set Lv, v =

1, 2, . . . , V . Fix the value of the complexity parameter α. Let T (v)(α) be the
best pruned subtree of T

(v)
max, v = 1, 2, . . . , V . Now, drop each observation in

the vth test set Tv down the tree T (v)(α), v = 1, 2, . . . , V . Let n
(v)
ij (α) denote

the number of jth class observations in Tv that are classified as being from
the ith class, i, j = 1, 2, . . . ,K, v = 1, 2, . . . , V . Because D =

⋃V
v=1 Tv is a

disjoint sum, the total number of jth class observations that are classified
as being from the ith class is nij(α) =

∑V
v=1 n

(v)
ij (α), i, j = 1, 2, . . . ,K. If

we set nj to be the number of observations in D that belong to the jth
class, j = 1, 2, . . . ,K, and assume that misclassification costs are equal for
all classes, then, for a given α,

RCV/V (T (α)) = n−1
K∑

i=1

K∑
j=1

nij(α) (9.34)

is the estimated misclassification rate over D, where T (α) is a minimizing
subtree of Tmax.

The final step in this process is to find the right-sized subtree. Breiman et
al. (1984, p. 77) recommend evaluating (9.24) at the sequence of values α′

k =√
αkαk+1, where α′

k is the geometric midpoint of the interval [αk, αk+1) in
which T (α) = Tk. Set

RCV/V (Tk) = RCV/V (T (α′
k)). (9.35)

Then, select the best-pruned subtree T∗ by the rule:

RCV/V (T∗) = min
k

RCV/V (Tk), (9.36)
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and use RCV/V (T∗) as its estimated misclassification rate.
Deriving an estimated standard error of the cross-validated estimate of

the misclassification rate is more complicated than using a test set. The
usual way of sidestepping issues of non-independence of the summands
in (9.29) is to ignore them and pretend instead that independence holds.
Actually, this approximation appears to work well in practice. See Breiman
et al. (1984, Section 11.5) for details.

It is usual to take V = 10 for 10-fold CV. The leave-one-out CV method
(i.e., V = n) is not recommended because the resulting auxilliary trees will
be almost identical to the tree constructed from the full data set, and so
nothing would be gained from this procedure.

The One-SE Rule

To overcome possible instability in selecting the best-pruned subtree,
Breiman et al. (1984, Section 3.4.3) propose an alternative rule.

Let R̂(T∗) = mink R(Tk) denote the estimated misclassification rate,
calculated from either a test set (i.e., Rts(T∗)) or cross-validation (i.e.,
RCV/V (T∗)). Then, we choose the smallest tree T∗∗ that satisfies the “1-SE
rule,” namely,

R̂(T∗∗) ≤ R̂(T∗) + ŜE(R̂(T∗)). (9.37)

This rule appears to produce a better subtree than using T∗ because it re-
sponds to the variability (through the standard error) of the cross-validation
estimates.

Example: Pima Indians Diabetes Study (Continued)

For example, we apply the 1-SE rule to the Pima Indians diabetes study.
From Table 9.4, the 1-SE rule yields a minimum of CV error + SE = 0.233
+ 0.018 = 0.251, which leads to the choice of a classification tree with 9
splits (10 terminal nodes) based upon cross-validation. The corresponding
pruned classification tree is displayed in Figure 9.6.

A diagnosis of diabetes is given to those subjects who have one of the
following symptoms:

1. plasma glucose level at least 157.5;

2. plasma glucose level between 127.5 and 157.5, bmi at least 30.2, and
age at least 42.5 years;

3. plasma glucose level between 127.5 and 157.6, bmi at least 30.2, age
less than 42.5 years, and a pedigree at least 0.285;

4. plasma glucose level between 96.5 and 127.5, age at least 28.5 years,
a pedigree at least 0.62, and bmi at least 26.5.
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FIGURE 9.6. A pruned classification tree for the Pima Indians diabetes
data, with 9 splits and 10 terminal nodes, where the impurity measure is
the Gini index. The terminal nodes are colored green for normal and pink
for diabetic.

This tree has a resubstitution error rate of 86/532 = 0.162 and 10-fold CV
misclassification rate of 0.233 ± 0.018.

9.2.8 Example: Vehicle Silhouettes

Consider the vehicle data3 of Section 8.7, which were collected to study
how well 3D objects could be distinguished by their 2D silhouette images.
There are four classes of objects, each of which was a Corgi model vehi-
cle: an Opel Manta car (opel, 212 images), a Saab 9000 car (saab, 217
images), a double-decker bus (bus, 218 images), and a Chevrolet van (van,
199 images), giving a total of 846 images. Each object was viewed by a cam-
era from many different angles and elevations. The variables are scaled
variance, skewness, and kurtosis about the major/minor axes, and

3These data can be found in the UCI Machine Learning Repository.
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FIGURE 9.7. Plot of 10-fold CV results of different size classification
trees for the vehicle data. The cp-value is α divided by the resubstitution
error rate estimate, Rre(T0) = 628/846 = 0.742, for the root tree, and the
vertical axis is the corresponding CV error rate also divided by Rre(T0).
The vertical lines indicate ± two SE for each CV error estimate. The rec-
ommended tree size has cp equal to the smallest tree with the minimum CV
error; in this case, 11 terminal nodes.

heuristic measures such as hollows ratio, circularity, elongatedness,
rectangularity, and compactness of the silhouettes.

Based upon the One–SE rule, and the resulting complexity-parameter
plot in Figure 9.7, the most appropriate classification tree has 10 splits with
11 terminal nodes, with a resubstitution error rate of 0.3535 × 0.74232 =
0.262, and CV error rate of 0.299 ± 0.0157. In Figure 9.8, we have displayed
the pruned classification tree with 10 splits and 11 terminal nodes.

9.3 Regression Trees

Suppose the data are given by D = {(Xi, Yi), i = 1, 2, . . . , n}, where
the Yi are measurements made on a continuous response variable Y , and
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FIGURE 9.8. A pruned classification tree for the vehicle data. There
are 12 input variables, 846 observations, and four classes of vehicle models:
opel (pink), saab (yellow), bus (green), and van (blue), whose numbers at
each node are given by a/b/c/d, respectively, There are 10 splits and 11
terminal nodes in this tree. The resubstitution error rate is 0.262.

the Xi are measurements on an input r-vector X. We assume that Y is
related to X as in multiple regression (see Chapter 5), and we wish to use
a tree-based method to predict Y from X.

Regression trees are constructed similarly to classification trees, and the
method is generally referred to as recursive-partitioning regression. In a
classification tree, the class of a terminal node is defined as that class
that commands a plurality (a majority in the two-class case) of all the
observations in that node, where ties are decided at random. In a regression
tree, the output variable is set to have the constant value Y (τ) at terminal
node τ . Hence, the tree can be represented as an r-dimensional histogram
estimate of the regression surface, where r is the number of input variables,
X1,X2, . . . , Xr.
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9.3.1 The Terminal-Node Value

How do we find Y (τ)? Recall (from Chapter 5) that the resubstitution
estimate of prediction error is

Rre(µ̂) =
1
n

n∑
i=1

(Yi − Ŷi)2, (9.38)

where Ŷi = µ̂(Xi) is the estimated value of the predictor at Xi. For Ŷi to
be constant at each node, the predictor has to have the form

µ̂(X) =
∑

τ∈T̃

Y (τ)I[X∈τ ] =
L∑

�=1

Y (τ�)I[X∈τ�], (9.39)

where I[X∈τ�] is equal to one if X ∈ τ� and zero otherwise. For Xi ∈ τ�,
Rre(µ̂) is minimized by taking Ŷi = Ȳ (τ�) as the constant value Y (τ�),
where Ȳ (τ�) is the average of the {Yi} for all observations assigned to node
τ�; that is,

Ȳ (τ�) =
1

n(τ�)

∑
Xi∈τ�

Yi, (9.40)

where n(τ�) is the total number of observations in node τ�. Changing no-
tation slightly to reflect the tree structure, the resubstitution estimate is

Rre(T ) =
1
n

L∑
�=1

∑
Xi∈τ�

(Yi − Ȳ (τ�))2 =
L∑

�=1

Rre(τ�), (9.41)

where

Rre(τ�) =
1
n

∑
Xi∈τ�

(Yi − Ȳ (τ�))2 = p(τ�)s2(τ�), (9.42)

s2(τ�) is the (biased) sample variance of all the Yi values in node τ�,
and p(τ�) = n(τ�)/n is the proportion of observations in node τ�. Hence,
Rre(T ) =

∑L
�=1 p(τ�)s2(τ�).

9.3.2 Splitting Strategy

How do we determine the type of split at any given node of the tree?
We take as our splitting strategy at node τ ∈ T̃ the split that provides the
biggest reduction in the value of Rre(T ). The reduction in Rre(τ) due to a
split into τL and τR is given by

∆Rre(τ) = Rre(τ)−Rre(τL)−Rre(τR); (9.43)
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the best split at τ is then the one that maximizes ∆Rre(τ). The result
of employing such a splitting strategy is that the best split will divide up
observations according to whether Y has a small or large value; in general,
where splits occur, we see either ȳ(τL) < ȳ(τ) < ȳ(τR) or its reverse with
ȳ(τL) and ȳ(τR) interchanged.

We note that finding τL and τR to maximize ∆Rre(τ) is equivalent to
minimizing Rre(τL) + Rre(τR). From (9.42), this boils down to finding τL

and τR to solve
min
τL,τR

{p(τL)s2(τL) + p(τR)s2(τR)}, (9.44)

where p(τL) and p(τR) are the proportions of observations in τ that split
to τL and τR, respectively.

9.3.3 Pruning the Tree

The method for pruning a regression tree incorporates the same ideas as
is used to prune a classification tree.

As before, we first grow a large tree, Tmax, by splitting nodes repeatedly
until each node contains fewer than a given number of observations; that
is, until n(τ) ≤ nmin for each τ ∈ T̃ , where we typically set nmin = 5.

Next, we set up an error-complexity measure,

Rα(T ) = Rre(T ) + α|T̃ |, (9.45)

where α ≥ 0 is a complexity parameter. Use Rα(T ) as the criterion for
deciding when and how to split, just as we did in pruning classification
trees. The result is a sequence of subtrees,

Tmax = T0 � T1 � T2 � T3 � · · · � TM , (9.46)

and an associated sequence of complexity parameters,

0 = α0 < α1 < α2 < α3 < · · · < αM , (9.47)

such that for α ∈ [αk, αk+1), Tk is the smallest minimizing subtree of Tmax.

9.3.4 Selecting the Best Pruned Subtree

We estimate R(Tk) by using an independent test set or by cross-validation.
The details follow those in Section 9.2.6.

For an independent test set, T , an estimate of R(Tk) is given by

Rts(Tk) =
1

nT

∑
(Xi,Yi)∈T

(Yi − µ̂k(Xi))2, (9.48)
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where nT is the number of observations in the test set and µ̂k(X) is the
estimated prediction function associated with subtree Tk.

For a V -fold cross-validated estimate of R(Tk), we first construct the
minimal error-complexity subtrees T (v)(α), v = 1, 2, . . . , V , parameterized
by α. Set α′

k = √αkαk+1 and let µ̂
(v)
k (x) denote the estimated prediction

function associated with the subtree T (v)(α′
k). The V -fold CV estimate of

R(Tk) is given by

RCV/V (Tk) = n−1
V∑

v=1

∑
(Xi,Yi)∈Tv

(Yi − µ̂
(v)
k (Xi))2. (9.49)

We usually select V = 10 for a 10-fold CV estimate in which we split the
learning set into 10 subsets, use 9 of those 10 subsets to grow and prune
the tree, and then use the omitted subset to test the results of the tree.

Given the sequence of subtrees {Tk}, we select the smallest subtree T∗∗
for which

R̂(T∗∗) ≤ R̂(T∗) + ŜE(R̂(T∗)), (9.50)

where R̂(T∗) = mink R̂(Tk) is the estimated prediction error calculated
using using either an independent test set (i.e., Rts(T∗)) or cross-validation
(i.e., RCV/V (T∗)).

9.3.5 Example: 1992 Major League Baseball Salaries

As an example of a regression tree, we use data on the salaries of Major
League Baseball (MLB) players for 1992 (Watnik, 1998).4 The data consist
of n = 337 MLB players who played at least one game in both the 1991
and 1992 seasons, excluding pitchers. The interesting aspect of these data
is that a player’s “value” is judged by his performance measures, which
in turn could be used to determine his salary the next year or possibly to
enable him to change his employer.

The output variable is the 1992 salaries (in thousands of dollars) of these
players, and the input variables are the following performance measures
from 1991: BA (batting average), OBP (on-base percentage), Runs (number
of runs scored), Hits (number of hits), 2B (number of doubles), 3B (number
of triples), HR (number of home runs), RBI (number of runs batted in), BB
(number of bases on balls or walks), SO (number of strikeouts), SB (number
of stolen bases), and E (number of errors made). Also included as input

4These data can be found at the website of the Journal of Statistics Education,
www.amstat.org/publications/jse/jse data archive.html. Sources for these data are
CNN/Sports Illustrated, Sacramento Bee (15th October 1991), The New York Times
(19th November 1992), and the Society for American Baseball Research.
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FIGURE 9.9. Plot of 10-fold CV results of different size regression trees
for 1992 baseball salary data. The cp-value is α divided by the resubstitution
estimate, Rre(T0), for the root tree, and the vertical axis is the CV error
also divided by Rre(T0). The vertical lines indicate ± two SE for each CV
error estimate. The recommended amount of pruning is to set cp equal to
the smallest tree with the minimum CV error; in this case, 11 terminal
nodes.

variables are the following four indicator variables: FAE (indicator of free-
agent eligibility), FA (indicator of free agent in 1991/92), AE (indicator of
arbitration eligibility), A (indicator of arbitration in 1991/92). These four
variables indicated how free each player was to move to other teams. A
player’s BA is the ratio of number of hits to the total number of “at-bats”
for that player (whether resulting in a hit or an out). The OBP is the ratio
of number of hits plus the number of walks to the number of hits plus the
number of walks plus the number of outs. For reference, a BA above 0.3
is very good, and an OBP above 0.4 is excellent. An RBI occurs when a
runner scores as a direct result of a player’s at-bat.

The plot of the CV results for this example is given in Figure 9.9, where
the minimum value of the CV error occurs for a tree size of 10 terminal
nodes. The pruned regression tree with 10 splits and 11 terminal nodes
corresponding to the minimum 1–SE rule is given in Figure 9.10. We see
from the terminal node on the right-hand side of the tree that the 14 play-
ers who score at least 46.5 runs have at least 94.5 RBIs, and are eligible
for free-agency to earn the highest average salary ($3,897,214). The low-
est average salary ($232,898), which is made by 108 players, is located at
the terminal node on the left-hand side of the tree. We also see that per-
forming well on at least one measure produces substantial differences in
average salary. The resubstitution estimate (9.41) of prediction error for
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FIGURE 9.10. Pruned regression tree for 1992 baseball salary data. The
label of each node indicates the mean salary, in thousands of dollars, for
the number n of players who fall into that node.

this regression tree is Rre(T ) = $341, 841, the cross-validation estimate of
prediction error is $549,217, and the cross-validation standard deviation is
$74,928. By comparison, regressing Salary on the 15 input variables in a
multiple regression yields a residual sum of squares of $155,032,181 and a
residual mean square of $482,966 based upon 321 df.

9.4 Extensions and Adjustments

9.4.1 Multivariate Responses

Some work has been carried out on constructing classification trees for
multivariate responses, especially where each response is binary (Zhang,
1998). In such cases, the measure of within-node homogeneity at node τ
for a single binary variable is generalized to a scalar-valued function of a
matrix argument. Examples include − log |Vτ |, where Vτ is the within-
node sample covariance matrix of the s binary responses at node τ , and
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a node-based quadratic form in V, the covariance matrix derived from
the root node. The cost-complexity of tree T is then defined as Rα(T ) in
(9.19), where Rre(T ) is a within-node homogeneity measure summed over
all terminal nodes. When dealing with multivariate responses, it is clear
from an applied point of view that the amount of data available for tree
construction has to be very large.

9.4.2 Survival Trees

Tree-based methods for analyzing censored survival data have become
very useful tools in biomedical research, where they can identify prognostic
factors for predicting survival (see, e.g., Intrator and Kooperberg, 1995).
The resulting trees are called survival trees (or conditional inference trees).
Survival data usually take the form of time-to-death but can be more gen-
eral than that, such as time to a particular event to occur. Censored survival
data occur when patients live past the conclusion of the study, leave the
study prematurely, or die during the period of the study from a disease not
connected to the one being studied, and survival analysis has to take such
conditions into account in the inference process.

When using tree-based methods to analyze censored survival data, it is
necessary to choose a criterion for making splitting decisions. There are
several splitting criteria, which can be divided into two types depending
upon whether one prefers to use a “within-node homogeneity” measure or
a “between-node heterogeneity” measure. Most applications of the former
method (see, e.g., Davis and Anderson, 1989) are parametrically based;
they typically incorporate a version of minus the log-likelihood loss func-
tion, where the versions differ in the loss function used and, thus, how they
represent the model for the observed data likelihood within the nodes.

The first application of recursive partitioning to the analysis of cen-
sored survival data (Gordon and Olshen, 1985) used a more nonparamet-
ric approach, basing their tree-construction on within-node Kaplan-Meier
estimates of the survival distribution, and then comparing those curve esti-
mates to within-node Kaplan-Meier estimates of truly homogeneous nodes.
An example of the latter method (Segal, 1988) computes the within-node
Kaplan-Meier curves for the censored survival data corresponding to each of
the two daughter nodes of a possible split and then applies the two-sample
log-rank statistic to the Kaplan-Meier curves to measure the goodness of
that split; the largest value of the log-rank statistic over all possible splits
determines which split is best.

Data that fall into a particular terminal node tend to have similar ex-
periences of survival (based upon a measure of within-node homogeneity).
Survival trees can be used to partition patients into groups having similar
survival results and, hence, identify common characteristics within these
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groups. At each terminal node of a survival tree, we compute a Kaplan-
Meier estimate of the survival curve using the survival information for all
patients who are members of that node and then compare the survival
curves from different terminal nodes.

9.4.3 MARS

Recursive partitioning used in constructing regression trees has been gen-
eralized to a flexible class of nonparametric regression models called mul-
tivariate adaptive regression splines (MARS) (Friedman, 1991).

In the MARS approach, Y is related to X via the model Y = µ(X) + ε,
where the error term ε has mean zero. The regression function, µ(X), is
taken to be a weighted sum of L basis functions,

µ(X) = β0 +
L∑

�=1

β�B�(X). (9.51)

The �th basis function,

B�(X) =
M�∏

m=1

φ�m(Xq(�,m)), (9.52)

is the product of M� univariate spline functions {φ�m(X)}, where M� is a
finite number and q(�,m) is an index depending upon the �th basis function
and the mth spline function. Thus, for each �, B�(X) can consist of a single
spline function or a product of two or more spline functions, and no input
variable can appear more than once in the product. These spline functions
(for � odd) are often taken to be linear of the form,

φ�m(X) = (X − t�m)+, φ�+1,m(X) = (t�m −X)+, (9.53)

where t�m is a knot of φ�m(X) occurring at one of the observed values of
Xq(�,m), m = 1, 2, . . . ,M�, � = 1, 2, . . . , L. In (9.53), (x)+ = max(0, x). If
B�(X) = I[X∈τ�] and β� = Y (τ�), then the regression function (9.51) is
equivalent to the regression-tree predictor (9.39). Thus, whereas regression
trees fit a constant at each terminal node, MARS fits more complicated
piecewise linear basis functions.

Basis function are first introduced into the model (9.51) in a forwards-
stepwise manner. The process starts by entering the intercept β0 (i.e.,
B0(X) = 1) into the model, and then at each step adding one pair of
terms of the form (9.53) (i.e., choosing an input variable and a knot) by
minimizing an error sum of squares criterion,

ESS(L) =
n∑

i=1

(yi − µL(xi))2, (9.54)
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where, for a given L, µL(xi) is (9.51) evaluated at X = xi. Suppose the
forwards-stepwise procedure terminates at M terms. This model is then
“pruned back” by using a backwards-stepwise procedure to prevent possibly
overfitting the data. At each step in the backwards-stepwise procedure, we
remove one term from the model. This yields M different nested models.
To choose between these M models, MARS uses a version of generalized
cross-validation (GCV),

GCV (m) =
n−1

∑n
i=1(yi − µ̂m(xi))2(
1− C(m)

n

)2 , m = 1, 2, . . . ,M, (9.55)

where µ̂m(x) is the fitted value of µ(x) based upon m terms, the numerator
is the apparent error rate (or resubstitution error rate), and C(m) is a
complexity cost function that represents the effective number of parameters
in the model (Craven and Wahba, 1979). The best choice of model has
m∗ = arg minm GCV (m) terms.

9.4.4 Missing Data

In some classification and regression problems, there may be missing
values in the test set. Fortunately, there are a number of ways of dealing
with missing data when using tree-based methods.

One obvious way is to drop a future observation with a missing data
value (or values) down the tree constructed using only complete-data ob-
servations and see how far it goes. If the variable with the missing value is
not involved in the construction of the tree, then the observation will drop
to its appropriate terminal node, and we can then classify the observation
or predict its Y value. If, on the other hand, the observation cannot drop
any further than a particular internal node τ (because the next split at τ
involves the variable with the missing value), we can either stop the ob-
servation at τ (Clark and Pregibon, 1992, Section 9.4.1) or force all the
observations with a missing value for that variable to drop down to the
same daughter node (Zhang and Singer, 1999, Section 4.8).

A method of surrogate splits has been proposed (Breiman et al., 1984,
Section 5.3) to deal with missing data. The idea of a surrogate split at a
given node τ is that we use a variable that best predicts the desired split
as a substitute variable on which to split at node τ . If the best-splitting
variable for a future observation at τ has a missing value at that split,
we use a surrogate split at τ to force that observation further down the
tree, assuming, of course, that the variable defining the surrogate split has
complete data.
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If the missing data occur for a nominal input variable with L levels, then
we could introduce an additional level of “missing” or “NA” so that the
variable now has L + 1 levels (Kass, 1980).

9.5 Software Packages

The original CART software is commercially available from Salford Sys-
tems. S-Plus and R commands for classification and regression trees are
discussed in Venables and Ripley (2002, Chapter 9). For the rpart library
manual, which we used for the examples in this chapter, see Therneau and
Atkinson (1997). Alternative software packages for carrying out tree-based
classification and regression are available; they have been implemented in
SAS Data Mining, SPSS Classification Trees, Statistica, and Sy-

stat, version 7. These versions differ in several aspects, including the im-
purity measure (typical default is the entropy function), splitting criterion,
and the stopping rule.

The original MARS software is also commercially available from Salford
Systems. The mars command in the mda library (Venables and Ripley, 2002,
Section 8.8) in S-Plus and R is available for fitting MARS models.

Bibliographical Notes

This chapter follows the pioneering development of CART (Classification
and Regression Trees) by Breiman, Friedman, Olshen, and Stone (1984).
Other treatments of the same material can be found in Clark and Pregibon
(1992, Chapter 9), Ripley (1996, Chapter 7), Zhang and Singer (1999), and
Hastie, Tibshirani, and Friedman (2001, Section 9.2).

Regression trees were introduced by Morgan and Sonquist (1963) using
a computer program they named Automatic Interaction Detection (AID).
Versions of AID followed: THAID in 1973 and CHAID in 1980; CHAID is
used in several computer packages that carry out tree-based methods. Com-
ments and references on the historical development of tree-based methods
are given in Ripley (1996, Section 7.4). An excellent discussion of survival
trees is given by Zhang and Singer (1999). For discussions of MARS, see
Hastie, Tibshirani, and Friedman (2001, Section 9.4) and Zhang and Singer
(1999, Chapter 9).

Exercises

9.1 The development of classification trees in this chapter assumes that
misclassifying any observation has a cost independent of the classes involved.
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In many circumstances, this may be unrealistic. For example, a civilized so-
ciety usually considers convicting an innocent person to be more egregious
than finding a guilty person to be not guilty. Define the misclassification
cost c(i|j) as the cost of misclassifying an observation from the jth class
into the ith class. Assume that c(i|j) is nonnegative for i �= j and zero
when i = j. Rewrite Sections 9.2.4, 9.2.5, and 9.2.6, taking into account
the costs of misclassification.

9.2 The discussion of the way to choose the best split for a classification
tree in Section 9.2 used the entropy function as the impurity measure. Use
the Gini index as an impurity measure on the Cleveland heart-disease data
and determine the best split for the age variable (see Table 9.2); draw the
graphs of i(τl) and i(τR) for the age variable and the goodness of split (see
Figure 9.3). Determine the best split for all the variables in the data set
(see Table 9.3).

9.3 The full Pima Indians data (768 subjects) has a large number of
missing data. In the data set, missing values are designated by zero values.
How could you use those subjects having missing values for one or more
variables to enhance the classification results discussed in the text?

9.4 Consider the following two examples. Both examples start out with
a root node with 800 subjects of which 400 have a given disease and the
other 400 do not. The first example splits the root node as follows: the left
node has 300 with the disease and 100 without, and the right node has
100 with the disease and 300 without. The second example splits the root
node as follows: the left node has 200 with the disease and 400 without,
and the right node has 200 with the disease and 0 without. Compute the
resubstitution error rate for both examples and show they are equal. Which
example do you view as more useful for the future growth of the tree?

9.5 Construct the appropriate-size classification tree for the BUPA liver
disorders data (see Section 8.4).

9.6 Construct the appropriate-size classification tree for the spambase
data (see Section 8.4).

9.7 Construct the appropriate-size classification tree for the forensic
glass data (see Section 8.7).

9.8 Construct the appropriate-size classification tree for the vehicle data
(see Section 8.7).

9.9 Construct the appropriate-size classification tree for the wine data
(see Section 8.7).



10
Artificial Neural Networks

10.1 Introduction

The learning technique of artificial neural networks (ANNs, or just neural
networks or NNs) is the focus of this chapter. The development of ANNs
evolved in periodic “waves” of research activity. ANNs were influenced by
the fortunes of the fields of artificial intelligence and expert systems, which
sought to answer questions such as: What makes the human brain such a
formidable machine in processing cognitive thought? What is the nature of
this thing called “intelligence”? And, how do humans solve problems?

These questions of “mind” and “intelligence” form the essence of cog-
nitive science, a discipline that focuses on the study of interpretation and
learning. “Interpretation” deals with the thought process resulting from
exposure to the senses of some type of input (e.g., music, poem, speech, sci-
entific manuscript, computer program, architectural blueprint), and “learn-
ing” deals with questions of how to learn from knowledge accumulated by
studying examples having certain characteristics.

There are many different theories and models for how the mind and
brain work. One such theory, called connectionism, uses analogues of neu-
rons and their connections — together with the concepts of neuron firing,
activation functions, and the ability to modify those connections — to form
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algorithms for artificial neural networks. This formulation introduces a rela-
tionship between the three notions of mind, brain, and computation, where
information is processed by the brain through massively parallel computa-
tions (i.e., huge numbers of instructions processed simultaneously), unlike
standard serial computations, which carry out one instruction at a time in
sequential fashion.

Sophisticated types of ANNs have been used to model human intelli-
gence, especially the ability to learn a language. These efforts include pre-
diction of past tenses of regular and irregular English verbs (Rumelhart
and McClelland, 1986b; Pinsker and Prince, 1988) and synthesis of the
pronounciation of English text (Sejnowski and Rosenberg, 1987). A study
involving ANNs of how the brain transforms a string of letter shapes into
the meaning of a word (Hinton, Plaut, and Shallice, 1993) was instrumen-
tal in understanding the capabilities of the human brain, shedding light on
specific types of impairments of the neural circuitry (e.g., surface and deep
dyslexia), and in training ANNs to simulate brain damage resulting from
injury or disease.

As an overly simplified model of the neuron activity in the brain, “artifi-
cial” neural networks were originally designed to mimic brain activity. Now,
ANNs are treated more abstractly, as a network of highly interconnected
nonlinear computing elements. The largest group of users of ANNs try to re-
solve problems involving machine learning, especially pattern classification
and prediction. For example, problems of speech recognition, handwritten
character recognition, face recognition, and robotics are important appli-
cations of ANNs. The common features to all of these types of problems
are high-dimensional data and large sample sizes.

10.2 The Brain as a Neural Network

To understand how an artificial neural system can be developed, we first
provide a brief description of the structure of the brain.

The largest part of the brain is the cerebral cortex, which consists of a
vast network of interconnected cells called neurons. Neurons are elementary
nerve cells which form the building blocks of the nervous system. In the
human brain, for example, there are about 10 billion neurons of more than
a hundred different types, as defined by their size and shape and by the
kinds of neurochemicals they produce. A schematic diagram of a biological
neuron is displayed in Figure 10.1.

The cell body (or soma) of a typical neuron contains its nucleus and
two types of processes (or projections): dendrites and axons. The neuron
receives signals from other neurons via its many dendrites, which operate
as input devices. Each neuron has a single axon, a long fiber that operates
as an output device; the end of the axon branches into strands, and each
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FIGURE 10.1. Schematic view of a biological neuron.

strand terminates in a synapse. Each synapse may either connect to a
synapse on a dendrite or cell body of another neuron or terminate into
muscle tissue. Because a neuron maintains, on average, about a thousand
synaptic connections with other neurons (whereas some may have 10–20
thousand such connections), the entire collection of neurons in the brain
yields an incredibly rich network of neural connections.

Neurons send signals to each other via an electrochemical process. All
neurons are electrically charged due to ion concentrations inside and out-
side the cell. Under appropriate conditions, an activated neuron fires an
electrical pulse (called an action potential or spike) of fixed amplitude and
duration. The action potential travels down the axon to its endings. Each
ending is swollen to form a synaptic knob, in which neurotransmitters (glu-
tamic acid, glu) are stored. Neurons do not join with each other, even
though they may be connected; there is a tiny gap (called the synaptic
cleft) between the axon of the sending (or presynaptic) neuron and a den-
drite of the receiving (or postsynaptic) neuron.

To send a signal to another neuron, the presynaptic neuron releases neu-
rotransmitters across the gap to a cluster of receptor molecules on the
dendrites of the postsynaptic neuron; these receptors act like electrical
switches. When a neurotransmitter binds to one of these receptors (called
an AMPA receptor), it opens up a channel into the postsynaptic neuron.
Although that channel remains open for a split second, electrically charged
sodium ions flood the channel, producing a local electrical disturbance (i.e.,
a depolarization), and start a chain reaction in which neighboring channels
open up. This, in turn, sends an action potential shooting along the surface
of the postsynaptic neuron toward the next neuron.

There is at least one other type of postsynaptic channel, called an NMDA
glutamic acid receptor. This receptor is unusual in that it will not open un-
less it receives two simultaneous signals, one of which is either an electrical
discarge from the postsynaptic neuron or a depolarization of its AMPA
synapses, and the other is emitted by the axon from a presynaptic neuron.



318 10. Artificial Neural Networks

When both signals arrive together, calcium ions also enter the dendrite,
strengthen the synapse, and provide a mechanism for both short-term and
long-term changes in the synapse. A high level of calcium released into the
NMDA receptor induces long-term potentiation (LTP), a form of long-term
memory (lasting minutes to hours, in vitro, and hours to days and months
in vivo, after which decay sets in). LTP enlarges synapses and makes them
stronger, and, over time, can also change brain structure.

Note that the postsynaptic neuron may or may not fire as a result of
receiving the pulse. Then, the axon shuts down for a certain amount of
time (a refractory period) before it can fire again. To prepare the synapse
for the next action potential, the synaptic cleft is cleared by active transport
by returning the neurotransmitter to the synaptic knob of the presynaptic
neuron.

Firing tends to occur randomly, but the actual rate of firing depends upon
many factors. One of those factors is the status of the total input signal;
this is derived from the relative strengths of the two types of synapses,
namely, the inhibitory synapses, which prevent the neuron from firing, and
the excitatory synapses, which push the neuron closer to firing. Depending
upon whether or not the total input signal received at the synapses of a
neuron exceeds some threshold limit, the neuron may fire, be in a resting
state, or be in an electrically neutral state.

The brain “learns” by changing the strengths of the connections between
neurons or by adding or removing such connections. Learning itself is ac-
complished sequentially from increasing amounts of experience.

10.3 The McCulloch–Pitts Neuron

The idea of an “artificial” neural network is usually traced back to the
“computing machine” model of McCullogh and Pitts (1943), who con-
structed a simplified abstraction of the process of neuron activity in the
human brain.

The McCulloch–Pitts neuron consists of multiple inputs (the dendrites)
and a single output (the axon). The inputs are denoted by X1,X2, . . . , Xr,
and each has a value of either 0 (“off”) or 1 (“on”). The signal at each input
connection depends upon whether the synapse in question is excitatory or
inhibitory. If any one of the synapses is inhibitory and transmits the value
1, the neuron is prevented from firing (i.e., the output is 0). If no inhibitory
synapse is present, the inputs are summed to produce the total excitation
U =

∑
j Xj , and then U is compared with a threshold value θ: if U ≥ θ, the

output Y is 1 and the neuron fires (i.e., transmits a new signal); otherwise,
Y is 0 and the neuron does not fire.
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FIGURE 10.2. McCulloch–Pitts neuron with r binary inputs, X1,X2, . . . ,
Xr, one binary output, Y , and threshold θ.

An equivalent formulation is to say that the value of Y is determined
by the indicator function I[U−θ≥0]. Note that if θ > r, the number of
inputs, the neuron will never fire. Also, if θ = 0 and there are no inhibitory
synapses, the output will always have the constant value 1.

Geometrically, the input space is an r-dimensional unit hypercube, and
each of the 2r vertices of the hypercube is associated with a specific Y -value
(either 0 or 1). For a given value of θ, the McCulloch–Pitts neuron divides
the hypercube into two half-spaces according to the hyperplane

∑
j Xj = θ;

those vertices with Y = 1 lie on one side of the hyperplane, whereas those
with Y = 0 lie on the other side.

The McCulloch–Pitts neuron is usually referred to as a threshold logic
unit (TLU) and is displayed in Figure 10.2. It is designed to compute
simple logical functions of r arguments, where Y = 1 is translated as the
logical value “true” and Y = 0 as “false.” For example, the logical functions
AND and OR for three inputs are displayed in Figure 10.3. For the logical
function AND, the neuron will fire only if all three inputs have the value 1,
whereas, for the logical function OR, the neuron will fire only if at least one
of the three inputs have the value 1. The AND and OR functions form a
basis set of logical functions. All other logical functions can be computed by
building up large networks consisting of several layers of McCulloch–Pitts

X1 ����
X2

	

X3
������

��
Σ 	U 3 	 Y

AND

X1 ����
X2

	

X3
������

��
Σ 	U 1 	 Y

OR

FIGURE 10.3. McCulloch–Pitts neuron for the AND and OR logical
functions with r = 3 binary inputs and thresholds θ = 3 and θ = 1, respec-
tively.
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neurons. At the time, it appeared that networks of TLUs could be used to
create an intelligent machine.

Although this model of a neuron was studied by many people, it is not
really a good approximation of how a biological system learns. There are
no adjustable parameters or weights in the network, which means that
different problems can only be solved by repeatedly changing the input
structure or the threshold value. Such manipulations are more complicated
than adopting a flexible weighting system for the network.

10.4 Hebbian Learning Theory

At the time of the introduction of the McCulloch–Pitts neuron, little
was known about how the “strength” of signals sent between neurons in
the brain are changed by activity and, therefore, how learning takes place.

The next advance occurred when Donald O. Hebb, in his 1949 book The
Organization of Behavior, summarized everything then known about how
the central nervous system affects behavior and vice versa. He started out
by assuming that all the neurons one needs in life are present at birth, that
initial neural connections are randomly distributed, and that as we get older
our neural connections multiply and become stronger. He also believed
that one’s perceptions, thoughts, emotions, memory, and sensations are
strongly influenced by life experiences, and that such experiences leave
behind a “memory trace” — via sets of interconnected neurons — which
helps determine future behavior.

Using results derived from published neurophysiological experiments in-
volving animals and humans, and from his own life observations, Hebb gave
a detailed presentation of biological neurons. In particular, he formulated
two new theories as to how the brain works. Building upon the ideas of
Santiago Ramón y Cajal, the 1906 Nobel Laureate, Hebb’s first theory
focused on the nature of synaptic change and is referred to as the Hebb
learning rule (Hebb, 1949, p. 62):

When an axon of cell A is near enough to excite cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells so
that A’s efficiency, as one of the cells firing B, is increased.

In other words, the strength of a synaptic connection between two neurons
depends upon their associated firing history: the more often the two neurons
fire together, the stronger their connection (and, by implication, the less
often, the weaker their connection). The Hebb rule is time-dependent (there
is an implicit ordering of events when neuron A helps to fire neuron B)
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and governs only what happens locally at the synapse. Any synapse that
behaves according to the Hebb rule is known as a Hebb synapse.

The Hebb rule of neural excitation was later expanded (Milner, 1957)
by adding the following rule of neural inhibition: if neuron A repeatedly or
persistently sends a signal to neuron B, but B does not fire, this reduces the
chance that future signals from A will entice B to fire. This inhibitory rule is
necessary because otherwise the system of synaptic connections throughout
the cerebral cortex would grow without limit as soon as one such connection
is activated. Hebb had previously (in his 1932 M.A. thesis) incorporated
the inhibitory rule into his theory but did not include it in his book.

His second theory is probably the more important idea. It was derived
from a discovery by Lorente de Nó in 1944 that the brain contained closed
circuits of neurons. Hebb then speculated that memory resides in the cere-
bral cortex in the form of overlapping clusters of thousands of highly in-
terconnected neurons, which he called cell assemblies. The clusters overlap
because a neuron, which has branch-like links to other neurons, can be a
member of many different cell assemblies.

In Hebb’s theory, a cell assembly is organized with reference to a par-
ticular sensory input and briefly acts as a closed neural circuit; sensations,
thoughts, perceptions, etc., are considered different from each other if dif-
ferent cell assemblies are involved in the activity; and the cell assembly also
retains a memory of its defining activity even after the triggering event has
ceased (e.g., the memory of stubbing one’s toe can remain well after the
pain has subsided). Cell assemblies are thought to play an essential role
in the learning process. Hebb also defined a phase sequence as a combi-
nation of cell assemblies that are simultaneously excited when repeatedly
presented with the same sequence of stimuli.

Hebb’s 1949 book was an international success; it was considered by some
as ground-breaking and sensational and a starting point to build a theory
of the brain. Yet it took several years before these contributions were fully
recognized in the fledgling field of behavioral neuroscience. Subsequently,
in the fields of psychology and neuroscience, it inspired a huge amount of
research into theories of brain function and behavior. Some of Hebb’s work
was speculative and has since been overturned by scientific experiment and
discovery. But much of it is still relevant today.

10.5 Single-Layer Perceptrons

Hebb’s pioneering work on the brain led to a second wave of interest
in ANNs. Frank Rosenblatt, a psychologist, had read Hebb (1949) but
was not convinced that most neural connections were random and that
cell assemblies could self-generate within a purely homogeneous mass of
neurons. He believed that he could improve upon Hebb’s work and, toward
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FIGURE 10.4. Rosenblatt’s single-layer perceptron with r inputs, connec-
tion weights {βj}, and binary output Y . The left panel shows the perceptron
with threshold θ, and the right panel shows the equivalent perceptron with
bias element β0 = −θ and X0 = 1.

that end, he constructed a “minimally constrained” system that he called
a “perceptron” (Rosenblatt, 1958, 1962).

A perceptron is essentially a McCulloch–Pitts neuron, but now input Xi

comes equipped with a real-valued connection weight βi, i = 1, 2, . . . , r. The
inputs, X1,X2, . . . , Xr can each be binary or real-valued. Positive weights
(βj > 0) reflect excitatory synapses, and negative weights (βj < 0) reflect
inhibitory synapses. The magnitude of a weight shows the strength of the
connection.

The perceptron, which is more flexible than the McCulloch–Pitts neuron
for mimicking neural connections, is displayed in Figure 10.4. A weighted
sum of input values, U =

∑
j βjXj , is computed, and the output is Y = 1

only if U ≥ θ, where θ is the threshold value; otherwise, Y = 0. Note that
we can convert a threshold θ to 0 by introducing a bias element β0 = −θ,
so that U − θ = β0 + U , and then comparing U =

∑r
j=0 βjXj to 0, where

X0 = 1. If U ≥ 0, then Y = 1; otherwise, Y = 0.
We call a function Y ∈ {0, 1} perceptron-computable if, for a given value

of θ, there exists a hyperplane that divides the input space into two half-
spaces, R1 and R0, where R1 corresponds to points having Y = 1 and
R0 to points having Y = 0. If the points in R1 can be separated without
error from those in R0 by a hyperplane, we say that the two sets of points
are linearly separable. This binary partition of input space (obtained by
comparing U to the threshold value θ) enables a perceptron to predict
class membership.

10.5.1 Feedforward Single-Layer Networks

One way of representing a network of neural interconnections is as a
directed acyclic graph (DAG). A graph is a set of vertices or nodes (rep-
resenting basic computing elements) and a set of edges (representing the
connections between the nodes), where we assume that both sets are of
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finite size. In a directed graph (or digraph), the edges are assigned an orien-
tation so that numerical information flows along each edge in a particular
direction. In a feedforward network, information flows in one direction only,
from input nodes to output nodes. An acyclic graph is one in which no loops
or feedback are allowed.

The simplest type of DAG organizes the network nodes into two separate
groups: r input nodes, X1, . . . , Xr, and s output nodes, Y1, . . . , Ys. Input
nodes are also referred to as source nodes, input units, or input variables.
No computation is carried out at these nodes. The input nodes take on
values introduced by some feature external to the network. The output
nodes are variously known as sink nodes, neurons, output units, or output
variables. These input and output nodes can be real-valued or discrete-
valued (usually, binary). Real-valued output nodes are typically scaled so
that their values lie in the unit interval [0, 1]. Binary input and output
nodes are used in the design of switching circuits; real input nodes with
binary output nodes are used primarily in classification applications; and
real input and output nodes are used mostly in optimization and control
applications.

Despite appearances, this particular type of network is commonly called
a single-layer network because only the output nodes involve significant
amounts of computation; the input nodes, which are said to constitute a
“zeroth” layer of fixed functions, involve no computation, and, hence, do
not count as a layer of learnable nodes.

Every connection Xj → Y� between the input nodes and the output
nodes carries a connection weight, βj�, which identifies the “strength” of
that connection. These weights may be positive, negative, or zero; positive
weights represent excitory signals, negative weights represent inhibitory
signals, and zero weights represent connections that do not exist in the
network.

The architecture (or topology) of the network consists of the nodes, the
directed edges (with the direction of signal flow indicated by an arrow along
each edge), and the connection weights.

10.5.2 Activation Functions

In the following, X = (X1, · · · ,Xr)τ represents a random r-vector of
inputs. Given X, each output node computes an activation value using a
linear combination of the inputs to it plus a constant; that is, for the �th
output node or neuron, we compute the �th linear activation function,

U� = β0� +
r∑

j=1

βj�Xj = β0� + Xτβ�, (10.1)
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FIGURE 10.5. Rosenblatt’s single-layer perceptron with r inputs, bias
element β0, connection weights {βj}, activation function f , and binary
output Y . The left panel shows the perceptron with a separate computing
unit for f , and the right panel shows the equivalent perceptron with a single
computing unit divided into two functional parts: the addition function is
written on the left and the activation function f applied to the result U of
the addition is written on the right.

where β0� is a constant (or bias) related to the threshold for the neuron
to fire, and β� = (β1�, · · · , βr�)τ is an r-vector of connection weights, � =
1, 2, . . . , s.

In matrix notation, we can rewrite the collection of s linear activation
functions (10.1) as

U = β0 + BX, (10.2)

where U = (U1, · · · , Us)τ , β0 = (β01, · · · , β0s)τ is an s-vector of biases, and
B = (β1, · · · ,βs)τ is an (s × r)-matrix of connection weights. The activa-
tion values are then each filtered through a nonlinear threshold activation
function f(U�) to form the value of the �th output node, � = 1, 2, . . . , s. In
matrix notation,

f(U) = f(β0 + BX), (10.3)

where f = (f, · · · , f)τ is an s-vector function each of whose elements is the
function f , and f(U) = (f(U1), · · · , f(Us))τ . The simplest form of f is the
identity function, f(u) = u. See Figure 10.5.

A partial list of activation functions is given in Table 10.1. The most
interesting of these functions are the sigmoidal (“S-shaped”) functions,
such as the logistic and hyperbolic tangent; see Figure 8.2 for a graph of
the logistic sigmoidal activation function. A sigmoidal function is a function
σ(·) that has the following properties: σ(u)→ 0 as u→ −∞ and σ(u)→ 1
as u → +∞. A sigmoidal function σ(·) is symmetric if σ(u) + σ(−u) = 1
and asymmetric if σ(u) + σ(−u) = 0. The logistic function is symmetric,
whereas the tanh function is asymmetric. Note that if f(u) = (1 + e−u)−1,
then its derivative wrt u is df(u)/du = e−u(1 + e−u)−2 = f(u)(1 − f(u)).
The hyperbolic tangent function, f(u) = tanh(u), is a linear transformation
of the logistic function (see Exercise 10.1). There is empirical evidence that
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TABLE 10.1. Examples of activation functions.

Activation Function f(u) Range of Values

Identity, linear u �

Hard-limiter sign(u) {−1, +1}

Heaviside, step, threshold I[u≥0] {0, 1}

Gaussian radial basis function (2π)−1/2e−u2/2 �

Cumulative Gaussian (sigmoid)
√

2/π
∫ u

0
e−z2/2dz (0, 1)

Logistic (sigmoid) (1 + e−u)−1 (0, 1)

Hyperbolic tangent (sigmoid) (eu − e−u)/(eu + e−u) (−1, +1)

ANN algorithms that use the tanh function converge faster than those that
use the logistic function.

10.5.3 Rosenblatt’s Single-Unit Perceptron

In binary classification problems, each of the n input vectors X1, . . . ,Xn

is to be classified as a member of one of two classes, Π1 or Π2. For this type
of application, a single-layer feedforward neural network consists of only a
single output node or unit (i.e., s = 1).

A single-unit perceptron (Rosenblatt, 1958, 1962) is a single-layer feedfor-
ward network with a single output node that computes a linear combination
of the input variables (e.g., β0 + Xτβ) and delivers its sign,

sign{β0 + Xτβ}, (10.4)

as output, where sign(u) = −1 if u < 0, and +1 if u ≥ 0. The activation
function used here is the “hard-limiter” function. The output node is gener-
ally known as a linear threshold unit. Rosenblatt’s perceptron is essentially
the threshold logic unit of McCullogh and Pitts (1943) with weights.

A generalized version of the single-unit perceptron can be written as

f(β0 + Xτβ) (10.5)

where f(·) is an activation function, which is usually taken to be sigmoidal.
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10.5.4 The Perceptron Learning Rule

For convenience in this subsection, we make the following notational
changes: β ← (β0,β

τ )τ and X ← (1,Xτ )τ , where both X and β are now
(r + 1)-vectors. Then, we can write β0 + Xτβ as Xτβ.

In the binary classification case, the single output variable takes on values
Y = ±1 depending upon whether the neuron fires (Y = +1 if X ∈ Π1) or
does not fire (Y = −1 if X ∈ Π2). Thus, the neuron will fire if Xτβ ≥ 0
and will not fire if Xτβ < 0.

Suppose X1, . . . ,Xn are independent copies of X, and that they are
drawn from the two classes Π1 and Π2. Suppose, further, that these obser-
vations are linearly separable. That is, there exists a vector β∗ of connection
weights such that the observation vectors that belong to class Π1 fall on
one side of the hyperplane Xτβ∗ = 0, whereas the observation vectors from
class Π2 fall on the other side of the hyperplane.

As our update rule, we use a gradient-descent algorithm, which operates
sequentially on each input vector. Such an algorithm is referred to as on-
line learning, whereby the learning mechanism adapts quickly to correct
classification errors as they occur. The input vectors are examined one at a
time and classified to one of the two classes. The true class is then revealed,
and the classification procedure is updated accordingly.

The algorithm proceeds by relabeling the {Xi}, one at a time, so that
at the hth iteration we are dealing with Xh, h = 1, 2, . . .. Set X0 = 0. The
algorithm computes a sequence {βh} of connection weights using as initial
value β0 = 0. The update rule is the following:

1. If, at the hth iteration of the algorithm, the current version, βh,
correctly classifies Xh, we do not change βh in the next iteration;
that is, set βh+1 = βh if either Xτ

hβh ≥ 0 and Xh ∈ Π1, or Xτ
hβh < 0

and Xh ∈ Π2.

2. If, on the other hand, the current version, βh, misclassifies Xh, then
we update the connection weight vector as follows: if Xτ

hβh ≥ 0 but
Xh ∈ Π2, then set βh+1 = βh − ηXh; if Xτ

hβh < 0 but Xh ∈ Π1,
then set βh+1 = βh+ηXh, where η > 0 is the learning-rate parameter
whose value is taken to be independent of the iteration number h.

This algorithm is popularly known as the perceptron learning rule. Because
the value of η is irrelevant (we can always rescale Xh and βh), we set η = 1
without loss of generality.

10.5.5 Perceptron Convergence Theorem

From the update rule, it follows that βh+1 =
∑h

i=1 Xi. Assume that
we have linear separability of the two classes. Suppose also that a solution
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vector β∗ exists. Define

A = min
Xi∈Π1

Xτ
i β∗, B = max

X∗i∈Π1
‖ Xi ‖2 . (10.6)

Transposing βh+1 and postmultiplying the result though by β∗ yields

βτ
h+1β

∗ =
h∑

i=1

Xτ
i β∗ ≥ hA. (10.7)

From the Cauchy–Schwarz inequality,

(βτ
h+1β

∗)2 ≤‖ βτ
h+1 ‖2‖ β∗ ‖2 . (10.8)

Substituting (10.7) into (10.8) yields

‖ βh+1 ‖2 ≥
h2A2

‖ β∗ ‖2 . (10.9)

Thus, the squared-norm of the weight vector grows at least quadratically
with the number, h, of iterations.

Next, consider again the update rule, βk+1 = βk + Xk, at the kth iter-
ation, where Xk ∈ Π1, k = 1, 2, . . . , h. Then,

‖ βk+1 ‖2=‖ βk ‖2 + ‖ Xk ‖2 +2Xτ
kβk. (10.10)

Because Xk has been incorrectly classified, Xτ
kβk < 0. It follows that,

‖ βk+1 ‖2 ≤ ‖ βk ‖2 + ‖ Xk ‖2, (10.11)

whence,
‖ βk+1 ‖2 − ‖ βk ‖2 ≤ ‖ Xk ‖2, (10.12)

Summing (10.12) over k = 1, 2, . . . , h yields

‖ βh+1 ‖2 ≤
h∑

k=1

‖ Xk ‖2 ≤ hB. (10.13)

Hence, the squared-norm of the weight vector grows at most linearly with
the number, h, of iterations.

For large values of h, the inequalities (10.9) and (10.13) contradict each
other. Thus, h cannot grow without bound. We need to find an hmax such
that (10.9) and (10.13) both hold with equalities. In other words, hmax has
to satisfy

h2
maxA

2

‖ β∗ ‖2 = hmaxB, (10.14)
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whence,

hmax =
B ‖ β∗ ‖2

A2
. (10.15)

We have shown the following result. Set η = 1 and β0 = 0. Then:
For a binary classification problem with linearly separable

classes, if a solution vector β∗ exists, the algorithm will find
that solution in a finite number, hmax, of iterations.

This is the perceptron convergence theorem. At the time, it was regarded
as a very appealing result.

There are two difficulties implicit in this result. First, the existence of a
solution vector β∗ turns out to be crucial for the result to hold; this was
made clear by Minsky and Papert (1969), who showed that there are many
problems for which no perceptron solution exists.

The second difficulty derives from the fact that, even though the al-
gorithm converges, computing hmax is impossible because it depends upon
the solution vector β∗, which is unknown. If the algorithm stops, we clearly
have a solution. If the two classes are not linearly separable, then the al-
gorithm will not terminate. In fact, after some large (unknown) number
of iterations, the algorithm will start cycling with unknown period length.
In general, if we do not know whether or not linear separability holds, we
cannot reliably determine when to stop running the algorithm. If we stop
the algorithm prematurely, the resulting perceptron weight vector may not
generalize well for test data.

One suggested approach to this problem is to adopt a specific stopping
rule whereby the algorithm is stopped after a fixed number of iterations;
another approach is to make the learning-rate parameter η depend upon the
iteration number (i.e., ηh) so that as the iterations proceed, the adjustments
decrease in size.

10.5.6 Limitations of the Perceptron

Despite high initial expectations, perceptrons were found to have very
limited capabilities. It was shown (Minsky and Papert, 1969) that a per-
ceptron can learn to distinguish two classes only if the classes are linearly
separable. This is not always possible as can be seen from the XOR func-
tion, which is not perceptron-computable because its input space is not
linearly separable (see Exercise 10.6).

As a result, during the 1970s, research in this area was abandoned by
almost everyone in that community. An additional factor to explain the
absence of work on neural networks is that hardware to support neural
computation did not become available until the 1980s.
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10.6 Artificial Intelligence and Expert Systems

The downfall of the perceptron led to the introduction of artificial intelli-
gence (AI) and rule-based expert systems as the main areas of research into
machine intelligence. AI was viewed, first, as the study of how a human
brain (or any natural intelligence) functions, and, second, as the study
of how to construct an artificial intelligence (i.e., a machine that could
solve problems requiring “cognition” when performed by humans). In early
AI systems, problems were solved in a sequential, step-by-step fashion,
by manipulating a dictionary of symbolic representations of the available
knowledge on a particular subject of interest. An AI system had to store
information specific to a domain of interest, use that information to solve
a broad range of problems in that domain, and acquire new information
from experience by solving problems in that domain.

A typical AI application was of the following type. Suppose we would
like to predict the intuitive decisions made by an experienced loan officer of
a bank based only on the answers given to questions on a loan application.
One might first ask the loan officer to explain the value (e.g., on a 5-point
scale) he or she places on the answers to each question. The points scored
by an applicant on each question could be totalled and compared with
some given threshold; the loan officer’s decision on the loan could then be
predicted based upon whether or not the applicant’s total score surpassed
the threshold.

This approach to predicting the decisions of a loan officer ignores possi-
ble nonlinearities in the decision-making process. For example, if the loan
applicant scores high on a few specific questions, the loan officer may ignore
the responses to all other questions in making a positive decision, whereas
if a particular question scores low, this by itself may be sufficient to render
the application unsuccessful, even though all other variables score high.
Listing all the rules the loan officer can possibly use in the decision process
constitutes a rule-based expert system.

Expert systems are knowledge-based systems, where “knowledge” repre-
sents a repository of data, well-known facts, specialized information, and
heuristics, which experts in a field (e.g., medicine) would agree upon. Such
expert systems are interactive computer programs that provide users (e.g.,
physicians) with computer-based consultative advice.

The earliest example of a rule-based expert system was Dendral, a
system for identifying chemical structures from mass spectrograms. This
was followed in the mid-1970s by Mycin, which was designed to aid physi-
cians in the diagnosis and treatment of meningitis and bacterial infections.
Mycin was made up of a “knowledge base” and an “inference engine”; the
knowledge base contained information specific to the area of medical diag-
nosis, and the inference engine would recommend treatments to physicians
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who consulted the knowledge base. A generic version, known as Emycin

(“empty” Mycin), was then built using only the inference engine and shell,
not the knowledge base. (Although never regarded by mathematicians as
an AI or expert system as such, the symbolic mathematics system Mac-

syma also emerged from the early AI world.) In the 1980s, expert systems
were popularly regarded as the future of AI.

During this time, there were also ambitious attempts at AT&T Bell Lab-
oratories to create an expert system to help users carry out statistical
analyses of data. One such expert system was Rex (Pregibon and Gale,
1984), which was written in the Lisp language and provided rule-based
guidance for simple linear regression problems. Rex (short for Regression
EXpert) acted as an interface between the user and a statistical software
package through a flexible interactive dialogue, which only requested help
when it encountered problems with the data. Rex did not survive long for
many reasons, including apathy due to constantly changing computational
environments (Pregibon, 1991).

Despite all this activity, expert systems never lived up to their hype; they
proved to be expensive, were successful only in specialized situations, and
were not able to learn from their own experiences. In short, expert systems
never truly possessed “cognition,” which was the primary goal of AI.

The failure of AI and expert systems to come to grips with these aspects
of “cognition” has been attributed to the fact that traditional computers
and the human brain function very differently from each other. It was
argued that AI was not providing the right environment for the emergence
of a truly intelligent machine because it was not delivering a realistic model
of the structure of the brain. Whereas human brains consisted of massively
parallel systems of neurons, AI digital computers were serial machines;
overall, the latter were incredibly slow by comparison. If one wanted to
understand “cognition” (so the argument went), one should build a model
based upon a detailed study of the architecture of the brain.

10.7 Multilayer Perceptrons

The most recent wave of research into ANNs arrived in the mid-1980s
and has continued until the present time. Earlier suggestions of Minsky
and Papert (1969) — that the limitations of the perceptron could be over-
come by “layering” the perceptrons and applying nonlinear transformations
prior to combining the transformed weighted inputs — were not adopted at
that time due to computational limitations. Minsky and Papert’s sugges-
tions because more meaningful when high-speed computers became readily
available and with the discovery of the “backpropagation” algorithm.
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FIGURE 10.6. Multilayer perceptron with a single hidden layer, r = 3
input nodes, s = 2 output nodes, and t = 2 nodes in the hidden layer. The
αs and βs are weights attached to the connections between nodes, and f
and g are activation functions.

A multilayer feedforward neural network (perceptron) is a multivariate
statistical technique that nonlinearlymaps an input vectorX=(X1, · · · ,Xr)τ

of variables to an output vector Y=(Y1, · · · , Ys)τ of variables. Between the
inputs and outputs there are also “hidden” variables arranged in layers.
The hidden and output variables are traditionally called nodes, neurons,
or processing units. A typical ANN is given in Figure 10.6, which has two
computational layers (i.e., the hidden layer and the output layer), and r = 3
input nodes, s = 2 output nodes, and t = 2 nodes in the hidden layer.

ANNs can be used to model regression or classification problems. In a
multiple regression situation, there is only one (s = 1) output variable Y
and node, whereas in a multivariate regression situation, there are s output
variables Y1, . . . , Ys and nodes. In a binary classification situation, there is
only one (s = 1) output variable Y with value 0 or 1, whereas in a multiclass
classification problem with K classes, there are s = K− 1 output variables
Y1, . . . , Ys and nodes, with each Y -variable taking on the value 0 or 1.

10.7.1 Network Architecture

Multilayer perceptrons have the following architecture: r input nodes
X1, . . . , Xr; one or more layers of “hidden” nodes; and s output nodes
Y1, . . . , Ys. It is usual to call each layer of hidden nodes a “hidden layer”;
these nodes are not part of either the input or output of the network. If
there is a single hidden layer, then the network can be described as being
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a “two-layer network” (the output layer being the second computational
layer); in general, if there are L hidden layers, the network is described as
being an (L + 1)-layer network.

A fully connected network has all r input nodes connected to the nodes
in the first hidden layer, all nodes in the first hidden layer connected to
all nodes in the second hidden layer, . . ., and all nodes in the last (Lth)
hidden layer connected to all s output nodes. If some of the connections are
missing, we have a partially connected network. We can always represent
a partially connected network as a fully connected network by setting the
weights of the missing connections to zero.

Given the input values, each hidden node computes an activation value
by taking a weighted average of its input values and adding a constant.
Similarly, each output node computes an activation value from a weighted
average of the inputs to it from the hidden nodes plus a constant. The
activation values are then each filtered through an activation function to
form the output value of the neuron.

10.7.2 A Single Hidden Layer

Suppose we have a two-layer network with r input nodes (Xm, m =
1, 2, . . . , r), a single layer (L = 1) of t hidden nodes (Zj , j = 1, 2, . . . , t), and
s output nodes (Yk, k = 1, 2, . . . , s). Let βmj be the weight of the connection
Xm → Zj with bias β0j and let αjk be the weight of the connection Zj → Yk

with bias α0k. See Figure 10.6 for a schematic diagram of a single hidden
layer network with r = 3, s = 2, and t = 2.

Let X = (X1, · · · ,Xr)τ and Z = (Z1, · · · , Zt)τ . Let Uj = β0j +Xτβj and
Vk = α0k + Zταk. Then,

Zj = fj(Uj), j = 1, 2, . . . , t, (10.16)
µk(X) = gk(Vk), k = 1, 2, . . . , s, (10.17)

where βj = (β1j , · · · , βrj)τ and αk = (α1k, · · · , αtk)τ . Putting these equa-
tions together, the value of the kth output node can be expressed as

Yk = µk(X) + εk, (10.18)

where

µk(X) = gk

⎛
⎝α0k +

t∑
j=1

αjkfj

(
β0j +

r∑
m=1

βmjXm

)⎞
⎠ , (10.19)

k = 1, 2, . . . , s, and the fj(·), j = 1, 2, . . . , t, and the gk(·), k = 1, 2, . . . , s,
are activation functions for the hidden and output layers of nodes, respec-
tively.

The activation functions, {fj(·)}, are usually taken to be nonlinear con-
tinuous functions with sigmoidal shape (e.g., logistic or tanh functions).
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The functions {gk(·)} are often taken to be linear (in regression problems)
or sigmoidal (in classification problems). The error term, εk, can be taken
as Gaussian with mean zero and variance σ2

k.
Let s = 1, so that we have a single output node. Suppose also that all

hidden nodes in the single hidden layer have the same sigmoidal activation
function σ(·). We further take the output activation function g(·) to be
linear. Then, (10.18) reduces to Y = µ(X) + ε, where

µ(X) = α0 +
t∑

j=1

αjσ

(
β0j +

r∑
m=1

βmjXm

)
, (10.20)

and the network is equivalent to a single-layer perceptron. If, alternatively,
both f(·) and g(·) are linear, then (10.19) is just a linear combination of
the inputs.

Note that sigmoidal functions play an important role in network design.
They are quite flexible as activation functions and can approximate dif-
ferent types of other functions. For example, a sigmoidal function, σ(u),
is very close to linear when u is close to zero. Thus, we can substitute
a sigmoidal function for a linear function at any hidden node while, at
the same time, making the weights and bias that feed into that node very
small; to compensate for the resulting scaling problem, the weights cor-
responding to connections emanating from that hidden node to the out-
put node(s) are usually made much larger. Sigmoidal functions, which are
smooth, monotonic functions, are especially useful for approximating dis-
continuous threshold functions (e.g., I[u≥0]) when evaluating the gradient
for a loss function of a multilayer perceptron.

We also mention the skip-level connection, which refers to a direct con-
nection from input node to output node, without first passing through a
hidden node. Skip-level connections can be included in the model either ex-
plicitly or through an implicit arrangement of connection weights — from
input node to hidden node and then from hidden node to output node —
which approximates the skip-level connection.

10.7.3 ANNs Can Approximate Continuous Functions

An important result used to motivate the use of neural networks is given
by Kolmogorov’s universal approximation theorem, which states that:

Any continuous function defined on a compact subset of 
r

can be uniformly approximated (in an appropriate metric) by a
function of the form (10.20).

In other words, we can approximate a continuous function by a two-layer
network incorporating a single hidden layer, with a large number of hid-
den nodes of continuous sigmoidal nonlinearities, linear output units, and
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suitable connection weights. Furthermore, the closer the approximation de-
sired, the larger the number of hidden nodes required.

Consider, for example, the Fourier series representation of the real-valued
function F ,

F (x) =
∞∑

k=0

{ak cos(kx) + bk sin(kx)}, x ∈ 
. (10.21)

where the {ak, bk} are Fourier coefficients. The function F can be approx-
imated by a neural network (see Exercise 10.14), which produces the ap-
proximation,

F̂ (x) =
t∑

j=0

αjβj sin(x + β0j). (10.22)

The weights {βj} yield the amplitudes of the sine functions. and the con-
stants {β0j} yield the phases; if, for example, we set β0j = π/2, then
sin(x + β0j) = cos(x), and so we do not need to include explicit cosine
terms in the network. The weights {αj} are the amplitudes of the individ-
ual Fourier terms.

The universal approximation theorem is an existence theorem: it shows,
theoretically, that one can approximate an arbitrary continuous function
by a single hidden-layer network. Unfortunately, it does not specify how
to find that approximation; that is, how to determine the weights and
the number, t, of nodes in the hidden layer (a problem known as network
complexity). It also assumes that we know the continuous function being
approximated and that the available set of hidden nodes is of unlimited size.
Furthermore, the theorem is not an optimality result: it does not show that
a single hidden layer is the best-possible multilayer network for carrying
out the approximation.

10.7.4 More than One Hidden Layer

We can express (10.19) in matrix notation as follows:

µ(X) = g(α0 + Af(β0 + BX)), (10.23)

where B = (βij) is a (t × r)-matrix of weights between the input nodes
and the hidden layer, A = (αjk) is an (s × t)-matrix of weights be-
tween the hidden layer and the output layer, β0 = (β01, · · · , β0t)τ , and
α0 = (α01, · · · , α0s)τ ; also, f = (f1, · · · , ft)τ and g = (g1, · · · , gs)τ are the
vectors of nonlinear activation functions. In (10.23), the notation h(U)
represents the vector (h1(U1), · · · , ht(Ut))τ , where h = (h1, · · · , ht)τ is a
vector of functions and U = (U1, U2, · · · , Ut)τ is a random vector. Note,
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however, that µ(X) = (µ1(X), · · · , µs(X))τ . Clearly, this representation
permits straightforward extensions to more than one hidden layer.

An important special case of (10.23) occurs when the {fj} and the {gk}
are each taken to be identity functions. In that case, (10.23) reduces to
the multivariate reduced-rank regression model, µ(X) = µ + ABX, where
µ = α0+Aβ0. We could use the (s×r) weight-matrix C = AB for a single-
layer network (i.e., no hidden layer) and the results would be identical.
The results change only when we use nonlinear activation functions at the
hidden nodes.

Thus, a neural network with r input nodes, a single hidden layer with
t nodes, s output nodes, and sigmoidal activation functions at the hidden
nodes can be viewed as a nonlinear generalization of multivariate reduced-
rank regression.

10.7.5 Optimality Criteria

Let the (st+ rt+ t+ s)-vector ω consist of the parameters of a fully con-
nected network — the connection weights (elements of the matrices A and
B) and the biases (the vectors α0 and β0). To estimate ω in either binary
classification (where outputs are either 0 or 1) or multivariate regression
problems (where outputs are real-valued), it is customary to minimize the
error sum of squares (ESS):

ESS(ω) =
n∑

i=1

‖ Yi − Ỹi ‖2, (10.24)

with respect to the elements of ω, where

‖ Yi − Ỹi ‖2= (Yi − Ỹi)τ (Yi − Ỹi) =
∑
k∈K

(Yi,k − Ỹi,k)2, (10.25)

and K is the set of output nodes. In binary classification problems, there is a
single output node. In (10.25), Yi = (Yi,k) is the value of the true (or “tar-
get”) output s-vector, Ỹi = (Ỹi,k) is the value of the fitted output s-vector,
and Ỹi,k = µk(Xi) = µk(Xi,ω) is the fitted value at the kth output node
corresponding to the ith input r-vector Xi, k ∈ K, i = 1, 2, . . . , n.

For multiclass classification problems, where each observation belongs to
one of K > 2 possible classes, there are usually K output nodes, one for
each class. In this case, an error criterion is minus the logarithm of the
conditional-likelihood function,

E(ω) = −
n∑

i=1

∑
k∈K

Yi,k log Ỹi,k, Ỹi,k =
eVi,k∑

�∈K eVi,�
, (10.26)

where Yi,k = 1 if Xi ∈ Πk and zero otherwise, and Vi,k = α0,k +Zτ
i αk is the

value of Vk for the ith input vector Xi. This criterion is equivalent to the
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Kullback–Leibler deviance (or cross-entropy), and Ỹi,k, which is known as
the softmax function, is the multiclass generalization of the logistic function.

Because the fitted value, Ỹi,k, is a nonlinear function of ω, it follows
that both the ESS and E criteria are nonlinear functions of ω. The ω
that minimizes ESS(ω) or E(ω) is not available in explicit form and,
therefore, has to be found using a nonlinear optimization algorithm. The
most popular numerical method for estimating the network parameters is
the “backpropagation” of errors algorithm.

10.7.6 The Backpropagation of Errors Algorithm

The backpropagation algorithm (Werbos, 1974) efficiently computes the
first derivatives of an error function wrt the network weights {αkj} and
{βjm}. These derivatives are then used to estimate the weights by mini-
mizing the error function through an iterative gradient-descent method.

To simplify the description of the algorithm, we treat the network as a
single-hidden-layer network. All the details we present here can be general-
ized to a network having more than one hidden node. We denote byM the
set of r input nodes, J the set of t hidden nodes, and K the set of s output
nodes, so that m ∈ M indexes an input node, j ∈ J indexes a hidden
node, and k ∈ K indexes an output node. In other words, m→ j → k. As
before, the input r-vectors are indexed by i = 1, 2, . . . , n.

We start at the kth output node. Denote the error signal at that node
by

ei,k = Yi,k − Ỹi,k, k ∈ K, (10.27)

and the error sum of squares (usually referred to as the error function) at
that node by

Ei =
1
2

∑
k∈K

e2
i,k =

1
2

∑
k∈K

(Yi,k − Ỹi,k)2, i = 1, 2, . . . , n. (10.28)

The optimizing criterion is the error sum of squares (ESS) for the entire
data set; that is, the error function (10.28) averaged over all data in the
learning set:

ESS =
1
n

n∑
i=1

Ei =
1
2n

n∑
i=1

∑
k∈K

e2
i,k. (10.29)

The learning problem is to minimize ESS wrt the connection weights,
{αi,kj} and {βi,jm}. Because each derivative of ESS wrt those weights is
a sum over the learning set of data of the derivatives of Ei, i = 1, 2, . . . , n,
it suffices to minimize each Ei separately.

In the following description of the backpropagation algorithm, it may be
helpful to refer to Figure 10.7.
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FIGURE 10.7. Schematic diagram of the backpropagation of errors al-
gorithm for a single-hidden-layer ANN. The top diagram relates the input
nodes to the jth hidden node, and the bottom diagram relates the hidden
nodes to the kth output node. To simplify notation, all reference to the ith
input vector has been dropped.

For the ith input vector, let

Vi,k =
∑
j∈J

αkjZi,j = αk0 + Zτ
i αk, k ∈ K, (10.30)

be a weighted sum of inputs from the set of hidden units to the kth output
node, where

Zi = (Zi,1, . . . , Zi,t)τ , αk = (αk1, . . . , αkt)τ , (10.31)

and Zi,0 = 1. Then, the corresponding output is

Ỹi,k = gk(Vi,k), k ∈ K, (10.32)

where gk(·) is an output activation function, which we assume is differen-
tiable.

The backpropagation algorithm is an iterative gradient-descent-based
algorithm. Using randomly chosen initial values for the weights, we search
for that direction that makes the error function smaller.

Consider the weights αi,kj from the jth hidden node to the kth output
node. Let αi = (ατ

i,1, · · · ,ατ
i,s)

τ = (αi,kj) to be the ts-vector of all the
hidden-layer-to-output-layer weights at the ith iteration. Then, the update
rule is
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αi+1 = αi + ∆αi, (10.33)

where

∆αi = −η
∂Ei

∂αi
=

(
−η

∂Ei

∂αi,jh

)
= (∆αi,kj) . (10.34)

Similar update equations hold also for αi,k0. In (10.34), the learning pa-
rameter η specifies how large each step should be in the iterative process.
If η is too large, the iterations will move rapidly toward a local minimum,
but may possibly overshoot it, whereas if η is too small, the iterations may
take a long time to get anywhere near a local minimum.

Using the chain rule for differentiation, we have that

∂Ei

∂αi,kj
=

∂Ei

∂ei,k
· ∂ei,k

∂Ỹi,k

· ∂Ỹi,k

∂Vi,k
· ∂Vi,k

∂αi,kj

= ei,k · (−1) · g′k(Vi,k) · Zi,j

= −ei,kg′k(αi,k0 + Zτ
i αi,k)Zi,j . (10.35)

This can also be expressed as

∂Ei

∂αi,jh
= −δi,kZi,j , (10.36)

where

δi,k = − ∂Ei

∂Ỹi,k

· ∂Ỹi,k

∂Vi,k
= ei,kg′k(Vi,k) (10.37)

is the sensitivity (or local gradient) of the ith observation at the kth output
node. The expression for δi,k is the product of two terms associated with the
kth node: the error signal ei,k and the derivative, g′k(Vi,k), of the activation
function. The gradient-descent update to αi,kj is given by

αi+1,kj = αi,kj − η
∂Ei

∂αi,kj
= αi,kj + ηδi,kZi,j , (10.38)

where η is the learning rate parameter of the backpropagation algorithm.
The next part of the backpropagation algorithm is to derive an update

rule for the connection from the mth input node to the jth hidden node.
At the ith iteration, let

Ui,j =
∑

m∈M
βi,jmXi,m = βi,j0 + Xτ

i βi,j , j ∈ J , (10.39)

be the weighted sum of inputs to the jth hidden node, where

Xi = (Xi,1, · · · ,Xi,r)τ , βi,j = (βi,j1, · · · , βi,jr)τ , (10.40)
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and Xi,0 = 1. The corresponding output is

Zi,j = fj(Ui,j), (10.41)

where fj(·) is the activation function, which we assume is differentiable,
at the jth hidden node. Let βi = (βτ

i,1, · · · ,βτ
i,t)

τ = (βi,jm) be the ith
iteration of the (r+1)t-vector of all the input-layer-to-hidden-layer weights.
Then, the update rule is

βi+1 = βi + ∆βi, (10.42)

where

∆βi = −η
∂Ei

∂βi

=
(
−η

∂Ei

∂βi,jm

)
= (∆βi,jm). (10.43)

Again, similar update formulas hold for the bias terms βi,j0. Using the
chain rule, we have that

∂Ei

∂βi,kj
=

∂Ei

∂Zi,j
· ∂Zi,j

∂Ui,j
· ∂Ui,j

∂βi,kj
. (10.44)

The first term on the rhs is

∂Ei

∂zi,j
=

∑
k∈K

ei,k ·
∂ei,k

∂Zi,j

=
∑
k∈K

ei,k ·
∂ei,k

∂Vi,k
· ∂Vi,k

∂Zi,j

= −
∑
k∈K

ei,k · g′k(Vij) · αi,kj

= −
∑
k∈K

δi,kαi,kj , (10.45)

whence, from (10.44),

∂Ei

∂βi,kj
= −

∑
k∈K

ei,kg′k(αi,k0 + Zτ
i αi,k)αi,kjf

′
j(βi,j0 + Xτ

i βi,j)Xi.m (10.46)

Putting (10.37) and (10.45) together, we have that

δi,j = f ′
j(Ui,j)

∑
k∈K

δi,kαi,kj . (10.47)

This expression for δi,j is the product of two terms: the first term, f ′
j(Ui,j),

is the derivative of the activation function fj(·) evaluated at the jth hidden
node; the second term is a weighted sum of the δi,k (which requires knowl-
edge of the error ei,k at the kth output node) over all output nodes, where
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the kth weight, αi,kj , is the connection weight of the jth hidden node to
the kth output node. Thus, δi,j at the jth hidden node depends upon the
{δi,k} from all the output nodes.

The gradient-descent update to βi,jm is given by

βi+1,jm = βi,jm − η
∂Ei

∂βi,jm
= βi,jm + ηδi,jXi,m, (10.48)

where η is the learning rate parameter of the backpropagation algorithm.
The backpropagation algorithm is defined by (10.38) and (10.48). These

update formulas identify two stages of computation in this algorithm: a
“feedforward pass” stage and a “backpropagation pass” stage. After an
initialization step in which all connection weights are assigned values, we
have the following stages in the algorithm:

Feedforward pass Inputs enter the node from the left and emerge from
the right of the node; the output from the node is computed as (10.30)
and (10.31), and the results are passed, from left to right, through
the layers of the network.

Backpropagation pass The network is run in reverse order, layer by
layer, starting at the output layer:

1. The error (10.27) is computed at the kth output node and then
multiplied by the derivative of the activation function to give the
sensitivity δi,k at that output node (10.37); the weights, {αi,kj},
feeding into the output nodes are updated by using (10.38).

2. We use (10.47) to compute the sensitivity δi,j at the jth hidden
node; and, then, we use (10.48) to update the weights, {βi,jm},
feeding into the hidden nodes.

This iterative process is repeated until some suitable stopping time.

10.7.7 Convergence and Stopping

There is no proof that the backpropagation algorithm always converges.
In fact, experience has shown that the algorithm is a slow learner, the
estimates may be unstable, there may exist many local minima, and con-
vergence is not assured in practice. There have been many explanations of
why this should happen.

One possible reason is that the backpropagation algorithm is a first-order
approximation to the method of steepest-descent and, hence, is a version
of stochastic approximation. As the algorithm tries to find the minimum
along fairly flat regions of the surface of the error criterion, it takes many
iterations to significantly reduce the error criterion; in other, highly curved
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regions, the algorithm may miss the minimum entirely. Another possible
reason (Hwang and Ding, 1997) is that, for any ANN, instability and con-
vergence problems may be partly caused by the “unidentifiability” of the
parameter vector ω; for example, certain elements of ω can be permuted
without changing the value of µ(X) in (10.20).

Because of the slow progression of the backpropagation algorithm, which
is both frustrating and expensive, overfitting the network has been (accord-
ing to ANN folklore) accidentally avoided by stopping the algorithm prior
to convergence (usually referred to as early stopping). Other researchers
prefer to continue running the algorithm until the weights stabilize (e.g.,
the normed difference between successive iterates is smaller than some ac-
ceptable bound) or until the error criterion is at (or close to) a minimum.
Another practical strategy is to increase the value of η to produce faster
convergence, but that action could also result in oscillations.

10.8 Network Design Considerations

When fitting an ANN, the user is faced with a number of algorithmic
details that need to be resolved as part of the design of the network. In
this section, we discuss a collection of problems often referred to as network
complexity.

10.8.1 Learning Modes

The most popular methods of running the backpropagation algorithm
are the “on-line,” “stochastic,” and “batch” learning modes.

In on-line mode, each observation (xi, yi), i = 1, 2, . . . , n, is dropped
down the network in sequential fashion, one at a time, and adjustments
are made to the estimates of the connection weights each time. The itera-
tion steps (10.38) and (10.48) give an on-line update of the weights. Thus,
(x1, y1) is dropped down the network first. The feedforward and backprop-
agation stages of the algorithm are immediately carried out, yielding up-
dated initial values of the connection weights. Next, we drop (x2, y2) down
the network, whence the feedforward and backpropagation stages are again
carried out, resulting in further updated values of the connection weights.
This procedure is repeated once and only once for every observation in the
entire learning set, until the last observation (xn, yn) is dropped down the
network and the connection weights are updated. The process then stops.

A variation on on-line learning is stochastic learning, where an observa-
tion is chosen at random from the learning set, dropped down the network,
and the parameter values are updated using (10.38) and (10.48). As in
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on-line learning, each observation is dropped down the network once and
only once, but in random order.

In batch mode, all n observations in the learning set (referred to as an
epoch) are dropped down the network in any order. After all the observa-
tions are entered, the weights are updated by summing the derivatives over
the entire learning set; that is, for the ith epoch, the updates are

αi+1,jk = αi,jk + η
n∑

h=1

δh,kzh,j , (10.49)

βi+1,jm = βi,jm + η

n∑
h=1

δh,jxh,m, (10.50)

h = 1, 2, . . . . This entire process is repeated, epoch by epoch, until ESS
becomes smaller than some preset value.

On-line learning tends to be preferred to batch learning: on-line learning
is generally faster, particularly when there are many similar data values
(redundancy) in the learning set; it can adapt better to nonstandard con-
ditions of the data (e.g., nonstationarity); and it can more easily escape
from local minima. Moreover, batch learning in very high-dimensional sit-
uations can cause computational difficulties (e.g., memory problems, cost
considerations), especially when it comes to deriving the matrices A and
B in (10.23).

10.8.2 Input Scaling

Inputs are often measured in widely differing scales, which may affect
the relative contribution of each input to the resulting analysis. This is a
common concern in data analysis. The same problem occurs when fitting an
ANN. In general, it is a good idea, prior to fitting an ANN to data, to scale
each input variable. A number of ways have been suggested to accomplish
this objective, including (1) scale the data to the interval [0, 1]; (2) scale
the data to [−1, 1] or to [−2, 2]; or (3) standardize each input variable to
have zero mean and unit standard deviation.

ANN theory does not require the input data to lie in [0, 1]; in fact, scaling
to [0, 1] may not be a good choice and that it is better to center the input
data around zero. This implies that options (2) and (3) should be preferred
to option (1). These latter two scaling options may enable an ANN to be
run more efficiently and may help to avoid getting bogged down in local
extrema.

If a weight-decay penalty is to be incorporated as part of the optimization
process (see Section 10.8.5), then it makes sense to scale or standardize each
input variable. When the data are split into learning and test sets, then
the same scaling or standardization transformation applied to the learning
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set should also be applied to the test set. Note that the standardization
transformation can only be used for stochastic or batch learning; it cannot
be used for on-line learning, where the data are presented to the network
one observation at a time.

10.8.3 How Many Hidden Nodes and Layers?

One of the main problems in designing a network is to determine how
many hidden nodes and layers to include in the network; this, in turn,
determines how many parameters are needed to model the data. The cen-
tral principle here is that of Ockham’s razor: keep the model as simple as
possible while maintaining its ability to generalize well.

One way of choosing the number of hidden nodes is by employing cross-
validation (CV). However, the presence of multiple local minima at each
iteration, which result in quite different performances, can confuse the issue
of deciding which solution should be used for each round of CV. Most
applications of ANN determine the number of hidden nodes and layers
either from the context of the problem or by trial-and-error.

10.8.4 Initializing the Weights

As with any numerical and iterative method, the backpropagation algo-
rithm requires a choice of starting values to estimate the parameters (i.e.,
connection weights and biases) of the network. In general, we initialize the
network by using small (close to zero), random-generated (uniformly dis-
tributed with small variance) starting values for the parameter estimates.

10.8.5 Overfitting and Network Pruning

Building a neural network can easily yield a model with a huge number of
parameters. If we try to estimate all those parameters optimally by waiting
for the algorithm to converge, this can lead to severe overfitting. We would
like to reduce (as much as possible) the size of the network while retaining
(as much as possible) its good performance characteristics.

Setting parameters to zero. One way to counter overfitting is to set some
connection weights to zero, a method known as network pruning or, more
delightfully, optimal brain surgery, because of the notion that ANNs try to
approximate brain activity (Hassibi, Stork, Wolff, and Wanatabe, 1994).
If, however, a parameter (connection weight) in the model is set to zero
and the inputs are close to being collinear, then the standard errors for
the remaining estimated parameters could be significantly affected; thus, it
is not generally recommended to set more than one connection weight to
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zero (Ripley, 1996, p. 169), a strategy that defeats the objective of reducing
network size.

Shrinking parameters toward zero. Another approach is to “shrink” the
magnitudes of network parameters toward zero by incorporating regular-
ization into the criterion. In such a formulation, we minimize

ESSλ(ω) = ESS(ω) + λp(ω), (10.51)

where λ ≥ 0 is a regularization parameter and p(·) is the penalty function.
The term λp(ω) is known as the complexity term. The regularization pa-
rameter λ measures the relative importance of ESS(ω) to p(ω), and is
usually estimated by cross-validation.

There are two popular assignments of penalty functions in this ANN con-
text. The simplest regularizer is weight-decay, whose penalty is defined by

p(ω) =‖ ω ‖2=
∑

�

ω2
� , (10.52)

where ω� is equal to αjm or βkj , as appropriate, and the summation is taken
over all weight connections in the network (Hinton, 1987). In this case, λ
is referred to as the weight-decay parameter. A more elaborate penalty
function is the weight-elimination penalty, given by

p(ω) =
∑

�

(ω�/W )2

1 + (ω�/W )2
, (10.53)

where W is a preassigned free parameter (Weigend, Rumelhart, and Huber-
man, 1991), such as W =‖ ω ‖2. If, for some �, |ω�| �W , the contribution
of that connection weight to (10.53) is deemed negligible and the connection
may be eliminated; if |ω�| � W , then that connection weight contributes
a significant amount to (10.53) and, hence, should be retained in the net-
work. When using penalty function (10.52) or (10.53), it is usual to start
with λ = 0, which allows the network weights to be unconstrained, and
then adjust that solution by increasing the value of λ in small increments.

Reducing dimensionality of input data. The user can also apply princi-
pal component analysis to the input data, thereby reducing the number
of inputs, and then estimate the parameters of the resulting reduced-size
ANN.

10.9 Example: Detecting Hidden Messages
in Digital Images

Steganography (“covered writing,” from the Greek) is “the art and science
of communicating in a way which hides the existence of the communica-
tion” (Kahn, 1996). It is a method for hiding messages in different types
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FIGURE 10.8. Flow chart for the steganography example.

of media, such as webpage HTML text, Microsoft Word documents, exe-
cutable and dynamic link library files, digital audio files, and digital image
files (bmp, gif, jpg). Reasons for hiding messages include the need for
copyright protection of digital media (audio, image, and video), for Inter-
net security and privacy, and to provide “stealth” military and intelligence
communication.

There are many ways in which information can be hidden in digital me-
dia, including least significant bit (lsb) embedding, digital watermarking,
and wavelet decomposition algorithms. A major disadvantage to lsb inser-
tion is that it is vulnerable to slight image manipulation, such as cropping
and compression. See Petitcolas, Anderson, and Kuhn (1999) for a survey.

In this example, 1,000 color jpeg images consisting of a mixture of vari-
ous science fiction environments (including indoors, outdoors, outer space),
characters, and images with special effects, were obtained from the Star
Trek website.1 These color images were converted into grayscale bitmap
images to remove any existing digital watermarks or other hidden identi-
fiers and cropped to a central 640×480 pixel area. These grayscale bitmap
images were then duplicated to form two sets of the same 1,000 images. One
set of grayscale images was decompressed to produce 1,000 “cover images.”
The second set was used to hide messages of random strings of characters
of sufficient length (2–3 KB). Using the software package Jsteg v4,2 1,000

1The Star Trek website is www.startrek.com. The author thanks Joseph Jupin for
use of the data that formed the basis for his 2004 report Steganography at the website
astro.temple.edu/~joejupin/Steganography.pdf.

2Derek Upham’s Jsteg v4 is available at ftp.funet.fi/pub/crypt/steganography.
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“stego images” were formed. A flow chart of the steganographic process is
given in Figure 10.8.

The next step is to extract from the 1,000 cover images and the 1,000
stego images a common set of variables. To identify images that contain a
hidden message, we use a methodology based upon the wavelet decompo-
sition of digital images (Farid, 2001). First, we compute a multiresolution
analysis of each set of 1,000 images using quadrature mirror filters. For
each such set, this creates orthonormal basis functions that partition the
frequency space into m resolution levels and three orientations — horizon-
tal, vertical, and diagonal. At each resolution level, separable low-pass and
high-pass filters are applied along the image axes, which generate low-pass,
vertical, horizontal, and diagonal subbands. Additional resolution levels are
created by recursively filtering the low-pass subband.

Hiding messages in a digital image often leads to a significant change in
the statistical properties of the wavelet decomposition of that image. Given
an image decomposition, we compute two sets of statistical moments: (1)
the mean, variance, skewness, and kurtosis of the subband coefficients at
each of the three orientations and at resolution levels 1, 2, . . . ,m − 1; (2)
the same statistics, but computed from the residuals of the optimal linear
predictor of coefficient magnitudes and the true coefficient magnitudes for
each of the three orientation subbands at each level. This creates a total
of 24(m − 1) variables for each image decomposition. In our example, a
four-level (m = 4), three-orientation decomposition scheme results in a 72-
dimensional vector of the moment statistics of estimated coefficients and
residuals for each image.

From each set of 1,000 images, 500 images are randomly selected, but no
duplicate images are taken. The resulting 1,000 images constitute our data
set. The problem is to distinguish the stego images from the cover images.

We randomly divided the data from the 1,000 images into a learning set
(650) and a test set (350). The learning set consists of 322 stego images
and 328 cover images, and the test set consists of 178 stego images and
172 cover images. The learning set was standardized and an ANN was fit
with a single hidden layer, varying the decay parameter λ between 0.0001
and 0.9, and varying the number of nodes in the hidden layer from 1 to 10.
Each of these fitted models was used to predict the two classes (cover or
stego) for the data in the test set, which had previously been standardized
using the same scaling obtained from the learning set.

This fitting and prediction strategy is repeated 10 times using randomly
generated starting values for each combination of λ and number of hidden
nodes; the misclassification rates were averaged for each such combination.
Figure 10.9 shows parallel boxplots of the individual results for λ = 0.01
(left panel) and 0.5 (right panel). Notice the high variability for λ = 0.01
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FIGURE 10.9. Steganography example: parallel boxplots for the misclas-
sification rate of the test set for a neural network with a single hidden layer
and number of hidden nodes as displayed, and decay parameter λ = 0.01
(left panel) and 0.5 (right panel). A randomly generated start was used to
fit each such model, and this was repeated 10 times for each number of
hidden nodes.

compared with λ = 0.5. The smallest average misclassification rate for the
test set is 0.0463, which is obtained for λ = 0.5 and seven hidden nodes.

10.10 Examples of Fitting Neural Networks

In Table 10.2, we list the estimated misclassification rates of neural net-
work models applied to data sets detailed in Chapter 8. The misclassifi-
cation rates are estimated here by randomly dividing each data set into
two subsets, a learning set (2/3) and a test set (1/3). With certain excep-
tions, each learning set was first standardized by subtracting the mean of
each input variable and then dividing the result by the standard deviation
of that variable. The same standardization was also applied to the input
variables in the test set. The exceptions to this standardization are those
data sets whose values fall in [0, 1] (E-coli, Yeast), [−1, 1] (Ionosphere), or
[0, 100] (Pendigits), where no transformations are made.

For each learning set, we set up a neural network model with a single
hidden layer of between 0 and 10 nodes and decay parameter λ ranging
from 0.00001 to 0.1. A set of initial weights is randomly generated to fit
the ANN model to the learning set, the fitted ANN model is then applied
to the test set, and the misclassification rate computed. This is repeated
10 times, and the resulting misclassification rates are averaged to produce
the “TestSetER” in Table 10.2.
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TABLE 10.2. Summary of artificial neural network (ANN) models with
a single hidden layer fitted to data sets for binary and multiclass classifica-
tion. Listed are the sample size (n), number of variables (r), and number of
classes (K). Also listed for each data set is the number of observations in
the learning set (2/3) and in the test set (1/3) and the test-set error (mis-
classification) rate computed from the average of 10 random initial starts.
Each learning set was standardized, and the same standardization was used
for the test set (with the exception of Ionosphere, where the input values fall
into [−1, 1], and E-coli, Yeast, and Pendigits, whose values fall in [0, 1]).
The data sets are listed in increasing order of LDA misclassification rates
(see Tables 8.5 and 8.7).

Data Set n r K Learn Test TestSetER

Breast cancer (logs) 569 30 2 379 190 0.0174
Spambase 4,601 57 2 3,067 1,534 0.0669

Ionosphere 351 33 2 234 117 0.0863
Sonar 208 60 2 138 70 0.1571

BUPA liver disorders 345 6 2 230 115 0.3183

Wine 178 13 3 118 60 0.0167
Iris 150 4 3 100 50 0.0420

Primate scapulae 105 7 5 70 35 0.0114
Shuttle 58,000 8 7 43,500 14,500 0.0002

Diabetes 145 5 3 95 50 0.0020
Pendigits 10,992 16 10 7,328 3,664 0.0251

E-coli 336 7 8 224 112 0.1161
Vehicle 846 18 4 564 282 0.1897

Letter recognition 20,000 16 26 13,000 7,000 0.0987
Glass 214 9 6 143 71 0.2056
Yeast 1,484 8 10 989 495 0.4026

We see that a single hidden-layer ANN model fits some data sets better
than others. Comparing Table 10.2 with Tables 8.5 and 8.7 (ANN misclas-
sification rates are computed using an independent test set, whereas LDA
and QDA used 10-fold CV), a single-hidden-layer ANN model fares better
than LDA for the spambase, ionosphere, sonar, primate scapulae, shut-
tle, diabetes, pendigits, e-coli, vehicle, glass, and yeast data, whereas LDA
comes out ahead for the breast cancer, BUPA liver, wine, and iris data. The
misclassification rate for the letter-recognition data is significantly reduced
if there are a large number of hidden nodes (20 or more).

10.11 Related Statistical Methods

Alternative approaches to statistical curve-fitting, such as projection-
pursuit regression and generalized additive models, try to address a more
general functional form than linearity. Although these methods are closely
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related in appearance to the ANN model, their computations are carried
out in completely different ways.

10.11.1 Projection-Pursuit Regression

Consider the input r-vector X and a single output variable Y (i.e., s = 1).
Suppose the model is

Y = µ(X) + ε, (10.54)

where µ(X) = E{Y |X} is the regression function, and the errors ε are
independent of X and have E(ε) = 0 and var(ε) = σ2. The goal is to
estimate µ(X). For example, suppose r = 2 and µ(X) = X1X2; we can
write µ(X) = 1

4 (X1 + X2)2 − 1
4 (X1 −X2)2, which is the sum of squares of

the projections, Xτβ1 = (X1,X2)(1, 1)τ and Xτβ2 = (X1,X2)(1,−1)τ . So,
a regression surface can be approximated by a sum of nonlinear functions,
{fj}, of projections Xτβj .

This idea is implemented in projection-pursuit regression (PPR) (Fried-
man and Stuetzle, 1981), where the regression function is taken to be

µ(X) = α0 +
t∑

j=1

fj(β0j + Xτβj), (10.55)

where α0, {β0j}, {βj = (β1j , · · · , βrj)τ}, and the {fj(·)} are the unknown
parameters of the model. This is the sum of t nonlinearly transformed linear
projections of the r input variables, where t is a user-chosen parameter, and
has the same form as a two-layer feedforward perceptron for a single output
variable (see (10.20)). Parallel to the discussion in Section 10.5.3, it has
been shown that any smooth function of X can be well-approximated by
(10.55), where the approximation improves as t gets large enough (Diaconis
and Shahshahani, 1984). It is worth noting that as we increase t, it becomes
more and more difficult to interpret the fitted functions and coefficients in
the PPR solution.

The linear combinations, β0j + Xτβj , j = 1, 2, . . . , t, are linear pro-
jections of the inputs X onto t different hyperplanes, and the activation
functions fj(·), j = 1, 2, . . . , t, are (possibly, different) smooth but un-
known functions; we assume that the {fj(·)} are each normalized to have
zero mean and unit variance. These t nonlinearly transformed projections
are then linearly combined to produce µ(X) in (10.55). The components
fj(β0j + Xτβj), j = 1, 2, . . . , t, are often referred to as ridge functions in
r dimensions; the name derives from the fact that, in two-dimensional in-
put space (i.e., r = 2), a peaked fj(·) produces output with a ridge in the
graph.

When there ismore thanoneoutputvariable, the output canbe represented
as a multiresponse s-vector, Y = (Y1, · · · , Ys)τ . Then, each component
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of the regression function, µ(X) = (µ1(X), · · · , µs(X))τ , where µk(X) =
E{Yk|X}, can be written in the form,

µk(X) = α0k +
t∑

j=1

αjkfj(β0j + Xτβj), k = 1, 2, . . . , s, (10.56)

where the fj(·), j = 1, 2, . . . , t, are taken to be a common set of arbi-
trarily smooth functions having zero mean and unit variance. Models such
as (10.56) are referred to as SMART (smooth multiple additive regression
technique) (Friedman, 1984).

Let α = (α0, α1, · · · , αt)τ and βj = (β0j , β1j , · · · , βrj)τ , j = 1, 2, . . . , t, be
each of unit length. Given data, {(Xi, Yi), i = 1, 2, . . . , n}, the (t(r+2)+1)-
vector ω = (ατ , {βτ

j }tj=1)
τ of parameters of the PPR single-output model

(10.55) can be estimated by minimizing the error sum-of-squares,

ESS(ω) =
n∑

i=1

⎧⎨
⎩Yi − α0 −

t∑
j=1

αjfj(β0j + Xτ
i βj)

⎫⎬
⎭

2

, (10.57)

for nonlinear activation functions {fj(·)}, which are also determined from
the data.

The function ESS(ω) is minimized in stages, and the parameters are esti-
mated in sequential fashion: first, the {αj} are fitted by linear least-squares;
next, the {fj(·)} are found using one-dimensional scatterplot smoothers,
and finally, the {βkj} are fitted by nonlinear least-squares (e.g., Gauss–
Newton). Scatterplot smoothers used to estimate the PPR functions {fj(·)}
include supersmoother (or variable span smoother) (Friedman and Stuetzle,
1981), Hermitian polynomials (Hwang, Li, Maechler, Martin, and Schimert,
1992), and smoothing splines (Roosen and Hastie, 1994). These steps to
minimizing (10.57) are then iterated until some stopping criterion is satis-
fied. Stopping too early produces an increased bias for the estimate, and
waiting too long produces an enlarged variance. Typically, the process is
stopped when successive iterative values of the residual sum of squares,
RSS(ω̂), become small and stable. In certain examples, the amount of
computation involved in finding a PPR solution could be quite large and
expensive.

10.11.2 Generalized Additive Models

An additive model in X = (X1, · · · ,Xr)τ is a regression model that is
additive in the inputs. Specifically, we assume that Y = µ(X) + ε, where
the regression function, µ(X) = E{Y |X}, has the form,

µ(X) = α0 +
r∑

j=1

fj(Xj), (10.58)
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and the error ε is independent of X. If fj(Xj) = βjXj , then the additive
model reduces to the standard multiple regression model. The key aspect of
an additive model is that interactions between input variables (e.g., XiXj)
are not allowed as part of the model. If simple interactions are thought to
be important, we can introduce into an additive model additional terms
constructed as the products XiXj , fij(XiXj), or f̂i(Xi) · f̂j(Xj), where
f̂i(·) and f̂j(·) are the functions obtained from fitting the additive model.

The {fj(·)} are typically taken to be nonlinear transformations of the
input variables. For example, we could transform the input variables by
using logarithmic, square-root, reciprocal, or power transformations, where
the choice would depend upon what we know or suspect about each input
variable. In general, it is more useful if we take the {fj(·)} to be a set of
smooth, but otherwise unspecified, functions, which are centered so that
E{fj(Xj)} = 0, j = 1, 2, . . . , r.

To estimate µ(X), the strategy is to estimate each fj(·) separately. Esti-
mation is based upon a backfitting algorithm (Friedman and Stuetzle, 1981).
The key is the identity, E{Y −α0−

∑
k �=j fk(Xk)|Xj} = fj(Xj). Given ob-

servations {(xi, yi), i = 1, 2, . . . , n} on (X, Y ), we estimate α0 by α̂0 = ȳ

and use the most current function estimates {f̂k, k �= j} to update f̂j by a
curve obtained by smoothing the “partial residuals,” yi−α̂0−

∑
k �=j f̂k(xki),

against xji, i = 1, 2, . . . , n. This update procedure is applied by cycling
through the {Xj} until convergence of the smoothed partial residuals.
The smoothing step uses a scatterplot smoother such as a cubic regres-
sion spline, which is a set of piecewise cubic polynomials joined together
at a sequence of knots and which satisfy certain continuity conditions at
the knots. There are many other possible smoothing techniques, including
kernel estimates and spline smoothers. In practice, the choice of smoother
used depends upon the degree of “smoothness” desired.

Generalized additive models (GAMs) (Hastie and Tibshirani, 1986) ex-
tend both the class of additive models (10.58) and the class of general-
ized linear models (McCullagh and Nelder, 1989). The generalized additive
model is usually written in the form,

h(µ) = α0 +
r∑

j=1

fj(Xj), (10.59)

where µ = µ(X) and h(µ) is a specified link function. Maximum-likelihood
estimates of the parameter α0 and the functions f1, f2, . . . , fr are obtained
in a nonparametric fashion by maximizing a penalized log-likelihood func-
tion using a local scoring procedure (a version of the IRLS algorithm de-
scribed in Section 9.3.5, where we fit a weighted additive model rather
than a weighted linear regression), which is equivalent to a version of the
Newton–Raphson algorithm.
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A popular example of h(µ) is the so-called logistic link function, h(µ) =
log{µ/(1−µ)}, which is used to model binary output. If we apply the logistic
link function to (10.59), then the GAM can be inverted and re-expressed
as follows:

µ(X) = g

⎛
⎝α0 +

r∑
j=1

fj(Xj)

⎞
⎠ , (10.60)

where g(x) = (1 + e−x)−1. In this particular form, we see that the GAM
is closely related to a neural network with logistic (sigmoid) activation
function (see Exercise 10.6).

10.12 Bayesian Learning for ANN Models

Bayesian treatments of neural networks have been quite successful. As
usual, (X1, Y1), . . . , (Xn, Yn) is the learning set of data. We assume the
inputs, X1, . . . ,Xn, are given and so are omitted from any probability
calculation, and the outputs, D = {Y1, . . . , Yn}, constitute the data to be
modeled. For this exposition, we assume a single output value Y ; the results
generalize to multiple outputs Y in a straightforward way.

An ANN model is specified by its network architecture A (i.e., the num-
ber of layers, number of nodes within each layer, and the activation func-
tions) and the vector of all network parameters ω (i.e., all connection
weights and biases). Let Q be the total number of elements in the vector ω.
We assume that the architecture A is given and, hence, does not enter the
probability calculations; if different architectures are to be compared, then
the influence of A would have to be taken into account in the calculations.
In some Bayesian models, A is included as part of the definition of ω.

Denote the likelihood function of the parameters given the data by
p(D|ω) and let p(ω) denote the prior distribution of the parameters in
the model. The likelihood function gives us an idea of the extent to which
the observed data D can be predicted using the parameters ω. Note that
it is a function of the parameters, not the data. The likelihood function
of the parameters conditional upon the data is the probability of the data
given the parameters, but where the data D are fixed and the parameters
ω are variable. The prior distribution displays whatever knowledge and
information we have about the parameters in the model before we observe
the data.

The complexity of the model is governed by the use of a hyperprior, a
joint distribution on the parameters of the prior distribution; the para-
meters of the hyperprior distribution are called hyperparameters. Much of
Bayesian inference in ANNs uses vague (non-informative) priors for the



10.12 Bayesian Learning for ANN Models 353

hyperparameters; such hyperpriors represent our lack of specific knowledge
about any prior parameters needed to describe the model.

From Bayes’s theorem, the posterior distribution of the parameters given
the data is given by

p(ω|D) =
p(D|ω)p(ω)

p(D)
, (10.61)

where p(D) =
∫

p(D|ω′)p(ω′)dω′ operates as a normalization factor to
ensure that

∫
p(ω|D)dω = 1. Note that p(D) should be interpreted as

p(D|A), not as the probability of obtaining that particular set of data D.
Usually, the best we can hope for is that inference based upon the posterior
is robust (i.e., fairly insensitive) to the choice of prior.

In this section, we give brief descriptions of two popular techniques for
estimating the parameters ω in an ANN: Laplace’s method for deriving
maximum à posteriori (MAP) estimates (MacKay, 1991) and Markov chain
Monte Carlo (MCMC) methods (Neal, 1996). Exact analytical Bayesian
computations are infeasible for neural networks, and so approximations
offer the only way of obtaining a solution in practice.

10.12.1 Laplace’s Method

Predictions can be obtained by calculating the maximum (i.e., mode) of
the posterior distribution (MAP estimation). As such, it is the Bayesian
equivalent of maximum likelihood. In our discussion of this technique, we
consider models for regression and classification networks separately.

Regression Networks

Suppose the output Y corresponding to input X = x is generated by
a Gaussian distribution with mean y(x,ω) and known variance σ2. Then,
assuming that {Yi} are iid copies of Y , the likelihood function, LD(ω), of
the parameters given the data is given by

LD(ω) = p(D|ω) =
e−κED(ω)

cD(κ)
, (10.62)

where

ED(ω) =
1
2

n∑
i=1

(yi − y(xi,ω))2 (10.63)

is the error sum-of-squares, κ = 1/σ2 is a (known) hyperparameter,

cD(κ) =
∫

e−κED(ω)dD = (2π/κ)n/2 (10.64)
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is the normalization factor, and
∫

dD =
∫

dy1 · · · dyn.
We take the prior distribution over the parameters to be the Gaussian

density,

p(ω) =
e−λEQ(ω)

cQ(λ)
, (10.65)

where

EQ(ω) =
1
2
‖ ω ‖2= 1

2

Q∑
q=1

ω2
q , (10.66)

ωq is equal to αjk, βij , α0k, or β0j as appropriate, λ is a hyperparameter
(which we assume to be known), and cQ(λ) = (2π/λ)Q/2 is the normaliza-
tion factor. We note that other types of priors for ANN modeling have been
used; these include the Laplacian prior (i.e., (10.65) with EQ(ω) =

∑
q |wq|)

and entropy-based priors (Buntine and Weigend, 1991).
Multiplying (10.62) by (10.65) and using (10.61), we get the posterior

distribution of the parameters,

p(ω|D) =
e−S(ω)

cS(λ, κ)
, (10.67)

where

S(ω) = κED(ω) + λEQ(ω)

= κ

n∑
i=1

(yi − y(xi,ω))2 + λ

Q∑
q=1

ω2
q (10.68)

and the normalization factor, cS(λ, κ) =
∫

e−S(ω)dω, is an integration that
cannot be evaluated explicitly. To find the maximum of the posterior distri-
bution, we can minimize − loge p(ω|D) wrt w. Because cS is independent
of ω, it suffices to minimize S(ω). The value of ω that maximizes the pos-
terior probability p(ω|D) (or, equivalently, minimizes S(ω)) is regarded as
the most probable value of ω and is denoted by the MAP estimate ωMP.
It can be found by an appropriate gradient-based optimization algorithm.
The network corresponding to the parameter values ωMP is referred to as
the most-probable regression network.

From (10.68), we see that S(ω) is a constant (κ) times the error sum-of-
squares of learning-set predictions plus a complexity term composed of a
weight-decay penalty and regularization parameter λ. Because S(ω) has a
form very similar to (10.51) and (10.52), the MAP approach can be used to
determine λ in the weight-decay penalty for network pruning. Some simple
arguments lead to a suggested range of 0.001 to 0.1 for exploratory values of
λ (Ripley, 1996, Section 5.5). It is for this reason that MAP estimation has
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been characterized as “a form of maximum penalized likelihood estimation”
(Neal, 1996, p. 6) rather than as a Bayesian method.

Rather than having to work with the form of the posterior density just de-
rived, we can make the following useful approximation, known as Laplace’s
method or approximation (Laplace, 1774/1986). Suppose that ωMP is the
location of a mode of p(ω|D). Consider the following Taylor-series expan-
sion of S(ω) around ωMP:

S(ω) ≈ S(ωMP) +
1
2
(ω − ωMP)τA(ω − ωMP), (10.69)

where A = ∂2S(ω)/∂ω2|ω=ωMP , is the (Q×Q) Hessian matrix (assumed
to be positive-definite) of second-order derivatives evaluated at ω = ωMP.
Substituting (10.69) into the numerator of (10.67), we can approximate
p(ω|D) by

p̃(ω|D) =
e−S(ωMP)

c∗S(λ)
e−

1
2∆ωτA∆ω , (10.70)

where ∆ω = ω − ωMP and the denominator (i.e., the normalizing factor)
is equal to

c∗S(λ) = (2π)Q/2|A|−1/2e−S(ωMP). (10.71)

Thus, we can approximate p(ω|D) by

p̃(ω|D) = (2π)−Q/2|A|1/2e−
1
2∆ωτA∆ω , (10.72)

which is the multivariate Gaussian density, NQ(ωMP,A−1), with mean
vector ωMP and covariance matrix A−1. This approximation is reinforced
by an asymptotic result that a posterior density converges (as n→∞) to
a Gaussian density whose variance collapses to zero (Walker, 1969). Note
that the Gaussian approximation p̃(ω|D) is different from p(ωMP|D), the
posterior density corresponding to the most-probable network.

For any new input vector x, we can now write down an expression for the
predictive distribution of a new output Y from a regression network using
the learning data D:

p(y|x,D) =
∫

p(y|x,ω)p(ω|D)dω, (10.73)

where p(ω|D) is the posterior density of the parameters derived above.
This integral cannot be computed because of all the nonlinearities involved
in the network.

To overcome this impass, we use the Gaussian approximation (10.72) to
the posterior and assume that p(y|x,D) is a univariate Gaussian density
with mean y(x,ω) and variance 1/ν. Then, (10.73) is approximated by

p̃(y|x,D) ∝
∫

e−
ν
2 (y−y(x,ω))2− 1

2∆ωτA∆ωdω. (10.74)
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We next assume that y(x,ω) can be approximated by a Taylor-series ex-
pansion around ωMP,

y(x,ω) ≈ y(x,ωMP) + gτ∆ω, (10.75)

where g = ∂y/∂ω|ωMP is the gradient. Set yMP = y(x,ωMP). Substitut-
ing (10.75) into (10.74) and evaluating the resulting integral, we find that
p(y|x,D) can be approximated by the Gaussian density,

p̃(y|x,D) =
1

(2πσ2
y)1/2

e−(y−yMP)2/2σ2
y , (10.76)

with mean yMP and variance σ2
y = 1

ν + gτA−1g (see Exercise 10.10). This
result can be used to derive approximate confidence bounds on the most-
probable output yMP.

So far, we have assumed the hyperparameters κ and λ are known. But, in
practice, this is a highly unlikely scenario. In a fully hierarchical-Bayesian
approach to this problem, we would incorporate the hyperparameters into
the model and then integrate over all parameters and hyperparameters.
However, such integrations are not possible analytically, and so another
approach has to be taken.

To deal with unknown κ and λ within a Bayesian framework, two dif-
ferent approaches to this problem have been proposed: (1) integrating out
the hyperparameters analytically and then using numerical methods to es-
timate the most-probable parameter values (Buntine and Weigend, 1991);
(2) estimating the hyperparameter values by maximizing something called
“evidence” (MacKay, 1992a). These two approaches have attracted a cer-
tain amount of controversy (see, e.g., Wolpert, 1993; MacKay, 1994).

Analytically integrating out the hyperparameters. The first method in-
volves supplying prior densities for the hyperparameters, then integrating
them out (a method called marginalization), and finally applying numerical
methods to determine ωMP. Thus, we can write

p(ω|D) =
∫ ∫

p(ω, κ, λ|D)dκdλ

=
∫ ∫

p(ω|κ, λ,D)p(κ, λ|D)dκdλ. (10.77)

Now, we use Bayes’s theorem for each term in the integrand: p(ω|κ, λ,D) =
p(D|ω, κ, λ)p(ω|κ, λ)/p(D|κ, λ) = p(D|ω, κ)p(ω|λ)/p(D|κ, λ), because the
likelihood does not depend upon λ and the prior does not depend upon
κ; similarly, p(κ, λ|D) = p(D|κ, λ)p(κ, λ)/p(D) = p(D|κ, λ)p(κ)p(λ)/p(D),
where we have assumed that the two hyperparameters, κ and λ, are dis-
tributed independently of each other. We take these (improper) priors to
be defined over (0,∞) as p(κ) = 1/κ and p(λ) = 1/λ. The integral (10.77)
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reduces to

p(ω|D) =
1

p(D)

∫ ∫
p(D|ω, κ)p(ω|λ)p(κ)p(λ)dκdλ. (10.78)

This integral can be divided up into the product of two integrals and re-
expressed as (10.61). Here,

p(ω) =
∫

p(ω|λ)p(λ)dλ

=
∫

e−λEQ(ω)

cQ(λ)
1
λ

dλ

= π−Q/2

∫
λQ/2−1e−λEQ(ω)dλ. (10.79)

Using the value of a gamma integral (see, e.g., Casella and Berger, 1990,
p. 100), we have that (10.79) reduces to

p(ω) =
Γ(Q/2)

(πEQ(ω))Q/2
. (10.80)

Similarly, we obtain

p(D|ω) =
∫

p(D|ω, κ)p(κ)dκ =
Γ(n/2)

(πED(ω))n/2
. (10.81)

Multiplying (10.80) and (10.81) to get the posterior density, taking the
negative logarithm of the result, and simplifying, we get

− loge p(ω|D) =
n

2
loge ED(ω) +

Q

2
loge EQ(ω) + constant, (10.82)

where the constant does not depend upon ω. We differentiate (10.82) wrt ω,

d

dω
{− loge p(ω|D)} = κ

d

dω
{ED(ω)}+ λ

d

dω
{EQ(ω)}, (10.83)

to find its minimum, where

κ = n/2ED(ω), λ = Q/2EQ(ω). (10.84)

This result is next used in a nonlinear optimization algorithm in which
the values of κ and λ are sequentially updated to find the most-probable
parameters ωMP, and then a multivariate Gaussian approximation to the
posterior density is obtained centered around ωMP.

Maximizing the evidence. Another method for dealing with unknown κ
and λ is to maximize the “evidence” of the model, p(D|κ, λ), which can be
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expressed as

p(D|κ, λ) =
∫

p(D|ω, κ, λ)p(ω|κ, λ)dω

=
∫

p(D|ω, κ)p(ω|λ)dω

= (cD(κ)cQ(λ))−1

∫
e−S(ω)dω

=
cS(κ, λ)

cD(κ)cQ(λ)
, (10.85)

where S(ω) is given by (10.68). As usual, it is easier to maximize the
logarithm of (10.85),

loge p(D|κ, λ) = −κED(ωMP)− λEQ(ωMP)− 1
2

loge |A|

+
n

2
loge(κ) +

Q

2
loge(λ)− Q

2
loge(2π). (10.86)

We maximize this expression in two steps: first, fix κ and differentiate
(10.86) wrt λ, set the result to zero, and solve for a maximum; next, fix λ
and differentiate (10.86) wrt κ, set the result equal to zero, and solve for
a maximum. These manipulations yield the following formulas (MacKay,
1992b):

λ∗ =
γ

2EQ(ωMP)
(10.87)

κ∗ =
n− γ

2ED(ωMP)
, (10.88)

where

γ =
Q∑

q=1

ηq

ηq + λ∗ , (10.89)

and the {ηq} are the eigenvalues of A−1.
Thus, we set initial values for κ∗ and λ∗ by sampling from their respec-

tive prior densities and determine ωMP by applying a suitable nonlinear
optimization algorithm to S(ω); during the progress of these iterations,
the values of κ∗ and λ∗ are sequentially updated using (10.87)–(10.89): an
initial λ∗

0 gives a γ0 using (10.89), which yields λ∗
1 from (10.86) and κ∗

1 from
(10.88); the new λ∗

1 is fed back into (10.89) to provide a new γ1, which, in
turn, gives λ∗

2 and κ∗
2, and so on. These steps in the algorithm should be

repeated a large number of times each time using different initial values for
the parameter vector ω.

We note that this computational technique of dealing with hyperparame-
ters is equivalent to the empirical Bayes (Carlin and Louis, 2000, Chapter 3)
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or type II maximum-likelihood (ML-II) approach to prior selection (Berger,
1985, Section 3.5.4).

Multiple modes. A major problem in practice, however, is that it is not
generally realistic to assume that the posterior density has only a single
mode. From experience of fitting Bayesian models to nonlinear networks,
we find it more reasonable to assume that there will be multiple local
maxima of the posterior density (see, e.g., Ripley, 1994a, p. 452, who, in
a particular example, found at least 22 distinct local modes). As usual in
such situations, one should try to identify as many of the distinct local
maxima as possible by running the optimization algorithm using a large
number of randomly chosen starting points for the parameters.

A potentially better modeling strategy for multiple modes is to use an ap-
proximation to the posterior based upon a mixture of multivariate Gaussian
densities, where the component densities are assumed to have minimal over-
lap; each component density is centered at a different local mode of the pos-
terior p(ω|D), and the inverse of its covariance matrix is matched to the
Hessian of the logarithm of the posterior density at the mode (MacKay,
1992a). Although some work has been carried out on Gaussian mixture
models for neural networks (see, e.g., Buntine and Weigend, 1991; Ripley,
1994b), more research is needed on this topic.

Classification Networks

If the problem involves classifying data into one of two classes, Π1 or Π2,
then the output variable Y is binary, taking on the value 1 (for Π1) or 0
(for Π2). The network output y(x,ω) = p(Y = 1|x,ω) is the conditional
probability that the particular input vector X = x is a member of Π1.

The probability that Yi = 1 is

p(Yi = 1|xi,ω) = (y(xi,ω))yi(1− y(xi,ω))1−yi . (10.90)

The likelihood function of the parameters ω (given the data D) is

p(D|ω) =
n∏

i=1

p(Yi = 1|xi,ω) = e−�D(ω), (10.91)

where

�D(ω) = −
n∑

i=1

{yi loge y(xi,ω) + (1− yi) loge(1− y(xi,ω))} (10.92)

is the negative log-likelihood function. Again, the network’s architecture
A is assumed to be given. Note that, compared to (10.62) for regression
networks, (10.91) has neither a hyperparameter κ nor a denominator cD(κ).
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For a prior on the parameters, we use the Gaussian density (10.65), which
is proportional to e−λEQ(ω).

Assuming the {Yi} are iid copies of Y , the posterior density (10.61) is

p(ω|D) =
e−S(ω)

cS(λ)
, (10.93)

where
S(ω) = �D(ω) + λEQ(ω), (10.94)

λ is, again, the regularization parameter (also known as a weight-decay
regularizer), and cS(λ) is the normalization factor. Finding ω to maximize
the posterior distribution is equivalent to minimizing S(ω). The value of
ω that maximizes the posterior distribution is denoted by ωMP.

We can now find the probability that the input vector, X = x, is a
member of class Π1 (i.e., Y = 1). MacKay (1992b) suggests that if f(·) is
one of the activation functions in Table 10.1 and u = u(x,ω), then,

p(Y = 1|x,D) =
∫

p(Y = 1|u)p(u|x,D)du

=
∫

f(u)p(u|x,D)du (10.95)

provides a better estimate of the class probability than y(x,ωMP). To eval-
uate this integral, MacKay first expands u in a Taylor series,

u(x,ω) ≈ u(x,ωMP) + g(x)τ∆ω, (10.96)

where g(x) = ∂u(x,ω)/∂ω|ωMP and ∆ω = ω − ωMP. Thus,

p(u|x,D) =
∫

p(u|x,ω)p(ω|D)dω

=
∫

δ(u− uMP − g(x)τ∆ω)p(ω|D)dω, (10.97)

where uMP = u(x,ωMP) and δ is the Dirac delta-function. This result
implies that if we use Laplace’s method and approximate the posterior
density p(ω|D) in (10.93) by the multivariate Gaussian density,

p̃(ω|D) ∝ e−
1
2∆ωτA∆ω , (10.98)

where A is the (local) Hessian matrix, then, u is Gaussian,

p(u|x,D) ∝ e−(u−uMP)2/2ν2
, (10.99)

with mean uMP and variance

ν2 = g(x)τA−1g(x). (10.100)
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When f is sigmoidal and p(u|x,D) is Gaussian, the integral (10.95) does not
have an analytic solution. MacKay (1992b) suggests the following simple
approximation for (10.95):

p̃(Y = 1|x,D) = f(α(ν)uMP), (10.101)

where α(ν) = (1 + (πν2/8))−1/2. Note that the probability (10.101) is not
the same as y(x,ωMP).

10.12.2 Markov Chain Monte Carlo Methods

As we have seen, the main computational difficulty in applying Bayesian
methods involves the evaluation of complicated high-dimensional integrals.
For example, the predictive distribution of the output value Y ∗ of a new
test case (X∗, Y ∗), given the learning data, L = {(X1, Y1), . . . , (Xn, Yn)},
is given by

p(y∗|x∗,L) =
∫

p(y∗|x∗,ω)p(ω|L)dω. (10.102)

If we are to estimate Y ∗ in a regression model using squared-error as our
loss function, then, the best predictor is the expectation of the predictive
distribution (10.102),

E{Y ∗|x∗,L} =
∫

p(x∗,ω)p(ω|L)dω. (10.103)

Problems of approximating the posterior density or its expectation have
been summarized well by Neal (1996, Section 1.2).

A recent popular and highly successful addition to the Bayesian’s toolkit
is a method known as Markov chain Monte Carlo (MCMC), which is actu-
ally a collection of related computational techniques designed for simulating
from nonstandard multivariate distributions (see, e.g., Gilks, Richardson,
and Spiegelhalter, 1996; Robert and Casella, 1999). It was proposed as a
method for estimating the predictive distributions of regression and classi-
fication network parameters and their expectations by Neal (1996).

The essential idea behind MCMC is to approximate the desired inte-
gration by simulating from the joint probability distribution of all the
model parameters and hyperparameters. Thus, we, first, use a Monte Carlo
method to draw a sample of B values, ω(1), . . . ,ω(B), from the predictive
density (10.99), where ω now includes all weights, biases, and hyperpara-
meters; then, we approximate the expectation (10.103) by

ŷ∗ =
1
B

B∑
b=1

p(x∗,ω(b)). (10.104)

When the predictive density is complicated, as it is in nonlinear neural
network applications, then the sequence of generated values, {ω(b)}, has to
be viewed as a dependent sequence.
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One way of generating such a dependent sequence is by using an er-
godic Markov chain with stationary distribution P = p(x,ω). A Markov
chain is defined on a sequence of states, ω(b), by an initial distribution for
the startup state, ω(0), of the chain and a set of transition probabilities,
{Q(ω(b)|ω(b−1))}, for a future state, ω(b), to succeed the current state,
ω(b−1). The distribution P is called stationary (or invariant) if it remains
the same for all states in the sequence that follow the bth state. If a sta-
tionary distribution P exists and is unique, then the Markov chain is called
ergodic and its stationary distribution P is known as the equilibrium dis-
tribution. If we can find an ergodic Markov chain that has equilibrium
distribution P , then it does not matter from which initial state we start
the chain, convergence of the sequence will always be to P . In such a case,
we can estimate (10.103) wrt P by using (10.104).

Because the members of the sequence {ω(b)} are dependent, we need a
much larger value of B than if the sequence consisted of independent values.
At the beginning, the iterates will look like the starting values, ω(0), and
then, after a long time, the Markov chain will settle down. To take this into
account, the first B0 iterates are considered as the “burn-in” period; these
values are discarded as not resembling the equilibrium distribution P , and
only the subsequent B−B0 values are regarded as essentially independent
observations from P to be used for predictive purposes.

The two most popular methods for MCMC are Gibbs sampling and the
Metropolis algorithm. Both (and variations of those themes) have been
used extensively in mathematical physics, chemistry, biology, statistics, and
image restoration.

The Gibbs sampler (Geman and Geman, 1984) can be applied when
sampling from any distribution defined by a vector, ω = (ω1, · · · , ωQ)τ ,
Q ≥ 2, of parameters. Considering these parameters as random variables,
we assume that all one-dimensional conditional distributions of the form
p(ωq|{ωi, i �= q}), q = 1, 2, . . . , Q, are available to be sampled. The entire
set of these conditional distributions is (under mild conditions) sufficient
to determine the joint distribution and all its margins. Given a vector of
starting values ω(0), we define a Markov chain by generating ω(b) from
ω(b−1) according to the algorithm in Table 10.3, where we use notation
from Besag, Green, Higdon, and Mengersen (1995). This process generates
a sequence (or trajectory) of the chain, ω(0),ω(1), . . . ,ω(b), . . ., and, as b
gets larger and larger (after a long enough “burn-in” period), the vector
ω(b) becomes approximately distributed as the desired P .

The Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller, 1953) introduces a candidate or proposal density, f , whose form
depends upon the current state; one generates a candidate state, ω∗, from
f , and then decides whether or not to “accept” that candidate state. If the
candidate state is accepted, it becomes the next state in the Markov chain;
otherwise, it remains at the current state. See Table 10.4. The iterative
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TABLE 10.3. The Gibbs sampler.

1. Let ω
(0)
1 , . . . , ω

(0)
Q be starting values. Define

ω−q = {ωj , j �= q} = {ω1, ω2, . . . , ωq−1, ωq+1, . . . , ωQ}.

2. For b = 1, 2, . . .:

draw ω(b)
q ∼ pq(ωq|ω(b−1)

−q ), q = 1, 2, . . . , Q.

3. Continue the 2nd step until the joint distribution of ω
(b)
1 , . . . , ω

(b)
Q stabilizes.

process moves from the current state, ω(b−1), to the next state, ω(b), cor-
responding to a higher-density region of p(ω|L), whereas it rejects a per-
centage of those steps that move to lower-density regions of p(ω|L). Note
that the candidate densities may change from step to step; typically, the
candidate density f is selected to be a member of a family of distributions,
such as Gaussian densities centered at ω(b−1).

Unfortunately, neither the Gibbs sampler nor the Metropolis algorithm
are recommended for sampling from the posterior distribution of a neural
network model. Because of the huge numbers of parameters involved and
the nonlinearity of the model, such MCMC procedures are either compu-
tationally infeasible or are very slow for this type of application.

TABLE 10.4. The Metropolis algorithm.

1. Let ω(0) be starting values. Let p(ω|L) be the joint posterior density of ω.

2. For b = 1, 2, . . .:

(i) Draw a candidate state, ω∗, from a proposal density f , which depends
upon the current state; i.e., ω∗ ∼ f(·, ω(b−1)).

(ii) Compute the ratio r = p(ω∗|L)/p(ω(b−1)|L).

(iii) (a) If r ≥ 1, accept the candidate state and set ω(b) = ω∗.

(b) Otherwise, accept the candidate state with probability r or reject
it with probability 1 − r. If the candidate state is rejected, set
ω(b) = ω(b−1).

3. Continue the 2nd step until the joint distribution of ω(b) stabilizes.
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To overcome these difficulties, Neal (1996, Chapter 3) successfully im-
plemented a combination procedure based upon the hybrid Monte Carlo
algorithm of Duane, Kennedy, Pendleton, and Roweth (1987). Neal’s pro-
cedure separates the hyperparameters from the network parameters (i.e.,
weights and biases) and alternates their updates: the Gibbs sampler is used
for updating the hyperparameters, and the hybrid Monte Carlo algorithm,
an elaborate version of the Metropolis algorithm, is used to update the
network parameters.

10.13 Software Packages

S-Plus and R (Venables and Ripley, 2002, Sections 8.8–8.10) have com-
mands to carry out neural networks (nnet), projection pursuit regres-
sion (ppr), and generalized additive models (gam). Matlab has a Neural
Network Toolbox with tools for designing, implementing, visualizing, and
simulating neural networks. Weka (Waikato Environment for Knowledge
Analysis) is a collection of open-source machine-learning algorithms for
data-mining tasks, including neural network modeling, from the University
of Waikato, Hamilton, New Zealand (Witten and Frank, 2005). Weka is
downloadable from www.cs.waikato.ac.nz/ml/weka.

Gibbs sampling can be used to simulate from almost any probability
model through BUGS (Bayesian inference Using Gibbs Sampling), Win-

BUGS, and OpenBUGS software, which is downloadable from
www.mrc-bsu.cam.ac.uk/bugs/.

OpenBUGS can be run from R in Windows.

Bibliographical Notes

Groundbreaking work on the neural biology of the brain appeared in
the book Hebb (1949), which was reprinted in 2002 with additional mate-
rial. The historical remarks in this chapter about Hebb were adapted from
Milner (1993), the edited volume by Jusczyk and Klein (1980), and the ex-
cellent individual articles by Sejnowski, Milner, Kolb, Tees, and Hinton in
the February 2003 issue of Canadian Psychology. Also highly recommended
is the fascinating book by Calvin and Ojemann (1994), who use conversa-
tions between an epileptic patient and his surgeon to carry out a learning
tour of the cerebral cortex.

There are many good treatments of artificial neural networks. Books
include MacKay (2003, Part V), Hastie, Tibshirani, and Friedman (2001,
Chapter 11), Duda, Hart, and Stork (2001, Chapters 6 and 7), Vapnik
(2000), Fine (1999), Haykin (1999), Ripley (1996, Chapter 5), Rojas (1996),



10.13 Bibliographical Notes 365

and Bishop (1995). Statistical perspectives of neural networks can be found
in the articles by Ripley (1994a), Cheng and Titterington (1994), and Stern
(1996).

Theuniversal approximation theoremderives fromtheworkofKolmogorov
(1957), Sprecher (1965), and others, who showed that a continuous func-
tion could have an exact representation in terms of the superposition of a
few functions of one variable. Dissatisfaction with these representations for
motivating neural networks led to a variety of approximation results (e.g.,
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An excellent reference to Laplace’s method is Tierney and Kadane (1986),
who showed how it could be used to approximate posterior expectations
and, therefore, how important the method is for Bayesian computation. See
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and February 2004 issues of Statistical Science. The Gibbs sampler was first
used as an MCMC method by Geman and Geman (1984) in the context of
image restoration. Its introduction to the statistical community is due to
Gelfand and Smith (1990), who broadened its appeal considerably.

The field of neural networks is now regarded by many as part of a larger
field known as softcomputing (due to L.A. Zadeh), which includes such
topics as fuzzy logic (e.g., computing with words), evolutionary computing
(e.g., genetic algorithms), probabilistic computing (e.g., Bayesian learning,
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certainty, partial truth, and approximation in order to achieve robustness
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Exercises

10.1 Let φ(x) = a tanh(bx) be the hyperbolic tangent activation function,
where a and b are constants. Show that φ(x) = 2aψ(bx)− a, where ψ(x) =
(1 + e−x)−1 is the logistic activation function.

10.2 Show that the logistic function is symmetric, whereas the tanh func-
tion is asymmetric.

10.3 Show that the Gaussian cumulative distribution function, Φ(x) =
(2π)−1/2

∫ x

−∞ e−u2/2du, is a sigmoidal function.

10.4 Show that ψ(x) = (2/π) tan−1(x) is a sigmoidal function.

10.5 For r = 3 inputs, draw the hyperplane in the unit cube corresponding
to the McCulloch–Pitts neuron for the logical OR function.

10.6 (The XOR Problem.) Consider four points, (X1,X2), at the corners
of the unit square: (0, 0), (0, 1), (1, 0), (1, 1). Suppose that (0, 0) and (1, 1)
are in class 1, whereas (0, 1) and (1, 0) are in class 2. The XOR problem is
to construct a network that classifies the four points correctly. By setting
Y = 1 to points in class 1 and Y = 0 to points in class 2 (or vice versa), show
algebraically that a straight line cannot separate the two classes of points
and, hence, that a perceptron with no hidden nodes is not an appropriate
network for this problem.

10.7 (The XOR Problem, cont.) Consider a fully connected network with
two input nodes (X1,X2), two hidden nodes (Z1, Z2), and a single output
node (Y ). Let β11 = β12 = 1 be the connection weights from X1 to Z1

and Z2, respectively; let β01 = 1.5 be the bias at hidden node 1; let β21 =
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β22 = 1 be the connection weights from X2 to Z1 and Z2, respectively; and
let β02 = 0.5 be the bias at hidden node 2. Next, let α1 = −2 and α2 = 1
be the connection weights from Z1 to Y and from Z2 to Y , respectively,
with bias α0 = 0.5. Draw the network graph. Find the linear boundaries as
defined by the two hidden nodes; in the unit square, draw the boundaries
and identify which class, 0 or 1, corresponds to each region of the unit
square. Show that this network solves the XOR problem. Find another
solution to this problem using different weights and biases.

10.8 Write a computer program to carry out the backpropagation algo-
rithm as detailed in Section 10.7.6 for the squared-error loss function, and
then apply it to a classification data set of your choice.

10.9 Study the correspondences between a single hidden layer neural net-
work (10.18) and a generalized additive model (10.54).

10.10 Prove that
∫

e−
1
2zτBz+hτzdz = (2π)Q/2|B|−1/2e

1
2hτB−1h.

10.11 Prove (10.74). (Hint: Use Exercise 10.10 with z = ∆ω, B = A +
νggτ , and h = −ν(y− yMP)g. Then, multiply numerator and denominator
by gτ (I + νA−1ggτ )g, and simplify.)

10.12 Use the logistic function as the sigmoid activation function g(·) and
a linear function f(·) to derive the computational expressions for the back-
propagation algorithm. Discuss the properties of this particular algorithm.

10.13 Use the cross-entropy loss function to derive the appropriate com-
putational expressions for the backpropagation algorithm. Program the re-
sulting algorithm, use it with a data set of your choice, and compare its
output with that obtained from the squared-error loss function.

10.14 Construct a network diagram based upon the sine function that will
approximate the function F (x) in (10.21) by F̂ (x) in (10.22).

10.15 Suppose we construct a neural network with no hidden layer, just
input and output nodes. Let Xj be the jth input, j = 1, 2, . . . , r, and let
Y = f(β0 + Xτβ) denote the output, where f(u) = (1 + e−u)−1, X =
(X1, · · · ,Xr)τ , and β = (β1, · · · , βr)τ is an r-vector of weights. Show that
the decision boundary of this network is linear. If there are two input
variables (i.e., r = 2), draw the corresponding decision boundary.

10.16 Fit a neural network to the gilgaied soil data set from Section
8.6. How could the two-way format of the data be taken into account in a
neural network model?
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10.17 Fit a neural network to the Cleveland heart-disease data from
Section 9.2.1. Compare results with that given by using a classification
tree.

10.18 Fit a neural network to the Pima Indians diabetic data set pima from
Section 9.2.4. Compare results with that given by using a classification tree.

10.19 Fit a regression neural network to the 1992 Major League Baseball
Salaries data from Section 9.3.5. Compare results with that given by using
a regression tree.

10.20 Write a computer program to implement projection pursuit regres-
sion and use it to fit the 1992 Major League Baseball Salaries data.

10.21 Consider a regression neural network in which the outputs are identi-
cal to the inputs. Generate input data from a suitable multivariate Gaussian
distribution and use that same data as outputs. Fit a neural networks model
to these data and comment on your results. What is the relationship be-
tween this network analysis and principal component analysis?

10.22 In the discussion of Bayesian neural networks (Section 10.12), the
binary classification problem was addressed. Redo the section on Bayesian
classification networks using Laplace’s approximation method so that now
there are more than two classes.

10.23 Take any classification data set and divide it up into a learning
set and an independent test set. Change the value of one observation on
one input variable in the learning set so that that value is now a univari-
ate outlier. Fit separate single-hidden-layer neural networks to the original
learning-set data and to the learning-set data with the outlier. Comment
on the effect of the outlier on the fit and on its effect on classifying the test
set. Shrink the value of that outlier toward its original value and evaluate
when the effect of the outlier on the fit vanishes. How far away must the
outlier move from its original value that significant changes to the network
coefficient estimates occur?
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Support Vector Machines

11.1 Introduction

Fisher’s linear discriminant function (LDF) and related classifiers for binary
and multiclass learning problems have performed well for many years and
for many data sets. Recently, a brand-new learning methodology, support
vector machines (SVMs), has emerged (Boser, Guyon, and Vapnik, 1992),
which has matched the performance of the LDF and, in many instances,
has proved to be superior to it.

Development and implementation of algorithms for SVMs are currently
of great interest to theoretical researchers and applied scientists in machine
learning, data mining, and bioinformatics. Huge numbers of research arti-
cles, tutorials, and textbooks have been published on the topic, and annual
workshops, new research journals, courses, and websites are now devoted
to the subject. SVMs have been successfully applied to classification prob-
lems as diverse as handwritten digit recognition, text categorization, cancer
classification using microarray expression data, protein secondary-structure
prediction, and cloud classification using satellite-radiance profiles.

SVMs, which are available in both linear and nonlinear versions, involve
optimization of a convex loss function under given constraints and so are
unaffected by problems of local minima. This gives SVMs quite a strong

A.J. Izenman, Modern Multivariate Statistical Techniques,
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competitive advantage over methods such as neural networks and decision
trees. SVMs are computed using well-documented, general-purpose, math-
ematical programming algorithms, and their performance in many situa-
tions has been quite remarkable. Even in the face of massive data sets,
extremely fast and efficient software is being designed to compute SVMs
for classification.

By means of the new technology of kernel methods, SVMs have been
very successful in building highly nonlinear classifiers. The kernel method
enables us to construct linear classifiers in high-dimensional feature spaces
that are nonlinearly related to input space and to carry out those com-
putations in input space using very few parameters. SVMs have also been
successful in dealing with situations in which there are many more variables
than observations.

Although these advantages hold in general, we have to recognize that
there will always be applications in which SVMs can get beaten in perfor-
mance by a hand-crafted classification method.

In this chapter, we describe the linear and nonlinear SVM as solutions
of the binary classification problem. The nonlinear SVM incorporates non-
linear transformations of the input vectors and uses the kernel trick to
simplify computations. We describe a variety of kernels, including string
kernels for text categorization problems. Although the SVM methodology
was built specifically for binary classification, we discuss attempts to ex-
tend that methodology to multiclass classification. Finally, although the
SVM methodology was originally designed to solve classification problems,
we discuss how the SVM methodology has been defined for regression sit-
uations.

11.2 Linear Support Vector Machines

Assume we have available a learning set of data,

L = {(xi, yi) : i = 1, 2, . . . , n}, (11.1)

where xi ∈ 
r and yi ∈ {−1,+1}. The binary classification problem is to
use L to construct a function f : 
r → 
 so that

C(x) = sign(f(x)) (11.2)

is a classifier. The separating function f then classifies each new point x in
a test set T into one of two classes, Π+ or Π−, depending upon whether
C(x) is +1 (if f(x) ≥ 0) or −1 (if f(x) < 0), respectively. The goal is to
have f assign all positive points in T (i.e., those with y = +1) to Π+ and
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all negative points in T (y = −1) to Π−. In practice, we recognize that
100% correct classification may not be possible.

11.2.1 The Linearly Separable Case

First, consider the simplest situation: suppose the positive (yi = +1) and
negative (yi = −1) data points from the learning set L can be separated
by a hyperplane,

{x : f(x) = β0 + xτβ = 0}, (11.3)

where β is the weight vector with Euclidean norm ‖ β ‖, and β0 is the
bias. (Note: b = −β0 is the threshold.) If this hyperplane can separate the
learning set into the two given classes without error, the hyperplane is
termed a separating hyperplane. Clearly, there is an infinite number of such
separating hyperplanes. How do we determine which one is the best?

Consider any separating hyperplane. Let d− be the shortest distance from
the separating hyperplane to the nearest negative data point, and let d+

be the shortest distance from the same hyperplane to the nearest positive
data point. Then, the margin of the separating hyperplane is defined as
d = d− + d+. If, in addition, the distance between the hyperplane and its
closest observation is maximized, we say that the hyperplane is an optimal
separating hyperplane (also known as a maximal margin classifier).

If the learning data from the two classes are linearly separable, there
exists β0 and β such that

β0 + xτ
i β ≥ +1, if yi = +1, (11.4)

β0 + xτ
i β ≤ −1, if yi = −1. (11.5)

If there are data vectors in L such that equality holds in (11.4), then these
data vectors lie on the hyperplane H+1: (β0 − 1) + xτβ = 0; similarly, if
there are data vectors in L such that equality holds in (11.5), then these
data vectors lie on the hyperplane H−1: (β0 + 1) + xτβ = 0. Points in L
that lie on either one of the hyperplanes H−1 or H+1, are said to be support
vectors. See Figure 11.1. The support vectors typically consist of a small
percentage of the total number of sample points.

If x−1 lies on the hyperplane H−1, and if x+1 lies on the hyperplane
H+1, then,

β0 + xτ
−1β = −1, β0 + xτ

+1β = +1. (11.6)

The difference of these two equations is xτ
+1β − xτ

−1β = 2, and their sum
is β0 = − 1

2{xτ
+1β +xτ

−1β}. The perpendicular distances of the hyperplane
β0 + xτβ = 0 from the points x−1 and x+1 are

d− =
|β0 + xτ

−1β|
‖ β ‖ =

1
‖ β ‖ , d+ =

|β0 + xτ
+1β|

‖ β ‖ =
1
‖ β ‖ , (11.7)
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d+ = 1

‖β‖

d− = 1

‖β‖
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FIGURE 11.1. Support vector machines: the linearly separable case. The
red points correspond to data points with yi = −1, and the blue points cor-
respond to data points with yi = +1. The separating hyperplane is the line
β0+xτβ = 0. The support vectors are those points lying on the hyperplanes
H−1 and H+1. The margin of the separating hyperplane is d = 2/ ‖ β ‖.

respectively (see Exercise 11.1). So, the margin of the separating hyperplane
is d = 2/ ‖ β ‖.

The inequalities (11.4) and (11.5) can be combined into a single set of
inequalities,

yi(β0 + xτ
i β) ≥ +1, i = 1, 2, . . . , n. (11.8)

The quantity yi(β0+xτ
i β) is called the margin of (xi, yi) with respect to the

hyperplane (11.3), i = 1, 2, . . . , n. From (11.6), we see that xi is a support
vector with respect to the hyperplane (11.3) if its margin equals one; that
is, if

yi(β0 + xτ
i β) = 1. (11.9)

The support vectors in Figure 11.1 are identified (with circles around them).
The empirical distribution of the margins of all the observations in L is
called the margin distribution of a hyperplane with respect to L. The mini-
mum of the empirical margin distribution is the margin of the hyperplane
with respect to L.

The problem is to find the optimal separating hyperplane; namely, find
the hyperplane that maximizes the margin, 2/ ‖ β ‖, subject to the condi-
tions (11.8). Equivalently, we wish to find β0 and β to

minimize
1
2
‖ β ‖2, (11.10)

subject to yi(β0 + xτ
i β) ≥ 1, i = 1, 2, . . . , n. (11.11)
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This is a convex optimization problem: minimize a quadratic function sub-
ject to linear inequality constraints. Convexity ensures that we have a global
minimum wthout local minima. The resulting optimal separating hyper-
plane is called the maximal (or hard) margin solution.

We solve this problem using Lagrangian multipliers. Because the con-
straints are yi(β0 + xτ

i β) − 1 ≥ 0, i = 1, 2, . . . , n, we multiply the con-
straints by positive Lagrangian multipliers and subtract each such product
from the objective function (11.10) to form the primal!functional,

FP (β0,β,α) =
1
2
‖ β ‖2 −

n∑
i=1

αi{yi(β0 + xτ
i β)− 1}, (11.12)

where
α = (α1, · · · , αn)τ ≥ 0 (11.13)

is the n-vector of (nonnegative) Lagrangian coefficients. We need to mini-
mize F with respect to the primal variables β0 and β, and then maximize
the resulting minimum-F with respect to the dual variables α.

The Karush–Kuhn–Tucker conditions give necessary and sufficient con-
ditions for a solution to a constrained optimization problem. For our primal
problem, β0, β, and α have to satisfy:

∂FP (β0,β,α)
∂β0

= −
n∑

i=1

αiyi = 0, (11.14)

∂FP (β0,β,α)
∂β

= β −
n∑

i=1

αiyixi = 0, (11.15)

yi(β0 + xτ
i β)− 1 ≥ 0, (11.16)

αi ≥ 0, (11.17)
αi{yi(β0 + xτ

i β)− 1} = 0, (11.18)

for i = 1, 2, . . . , n. The condition (11.18) is known as the Karush–Kuhn–
Tucker complementarity condition.

Solving equations (11.14) and (11.15) yields
n∑

i=1

αiyi = 0, (11.19)

β∗ =
n∑

i=1

αiyixi. (11.20)

Substituting (11.19) and (11.20) into (11.12) yields the minimum value of
FP (β0,β,α), namely,

FD(α) =
1
2
‖ β∗ ‖2 −

n∑
i=1

αi{yi(β∗
0 + xτ

i β∗)− 1}
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=
1
2

n∑
i=1

n∑
j=1

αiαjyiyj(xτ
i xj)−

n∑
i=1

n∑
j=1

αiαjyiyj(xτ
i xi) +

n∑
i=1

αi

=
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj(xτ
i xj), (11.21)

where we used (11.18) in the second line. Note that the primal variables
have been removed from the problem. The expression (11.21) is usually
referred to as the dual functional of the optimization problem.

We next find the Lagrangian multipliers α by maximizing the dual func-
tional (11.21) subject to the constraints (11.17) and (11.19). The con-
strained maximization problem (the “Wolfe dual”) can be written in matrix
notation as follows. Find α to

maximize FD(α) = 1τ
nα− 1

2
ατHα (11.22)

subject to α ≥ 0, ατy = 0, (11.23)

where y = (y1, · · · , yn)τ and H = (Hij) is a square (n × n)-matrix with
Hij = yiyj(xτ

i xj). If α̂ solves this optimization problem, then

β̂ =
n∑

i=1

α̂iyixi (11.24)

yields the optimal weight vector. If α̂i > 0, then, from (11.18), yi(β∗
0 +

xτ
i β∗) = 1, and so xi is a support vector; for all observations that are not

support vectors, α̂i = 0. Let sv ⊂ {1, 2, . . . , n} be the subset of indices that
identify the support vectors (and also the nonzero Lagrangian multipliers).
Then, the optimal β is given by (11.24), where the sum is taken only over
the support vectors; that is,

β̂ =
∑
i∈sv

α̂iyixi. (11.25)

In other words, β̂ is a linear function only of the support vectors {xi, i ∈
sv}. In most applications, the number of support vectors will be small
relative to the size of L, yielding a sparse solution. In this case, the sup-
port vectors carry all the information necessary to determine the optimal
hyperplane.

The primal and dual optimization problems yield the same solution, al-
though the dual problem is simpler to compute and, as we shall see, is
simpler to generalize to nonlinear classifiers. Finding the solution involves
standard convex quadratic-programming methods, and so any local mini-
mum also turns out to be a global minimum.

Although the optimal bias β̂0 is not determined explicitly by the opti-
mization solution, we can estimate it by solving (11.18) for each support
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vector and then averaging the results. In other words, the estimated bias
of the optimal hyperplane is given by

β̂0 =
1
|sv|

∑
i∈sv

(
1− yixτ

i β̂

yi

)
, (11.26)

where |sv| is the number of support vectors in L.
It follows that the optimal hyperplane can be written as

f̂(x) = β̂0 + xτ β̂

= β̂0 +
∑
i∈sv

α̂iyi(xτxi). (11.27)

Clearly, only support vectors are relevant in computing the optimal sepa-
rating hyperplane; observations that are not support vectors play no role
in determining the hyperplane and are, thus, irrelevant to solving the op-
timization problem. The classification rule is given by

C(x) = sign{f̂(x)}. (11.28)

If j ∈ sv, then, from (11.27),

yj f̂(xj) = yj β̂0 +
∑
i∈sv

α̂iyiyj(xτ
j xi) = 1. (11.29)

Hence, the squared-norm of the weight vector β̂ of the optimal hyperplane is

‖ β̂ ‖2 =
∑
i∈sv

∑
j∈sv

α̂iα̂jyiyj(xτ
i xj)

=
∑
j∈sv

α̂jyj

∑
i∈sv

α̂iyi(xτ
i xj)

=
∑
j∈sv

α̂j(1− yj β̂0)

=
∑
j∈sv

α̂j . (11.30)

The third line used (11.29) and the fourth line used (11.19). It follows from
(11.30) that the optimal hyperplane has maximum margin 2/ ‖ β̂ ‖, where

1

‖ β̂ ‖
=

⎛
⎝∑

j∈sv

α̂j

⎞
⎠

−1/2

. (11.31)
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11.2.2 The Linearly Nonseparable Case

In real applications, it is unlikely that there will be such a clear linear
separation between data drawn from two classes. More likely, there will
be some overlap. We can generally expect some data from one class to
infiltrate the region of space perceived to belong to the other class, and
vice versa. The overlap will cause problems for any classification rule, and,
depending upon the extent of the overlap, we should expect that some of
the overlapping points will be misclassified.

The nonseparable case occurs if either the two classes are separable, but
not linearly so, or that no clear separability exists between the two classes,
linearly or nonlinearly. One reason for overlapping classes is the high noise
level (i.e., large variances) of one or both classes. As a result, one or more
of the constraints will be violated.

The way we cope with overlapping data is to create a more flexible for-
mulation of the problem, which leads to a soft-margin solution. To do this,
we introduce the concept of a nonnegative slack variable, ξi, for each obser-
vation, (xi, yi), in L, i = 1, 2, . . . , n. See Figure 11.2 for a two-dimensional
example. Let

ξ = (ξ1, · · · , ξn)τ ≥ 0. (11.32)

The constraints (11.11) now become yi(β0+xτ
i β)+ξi ≥ 1 for i = 1, 2, . . . , n.

Data points that obey these constraints have ξi = 0. The classifier now has
to find the optimal hyperplane that controls both the margin, 2/‖ β ‖, and
some computationally simple function of the slack variables, such as

gσ(ξ) =
n∑

i=1

ξσ
i , (11.33)

subject to certain constraints. The usual values of σ are 1 (“1-norm”) or 2
(“2-norm”). Here, we discuss the case of σ = 1; for σ = 2, see Exercise
11.2.

The 1-norm soft-margin optimization problem is to find β0, β, and ξ to

minimize
1
2
‖ β ‖2 +C

n∑
i=1

ξ, (11.34)

subject to ξi ≥ 0, yi(β0 + xτ
i β) ≥ 1− ξi, i = 1, 2, . . . , n, (11.35)

where C > 0 is a regularization parameter. C takes the form of a tuning
constant that controls the size of the slack variables and balances the two
terms in the minimizing function.

Form the primal functional, FP = FP (β0,β, ξ,α,η), where

FP =
1
2
‖ β ‖2 +C

n∑
i=1

ξi−
n∑

i=1

αi{yi(β0+xτ
i β)−(1−ξi)}−

n∑
i=1

ηiξi, (11.36)
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FIGURE 11.2. Support vector machines: the nonlinearly separable case.
The red points correspond to data points with yi = −1, and the blue points
correspond to data points with yi = +1. The separating hyperplane is the
line β0 + xτβ = 0. The support vectors are those circled points lying on
the hyperplanes H−1 and H+1. The slack variables ξ1 and ξ4 are associated
with the red points that violate the constraint of hyperplane H−1, and points
marked by ξ2, ξ3, and ξ5 are associated with the blue points that violate the
constraint of hyperplane H+1. Points that satisfy the constraints of the
appropriate hyperplane have ξi = 0.

with α = (α1, · · · , αn)τ ≥ 0 and η = (η1, · · · , ηn)τ ≥ 0. Fix α and η, and
differentiate FP with respect to β0, β,and ξ:

∂FP

∂β0
= −

n∑
i=1

αiyi, (11.37)

∂FP

∂β
= β −

n∑
i=1

αiyixi, (11.38)

∂FP

∂ξi
= C − αi − ηi, i = 1, 2, . . . , n. (11.39)

Setting these derivatives equal to zero and solving yields
n∑

i=1

αiyi = 0, β∗ =
n∑

i=1

αiyixi, αi = C − ηi. (11.40)

Substituting (11.37) into (11.33) gives the dual functional,

FD(α) =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj(xτ
i xj), (11.41)
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which, remarkably, is the same as (11.18) for the linearly separable case.
From the constraints C−αi− ηi = 0 and ηi ≥ 0, we have that 0 ≤ αi ≤ C.
In addition, we have the Karush–Kuhn–Tucker conditions:

yi(β0 + xτ
i β)− (1− ξi) ≥ 0 (11.42)

ξi ≥ 0, (11.43)
αi ≥ 0, (11.44)
ηi ≥ 0, (11.45)

αi{yi(β0 + xτ
i β)− (1− ξi)} = 0, (11.46)

ξi(αi − C) = 0, (11.47)

for i = 1, 2, . . . , n. From (11.47), a slack variable, ξi, can be nonzero only
if αi = C. The Karush–Kuhn–Tucker complementarity conditions, (11.46)
and (11.47), can be used to find the optimal bias β0.

We can write the dual maximization problem in matrix notation as fol-
lows. Find α to

maximize FD(α) = 1τ
nα− 1

2
ατHα (11.48)

subject to ατy = 0, 0 ≤ α ≤ C1n. (11.49)

The only difference between this optimization problem and that for the
linearly separable case, (11.22) and (11.23), is that, here, the Lagrangian
coefficients αi, i = 1, 2, . . . , n, are each bounded above by C; this upper
bound restricts the influence of each observation in determining the solu-
tion. This type of constraint is referred to as a box constraint because α
is constrained by the box of side C in the positive orthant. From (11.49),
we see that the feasible region for the solution to this convex optimiza-
tion problem is the intersection of the hyperplane ατy = 0 with the box
constraint 0 ≤ α ≤ C1n. If C = ∞, then the problem reduces to the
hard-margin separable case.

If α̂ solves this optimization problem, then,

β̂ =
∑
i∈sv

α̂iyixi (11.50)

yields the optimal weight vector, where the set sv of support vectors con-
tains those observations in L which satisfy the constraint (11.42).

11.3 Nonlinear Support Vector Machines

So far, we have discussed methods for constructing a linear SVM clas-
sifier. But what if a linear classifier is not appropriate for the data set in
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question? Can we extend the idea of linear SVM to the nonlinear case? The
key to constructing a nonlinear SVM is to observe that the observations
in L only enter the dual optimization problem through the inner products
〈xi,xj〉 = xτ

i xj , i, j = 1, 2, . . . , n.

11.3.1 Nonlinear Transformations

Suppose we transform each observation, xi ∈ 
r, in L using some non-
linear mapping Φ : 
r → H, where H is an NH-dimensional feature space.
The nonlinear map Φ is generally called the feature map and the space
H is called the feature space. The space H may be very high-dimensional,
possibly even infinite dimensional. We will generally assume that H is a
Hilbert space of real-valued functions on 
 with inner product 〈·, ·〉 and
norm ‖ · ‖.

Let

Φ(xi) = (φ1(xi), · · · , φNH(xi))τ ∈ H, i = 1, 2, . . . , n. (11.51)

The transformed sample is then {Φ(xi), yi}, where yi ∈ {−1,+1} identifies
the two classes. If we substitute Φ(xi) for xi in the development of the
linear SVM, then data would only enter the optimization problem by way
of the inner products 〈Φ(xi),Φ(xj)〉 = Φ(xi)τΦ(xj). The difficulty in using
nonlinear transformations in this way is computing such inner products in
high-dimensional space H.

11.3.2 The “Kernel Trick”

The idea behind nonlinear SVM is to find an optimal separating hyper-
plane (with or without slack variables, as appropriate) in high-dimensional
feature space H just as we did for the linear SVM in input space. Of
course, we would expect the dimensionality of H to be a huge impediment
to constructing an optimal separating hyperplane (and classification rule)
because of the curse of dimensionality. The fact that this does not become
a problem in practice is due to the “kernel trick,” which was first applied
to SVMs by Cortes and Vapnik (1995).

The so-called kernel trick is a wonderful idea that is widely used in algo-
rithms for computing inner products of the form 〈Φ(xi),Φ(xj)〉 in feature
space H. The trick is that instead of computing these inner products in
H, which would be computationally expensive because of its high dimen-
sionality, we compute them using a nonlinear kernel function, K(xi,xj) =
〈Φ(xi),Φ(xj)〉, in input space, which helps speed up the computations.
Then, we just compute a linear SVM, but where the computations are
carried out in some other space.
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11.3.3 Kernels and Their Properties

A kernel K is a function K : 
r ×
r → 
 such that, for all x,y ∈ 
r,

K(x,y) = 〈Φ(x),Φ(y)〉. (11.52)

The kernel function is designed to compute inner-products in H by using
only the original input data. Thus, wherever we see the inner product
〈Φ(x),Φ(y)〉, we substitute the kernel function K(x,y). The choice of K
implicitly determines both Φ and H. The big advantage to using kernels as
inner products is that if we are given a kernel function K, then we do not
need to know the explicit form of Φ.

We require that the kernel function be symmetric, K(x,y) = K(y,x),
and satisfy an inequality, [K(x,y)]2 ≤ K(x,x)K(y,y). derived from the
Cauchy–Schwarz inequality. If K(x,x) = 1 for all x ∈ 
r, this implies that
‖Φ(x)‖H = 1. A kernel K is said to have the reproducing property if, for
any f ∈ H,

〈f(·),K(x, ·)〉 = f(x). (11.53)

If K has this property, we say it is a reproducing kernel. K is also called
the representer of evaluation. In particular, if f(·) = K(·,x), then,

〈K(x, ·),K(y, ·)〉 = K(x,y). (11.54)

Let x1, . . . ,xn be any set of n points in Rr. Then, the (n × n)-matrix
K = (Kij), where Kij = K(xi,xj), i, j = 1, 2, . . . , n, is called the Gram
(or kernel) matrix of K with respect to x1, . . . ,xn. If the Gram matrix K
satisfies uτKu ≥ 0, for any n-vector u, then it is said to be nonnegative-
definite with nonnegative eigenvalues, in which case we say that K is a
nonnegative-definite kernel1 (or Mercer kernel).

If K is a specific Mercer kernel on Rr ×Rr, we can always construct a
unique Hilbert space HK , say, of real-valued functions for which K is its
reproducing kernel. We call HK a (real) reproducing kernel Hilbert space
(rkhs). We write the inner-product and norm of HK by 〈·, ·〉HK

(or just
〈·, ·〉 when K is understood) and ‖ · ‖HK

, respectively.

11.3.4 Examples of Kernels

An example of a kernel is the inhomogeneous polynomial kernel of de-
gree d,

K(x,y) = (〈x,y〉+ c)d, x,y ∈ 
r, (11.55)

1In the machine-learning literature, nonnegative-definite matrices and kernels are
usually referred to as positive-definite matrices and kernels, respectively.
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TABLE 11.1. Kernel functions, K(x,y), where σ > 0 is a scale parame-
ter, a, b, c ≥ 0, and d is an integer. The Euclidean norm is ‖x‖2 = xτx.

Kernel K(x,y)

Polynomial of degree d (〈x,y〉 + c)d

Gaussian radial basis function exp
{
− ‖x−y‖

2σ2

2
}

Laplacian exp
{
− ‖x−y‖

σ

}

Thin-plate spline
( ‖x−y‖

σ

)2
loge

{ ‖x−y‖
σ

}

Sigmoid tanh(a〈x,y〉 + b)

where c and d are parameters. The homogeneous form of the kernel occurs
when c = 0 in (12.55). If d = 1 and c = 0, the feature map reduces to the
identity. Usually, we take c > 0. A simple nonlinear map is given by the
case r = 2 and d = 2. If x = (x1, x2)τ and y = (y1, y2)τ , then,

K(x,y) = (〈x,y〉+ c)2 = (x1y1 + x2y2 + c)2 = 〈Φ(x),Φ(y)〉,

where Φ(x) = (x2
1, x

2
2,
√

2x1x2,
√

2cx1,
√

2x2, c)τ and similarly for Φ(y).
In this example, the function Φ(x) consists of six features (H = 
6), all
monomials having degree at most 2. For this kernel, we see that c controls
the magnitudes of the constant term and the first-degree term.

In general, there will be dim(H) =
(
r+d

d

)
different features, consisting of

all monomials having degree at most d. The dimensionality ofH can rapidly
become very large: for example, in visual recognition problems, data may
consist of 16× 16 pixel images (so that each image is turned into a vector
of dimension r = 256); if d = 2, then dim(H) = 33, 670, whereas if d = 4,
we have dim(H) = 186, 043, 585.

Other popular kernels, such as the Gaussian radial basis function (RBF),
the Laplacian kernel, the thin-plate spline kernel, and the sigmoid kernel,
are given in Table 11.1. Strictly speaking, the sigmoid kernel is not a kernel
(it satisfies Mercer’s conditions only for certain values of a and b), but it
has become very popular in that role in certain situations (e.g., two-layer
neural networks).

The Gaussian RBF, Laplacian, and thin-plate spline kernels are exam-
ples of translation-invariant (or stationary) kernels having the general form
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K(x,y) = k(x− y), where k : 
r → 
. The polynomial kernel is an exam-
ple of a nonstationary kernel. A stationary kernel K(x,y) is isotropic if it
depends only upon the distance δ = ‖x− y‖, i.e., if K(x,y) = k(δ), scaled
to have k(0) = 1.

It is not always obvious which kernel to choose in any given application.
Prior knowledge or a search through the literature can be helpful. If no such
information is available, the best approach is to try either a Gaussian RBF,
which has only a single parameter (σ) to be determined, or a polynomial
kernel of low degree (d = 1 or 2). If necessary, more complicated kernels
can then be applied to compare results.

String Kernels for Text Categorization

Text categorization is the assignment of natural-language text (or hyper-
text) documents into a given number of predefined categories based upon
the content of those documents (see Section 2.2.1). Although manual cat-
egorization of text documents is currently the norm (e.g., using folders to
save files, e-mail messages, URLs, etc.), some text categorization is auto-
mated (e.g., filters for spam or junk mail to help users cope with the sheer
volume of daily e-mail messages). To reduce costs of text categorization
tasks, we should expect a greater degree of automation to be present in the
future.

In text-categorization problems, string kernels have been proposed based
upon ideas derived from bioinformatics (see, e.g., Lodhi, Saunders,
Shawe-Taylor,Cristianini, and Watkins, 2002).

Let A be a finite alphabet. A “string”

s = s1s2 · · · s|s| (11.56)

is a finite sequence of elements of A, including the empty sequence, where
|s| denotes the length of s. We call u a subsequence of s (written u = s(i))
if there are indices i = (i1, i2, · · · , i|u|), with 1 ≤ i1 < · · · < i|u| ≤ |s|, such
that uj = sij

, j = 1, 2, . . . , |u|. If the indices i are contiguous, we say that
u is a substring of s. The length of u in s is

�(i) = i|u| − i1 + 1, (11.57)

which is the number of elements of s overlaid by the subsequence u. For
example, let s be the string “cat” (s1 = c, s2 = a, s3 = t, |s| = 3), and
consider all possible 2-symbol sequences, “ca,” “ct,” and “at,” derived from
s. For the string u = ca, we have that u1 = c = s1, u2 = a = s2, whence,
u = s(i), where i = (i1, i2) = (1, 2). Thus, �(i) = 2. Similarly, for the
subsequence u = ct, u1 = c = s1, u2 = t = s3, whence, i = (i1, i2) = (1, 3),
and �(i) = 3. Also, the subsequence u = at has u1 = a = s2, u2 = t = s3,
whence, i = (2, 3), and �(i) = 2.



11.3 Nonlinear Support Vector Machines 383

If D = Am is the set of all finite strings of length at most m from A,
then, the feature space for a string kernel is 
D. The feature map Φu,
operating on a string s ∈ Am, is characterized in terms of a given string
u ∈ Am. To deal with noncontiguous subsequences, define λ ∈ (0, 1) as
the drop-off rate (or decay factor); we use λ to weight the interior gaps
in the subsequences. The degree of importance we put into a contiguous
subsequence is reflected in how small we take the value of λ. The value
Φu(s) is computed as follows: identify all subsequences (indexed by i) of
s that are identical to u; for each such subsequence, raise λ to the power
�(i); and then sum the results over all subsequences. Because λ < 1, larger
values of �(i) carry less weight than smaller values of �(i). We write

Φu(s) =
∑

i:u=s(i)

λ�(i), u ∈ Am. (11.58)

In our example above, Φca(cat) = λ2, Φct(cat) = λ3, and Φat(cat) = λ2.
Two documents are considered to be “similar” if they have many sub-

sequences in common: the more subsequences they have in common, the
more similar they are deemed to be. Note that the degree of contiguity
present in a subsequence determines the weight of that substring in the
comparison; the closer the subsequence is to a contiguous substring, the
more it should contribute to the comparison.

Let s and t be two strings. The kernel associated with the feature maps
corresponding to s and t is given by the sum of inner products for all
common substrings of length m,

Km(s, t) =
∑
u∈D
〈Φu(s),Φu(t)〉

=
∑
u∈D

∑
i:u=s(i)

∑
j:u=s(j)

λ�(i)+�(j). (11.59)

The kernel (11.59) is called a string kernel (or a gap-weighted subsequences
kernel). For the example, let t be the string “car” (t1 = c, t2 = a, t3 = r,
|t| = 3). Note that the strings “cat” and “car” are both substrings of
the string “cart.” The three 2-symbol substrings of t are “ca,” “cr,” and
“ar.” For these substrings, we have that Φca(car) = λ2,Φcr(car) = λ3,
and Φar(car) = λ2. The inner product (11.62) is given by K2(cat, car) =
〈Φca(cat),Φca(car)〉 = λ4.

The feature maps in feature space are usually normalized to remove any
bias introduced by document length. This is equivalent to normalizing the
kernel (11.59),

K∗
m(s, t) =

Km(s, t)√
Km(s, s)Km(t, t)

. (11.60)
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For our example, K2(cat, cat) = 〈Φca(cat),Φca(cat)〉+〈Φct(cat),Φct(cat)〉+
〈Φat(cat),Φat(cat)〉 = λ6 + 2λ4, and, similarly, K2(car, car) = λ6 + 2λ4,
whence, K∗

2 (cat, car) = λ4/(λ6 + 2λ4) = 1/(λ2 + 2).
The parameters of the string kernel (11.59) are m and λ. The choices of

m = 5 and λ = 0.5 have been found to perform well on segments of certain
data sets (e.g., on subsets of the Reuters-21578 data) but do not fare as
well when applied to the full data set.

11.3.5 Optimizing in Feature Space

Let K be a kernel. Suppose, first, that the observations in L are linearly
separable in the feature space corresponding to the kernel K. Then, the
dual optimization problem is to find α and β0 to

maximize FD(α) = 1τ
nα− 1

2
ατHα (11.61)

subject to α ≥ 0, ατy = 0, (11.62)

where y = (y1, · · · , yn)τ , H = (Hij), and

Hij = yiyjK(xi,xj) = yiyjKij , i, j = 1, 2, . . . , n. (11.63)

Because K is a kernel, the Gram matrix K = (Kij) is nonnegative-definite,
and so is the matrix H with elements (11.63). Hence, the functional FD(α)
is convex (see Exercise 11.8). So, there is a unique solution to this con-
strained optimization problem. If α̂ and β̂0 solve this problem, then, the
SVM decision rule is sign{f̂(x)}, where

f̂(x) = β̂0 +
∑
i∈sv

α̂iyiK(x,xi) (11.64)

is the optimal separating hyperplane in the feature space corresponding to
the kernel K.

In the nonseparable case, using the kernel K, the dual problem of the
1-norm soft-margin optimization problem is to find α to

maximize F ∗
D(α) = 1τ

nα− 1
2
ατHα (11.65)

subject to 0 ≤ α ≤ C1n, ατy = 0, (11.66)

whereyandHareasabove.Foranoptimalsolution,theKarush–Kuhn–Tucker
conditions, (11.42)–(11.47), must hold for the primal problem. So, a solu-
tion, α, to this problem has to satisfy all those conditions. Fortunately,
it suffices to check a simpler set of conditions: we have to check that α
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satisfies (11.66) and that (11.42) holds for all points where 0 ≤ αi < C and
ξi = 0, and also for all points where αi = C and ξi ≥ 0.

11.3.6 Grid Search for Parameters

We need to determine two parameters when using a Gaussian RBF ker-
nel, namely, the cost, C, of violating the constraints and the kernel para-
meter γ = 1/σ2. The parameter C in the box constraint can be chosen by
searching a wide range of values of C using either CV (usually, 10-fold) on
L or an independent validation set of observations. In practice, it is usual
to start the search by trying several different values of C, such as 10, 100,
1,000, 10,000, and so on. A initial grid of values of γ can be selected by
trying out a crude set of possible values, say, 0.00001, 0.0001, 0.001, 0.01,
0.1, and 1.0.

When there appears to be a minimum CV misclassification rate within
an interval of the two-way grid, we make the grid search finer within that
interval. Armed with a two-way grid of values of (C, γ), we apply CV to
estimate the generalization error for each cell in that grid. The (C, γ) that
has the smallest CV misclassification rate is selected as the solution to the
SVM classification problem.

11.3.7 Example: E-mail or Spam?

This example (spambase) was described in Section 8.4, where we applied
LDA and QDA to a collection of 4,601 messages, comprising 1,813 spam
e-mails and 2,788 non-spam e-mails. There are 57 variables (attributes)
and each message is labeled as one of the two classes email or spam.

Here we apply nonlinear SVM (R package libsvm) using a Gaussian
RBF kernel to the 4,601 messages. The SVM solution depends upon the
cost C of violating the constraints and the variance, σ2, of the Gaussian
RBF kernel. After applying a trial-and-error method, we used the following
grid of values for C amd γ = 1/σ2:

C = 10, 80, 100, 200, 500, 1,000,
γ = 0.00001(0.00001)0.0001(0.0001)0.002(0.001)0.01(0.01)0.04.

In Figure 11.3, we plot the values of the 10-fold CV misclassification rate
against the values of γ listed above, where each curve (connected set of
points) represents a different value of C. For each C, we see that the CV/10
misclassification curves have similar shapes: a minimum value for γ very
close to zero, and for values of γ away from zero, the curve trends upwards.
In this initial search, we find a minimum CV/10 misclassification rate of
8.06% at (C, γ) = (500, 0.0002) and (1,000, 0.0002). We see that the general
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FIGURE 11.3. SVM cross-validation misclassification rate curves for the
spambase data. Initial grid search for the minimum 10-fold CV misclassi-
fication rate using 0.00001 ≤ γ ≤ 0.04. The curves correspond to C = 10
(dark blue), 80 (brown), 100 (green), 200 (orange), 500 (light blue), and
1,000 (red). Within this intial grid search, the minimum CV/10 misclassi-
fication rate is 8.06%, which occurs at (C, γ) = (500, 0.0002) and (1,000,
0.0002).

level of the misclassification rate tends to decrease as C increases and γ
decreases together.

A detailed investigation of C > 1000 and γ close to zero reveals a mini-
mum CV/10 misclassification rate of 6.91% at C = 11, 000 and γ = 0.00001,
corresponding to the following 10 CV estimates of the true classification
rate:

0.9043, 0.9478, 0.9304, 0.9261, 0.9109,
0.9413, 0.9326, 0.9500. 0.9326, 0.9328.

This solution has 931 support vectors (482 e-mails, 449 spam), which means
that a large percentage (79.8%) of the messages (82.7% of the e-mails and
75.2% of the spam) are not support points. Of the 4,601 messages, 2,697
e-mails and 1,676 spam are correctly classified (228 misclassified), yielding
an apparent error rate of 4.96%.

This example turns out to be more computationally intensive than are
the other binary-classification examples discussed in this chapter. Although
the value of γ has very little effect on the speed of computating the 10-fold
CV error rate, the speed of computation does depend upon C: as we in-
crease the value of C, the speed of computation slows down considerably.
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TABLE 11.2. Summary of support vector machine (SVM) application to
data sets for binary classification. Listed are the sample size (n), number of
variables (r), and number of classes (K). Also listed for each data set is the
10-fold cross-validation (CV/10) misclassification rates corresponding to
the best choice of (C, γ) for the SVM. The data sets are listed in increasing
order of LDA misclassification rates (see Table 8.5).

Data Set n r K SVM–CV/10

Breast cancer (logs) 569 30 2 0.0158
Spambase 4601 57 2 0.0691

Ionosphere 351 33 2 0.0427
Sonar 208 60 2 0.1010

BUPA liver disorders 345 6 2 0.2522

Also worth noting is that for fixed γ, increasing C reduces the number of
support vectors and the apparent error rate. We cannot make similar gen-
eral statements about fixed C and increasing γ; however, for fixed C, we
generally see that the number of support vectors tends to increase (but not
always) with increasing γ.

The nonlinear SVM is clearly a better classifier for this example than
is LDA or QDA, whose leave-one-out CV misclassification rate is around
11% for LDA and 17% for QDA, but the amount of computational work
involved in the grid search for the SVM solution is much greater and, hence,
a lot more expensive.

11.3.8 Binary Classification Examples

We apply the SVM algorithm to the binary classification examples of
Section 8.4: the log-transformed breast cancer data, the ionosphere data,
the BUPA liver disorders data, the sonar data, and the spambase data.
Except for spambase, computations for these examples were very fast.

In Table 11.2, we list the minimum 10-fold CV misclassification rate for
each data set. Comparing these results to those of LDA (see Table 8.5,
where we used leave-one-out CV), we see that SVM produces remarkable
decreases in misclassification rates: the breast cancer rate decreased from
11.3% to 1.58%, the spambase rate decreased from 11.3% to 6.91%, the
ionosphere rate decreased from 13.7% to 4.27%, the sonar rate decreased
from 24.5% to 10.1%, and the BUPA liver disorders rate decreased from
30.1% to 25.22%.

11.3.9 SVM as a Regularization Method

The SVM classifier can also be regarded as the solution to a particular
regularization problem. Let f ∈ HK , the reproducing kernel Hilbert space
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FIGURE 11.4. Hinge loss function (1−yf(x))+ for y = −1 and y = +1.

(rkhs) associated with the kernel K, with ‖ f ‖HK

2 the squared-norm of f
in HK .

Consider the classification error, yi − f(xi), where yi ∈ {−1,+1}. Then,

|yi − f(xi)| = |yi(1− yif(xi))| = |1− yif(xi)| = (1− yif(xi))+, (11.67)

i = 1, 2, . . . , n, where (x)+ = max{x, 0}. The quantity (1 − yif(xi))+,
which could be zero if all xi are correctly classified, is called the hinge loss
function and is displayed in Figure 11.4. The hinge loss plays a vital role
in SVM methodology; indeed, it has been shown to be Bayes consistent
for classification in the sense that minimizing the loss function yields the
Bayes rule (Lin, 2002). The hinge loss is also related to the misclassification
loss function I[yiC(xi)≤0] = I[yif(xi)≤0]. When f(xi) = ±1, the hinge loss
is twice the misclassification loss; otherwise, the ratio of the two losses
depends upon the sign of yif(xi).

We wish to find a function f ∈ HK to minimize a penalized version of
the hinge loss. Specifically, we wish to find f ∈ HK to

minimize
1
n

n∑
i=1

(1− yif(xi))+ + λ‖ f ‖HK

2
, (11.68)

where λ > 0. In (11.69), the first term, n−1
∑n

i=1(1− yif(xi))+, measures
the distance of the data from separability, and the second term, λ ‖ f ‖2HK

,
penalizes overfitting. The tuning parameter λ balances the trade-off be-
tween estimating f (the first term) and how well f can be approximated
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(the second term). After the minimizing f has been found, the SVM clas-
sifier is C(x) = sign{f(x)}, x ∈ Rr.

The optimizing criterion (11.68) is nondifferentiable due to the shape
of the hinge-loss function. Fortunately, we can rewrite the problem in a
slightly different form and thereby solve it.

We start from the fact that every f ∈ H can be written uniquely as the
sum of two terms:

f(·) = f‖(·) + f⊥(·) =
n∑

i=1

αiK(xi, ·) + f⊥(·), (11.69)

where f‖ ∈ HK is the projection of f onto the subspace HK of H and
f⊥ is in the subspace perpendicular to HK ; that is, 〈f⊥(·),K(xi, ·)〉H = 0,
i = 1, 2, . . . , n. We can write f(xi) via the reproducing property as follows:

f(xi) = 〈f(·),K(xi, ·)〉 = 〈f‖(·),K(xi, ·)〉+ 〈f⊥(·),K(xi, ·)〉. (11.70)

Because the second term on the rhs is zero, then,

f(x) =
n∑

i=1

αiK(xi,x), (11.71)

independent of f⊥, where we used (11.69) and 〈K(xi, ·),K(xj , ·)〉HK
=

K(xi,xj). Now, from (11.69),

‖ f ‖2HK
= ‖

∑
i

αiK(xi, ·) + f⊥ ‖2HK

= ‖
∑

i

αiK(xi, ·) ‖2HK
+ ‖ f⊥ ‖2HK

≥ ‖
∑

i

αiK(xi, ·) ‖2HK
, (11.72)

with equality iff f⊥ = 0, in which case any f ∈ HK that minimizes (11.68)
admits a representation of the form (11.71). This important result is known
as the representer theorem (Kimeldorf and Wahba, 1971); it says that the
minimizing f (which would live in an infinite-dimensional rkhs if, for exam-
ple, the kernel is a Gaussian RBF) can be written as a linear combination
of a reproducing kernel evaluated at each of the n data points.

From (11.72), we have that ‖ f ‖2HK
=

∑
i

∑
j αiαjK(xi,xj) =‖ β ‖2,

where β =
∑n

i=1 αiΦ(xi). If the space HK consists of linear functions of
the form f(x) = β0 + Φ(x)τβ with ‖ f ‖2HK

=‖ β ‖2, then the problem of
finding f in (11.68) is equivalent to one of finding β0 and β to

minimize
1
n

n∑
i=1

(1− yi(β0 + Φ(xi)τβ))+ + λ ‖ β ‖2 . (11.73)
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Then, (11.68), which is nondifferentiable due to the hinge loss function, can
be reformulated in terms of solving the 1-norm soft-margin optimization
problem (11.34)–(11.35).

11.4 Multiclass Support Vector Machines

Often, data are derived from more than two classes. In the multiclass
situation, X ∈ 
r is a random r-vector chosen for classification purposes
and Y ∈ {1, 2, . . . ,K} is a class label, where K is the number of classes.
Because SVM classifiers are formulated for only two classes, we need to
know if (and how) the SVM methodology can be extended to distinguish
between K > 2 classes. There have been several attempts to define such a
multiclass SVM strategy.

11.4.1 Multiclass SVM as a Series of Binary Problems

The standard SVM strategy for a multiclass classification problem (over
K classes) has been to reduce it to a series of binary problems. There are
different approachs to this strategy:

One-versus-rest: Divide the K-class problem into K binary classifica-
tion subproblems of the type “kth class” vs. “not kth class,” k =
1, 2, . . . ,K. Corresponding to the kth subproblem, a classifier f̂k is
constructed in which the kth class is coded as positive and the union
of the other classes is coded as negative. A new x is then assigned to
the class with the largest value of f̂k(x), k = 1, 2, . . . , K, where f̂k(x)
is the optimal SVM solution for the binary problem of the kth class
versus the rest.

One-versus-one: Divide the K-class problem into
(
K
2

)
comparisons of all

pairs of classes. A classifier f̂jk is constructed by coding the jth class
as positive and the kth class as negative, j, k = 1, 2, . . . ,K, j �= k.
Then, for a new x, aggregate the votes for each class and assign x to
the class having the most votes.

Even though these strategies are widely used in practice to resolve mul-
ticlass SVM classification problems, one has to be cautious about their
use.

In Table 11.3, we report the CV/10 misclassification rates for one-versus-
one multiclass SVM applied to the same data sets from Section 8.7. Also
listed in Table 11.3 are the values of (C, γ) that yield the minimum mis-
classification rate for each data set. It is instructive to compare these rates
with those in Table 8.7, where we used LDA and QDA. We see that for
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TABLE 11.3. Summary of support vector machine (SVM) “one-versus-
one” classification results for data sets with more than two classes. Listed
are the sample size (n), number of variables (r), and number of classes
(K). Also listed for each data set is the 10-fold cross-validation (CV/10)
misclassification rates corresponding to the best choice of (C, γ). The data
sets are listed in increasing order of LDA misclassification rates (Table
8.7).

Data Set n r K SVM–CV/10 C γ

Wine 178 13 3 0.0169 106 8×10−8

Iris 150 4 3 0.0200 100 0.002
Primate scapulae 105 7 5 0.0286 100 0.0002

Shuttle 43,500 8 7 0.0019 10 0.0001
Diabetes 145 5 3 0.0414 100 0.000009
Pendigits 10,992 16 10 0.0031 10 0.0001

E-coli 336 7 8 0.1280 10 1.0
Vehicle 846 18 4 0.1501 600 0.00005

Letter recognition 20,000 16 26 0.0183 50 0.04
Glass 214 9 6 0.0093 10 0.001
Yeast 1,484 8 10 0.3935 10 7.0

the shuttle, diabetes, pendigits, vehicle, letter recognition, glass, and yeast
data sets, the SVM method performs better than does the LDA method;
for the iris, primate scapulae, and e-coli data sets, the SVM and LDA meth-
ods perform about the same; and LDA performs better than does SVM for
the wine data set. Thus, neither one-versus-one SVM nor LDA performs
uniformly best for all of these data sets.

The one-versus-rest approach is popular for carrying out text catego-
rization tasks, where each document may belong to more than one class.
Although it enjoys the optimality property of the SVM method for each
binary subproblem, it can yield a different classifier than the Bayes opti-
mal classifier for the multiclass case. Furthermore, the classification success
of the one-versus-rest approach depends upon the extent of the class-size
imbalance of each subproblem and whether one class dominates all other
classes when determining the most-probable class for each new x.

The one-versus-one approach, which uses only those observations be-
longing to the classes involved in each pairwise comparison, suffers from
the problem of having to use smaller samples to train each classifier, which
may, in turn, increase the variance of the solution.

11.4.2 A True Multiclass SVM

To construct a true multiclass SVM classifier, we need to consider all K
classes, Π1,Π2, . . . ,ΠK , simultaneously, and the classifier has to reduce to



392 11. Support Vector Machines

the binary SVM classifier if K = 2. Here we describe the construction due
to Lee, Lin, and Wahba (2004).

Let v1, . . . ,vK be a sequence of K-vectors, where vk has a 1 in the kth
position and whose elements sum to zero, k = 1, 2, . . . ,K; that is, let

v1 =
(

1,− 1
K − 1

, · · · ,− 1
K − 1

)τ

v2 =
(
− 1

K − 1
, 1, · · · .− 1

K − 1

)τ

...

vK =
(
− 1

K − 1
,− 1

K − 1
, · · · , 1

)τ

.

Note that if K = 2, then v1 = (1,−1)τ and v2 = (−1, 1)τ . Every xi can be
labeled as one of these K vectors; that is, xi has label yi = vk if xi ∈ Πk,
i = 1, 2, . . . , n, k = 1, 2, . . . ,K.

Next, we generalize the separating function f(x) to a K-vector of sepa-
rating functions,

f(x) = (f1(x), · · · , fK(x))τ , (11.74)

where

fk(x) = β0k + hk(x), hk ∈ HK , k = 1, 2, . . . , K. (11.75)

In (11.75), HK is a reproducing-kernel Hilbert space (rkhs) spanned by the
{K(xi, ·), i = 1, 2, . . . , n}. For example, in the linear case, hk(x) = xτβk,
for some vector of coefficients βk. We also assume, for uniqueness, that

K∑
k=1

fk(x) = 0. (11.76)

Let L(yi) be a K-vector with 0 in the kth position if xi ∈ Πk, and 1 in all
other positions; this vector represents the equal costs of misclassifying xi

(and allows for an unequal misclassification cost structure if appropriate).
If K = 2 and xi ∈ Π1, then L(yi) = (0, 1)τ , while if xi ∈ Π2, then
L(yi) = (1, 0)τ .

The multiclass generalization of the optimization problem (11.68) is,
therefore, to find functions f(x) = (f1(x), · · · , fK(x))τ satisfying (11.76)
which

minimize Iλ(f ,Y) =
1
n

n∑
i=1

[L(yi)]τ (f(xi)−yi)++
λ

2

K∑
k=1

‖ hk ‖2, (11.77)

where (f(xi) − yi)+ = ((f1(xi) − yi1)+, · · · , (fK(xi) − yiK)+)τ and Y =
(y1, · · · ,yn) is a (K × n)-matrix.
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By setting K = 2, we can see that (11.77) is a generalization of (11.68).
If xi ∈ Π1, then yi = v1 = (1,−1)τ , and

[L(yi)]τ (f(xi)− yi)+ = (0, 1)((f1(xi)− 1)+, (f2(xi) + 1)+)τ

= (f2(xi) + 1)+
= (1− f1(xi))+, (11.78)

while if xi ∈ Π2, then yi = v2 = (−1, 1), and

[L(yi)]τ (f(xi)− yi)+ = (f1(xi) + 1)+. (11.79)

So, the first term (with f) in (11.68) is identical to the first term (with f1)
in (11.77) when K = 2. If we set K = 2 in the second term of (11.77), we
have that

2∑
k=1

‖ hk ‖2=‖ h1 ‖2 + ‖ −h1 ‖2= 2 ‖ h1 ‖2, (11.80)

so that the second terms of (11.68) and (11.77) are identical.
The function hk ∈ HK can be decomposed into two parts:

hk(·) =
n∑

�=1

β�kK(x�, ·) + h⊥
k (·), (11.81)

where the {β�k} are constants and h⊥
k (·) is an element in the rkhs or-

thogonal to HK . Substituting (11.76) into (11.77), then using (11.81), and
rearranging terms, we have that

fK(·) = −
K−1∑
k=1

β0k −
K−1∑
k=1

n∑
i=1

βikK(xi, ·)−
K−1∑
k=1

h⊥
k (·). (11.82)

Because K(·, ·) is a reproducing kernel,

〈hk,K(xi, ·)〉 = hk(xi), i = 1, 2, . . . , n, (11.83)

and so,

fk(xi) = β0k + hk(xi)
= β0k + 〈hk,K(xi, ·)〉

= β0k + 〈
n∑

�=1

β�kK(x�, ·) + h⊥
k (·),K(xi, ·)〉

= β0k +
n∑

�=1

β�kK(x�,xi). (11.84)
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Note that, for k = 1, 2, . . . ,K − 1,

‖ hk(·) ‖2 = ‖
n∑

�=1

β�kK(x�, ·) + h⊥
k (·) ‖2

=
n∑

�=1

n∑
i=1

β�kβikK(x�,xi)+ ‖ h⊥
k (·) ‖2, (11.85)

and, for k = K,

‖ hK(·) ‖2=‖
K−1∑
k=1

n∑
i=1

βikK(xi, ·) ‖2 + ‖
K−1∑
k=1

h⊥
k (·) ‖2 . (11.86)

Thus, to minimize (11.86), we set h⊥
k (·) = 0 for all k.

From (11.84), the zero-sum constraint (11.76) becomes

β̄0 +
n∑

�=1

β̄�K(x�, ·) = 0, (11.87)

where β̄0 = K−1
∑K

k=1 β0k and β̄i = K−1
∑K

k=1 βik. At the n data points,
{xi, i = 1, 2, . . . , n}, (11.87) in matrix notation is given by

(
K∑

k=1

β0k

)
1n + K

(
K∑

k=1

β·k

)
= 0, (11.88)

where K = (K(xi,xj)) is an (n×n) Gram matrix and β·k = (β1k, · · · , βnk)τ .
Let β∗

0k = β0k − β̄0 and β∗
ik = βik − β̄i. Using (11.87), we see that the cen-

tered version of (11.84) is f∗
k (xi) = β∗

0k +
∑n

�=1 β∗
�kK(x�,xi) = fk(xi).

Then,

K∑
k=1

‖ h∗
k(·) ‖2=

K∑
k=1

βτ
·kKβ·k −Kβ̄

τKβ̄ ≤
K∑

k=1

βτ
·kKβ·k =

K∑
k=1

‖ hk(·) ‖2,

(11.89)
where β̄ = (β̄1, · · · , β̄n)τ ; if Kβ̄ = 0, the inequality becomes an equality
and so

∑K
k=1 β0k = 0. Thus,

0 = K2β̄
τKβ̄ =‖

n∑
i=1

(
K∑

k=1

βik)K(xi, ·) ‖2=‖
K∑

k=1

n∑
i=1

βikK(xi, ·) ‖2,

(11.90)
whence,

∑K
k=1

∑n
i=1 βikK(xi,x) = 0, for all x. Thus,

K∑
k=1

{
β0k +

n∑
i=1

βikK(xi,x)

}
= 0, (11.91)



11.4 Multiclass Support Vector Machines 395

for every x. So, minimizing (11.77) under the zero-sum constraint (11.76)
only at the n data points is equivalent to minimizing (11.77) under the
same constraint for every x.

We next construct a Lagrangian formulation of the optimization problem
(11.77) using the following notation. Let ξi = (ξi1, · · · , ξiK)τ be a K-vector
of slack variables corresponding to (f(xi) − yi)+, i = 1, 2, . . . , n, and let
(ξ·1, · · · , ξ·K) = (ξ1, · · · , ξn)τ be the (n × K)-matrix whose kth column
is ξ·k and whose ith row is ξi. Let (L1, · · · ,LK) = (L(y1), · · · ,L(yn))τ

be the (n × K)-matrix whose kth column is Lk and whose ith row is
L(yi) = (Li1, · · · , LiK). Let (y·1, · · · ,y·K) = (y1, · · · ,yn)τ denote the
(n×K)-matrix whose kth column is y·k and whose ith row is yi.

The primal problem is to find {β0k}, {β·k}, and {ξ·k} to

minimize

K∑
k=1

Lτ
kξ·k +

nλ

2

K∑
k=1

βτ
·kKβ·k (11.92)

subject to

β0k1n + Kβ·k − y·k ≤ ξ·k, k = 1, 2, . . . ,K, (11.93)
ξ·k ≥ 0, k = 1, 2, . . . , K, (11.94)

(
K∑

k=1

β0k)1n + K(
K∑

k=1

β·k) = 0. (11.95)

Form the primal functional FP = FP ({β0k}, {β·k}, {ξ·k}), where

FP =
K∑

k=1

Lτ
kξ·k +

nλ

2

K∑
k=1

βτ
·kKβ·k

+
K∑

k=1

ατ
·k(β0k1n + Kβ·k − y·k − ξ·k)

−
K∑

k=1

γτ
kξ·k + δτ

(
(

K∑
k=1

β0k)1n + K(
K∑

k=1

β·k)

)
. (11.96)

In (11.96), α·k = (α1k, · · · , αnk)τ and γk are n-vectors of nonnegative
Lagrange multipliers for the inequality constraints (11.93) and (11.94), re-
spectively, and δ is an n-vector of unconstrained Lagrange multipliers for
the equality constraint (11.95).

Differentiating (11.96) with respect to β0k, β·k, and ξ·k yields

∂FP

∂β0k
= (α·k + δ)τ1n, (11.97)

∂FP

∂β·k
= nλKβ·k + Kα·k + Kδ, (11.98)
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∂FP

∂ξ·k
= Lk −α·k − γk, (11.99)

α·k ≥ 0, (11.100)
γk ≥ 0. (11.101)

The Karush–Kuhn–Tucker complementarity conditions are

α·k(β0k1n + Kβ·k − y·k − ξ·k)τ = 0, k = 1, 2, . . . , K, (11.102)
γkξτ

·k = 0, k = 1, 2, . . . , K, (11.103)

where, from (11.99), γk = Lk − α·k. Note that (11.102) and (11.103) are
outer products of two column vectors, meaning that each of the n2 elemen-
twise products of those vectors are zero.

From (11.99) and (11.101), we have that 0 ≤ α·k ≤ Lk, k = 1.2. . . . ,K.
Suppose, for some i, 0 < αik < Lik; then, γik > 0, and, from (11.103),
ξik = 0, whence, from (11.102), yik = β0k +

∑n
�=1 β�kK(x�,xi).

Setting the derivatives equal to zero for k = 1, 2, . . . ,K yields δ = −ᾱ =
−K−1

∑K
k=1 α·k from (11.97), whence, (α·k−ᾱ)τ1n = 0, and, from (11.98),

β·k = −(nλ)−1(α·k − ᾱ), assuming that K is positive-definite. If K is not
positive-definite, then β·k is not uniquely determined. Because (11.97),
(11.98), and (11.99) are each zero, we construct the dual functional FD by
using them to remove a number of the terms of FP .

The resulting dual problem is to find {α·k} to

minimize FD =
1
2

K∑
k=1

(α·k − ᾱ)τK(α·k − ᾱ) + nλ
K∑

k=1

ατ
·ky·k (11.104)

subject to 0 ≤ α·k ≤ Lk, k = 1, 2, . . . ,K, (11.105)
(α·k − ᾱ)τ1n = 0, k = 1, 2, . . . ,K. (11.106)

From the solution, {α̂·k}, to this quadratic programming problem, we set

β̂·k = −(nλ)−1(α̂·k − ̂̄α), (11.107)

where ̂̄α = K−1
∑K

k=1 α̂·k.
The multiclass classification solution for a new x is given by

Ck(x) = arg max
k
{f̂k(x)}, (11.108)

where

f̂k(x) = β̂0k +
n∑

�=1

β̂�kK(x�,x), k = 1, 2, . . . ,K. (11.109)
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Suppose the row vector α̂i = (α̂i1, · · · , α̂iK) = 0 for (xi,yi); then, from
(11.107), β̂i = (β̂i1, · · · , β̂iK) = 0. It follows that the term β̂ikK(xi,x) = 0,
k = 1, 2, . . . ,K. Thus, any term involving (xi,yi) does not appear in
(11.109); in other words, it does not matter whether (xi,yi) is or is not
included in the learning set L because it has no effect on the solution. This
result leads us to a definition of support vectors: an observation (xi,yi) is
called a support vector if β̂i = (β̂i1, · · · , β̂iK) �= 0. As in the binary SVM
solution, it is in our computational best interests for there to be relatively
few support vectors for any given application.

The one issue remaining is the choice of tuning parameter λ (and any
other parameters involved in the computation of the kernel). A generalized
approximate cross-validation (GACV) method is derived in Lee, Lin, and
Wahba (2004) based upon an approximation to the leave-one-out cross-
validation technique used for penalized-likelihood methods. The basic idea
behind GACV is the following. Write (11.77) as

Iλ(f ,Y) = n−1
n∑

i=1

g(yi, f(xi)) + Jλ(f), (11.110)

where g(yi, f(xi)) = [L(yi)]τ (f(xi)−yi)+ and Jλ(f) = (λ/2)
∑n

i=1 ‖ hj ‖2.
Let fλ = arg minf Iλ(f ,Y) and let f (−i)

λ denote that fλ that yields the
minimum of Iλ(f ,Y) by omitting the ith observation (xi,yi) from the first
term in (11.110). If we write

g(yi, f
(−i)
λ (xi)) = g(yi, fλ(xi)) + [g(yi, f

(−i)
λ (xi))− g(yi, fλ(xi))], (11.111)

then the λ that minimizes n−1
∑n

i=1 g(yi, f
(−i)
λ (xi)) is found by using a

suitable approximation of D(λ) = n−1
∑n

i=1[g(yi, f
(−i)
λ (xi))−g(yi, fλ(xi))],

computed over a grid of values of λ.
This solution of the multiclass SVM problem has been found to be suc-

cessful in simulations and in analyzing real data. Comparisons of various
multiclass classification methods, such as multiclass SVM, “all-versus-rest,”
LDA, and QDA, over a number of data sets show that no one classifica-
tion method appears to be superior for all situations studied; performance
appears to depend upon the idiosyncracies of the data to be analyzed.

11.5 Support Vector Regression

The SVM was designed for classification. Can we extend (or generalize)
the idea to regression? How would the main concepts used in SVM — con-
vex optimization, optimal separating hyperplane, support vectors, margin,
sparseness of the solution, slack variables, and the use of kernels — trans-
late to the regression situation? It turns out that all of these concepts find
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their analogues in regression analysis and they add a different view to the
topic than the views we saw in Chapter 5.

11.5.1 ε-Insensitive Loss Functions

In SVM classification, the margin is used to determine the amount of
separation between two nonoverlapping classes of points: the bigger the
margin, the more confident we are that the optimal separating hyperplane is
a superior classifier. In regression, we are not interested in separating points
but in providing a function of the input vectors that would track the points
closely. Thus, a regression analogue for the margin would entail forming a
“band” or “tube” around the true regression function that contains most
of the points. Points not contained within the tube would be described
through slack variables. In formulating these ideas, we first need to define
an appropriate loss function.

We define a loss function that ignores errors associated with points falling
within a certain distance (e.g., ε > 0) of the true linear regression function,

µ(x) = β0 + xτβ. (11.112)

In other words, if the point (x, y) is such that |y − µ(x)| ≤ ε, then the loss
is taken to be zero; if, on the other hand, |y − µ(x)| > ε, then we take the
loss to be |y − µ(x)| − ε.

With this strategy in mind, we can define the following two types of loss
function:
• Lε

1(y, µ(x)) = max{0, |y − µ(x)| − ε},

• Lε
2(y, µ(x)) = max{0, (y − µ(x))2 − ε}.

The first loss function, Lε
1, is called the linear ε-insensitive loss function,

and the second, Lε
2, is the quadratic ε-insensitive loss function. The two

loss functions, linear (red curve) and quadratic (blue curve), are graphed
in Figure 11.5. We see that the linear loss function ignores all errors falling
within ±ε of the true regression function µ(x) while dampening in a linear
fashion errors that fall outside those limits.

11.5.2 Optimization for Linear ε-Insensitive Loss

We define slack variables ξi and ξ′j in the following way. If the point
(xi, yi) lies above the ε-tube, then ξ′i = yi − µ(xi) − ε ≥ 0, whereas if the
point (xj , yj) lies below the ε-tube, then ξj = µ(xj) − ε − yj ≥ 0. For
points that fall outside the ε-tube, the values of the slack variables depend



11.5 Support Vector Regression 399

u

E
ps

ilo
n-

In
se

ns
iti

ve
 L

os
s 

F
un

ct
io

n

Quadratic

Linear

FIGURE 11.5. The linear ε-insensitive loss function (red curve) and the
quadratic ε-insensitive loss function (blue curve) for support vector regres-
sion. Plotted are Li(u) = max{0, |u|i−ε} vs. u, i = 1, 2, where u = y−µ(x).
For the linear loss function, the “flat” part of the curve has width 2ε.

upon the shape of the loss function; for points inside the ε-tube, the slack
variables have value zero.

For linear ε-insensitive loss, the primal optimization problem is to find
β0, β, ξ′ = (ξ′1, · · · , ξ′n)τ , and ξ = (ξ1, · · · , ξn)τ to

minimize
1
2
‖ β ‖2 +C

n∑
i=1

(ξi + ξ′i) (11.113)

subject to yi − (β0 + xτ
i β) ≤ ε + ξ′i,

(β0 + xτ
i β)− yi ≤ ε + ξi, (11.114)

ξ′i ≥ 0, ξi ≥ 0, i = 1, 2, . . . , n.

The constant C > 0 exists to balance the flatness of the function µ against
our tolerance of deviations larger than ε. Notice that because ε is found
only in the constraints, the solution to this optimization problem has to
incorporate a band around the regression function.

Form the primal Lagrangian,

FP =
1
2
‖ β ‖2 +C

n∑
i=1

(ξi + ξ′i)−
∑

i

ai{yi − (β0 + xτ
i β)− ε− ξ′i}

−
∑

i

bi{(β0 + xτ
i β)− yi − ε− ξi}

−
∑

i

ciξ
′
i −

∑
i

diξi, (11.115)
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where ai, bi, ci, and di, i = 1, 2, . . . , n, are the Lagrange multipliers. This,
in turn, implies that ai, bi, ci, di, i = 1, 2, . . . , n, are all nonnegative. The
derivatives are

∂FP

∂β0
=

∑
i

ai −
∑

i

bi (11.116)

∂FP

∂β
= β +

∑
i

aixi −
∑

i

bixi (11.117)

∂FP

∂ξi
= C + bi − di (11.118)

∂FP

∂ξ′i
= C + ai − ci (11.119)

Setting these derivatives equal to zero for a stationary solution yields:

β∗ =
∑

i

(bi − ai)xi, (11.120)

∑
i

(bi − ai) = 0, (11.121)

C + bi − di = 0, C + ai − ci = 0, i = 1, 2, . . . , n. (11.122)

The expression (11.120) is known as the support vector expansion because
β∗ can be written as a linear combination of the input vectors {xi}. Setting
β = β∗ in the true regression equation (11.112) gives us

µ∗(x) = β0 +
n∑

i=1

(bi − ai)(xτxi). (11.123)

Substituting β∗ into the primal Lagrangian and using (11.120) and (11.121)
gives us the dual problem: find a = (a1, · · · , an)τ , b = (b1, · · · , bn)τ to

maximize FD = (b− a)τy − ε(b + a)τ1n

− 1
2
(b− a)τK(b− a) (11.124)

subject to 0 ≤ a,b ≤ C1n, (b− a)τ1n = 0, (11.125)

where K = (〈xi,xj〉) for linear SVM. The Karush–Kuhn–Tucker comple-
mentarity conditions state that the products of the dual variables and the
constraints are all zero:

ai(β0 + xτ
i β − yi − ε− ξi) = 0, i = 1, 2, . . . , n, (11.126)

bi(yi − β0 − xτ
i β − ε− ξ′i) = 0, i = 1, 2, . . . , n, (11.127)

ξiξ
′
i = 0, aibi = 0, i = 1, 2, . . . , n, (11.128)

(ai − C)ξi = 0, (bi − C)ξ′i = 0, i = 1, 2, . . . , n. (11.129)
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In practice, the value of ε is usually taken to be around 0.1.
The solution to this optimization problem produces a linear function of

x accompanied by a band or tube of ±ε around the function. Points that
do not fall inside the tube are the support vectors.

11.5.3 Extensions

The optimization problem using quadratic ε-insensitive loss can be solved
in a similar manner; see Exercise 11.3.

If we formulate this problem using nonlinear transformations of the input
vectors, x → Φ(x), to a feature space defined by the kernel K(x,y), then
the stationary solution (11.120) is replaced by

β∗ =
n∑

i=1

(bi − ai)Φ(xi), (11.130)

the inner product 〈xi,xj〉 = xτ
i xj in (11.120) is replaced by the more

general kernel function,

K(xi,xj) = 〈Φ(xi),Φ(xj)〉 = Φ(xi)τΦ(xj), (11.131)

the matrix K = (K(xi,xj)) replaces the matrix K in (11.124), and the
SVM regression function (11.122) becomes

µ∗(x) = β0 +
n∑

i=1

(bi − ai)K(x,xi); (11.132)

see Exercise 11.4. Note that β∗ in (11.130) does not have an explicit rep-
resentation as it has in (11.120).

11.6 Optimization Algorithms for SVMs

When a data set is small, general-purpose linear programming (LP) or
quadratic programming (QP) optimizers work quite well to solve SVM
problems; QP optimizers can solve problems having about a thousand
points, whereas LP optimizers can deal with hundreds of thousands of
points. With large data sets, however, a more sophisticated approach is
required.

The main problem when computing SVMs for very large data sets is
that storing the entire kernel in main memory dramatically slows down
computation. Alternative algorithms, constructed for the specific task of
overcoming such computational inefficiencies, are now available in certain
SVM software.
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We give only brief descriptions of some of these algorithms. The simplest
procedure for solving a convex optimization problem is that of gradient
ascent:

Gradient Ascent: Start with an initial estimate of the α-coefficient vec-
tor and then successively update α one α-coefficient at a time using
the steepest ascent algorithm.

A problem with this approach is that the solution for α = (α1, · · · , αn)τ

has to satisfy the linear constraint ατy =
∑n

i=1 αiyi = 0. Carrying out a
non-trivial one-at-a-time update of each α-component (while holding the
remaining αs constant at their current values) will violate this constraint,
and the solution at each iteration will fall outside the feasible region. The
minimum number of αs that can be changed at each iteration is two.

More complicated (but also more efficient) numerical techniques for large
learning data sets are now available in many SVM software packages. Ex-
amples of such advanced techniques include “chunking,” decomposition,
and sequential minimal optimization. Each method builds upon certain
common elements: (1) choose a subset of the learning set L, (2) monitor
closely the KKT optimality conditions to discover which points not in the
subset violate the conditions, and (3) apply a suitable optimizing strategy.
These strategies are

Chunking: Start with an arbitrary subset (called the “working set” or
“chunk”) of size 100–500 of the learning set L; use a general LP or
QP optimizer to train an SVM on that subset and keep only the
support vectors; apply the resulting classifier to all the remaining
data in L and sort the misclassified points by how badly they violate
the KKT conditions; add to the support vectors found previously a
predetermined number of those points that most violate the KKT
conditions; iterate until all points satisfy the KKT conditions. The
general optimizer and the point selection process make this algorithm
slow and inefficient.

Decomposition: Similar to chunking, except that at each iteration, the
size of the subset is always the same; adding new points to the subset
means that an equal number of old points must be removed.

Sequential Minimal Optimization (SMO): An extreme version of the
decomposition algorithm, whereby the subset consists of only two
points at each iteration (see above comments related to the gradient
ascent algorithm). These two αs are found at each iteration by using
a heuristic argument and then updated so that the constraint ατy =∑n

i=1 αiyi = 0 is satisfied and the solution is found within the feasible
region.
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TABLE 11.4. Some implementations of SVM.

Package Implementation

SVMlight http://svmlight.joachims.org/

LIBSVM http://csie.ntu.edu.tw/~cjlin/libsvm/

SVMTorch II http://www.idiap.ch/machine-learning.php

SVMsequel http://www.isi.edu/~hdaume/SVMsequel/

TinySVM http://chasen.org/~taku/TinySVM/

A big advantage of SMO (Platt, 1999) is that the algorithm has an ana-
lytical solution and so does not need to refer to a general QP optimizer; it
also does not need to store the entire kernel matrix in memory. Although
more iterations are needed, SMO is much faster than the other algorithms.
The SMO algorithm has been improved in many ways for use with massive
data sets.

11.7 Software Packages

There are several software packages for computing SVMs. Many are avail-
able for downloading over the Internet. See Table 11.4 for a partial list. Most
of these SVM packages use similar data-input formats and command lines.

The most popular SVM package is SVMlight by Thorsten Joachims; it is
very fast and can carry out classification and regression using a variety of
kernels and is used for text classification. It is often used as the basis for
other SVM software packages.

The C++–based package LIBSVM by C.-C. Chang and C.-J. Lin, which
carries out classification and regression, is based upon SMO and SVMlight,
and has interfaces to MATLAB, python, perl, ruby, S-Plus (function svm
in library libsvm), and R (function svm in library e1071); see Venables
and Ripley (2002, pp. 344–346). SVMTorch II is an extremely fast C++
program for classification and regression that can handle more than 20,000
observations and more than 100 input variables. SVMsequel is a very fast
program that handles classification problems, a variety of kernels (including
string kernels), and enormous data sets. TinySVM, which supports C++,
perl, ruby, python, and Java interfaces, is based upon SVMlight, carries out
classification and regression, and can deal with very large data sets.
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Bibliographical Notes

There are several excellent references on support vector machines. Our
primary references include the books by Vapnik (1998, 2000), Cristianini
and Shawe-Taylor (2000), Shawe-Taylor and Cristianini (2004, Chapter 7),
Schölkopf and Smola (2002), and Hastie, Tibshirani, and Friedman (2001,
Section 4.5 and Chapter 12) and the review articles by Burges (1998),
Schölkopf and Smola (2003), and Moguerza and Munoz (2006). An excellent
book on convex optimization is Boyd and Vandenberghe (2004).

Most of the theoretical work on kernel functions goes back to about
the beginning of the 1900s. The idea of using kernel functions as inner
products was introduced into machine learning by Aizerman, Braverman,
and Rozoener (1964). Kernels were then put to work in SVM methodology
by Boser, Guyon, and Vapnik (1992), who borrowed the “kernel” name
from the theory of integral operators.

Our description of string kernels for text categorization is based upon
Lodhi, Saunders, Shawe-Taylor, Cristianini, and Watkins (2002). See also
Shawe-Taylor and Cristianini (2004, Chapter 11). For applications of SVM
to text categorization, see the book by Joachims (2002) and Cristianini and
Shawe-Taylor (2000, Section 8.1).

Exercises

11.1 (a) Show that the perpendicular distance of the point (h, k) to the
line f(x, y) = ax + by + c = 0 is ± (ah + bk + c)/

√
a2 + b2, where the sign

chosen is that of c.
(b) Let µ(x) = β0 + xτβ = 0 denote a hyperplane, where β0 ∈ 
 and

β ∈ 
r, and let xk ∈ 
r be a point in the space. By minimizing ‖ x−xk ‖2
subject to µ(x) = 0, show that the perpendicular distance from the point
to the hyperplane is |µ(xk)|/ ‖ β ‖.

11.2 In the support vector regression problemusing a quadratic ε-insensitive
loss function, formulate and solve the resulting optimization problem.

11.3 The “2-norm soft margin” optimization problem for SVM classi-
fication: Consider the regularization problem of minimizing 1

2 ‖ β ‖2
+C

∑n
i=1 ξ2

i subject to the constraints yi(β0 + xτ
i β) ≥ 1 − ξi, and ξ ≥ 0,

for i = 1, 2, . . . , n.
(a) Show that the same optimal solution to this problem is reached if we

remove the constraints ξi ≥ 0, i = 1, 2, . . . , n, on the slack variables. (Hint:
What is the effect on the objective functional if this constraint is violated?)
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(b) Form the primal Lagrangian FP , which will be a function of β0, β, ξ,
and the Lagrangian multipliers α. Differentiate FP wrt β0, β, and ξ, set
the results equal to zero, and solve for a stationary solution.

(c) Substitute the results from (b) into the primal Lagrangian to obtain
the dual objective functional FD. Write out the dual problem (objective
functional and constraints) in matrix notation. Maximize the dual wrt α.
Use the Karush–Kuhn–Tucker complementary conditions αi{yi(β0+xτ

i β)−
(1− ξi)} = 0 for i = 1, 2, . . . , n.

(d) If α∗ is the solution to the dual problem, find β̂ and its norm, which
gives the width of the margin.

11.4 For the support vector regression problem in a feature space defined
by a general kernel function K representing the inner product of pairs of
nonlinearly transformed input vectors, formulate and solve the resulting
optimization problem using (a) a linear ε-insensitive loss function and (b)
a quadratic ε-insensitive loss function.

11.5 In the support vector regression problem, let ε = 0. Consider the
quadratic (2-norm) primal optimization problem,

minimize λ ‖ β ‖2 +
∑n

i=1 ξ2
i

subject to yi − xτ
i β = ξi, i = 1, 2, . . . , n.

Form the Lagrangian, differentiate wrt β and ξi, i = 1, 2, . . . , n, and set the
results equal to zero for a stationary solution. Substitute these values into
the primal functional to get the dual problem. Use K to represent the Gram
matrix with entries either Kij = xτ

i xj or Kij = K(xi,xj). Differentiate the
dual functional wrt the Lagrange multipliers α, and set the result equal
to zero. Show that this solution is related to ridge regression (see Section
5.7.4).

11.6 Let x,y ∈ 
2. Consider the polynomial kernel function, K(x,y) =
〈x,y〉2, so that r = 2 and d = 2. Find two different maps Φ : 
2 → H for
H = 
3.

11.7 Let z ∈ 
 and define the (2m + 1)-dimensional Φ-mapping,

Φ(z) = (2−1/2, cos z, · · · , cos mz, sin z, · · · , sin mz)τ .

Using this mapping, show that the kernel K(x, y) = 〈Φ(x),Φ(y)〉, x, y ∈ 
,
reduces to the Dirichlet kernel given by

K(x, y) =
sin((m + 1

2 )δ)
2 sin(δ/2)

,

where δ = x− y.

11.8 Show that the homogeneous polynomial kernel, K(x,y) = 〈x,y〉d,
satisfies Mercer’s condition (11.54).
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11.9 If K1 and K2 are kernels and c1, c2 ≥ 0 are real numbers, show that
the following functions are kernels:

(a) c1K1(x,y) + c2K2(x,y);
(b) K1(x,y)K2(x,y);
(c) exp{K1(x,y)}.

(Hint: In each case, you have to show that the function is nonnegative-
definite.)

11.10 Prove that in finite-dimensional input space, a symmetric function
K(x,y) is a kernel function iff K = (K(xi,xj)) is a nonnegative-definite
matrix with nonnegative eigenvalues. (Hint: Use the symmetry and the
spectral theorem for K to show that K is a kernel. Then, show that for
a negative eigenvalue, the squared-norm of any point z ∈ H is negative,
which is impossible.)

11.11 Show that the functional FD(α) in (11.40) is convex; i.e., show that,
for θ ∈ (0, 1) and α,β ∈ 
n,

FD(θα + (1− θ)β) ≤ θFD(α) + (1− θ)FD(β).

11.12 Apply nonlinear-SVM to a binary classification data set of your
choice. Make up a two-way table of values of (C, γ) and for each cell in
that table compute the CV/10 misclassification rate. Find the pair (C, γ)
with the smallest CV/10 misclassification rate. Compare this rate with
results obtained using LDA and that using a classification tree.
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Cluster Analysis

12.1 Introduction

Cluster analysis, which is the most well-known example of unsupervised
learning, is a very popular tool for analyzing unstructured multivariate
data. Within the data-mining community, cluster analysis is also known
as data segmentation, and within the machine-learning community, it is
also known as class discovery. The methodology consists of various algo-
rithms each of which seeks to organize a given data set into homogeneous
subgroups, or “clusters.” There is no guarantee that more than one such
group can be found; however, in any practical application, the underlying
hypothesis is that the data form a heterogeneous set that should separate
into natural groups familiar to the domain experts.

Clustering is a statistical tool for those who need to arrange large quan-
tities of multivariate data into natural groups. For example, marketers use
demographics and consumer profiles in an attempt to segment the market-
place into small, homogeneous groups so that promotional campaigns may
be carried out more efficiently; biologists divide organisms into hierarchical
orders in order to describe the notion of biological diversity; financial man-
agers categorize corporations into different types based upon relevant finan-
cial characteristics; archaeologists group artifacts (e.g., broaches) found in

A.J. Izenman, Modern Multivariate Statistical Techniques,
doi: 10.1007/978-0-387-78189-1 12, 407
c© Springer Science+Business Media, LLC 2008
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graves in order to understand movements of ancient peoples; physicians use
medical records to cluster patients for treatment diagnosis; and audiologists
use repeated utterances of specific words by different speakers to provide a
basis for speaker recognition. There are many other similar examples,

Cluster analysis resembles methods for classifying items; yet the two
data analytic methods are philosophically different from each other. First,
in classification, it is known a priori how many classes or groups are present
in the data and which items are members of which class or group; in cluster
analysis, the number of classes is unknown and so is the membership of
items into classes. Second, in classification, the objective is to classify new
items (possibly in the form of a test set) into one of the given classes based
upon experience obtained using a learning set of data; clustering falls more
into the framework of exploratory data analysis, where no prior information
is available regarding the class structure of the data. Third, classification
deals almost exclusively with classifying observations, whereas clustering
can be applied to clustering observations or variables or both observations
and variables simultaneously, depending upon the context.

Methods for clustering items (either observations or variables) depend
upon how similar (or dissimilar) the items are to each other. Similar items
are treated as a homogeneous class or group, whereas dissimilar items form
additional classes or groups. Much of the output of a cluster analysis is
visual, with the results displayed as scatterplots, trees, dendrograms, sil-
houette plots, and heatmaps.

12.1.1 What Is a Cluster?

This is a difficult question to answer mainly because there is no univer-
sally accepted definition of exactly what constitutes a cluster. As a result,
the various clustering methods usually do not produce identical or even
similar solutions.

A cluster is generally thought of as a group of items (objects, points) in
which each item is “close” (in some appropriate sense) to a central item of
a cluster and that members of different clusters are “far away” from each
other. In a sense, then, clusters can be viewed as “high-density regions” of
some multidimensional space (Hartigan, 1975). Such a notion seems fine
on the surface if clusters are to be thought of as convex elliptical regions.

However, it is not difficult to conceive of situations in which natural clus-
terings of items do not follow this pattern. When the dimension of a space is
large enough, these multidimensional items, plotted as points in that space,
may congregate in clusters that curve and twist around each other; even if
the various swarms of points are non-overlapping (which is unlikely), the
oddly shaped configurations of points may be almost impossible to detect
and identify using current techniques.
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12.1.2 Example: Old Faithful Geyser Eruptions

The data for this example1 is a set of 107 bivariate observations, that were
taken from a study of the eruptions of Old Faithful Geyser in Yellowstone
National Park, Wyoming (Weisberg, 1985, p. 231). A geyser is a hot spring
which occasionally becomes unstable and erupts hot water and steam into
the air. Old Faithful Geyser is the most famous of all geysers and is an ex-
tremely popular tourist attraction. The variables measured are duration of
eruption (X1) and waiting time until the next eruption (X2), both recorded
in minutes, for all eruptions of Old Faithful Geyser between 6 a.m. and mid-
night, 1–8 August 1978. Prior to clustering, one could argue that there are
two or three possible clusters in the data.

Because the two variables are measured on very different scales (the
standard deviations of X1 and X2 being approximately 1 and 13, respec-
tively), the derived clusters (using any clustering algorithm) are completely
determined by X2, the interval between eruptions; the observations are di-
vided into clusters by straight-line boundaries parallel to the horizontal
axis. Without standardizing both variables, we cannot obtain a realistic
partitioning of the data. So, for this example, we standardize the variables
prior to clustering.

The results of this clustering study, where we set the number of clusters
to be two or three for each method, are displayed in Figure 12.1. The most
interesting result is that “perfect” clustering (according to our intuition)
for both two and three clusters is accomplished only by the single-linkage,
hierarchical agglomerative method (see first row of Figure 12.1). If we use
the single-linkage results as the gold standard, we see that average-linkage
and complete-linkage methods (second row), which produced the same re-
sults for two and three clusters, had one incorrect allocation for two clusters
and three incorrect allocations for three clusters. Although both of the non-
hierarchical clustering methods, pam and K-means (third row), had perfect
clustering for two clusters, they performed poorly for three clusters, where
they both had 45 incorrectly allocations.

12.2 Clustering Tasks

There are numerous ways of clustering a data set of n independent mea-
surements on each of r correlated variables.

Clustering Observations: When we speak about “clustering,” we usu-
ally think of clustering the n observations into groups, where the

1The data can be found in the file geyser on the book’s website.
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FIGURE 12.1. Clustering results for Old Faithful Geyser data. The scat-
terplots in the left column panels are solutions for K = 2 classes, with red
and blue as the two cluster colors. The scatterplots in the right column pan-
els are solutions for K = 3 classes, with red, green, and blue as the three
cluster colors. The first row is the single-linkage (SL) solutions, the second
row is both average-linkage (AL) and complete-linkage (CL) solutions, the
third row is both pam and K-means solutions.
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number, K, of groups is unknown and has to be determined from the
data. When analyzing microarray data, the observations may be, for
example, tissue samples, disease types, or experimental conditions,
and so this task is often referred to as “clustering samples.”

Clustering Variables: We may wish to partition the p variables into K
distinct groups, where the number K is unknown and has to be de-
termined from the data. A group may be determined by using only
one variable; however, most clusters will be formed using several vari-
ables. These clusters should be far enough apart (in some sense) that
groupings are easily identifiable. Each cluster of variables may later
be replaced by a single variable representative of that cluster. When
analyzing microarray data, the variables are genes, and so we refer
to this task as “gene clustering.”

Two-Way Clustering: Instead of clustering the variables or the observa-
tions separately, it might in certain circumstances be more appropri-
ate to cluster them both simultaneously. Two-way clustering is known
by different names, such as “block clustering” or “direct clustering.”
This goal is especially appropriate in microarray studies, where it
is desired to cluster genes and tissue samples at the same time to
show which subset of genes is most closely related to which subset of
disease types.

NOTE: Because many of the clustering algorithms can be applied to ob-
servations or variables (or both simultaneously), it will often be convenient
in this chapter to use the generic word “item” when a distinction between
observation or variable is unnecessary.

12.3 Hierarchical Clustering

There are two types of hierarchical clustering methods: agglomorative
and divisive. Agglomerative clustering algorithms, often called “bottom-
up” methods, start with each item being its own cluster; then, clusters are
successively merged, until only a single cluster remains. Divisive clustering
algorithms, often called “top-down” methods, do the opposite: they start
with all items as members of a single cluster; then, that cluster is split into
two separate clusters, and so on for every successive cluster, until each item
is its own cluster. Most attention in the clustering literature has been on
agglomerative methods; however, arguments have been made that divisive
methods can provide more sophisticated and robust clusterings.
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12.3.1 Dendrogram

The end result of all hierarchical clustering methods is a dendrogram
(i.e., hierarchical tree diagram), where the k-cluster solution is obtained
by merging some of the clusters from the (k + 1)-cluster solution. The
dendrogram may be drawn horizontal or vertical, depending upon user
choice or software decision; both types give the same information. In this
discussion, we assume a vertical dendrogram.

The dendrogram allows the user to read off the “height” of the linkage
criterion at which items or clusters or both are combined together to form
a new, larger cluster. Items that are similar to each other are combined at
low heights, whereas items that are more dissimilar are combined higher
up the dendrogram. Thus, it is the difference in heights that defines how
close items are to each other. The greater the distance between heights at
which clusters are combined, the more readily we can identify substantial
structure in the data.

A partition of the data into a specified number of groups can be obtained
by “cutting” the dendrogram at an appropriate height. If we draw a hor-
izontal line on the dendrogram at a given height, then the number, K, of
vertical lines cut by that horizontal line identifies a K-cluster solution; the
intersection of the horizontal line and one of those K vertical lines then
represents a cluster, and the items located at the end of all branches below
that intersection constitute the members of the cluster.

Unlike the vertical distances, which are crucial in defining a solution, the
horizontal distances between items are irrelevant; the software that draws
a dendrogram is generally written so that the dendrogram can be easily
interpreted. For large data sets, however, this goal becomes impossible.

12.3.2 Dissimilarity

The basic tool for hierarchical clustering is a measure of the dissimilarity
or proximity (i.e., distance) of one item relative to another item. Which
definition of distance is used in any given application is often a matter
of subjective choice. Let xi,xj ∈ 
r. Dissimilarities usually satisfy the
following three properties:

1. d(xi,xj) ≥ 0;

2. d(xi,xi) = 0;

3. d(xj ,xi) = d(xi,xj).

Such dissimilarities are termed metric or ultrametric according to whether
they satisfy a fourth property, A metric dissimilarity satisfies

4a. d(xi,xj) ≤ d(xi,xk) + d(xk,xj),
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and an ultrametric dissimilarity satisfies

4b. d(xi,xj) ≤ max{d(xi,xk), d(xj ,xk)}.

Ultrametric dissimilarities can be displayed graphically by a dendrogram.
There are several ways to define a dissimilarity, the most popular being

Euclidean distance and Manhattan city-block distance.
Let xi = (xi1, · · · , xir)τ and xj = (xj1, · · · , xjr)τ denote two points in


r. Then, these dissimilarity measures are defined as follows:

Euclidean: d(xi,xj) = [(xi − xj)τ (xi − xj)]1/2 =
[∑r

k=1(xik − xjk)2
]1/2.

Manhattan: d(xi,xj) =
∑r

k=1 |xik − xjk|.

Minkowski: dm(xi,xj) = [
∑r

k=1 |xik − xjk|m]1/m.

In some applications, squared-Euclidean distance is used. Minkowski dis-
tance includes as special cases Euclidean distance (m = 2) and Manhattan
distance (m = 1).

These dissimilarity measures are all computed using raw data, not stan-
dardized data. Standardization is usually recommended when the variabil-
ity of the variables is quite different: a larger variability will have a more
pronounced affect upon the clustering procedure than will a variable with
relatively low variability.

A dissimilarity measure used for clustering variables is

1-correlation: d(xi,xj) = 1− ρij = 1− sij/sisj ,

where −1 ≤ ρij ≤ 1 is the correlation between the pair of variables Xi

and Xj . Here, sij =
∑r

k=1(xik − x̄i)(xjk − x̄j), si = [
∑r

k=1(xik − x̄i)2]1/2,
s2 = [

∑r
k=1(xjk − x̄j)2]1/2, and x̄� = r−1

∑r
�=1 x�k, � = i, j. A relatively

large absolute value of ρij suggests the variables are “close” to each other,
whereas a small correlation (ρij ≈ 0) suggests the variables are “far away”
from each other. Thus, 1 − ρij is taken as a measure of “dissimilarity”
between the variables.

Given n observations, x1, . . . ,xn ∈ 
r, the starting point of any hi-
erarchical clustering procedure is to compute the pairwise dissimilarities
between observations and then arrange them into a symmetric, (n × n)
proximity matrix, D = (dij), where dij = d(xi,xj), with zeroes along the
diagonal. If we are clustering variables, the proximity matrix D = (dij) is
a symmetric, (r × r)-matrix with ijth dissimilarity dij = 1− ρij .
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12.3.3 Agglomerative Nesting (agnes)

Table 12.1 lists the algorithm for agglomerative hierarchical clustering.
The most popular of these clustering methods are referred to as single-
linkage (or nearest-neighbor), complete-linkage (or farthest-neighbor), and
a compromise between these two, average-linkage methods. Each of these
clustering methods is defined by the way in which two clusters (which may
be single items) are combined or “joined” to form a new, larger cluster.
Single linkage uses a minimum-distance metric between clusters, complete
linkage uses a greatest-distance metric, and average linkage computes the
average distance between all pairs of items within the two different clusters,
one item from each cluster. There is also a weighted version of average link-
age, where the weights reflect the (possibly disparate) sizes of the clusters
in question.

No one of these algorithms is uniformly best for all clustering prob-
lems. Whereas the dendrograms from single-linkage and complete-linkage
methods are invariant under monotone transformations of the pairwise dis-
similarities, this property does not hold for the average-linkage method.
Single-linkage often leads to long “chains” of clusters, joined by singleton
points near each other, a result that does not have much appeal in practice,
whereas complete-linkage tends to produce many small, compact clusters.
Average linkage is dependent upon the size of the clusters, whereas sin-
gle and complete linkage, which depend only upon the smallest or largest
dissimilarity, respectively, do not.

12.3.4 A Worked Example

To understand agglomerative hierarchical clustering, we give a detailed
analysis of a small example. Consider the following n = 8 bivariate points:

x1 = (1, 3)τ ,x2 = (2, 4)τ ,x3 = (1, 5)τ ,x4 = (5, 5)τ ,
x5 = (5, 7)τ ,x6 = (4, 9)τ ,x7 = (2, 8)τ ,x8 = (3, 10)τ .

A scatterplot of these points is given in Figure 12.2 (top-left panel). Using
Euclidean distance, the upper-triangular portion of the symmetric, (8×8)-
matrix D(1) is as follows:

1 2 3 4 5 6 7 8

1 0 1.414 2.000 4.472 5.657 6.708 5.099 7.280
2 0 1.414 3.162 4.243 5.385 4.000 6.083
3 0 4.000 4.472 5.000 3.162 5.385
4 0 2.000 4.123 4.243 5.385
5 0 2.236 3.162 3.606
6 0 2.236 1.414
7 0 2.236
8 0
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TABLE 12.1. Algorithm for agglomerative hierarchical clustering.

1. Input: L = {xi, i = 1, 2, . . . , n}, n = number of clusters, each cluster of
which contains one item.

2. Compute D = (dij), the (n × n)-matrix of dissimilarities between the n
clusters, where dij = d(xi,xj), i, j = 1, 2, . . . , n.

3. Find the smallest dissimilarity, say, dIJ , in D = D(1). Merge clusters I and
J to form a new cluster IJ .

4. Compute dissimilarities, dIJ,K , between the new cluster IJ and all other
clusters K �= IJ . These dissimilarities depend upon which linkage method
is used. For all clusters K �= I, J , we have the following linkage options:

Single linkage: dIJ,K = min{dI,K , dJ,K}.
Complete linkage: dIJ,K = max{dI,K , dJ,K}.
Average linkage: dIJ,K =

∑
i∈IJ

∑
k∈K

dik/(NIJNK),

where NIJ and NK are the numbers of items in clusters IJ and K, respec-
tively.

5. Form a new ((n−1)×(n−1))-matrix, D(2), by deleting rows and columns I
and J and adding a new row and column IJ with dissimilarities computed
from step 4.

6. Repeat steps 3, 4, and 5 a total of n − 1 times. At the ith step, D(i) is a
symmetric ((n− i+1)× (n− i+1))-matrix, i = 1, 2, . . . , n. At the last step
(i = n), D(n) = 0, and all items are merged together into a single cluster.

7. Output: List of which clusters are merged at each step, the value (or height)
of the dissimilarity of each merge, and a dendrogram to summarize the
clustering procedure.

Single Linkage. The smallest dissimilarity is d12 = d23 = d68 = 1.414.
We choose to merge x2 and x3 to form the new cluster “23.” We next
compute new dissimilarities, d23,K = min{d2K , d3K} for K = 1, 4, 5, 6, 7, 8.
The (7× 7)-matrix D(2) is given by the following:

1 23 4 5 6 7 8

1 0 1.414 4.472 5.657 6.708 5.099 7.280
23 0 3.162 4.243 5.000 3.162 5.385

4 0 2.000 4.123 4.243 5.385
5 0 2.236 3.162 3.606
6 0 2.236 1.414
7 0 2.236
8 0

The smallest dissimilarity is d1,23 = d68 = 1.414. We choose to merge x1

with the “23” cluster, producing a new cluster “123.” We next compute
new dissimilarities, d123,K = min{d12,K , d3K} for K = 4, 5, 6, 7, 8. The
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(6× 6)-matrix D(3) is as follows:

123 4 5 6 7 8

123 0 3.162 4.243 5.000 3.162 5.385
4 0 2.000 4.123 4.243 5.385
5 0 2.236 3.162 3.606
6 0 2.236 1.414
7 0 2.236
8 0

The smallest dissimilarity is d68 = 1.414, and so we merge x6 and x8

to form the new cluster “68.” We compute new dissimilarities, d68,K =
min{d6K , d8K} for K = 123, 4, 5, 7. This gives us the (5× 5)-matrix D(4),

123 4 5 6 7

123 0 3.162 4.243 5.000 3.162
4 0 2.000 4.123 4.243
5 0 2.236 3.162

68 0 2.236

7 0

The smallest dissimilarity is d45 = 2.0, and so we merge x4 and x5 to form the
new cluster “45.” We compute new dissimilarities, d45,K = min{d4K , d5K}
for K = 123, 68, 7. This gives the (4× 4)-matrix D(5),

123 45 6 7

123 0 3.162 5.000 3.162
45 0 2.236 4.243
68 0 2.236
7 0

The smallest dissimilarity is d45,68 = d68,7 = 2.236. We choose to merge
the cluster “68” with x7 to produce the new cluster “678.” The new dis-
similarities, d678,K = min{d68,K , d7K} for K = 123, 45, yield the matrix
D(6),

123 45 678

123 0 3.162 3.162
45 0 2.236

678 0

The smallest dissimilarity is d45,678 = 2.236, so the next merge is the cluster
“45” with the cluster “678.” The matrix D(7) is

123 45678

123 0 3.162
45678 0

The last merge is cluster “123” with cluster “45678,” and the merging
dissimilarity is d123,45678 = 3.162. The dendrogram is displayed in the top-
right panel of Figure 12.2.

Complete Linkage. Complete linkage uses the same idea as single linkage,
but instead of taking the smallest dissimilarity as the distance measure
between clusters, we take the largest such dissimilarity. From D(1) given
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FIGURE 12.2. Agglomerative hierarchical clustering for worked exam-
ple using Euclidean distance. Top-left panel: Scatterplot of eight bivariate
points. Other panels show dendrograms showing hierarchical clusters and
value of Euclidean distance at merge points. Top-right panel: Single linkage.
Bottom-left panel: Complete linkage. Bottom-right panel: Average linkage.

previously, we merge x2 and x3 to form the “23” cluster at height 1.414,
as before. Using Euclidean distance (but omitting square-roots in the pre-
sentation), the upper-triangular portion of the (7 × 7)-matrix D(2) is as
follows:

1 23 4 5 6 7 8

1 0 2.0 4.472 5.657 6.708 5.099 7.280
23 0 4.000 4.472 5.385 4.000 6.083
4 0 2.000 4.123 4.243 5.385
5 0 2.236 3.162 3.606

6 0 2.236 1.414
7 0 2.236
8 0

The smallest dissimilarity is d68 = 1.414. We merge x6 and x8 to form a
new cluster “68.” We compute new dissimilarities, d68,K = max{d6K , d8K}
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for K = 1, 23, 4, 5, 7. This gives us a (6× 6)-matrix D(3),

1 23 4 5 68 7

1 0 2.000 4.472 5.657 7.280 5.099
23 0 4.000 4.472 6.083 4.000
4 0 2.000 4.123 4.243

5 0 2.236 3.162
68 0 2.236
7 0

The smallest dissimilarity is d1,23 = d45 = 2.0. We choose to merge the
cluster “23” with x1 to form a new cluster “123.” We compute new dissim-
ilarities, d123,K = max{d12,K , d3K} for K = 4, 5, 68, 7. This gives us a new
(5× 5)-matrix D(4),

123 4 5 68 7

123 0 4.472 5.657 7.280 5.099
4 0 2.000 5.385 4.243
5 0 3.606 3.162

68 0 2.236
7 0

The smallest dissimilarity is d45 = 2.0. We merge x4 and x5 to form a
new cluster “45.” We compute dissimilarities, d45,K = max{d4K , d5K} for
K = 123, 68, 7. This gives us a new (4× 4)-matrix D(5),

123 45 68 7

123 0 5.657 7.280 5.099
45 0 5.385 4.243
68 0 2.236

7 0

The smallest dissimilarity is d68,7 = 2.236. We merge cluster “68” with x7 to
form the new cluster “678.” New dissimilarities d678,K = max{d68,K , d7K}
are computed for K = 123, 45 to give the new (3× 3)-matrix D(6),

123 45 678

123 0 5.657 7.280
45 0 5.385

678 0

The last steps merge the clusters “45” and “678” with a merging value of
d45,678 = 5.385, and then the clusters “123” and “45678” with a merging
value of d123,45678 = 7.280. The dendrogram is displayed in the bottom-left
panel of Figure 12.2.

Average Linkage. For average linkage, the distance between two clusters
is found by computing the average dissimilarity of each item in the first
cluster to each item in the second cluster.

We start with the matrix D(1). The smallest dissimilarity is d12 =
√

2 =
1.414, and so we merge x1 and x2 to form cluster “12.” We compute dis-
similarities between the cluster “12” and all other points using the aver-
age distance, d12,K = (d1K + d2K)/2, for K = 3, 4, 5, 6, 7, 8. For example,
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d12,3 = (d13 + d23)/2 = (
√

4 +
√

2)/2 = 1.707. The matrix D(2) is given by

12 3 4 5 6 7 8

12 0 1.707 3.817 4.950 6.047 4.550 6.681
3 0 4.000 4.472 5.000 3.162 5.385
4 0 2.000 4.123 4, 243 5.385
5 0 2.236 3.162 3.606
6 0 2.236 1.414

7 0 2.236
8 0

The smallest dissimilarity is d68 = 1.414, and so we merge x6 and x8 to form
the new cluster “68.” We compute dissimilarities between the cluster “68”
and all other points and clusters using the average distance, d68,12 = (d16 +
d26 + d18 + d28)/4 = 6.364, and d68,K = (d6K + d8K)/2, for K = 3, 4, 5, 7.
The matrix D(3) is

12 3 4 5 68 7

12 0 1.707 3.817 4.950 6.364 4.550
3 0 4.000 4.472 5.193 3.162
4 0 2.000 4.754 4, 243

5 0 2.921 3.162
68 0 2.236
7 0

The smallest dissimilarity is d12,3 = 1.707, and so we merge x3 and the
cluster “12” to form the new cluster “123.” We compute dissimilarities
between the cluster “123” and all other points using the average distance,
d123,68 = (d16 + d18 + d26 + d28 + d36 + d38)/6 = 5.974 and d123,K =
(d1K + d2K + d3K)/3, for K = 4, 5, 7. This gives the matrix D(4):

123 4 5 68 7

123 0 3.878 4.791 5.974 4.087
4 0 2.000 4.754 4.243
5 0 2.921 3.162

68 0 2.236
7 0

The smallest dissimilarity is d45 = 2.0, and so we merge x4 and x5 to form
the new cluster “45.” We compute dissimilarities between the cluster “45”
and the other clusters as before. This gives the matrix D(5):

123 45 68 7

123 0 4.334 5.974 4.087
45 0 3.837 3.702
68 0 2.236
7 0

The smallest dissimilarity is d68,7 = 2.236, and so we merge x7 and the
cluster “68” to form the new cluster “678.” This gives the matrix D(6):

123 45 678

123 0 4.334 5.345
45 0 3.792

678 0
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The smallest dissimilarity is d45,678 = 3.782, and so we merge the two
clusters “45” and “678” to form a new cluster “45678.” We merge the
last two clusters and compute their dissimilarity d123,45678 = 4.940. The
dendrogram is displayed in the bottom-right panel of Figure 12.2.

12.3.5 Divisive Analysis (diana)

The most-used divisive hierarchical clustering procedure is that proposed
by MacNaughton-Smith, Williams, Dale, and Mockett (1964).

The idea is that at each step, the items are divided into a “splinter”
group (say, cluster A) and the “remainder” (say, cluster B). The splinter
group is initiated by extracting that item that has the largest average
dissimilarity from all other items in the data set; that item is set up as
cluster A. Given this separation of the data into A and B, we next compute,
for each item in cluster B, the following two quantities: (1) the average
dissimilarity between that item and all other items in cluster B, and (2)
the average dissimilarity between that item and all items in cluster A. Then,
we compute the difference (1)–(2) for each item in B. If all differences are
negative, we stop the algorithm. If any of these differences are positive
(indicating that the item in B is closer on average to cluster A than to the
other items in cluster B), we take the item in B with the largest positive
difference, move it to A, and repeat the procedure. This algorithm provides
a binary split of the data into two clusters A and B. This same procedure
can then be used to obtain binary splits of each of the clusters A and B
separately.

The dendrogram corresponding to divisive hierarchical clustering of the
worked example is displayed in Figure 12.3. Compare the result with that
of the various agglomerative hierarchical clustering options in Figure 12.2.
The major difference we see is that x4 is now included in the cluster with
items x1,x2, and x3, rather than in the other cluster.

12.3.6 Example: Primate Scapular Shapes

This example is a small part of a much larger study (Ashton, Oxnard, and
Spence, 1965) on measurements of the scapulae (shoulder bones) from 30
genera covering most of the primate order. The data2 used in this example
consist of measurements on the scapulae of five genera of adult primates

2The author thanks Charles Oxnard and Rebecca German for providing him with
these data. The data can be found in the file primate.scapulae on the book’s website.
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FIGURE 12.3. Divisive hierarchical clustering for the worked example
using Euclidean distance.

representing Hominoidea; that is, gibbons (Hylobates), orangutans (Pongo),
chimpanzees (Pan), gorillas (Gorilla), and man (Homo).

The measurements consist of indices and angles that are related to scapu-
lar shape, but not to functional meaning. Other studies showed that gender
differences for such measurements were not statistically significant, and so
no attempt was made by the authors of the study to divide the specimens
by gender. Interest centered upon determining the extent to which these
scapular shape measurements could be useful in classifying living primates.

There are eight variables in this data set, of which the first five (AD.BD,
AD.CD, EA.CD, Dx.CD, and SH.ACR) are indices and the last three (EAD, β,
and γ) are angles. Of the 105 measurements on each variable, 16 were taken
on Hylobates scapulae, 15 on Pongo scapulae, 20 on Pan scapulae, 14 on
Gorilla scapulae, and 40 on Homo scapulae. The angle γ was not available
for Homo and, thus, was not used in this example.

Agglomerative and divisive hierarchical methods were employed for clus-
tering the scapulae data using all five indices and two of the angles (EAD and
β). Figure 12.4 shows dendrograms from the single-linkage, average-linkage,
and complete-linkage agglomerative hierarchical methods and the dendro-
gram from the divisive hierarchical method. Although five clusters can be
identified for each dendrogram, the single-linkage dendrogram, which shows
long, stringy clusters, has a very different shape than do the other three
dendrograms.

We can see that certain primates are separated from the others. In par-
ticular, primates 6, 18, 20, 55, and 102 stand out in the agglomerative
dendrograms, and primate 3 also stands out in the single-linkage dendro-
gram.
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Divisive

FIGURE 12.4. Dendrograms from hierarchical clustering of the primate
scapulae data. Upper-left panel: single linkage. Upper-right panel: average
linkage. Lower-left panel: complete linkage. Lower-right panel: divisive.

When an isolated observation appears high enough up in a dendrogram,
it becomes a cluster of size one and, hence, plays the role of an outlier in the
data. In fact, single linkage for five clusters produces three clusters each of
size one (primates 3, 20, and 102), and average linkage produces one cluster
of size one (primate 20). We see from Figure 12.4 that single-linkage and
average-linkage clustering algorithms tend to have more isolated observa-
tions than do either the complete-linkage or divisive clustering algorithms.

12.4 Nonhierarchical or Partitioning Methods

Nonhierarchical clustering methods (also known as partitioning methods)
simply split the data items into a predetermined number K of groups or
clusters, where there is no hierarchical relationship between the K-cluster
solution and the (K + 1)-cluster solution; that is, the K-cluster solution
is not the initial step for the (K + 1)-cluster solution. Given K, we seek
to partition the data into K clusters so that the items within each cluster
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are similar to each other, whereas items from different clusters are quite
dissimilar.

One sledgehammer method of nonhierarchical clustering would conceiv-
ably involve as a first step the total enumeration of all possible groupings of
the items. Then, using some optimizing criterion, the grouping that is cho-
sen as “best” would be that partition that optimized the criterion. Clearly,
for large data sets (e.g., microarray data used for gene clustering), such a
method would rapidly become infeasible, requiring incredible amounts of
computer time and storage. As a result, all available clustering techniques
are iterative and work on only a very limited amount of enumeration. Thus,
nonhierarchical clustering methods, which do not need to store large prox-
imity matrices, are computationally more efficient than are hierarchical
methods.

This category of clustering methods includes all of the partitioning meth-
ods, (e.g., K-means, partitioning around medoids) and mode-searching (or
bump-hunting) methods using parametric mixtures or nonparametric den-
sity estimates.

12.4.1 K-Means Clustering (kmeans)

The popular K-means algorithm (MacQueen, 1967) is listed in Table
12.2. Because it is extremely efficient, it is often used for large-scale cluster-
ing projects. Note that the K-means algorithm needs access to the original
data.

The K-means algorithm starts either by assigning items to one of K
predetermined clusters and then computing the K cluster centroids, or by
pre-specifying the K cluster centroids. The pre-specified centroids may be
randomly selected items or may be obtained by cutting a dendrogram at
an appropriate height. Then, in an iterative fashion, the algorithm seeks to
minimize ESS by reassigning items to clusters. The procedure stops when
no further reassignment reduces the value of ESS.

The solution (a configuration of items into K clusters) will typically
not be unique; the algorithm will only find a local minimum of ESS. It
is recommended that the algorithm be run using different initial random
assignments of the items to K clusters (or by randomly selecting K initial
centroids) in order to find the lowest minimum of ESS and, hence, the best
clustering solution based upon K clusters.

For the worked example, the K-means clustering solutions for K = 2, 3, 4
are listed in Table 12.3. For K = 2, ESS=23.5; for K = 3, ESS=8.67;
and for K = 4, ESS=5.67. Note that, in general, we expect ESS to be
a monotonically decreasing function of K, unless the solution for a given
value of K turns out to be a local minimum.
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TABLE 12.2. Algorithm for K-means clustering.

1. Input: L = {xi, i = 1, 2, . . . , n}, K = number of clusters.

2. Do one of the following:

• Form an initial random assignment of the items into K clusters and,
for cluster k, compute its current centroid, x̄k, k = 1, 2, . . . , K.

• Pre-specify K cluster centroids, x̄k, k = 1, 2, . . . , K.

3. Compute the squared-Euclidean distance of each item to its current cluster
centroid:

ESS =

K∑
k=1

∑
c(i)=k

(xi − x̄k)τ (xi − x̄k),

where x̄k is the kth cluster centroid and c(i) is the cluster containing xi.

4. Reassign each item to its nearest cluster centroid so that ESS is reduced
in magnitude. Update the cluster centroids after each reassignment.

5. Repeat steps 3 and 4 until no further reassignment of items takes place.

12.4.2 Partitioning Around Medoids (pam)

This clustering method (Vinod, 1969) is a modification of the K-medoids
clustering algorithm. Although similar to K-means clustering, this algo-
rithm searches for K “representative objects” (or medoids) — rather than
the centroids — among the items in the data set, and a dissimilarity-based
distance is used instead of squared-Euclidean distance. Because it min-
imizes a sum of dissimilarities instead of a sum of (squared) Euclidean
distances, the method is more robust to data anomolies such as outliers
and missing values.

This algorithm starts with the proximity matrix D = (dij), where dij =
d(xi,xj), either given or computed from the data set, and an initial con-
figuration of the items into K clusters. Using D, we find that item (called
a representative object or medoid) within each cluster that minimizes the
total dissimilarity to all other items within its cluster. In the K-medoids
algorithm, the centroids of steps 2, 3, and 4 in the K-means algorithm
(Table 12.2) are replaced by medoids, and the objective function ESS is re-
placed by ESSKmed. See Table 12.4 (steps 1, 2, 3, and 4a) for the K-medoids
algorithm.

The partitioning around medoids (pam) modification of the K-medoids
algorithm (Kaufman and Rousseeuw, 1990, Section 2.4) introduces a swap-
ping strategy by which the medoid of each cluster is replaced by another
item in that cluster, but only if such a swap reduces the value of the
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TABLE 12.3. K-means clustering solutions (K = 2, 3, 4) for the worked
example.

K k Indexes Centroid Within-Cluster SS

2 1 1,2,3,4 (3.5, 8.5) 13.5
2 5,6,7,8 (2.25, 4.25) 10.0

3 1 1,2,3 (1.33, 4.0) 2.67
2 4,5 (5.0, 6.0) 2.0
3 6,7,8 (3.0, 9.0) 4.0

4 1 1,2,3 (1.33, 4.0) 2.67
2 4,5 (5.0, 6.0) 2.0
3 6,8 (3.5, 9.5) 1.0
4 7 (2.0, 8.0) 0.0

objective function. The pam algorithm is listed in Table 12.4 (steps 1, 2, 3,
and 4b).

A disadvantage of both the K-medoids and the pam algorithms is that,
although they run well on small data sets, they are not efficient enough to
use for clustering large data sets.

12.4.3 Fuzzy Analysis (fanny)

The idea behind fuzzy clustering is that items to be clustered can be
assigned probabilities of belonging to each of the K clusters (Kaufman and
Rousseeuw, 1990, Section 4.4). Let uik denote the strength of membership of
the ith item for the kth cluster. For the ith item, we require that the {uik}
behave like probabilities; that is, uik ≥ 0, for all i and k = 1, 2, . . . ,K, and∑K

k=1 uiv = 1 for each i. This contrasts with the partitioning methods of
kmeans or pam, where each item is assigned to one and only one cluster.

Given a proximity matrix D = (dij) and number of clusters K, the un-
known membership strengths, {uik}, are found by minimizing the objective
function,

K∑
k=1

∑
i

∑
j u2

iku2
jkdij

2
∑

� u2
�k

. (12.1)

The objective function is minimized subject to the nonnegativity and unit
sum restrictions by using an iterative algorithm.

For the worked example, the solution (after 90 iterations) is given in
Table 12.5, where the most likely cluster memberships are as follows: cluster
1: items 1, 2, 3; cluster 2: items 4, 5; cluster 3: items 6, 7, 8. The minimum
of the objective function is 3.428.
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TABLE 12.4. Algorithms for K-medoid and partitioning-around-medoids
clustering.

1. Input: proximity matrix D = (dij); K = number of clusters.

2. Form an initial assignment of the items into K clusters.

3. Locate the medoid for each cluster. The medoid of the kth cluster is defined
as that item in the kth cluster that minimizes the total dissimilarity to all
other items within that cluster, k = 1, 2, . . . , K.

4a. For K-medoids clustering:

• For the kth cluster, reassign the ikth item to its nearest cluster medoid
so that the objective function,

ESSmed =

K∑
k=1

∑
c(i)=k

diik ,

is reduced in magnitude, where c(i) is the cluster containing the ith
item.

• Repeat step 3 and the reassignment step until no further reassignment
of items takes place.

4b. For partitioning-around-medoids clustering:

• For each cluster, swap the medoid with the non-medoid item that
gives the largest reduction in ESSmed.

• Repeat the swapping process over all clusters until no further reduc-
tion in ESSmed takes place.

12.4.4 Silhouette Plot

A useful feature of partitioning methods based upon the proximity ma-
trix D (e.g., kmeans, pam, and fanny) is that the resulting partition of
the data can be graphically displayed in the form of a silhouette plot
(Rousseeuw, 1987).

Suppose we are given a particular clustering, CK , of the data into K
clusters. Let c(i) denote the cluster containing the ith item. Let ai be the
average dissimilarity of that ith item to all other members of the same
cluster c(i). Also, let c be some cluster other than c(i), and let d(i, c) be
the average dissimilarity of the ith item to all members of c. Compute d(i, c)
for all clusters c other than c(i). Let bi = minc �=c(i) d(i, c). If bi = d(i, C),
then, cluster C is called the neighbor of data point i and is regarded as the
second-best cluster for the ith item.



12.4 Nonhierarchical or Partitioning Methods 427

TABLE 12.5. Fuzzy clustering for the worked example with K = 3. The
boldfaced entries show the most probable cluster memberships for each item.

Cluster k
i 1 2 3

1 0.799 0.117 0.083
2 0.828 0.107 0.065
3 0.735 0.146 0.119
4 0.116 0.790 0.094
5 0.102 0.715 0.183
6 0.072 0.146 0.782
7 0.196 0.239 0.565
8 0.064 0.097 0.839

The ith silhouette value (or width) is given by

si(CK) = siK =
bi − ai

max{ai, bi}
, (12.2)

so that −1 ≤ siK ≤ 1. Large positive values of siK (i.e., ai ≈ 0) indicate
that the ith item is well-clustered, large negative values of siK (i.e., bi ≈ 0)
indicate poor clustering, and siK ≈ 0 (i.e., ai ≈ bi) indicates that the ith
item lies between two clusters. If maxi{siK} < 0.25, this indicates either
that there are no definable clusters in the data or that, even if there are,
the clustering procedure has not found it. Negative silhouette widths tend
to attract attention: the items corresponding to these negative values are
considered to be borderline allocations; they are neither well-clustered nor
are they assigned by the clustering process to an alternative cluster.

A silhouette plot is a bar plot of all the {siK} after they are ranked in
decreasing order, where the length of the ith bar is siK . For the worked
example, where we used the pam clustering method with K = 3 clusters,
the silhouette plot is displayed in Figure 12.5.

The average silhouette width, s̄K , is the average of all the {siK}. For
the worked example with K = 3, the overall average silhouette width is
s̄3 = 0.51. (For K = 2, s̄2 = 0.44, and for K = 4, s̄4 = 0.41.) The statistic
s̄K has been found to be a very useful indicator of the merit of the clustering
CK . The average silhouette width has also been used to choose the value
of K by finding K to maximize s̄K .

As a clustering diagnostic, Kaufman and Rousseeuw defined the silhou-
ette coefficient, SC = maxK{s̄K}, and gave subjective interpretations of
its value:
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FIGURE 12.5. Silhouette plot for the worked example using the partition-
ing around medoids (pam) clustering method with K = 3 clusters.

SC Interpretation

0.71–1.00 A strong structure has been found
0.51–0.70 A reasonable structure has been found
0.26–0.50 The structure is weak and could be artificial
≤ 0.25 No substantial structure has been found

12.4.5 Example: Landsat Satellite Image Data

Since 1972, Landsat satellites orbiting the Earth have used a combina-
tion of scanning geometry, satellite orbit, and Earth rotation to collect
high-resolution multispectral digital information for detecting and moni-
toring different types of land surface cover characteristics. The Landsat
data in this example were generated from a Landsat Multispectral Scanner
(MSS) image database used in the European Statlog Project for assessing
machine-learning methods.3 The following description of the data is taken
from the Statlog website:

One frame of Landsat MSS imagery consists of four digital
images of the same scene in different spectral bands. Two of
these are in the visible region (corresponding approximately
to green and red regions of the visible spectrum) and two are
in the (near) infrared. Each pixel is an 8-bit word, with 0

3These data, which are available in the file satimage at the book’s website, can also
be downloaded from http://www.niaad.liacc.up.pt/old/statlog/. For information on
the Landsat satellites, see http://edc.usgs.gov/guides/landsat mss.html.



12.4 Nonhierarchical or Partitioning Methods 429

TABLE 12.6. Comparison of results of different clustering algorithms ap-
plied to the Landsat image data. The data consist of six groups of 4,435 ob-
servations measured on 36 variables. Prior to clustering, all variables were
standardized. The six derived clusters are designated A–F . The agglom-
erative hierarchical clustering methods are single-linkage (SL), average-
linkage (AL), and complete-linkage (CL), and the nonhierarchical methods
are K-means and partitioning around mediods (pam). Each column in this
table gives the cluster sizes distributed among the six clusters, ordered from
largest cluster (A) to smallest cluster (F ).

Cluster SL AL CL K-Means pam

A 4,428 2,203 1,717 1,420 999
B 2 1,764 1,348 1,134 937
C 1 370 885 763 790
D 1 57 266 694 708
E 1 23 162 242 613
F 1 18 57 182 388

corresponding to black and 255 to white. The spatial resolution
of a pixel is about 80m×80m. Each image contains 2,340×3,380
such pixels. The data set is a (tiny) sub-area of a scene, consist-
ing of 82×100 pixels. Each line of the data corresponds to a 3×3
square neighborhood of pixels completely contained within the
82×100 sub-area. Each line contains the pixel values in the four
spectral bands of each of the 9 pixels in the 3×3 neighborhood.

The 36 variables are arranged in groups of four spectral bands (1, 2, 3,
4) covering each pixel of the 3×3 neighborhood (top-left (TL), top-center
(TC), top-right (TR); center-left (CL), center-center (CC), center-right (CR);
bottom-left (BL), bottom-center (BC), bottom-right (BR)). The center pixel
(CC) of each of 4,435 neighborhoods is classified into one of six classes: 1.
red soil (1,072), 2. cotton crop (479), 3. gray soil (961), 4. damp gray soil
(415), 5. soil with vegetation stubble (470), and 7. very damp gray soil
(1038). There is no class 6. Although we do not use these classifications
in the clustering algorithms, we can compare our results with the true
classifications.

The results of five clustering methods (we specified six clusters for each
method) are given in Table 12.6. We see that of the agglomerative hierarchi-
cal clustering methods, single-linkage (SL) puts almost all the observations
into a single cluster, whereas average-linkage (AL) and complete-linkage
(CL) are somewhat better at distributing the observations among the six
clusters. K-means is better still, but pam is closest to the true configuration
of the data. The pam silhouette plot for six clusters is given in Figure 12.6
and the average silhouette width is 0.32.
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FIGURE 12.6. Silhouette plot for the Landsat image example using the
partitioning around medoids (pam) clustering method with K = 6 clusters.

The largest four eigenvalues of the (36 × 36) correlation matrix of the
Landsat data are 18.68, 14.08, 1.61, and 0.91, respectively. Kaiser’s rule says
that we should retain only those PCs whose eigenvalues are greater than
unity; in this case, we retain the first three PCs. In Figure 12.7, we display
a scatterplot of the first two PC scores of the Landsat data. The six clusters
of points (corresponding to Table 12.6) found using the pam algorithm are
each identified by their color. The scatterplot of the PC scores appears to
be wedge-shaped, with three primary “rods.” The “bottom” rod is divided
into three distinct bands, consisting of clusters A (dark blue), C (red),
and B (green); the “middle” rod is similarly divided up into three distinct
bands of clusters D (orange), E (light blue), and some B (green); and the
“top” rod only consists of cluster F (brown). There are also many points
in the scatterplot that fall between the rods.

The picture becomes more interpretable if we look at a 3D scatterplot
of the first three PC scores (not shown here), especially if we use a rota-
tion/spin operation as is available in S–Plus or R. Rotating the 3D plot
shows a tripod-like structure, with the top of the tripod being cluster B
and the three rods being the three legs of the tripod. We can compute a
confusion table, Table 12.7, which details how many neighborhoods from
each class are allocated to the various clusters. From Table 12.7, we see
that one leg consists of clusters of primarily different types of gray soil
(A, C, and B); the second leg consists of clusters of primarily red soil (D
and E); and the third leg consists of a cluster of cotton crop (F ). Image
neighborhoods classified by Landsat as soil with vegetation stubble appear
mostly within clusters B and E.
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FIGURE 12.7. Scatterplot of first two principal components of the Land-
sat image data, with points colored to identify the clusters found in the data.
The six derived clusters are A. dark blue; B. green; C. red; D. orange; E.
light blue; F. brown.

12.5 Self-Organizing Maps (SOMs)

The self-organizing map (SOM) algorithm (Kohonen, 1982) has its roots
in artificial neural networks and has also been likened to methods such as
multidimensional scaling (MDS; see Chapter 14) and K-means clustering.
It is also referred to as a Kohonen self-organizing feature map. The original
motivation for SOMs was expressed in terms of an artificial neural network

TABLE 12.7. The confusion table showing results of the pam clustering
algorithm applied to the Landsat image data. The six derived clusters are
designated A–F . The entry in the ith row and jth column shows the number
of neighborhoods classified by Landsat into the ith image-type and allocated
to the jth cluster.

Class A B C D E F Total

1 22 0 11 651 388 0 1,072
2 0 1 10 8 72 388 479
3 883 1 63 14 0 0 961
4 78 18 307 4 7 0 415
5 0 249 48 31 142 0 470
7 15 668 351 0 4 0 1,038

Total 999 937 790 708 613 388 4,435
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Hexagonal SOM grid
Rectangular SOM grid

FIGURE 12.8. Displays of 10×15 rectangular and hexagonal SOM grids.

for modeling the human brain, and much of the literature still uses the
image of neurons in describing the building blocks of a SOM.

SOMs have been applied to clustering problems in fields as diverse as
geographical information systems, bioinformatics, medical research, physi-
cal anthropology, natural language processing, document retrieval systems,
and ecology. Its primary use is in reducing high-dimensional data to a lower-
dimensional nonlinear manifold, usually two or three dimensions, and in
displaying graphically the results of such data reduction. In a SOM, the
aim is to map the projected data to discrete interconnected nodes, where
each node represents a grouping or cluster of relatively homogeneous points.

12.5.1 The SOM Algorithm

Two versions of the SOM algorithm are available: an “on-line” version,
in which items are presented to the algorithm in sequential fashion (one
at a time, possibly in random order), and a “batch” version, in which all
the data are presented together at one time. Both algorithms are due to
Kohonen.

The end product of the SOM algorithm (after a large number of iteration
steps) is a graphical image called a SOM plot. The SOM plot is displayed in
output space and consists of a grid (or network) of a large number of inter-
connected nodes (or artificial neurons). In two dimensions, the nodes are
typically arranged as a square, rectangular, or hexagonal grid. See Figure
12.8. For visualization reasons, an hexagonal grid is preferred.

In a two-dimensional rectangular grid, for example, the set of rows is
K1 = {1, 2, . . . ,K1} and the set of columns is K2 = {1, 2, . . . ,K2}, where
K1 (the height) and K2 (the width) are chosen by the user. Then, a node is
defined by its coordinates, (�1, �2) ∈ K1 ×K2. The total number of nodes,
K = K1K2, is usually chosen by trial and error, initially much larger than
the suspected number of clusters in the data. After an initial SOM analysis,
one can reconfigure the SOM by reducing the number of row and column
nodes. It will be convenient to map the collection of nodes into an ordered
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sequence, so that the node (�1, �2) ∈ K1 × K2 is relabeled as the index
k = (�1 − 1)K2 + �2 ∈ K, where K = {1, 2, . . . ,K}.

The SOM algorithm has much in common with K-means clustering. In
K-means clustering, items assigned to a particular cluster are averaged to
obtain a “cluster centroid” (or “representative” of that cluster), which is
subsequently updated. With this in mind, we associate with the kth node
in a SOM plot a representative in input space, mk ∈ 
r, k ∈ K. Represen-
tatives have also been called synaptic weight vectors, prototypes, codebook
vectors, reference vectors, and model vectors. It is usual to initialize the
process by setting the components of mk, k ∈ K, to be random numbers.

12.5.2 On-line Versions

At the first step of the on-line SOM algorithm, we set up the map size
(i.e., select K1 and K2) and initialize all representatives {mk} so that they
each consist of random values.

At each subsequent step of the algorithm, an input vector X is ran-
domly selected from the data set and standardized so that each component
variable of X has zero mean and variance one. In this way, no compo-
nent variable has undue influence on the results just because it has a large
variance or absolute value. We then present X to the SOM algorithm.

We compute the Euclidean distance between X and each representative
and find that node whose representative yields the smallest distance to X.
If

k∗ = arg min
k
{‖ X−mk ‖}, (12.3)

where ‖ · ‖ denotes Euclidean norm, then the representative mk∗ is declared
the “winner,” and k∗ is referred to as the best-matching unit (BMU) or
winning node for the input vector X.

Next, we look at those nodes that are “neighbors” of the winning node.
A node k′ ∈ K is defined to be a grid neighbor of the node k ∈ K if the
Euclidean distance between mk and mk′ is smaller than a given thresh-
old c. The set of nodes, Nc(k∗), which are grid neighbors of the winning
node k∗, is called the neighborhood set for that node. We then update the
representatives corresponding to each grid neighbor of the winning node
k∗ (including k∗ itself) so that each mk, k ∈ Nc(k∗), is closer to X; the
simplest way of doing this is to use the uniformly weighted update formula,

mk ←mk + α(X−mk), k ∈ Nc(k∗), (12.4)

where 0 < α < 1 is a learning-rate factor. For k /∈ Nc(k∗), we set α = 0, so
that mk, k /∈ Nc(k∗), remains unchanged. This process, which is repeated
a large number of times, runs through the collection of input vectors one at
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a time. A useful “rule of thumb” is to run the algorithm steps for at least
500 times the number of nodes (Kohonen, 2001, p. 112).

A “distance-weighted” version of (12.4) is probably the more popular
strategy,

mk ←mk + αhk(X−mk), k ∈ Nc(k∗), (12.5)

where the neighborhood function h depends upon how close the neighboring
representatives are to mk∗ . Those representatives that are neighbors of mk∗

are adjusted, but not by as much as is mk∗ ; the further a neighbor is from
mk∗ , the less of an adjustment is made. The h-function takes the value
one when the distance is zero and becomes progressively smaller as the
distances become larger. For k /∈ Nc(k∗), we set hk = 0. The most-popular
h-function is the multivariate Gaussian kernel function,

hk = exp
{
−‖mk −mk∗ ‖2

2σ2

}
I[k∈Nc(k∗)], (12.6)

where σ > 0 is the neighborhood radius.
Values of c, α, and σ are provided by the user but may change during the

sequential process. In the on-line process, c is shrunk during the first 1,000
or so observations from, say, an initial value of C (chosen by the user) to 1. If
we take the threshold value c to be so small that each neighborhood contains
only a single point, then we lose the dependencies between representatives,
which would be independently updated, and the SOM algorithm reduces to
an on-line version of K-means clustering, where K is the total number of
nodes. The value of α decreases from a large initial value of just less than 1
to a value slightly greater than zero over the same observation span. Three
forms of the learning rate, α(t), as a function of the iteration number t are
used:

linear: α(t) = α0(1− t/T );

power: α(t) = α0(0.005/α0)t/T ;

inverse: α(t) = α0/(1 + 100t/T ),

where α0 is the initial learning rate and T is the total number of iterations.
In Figure 12.9, the functions α(t) are drawn for the linear, power, and
inverse forms, where we have taken α0 = 0.5 and T = 100. Like α, σ in
(12.6) is also taken to decrease monotonically.

12.5.3 Batch Version

The batch SOM algorithm is significantly faster than the on-line version.
As before, we first make an initial choice of representatives {mk}. For
the kth node, we list all those items Xi whose mk∗ ∈ Nc(k). Then, we
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FIGURE 12.9. Graphs of the on-line SOM learning-rate α(t) as a func-
tion of the iteration number t for the linear, power, and inverse forms,
where the initial learning rate α0 = 0.5 and the total number of iterations
is T = 100.

update mk by averaging the items obtained from the previous step of the
algorithm, where we might use a weighted average, with weights {hik∗}
given by (12.6). Finally, repeat the process a few times.

In a batch SOM display, the nodes are drawn as circles, and the data
points that are mapped to a node are then randomly plotted within the cir-
cle corresponding to that particular node; see Figure 12.10, which presents
a SOM display of the Landsat data. This can be a very useful graphical dis-
play for showing the interrelated structure of the (often high-dimensional)
representatives in a 2D plot, together with the input points that are mapped
to each representative.

If each data point has a unique identifier, such as a gene description,
then it is not difficult to determine the identities of the data points that are
captured by each node. In many clustering problems, however, individual
points do not have unique identifiers; so, instead, class membership can be
used as a plotting symbol in the SOM plot, as in Figure 12.10. From a
SOM plot, cluster patterns should be visible.

12.5.4 Unified-Distance Matrix

A different type of visualization of the cluster structure of a SOM is
a U -matrix, where U stands for “unified distance” (Ultsch and Siemon,
1990). Each entry in a U -matrix is the Euclidean distance (in input space)
between neighboring representatives. For example, if we have a map with
one row of five nodes with representatives {m1,m2,m3,m4,m5}, then the
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FIGURE 12.10. A 6×6 hexagonal batch-SOM plot of the Landsat satellite
image data. The circles correspond to nodes, and the projected points are
plotted randomly within the appropriate circle to which they were deemed
closest. The six classes of vegetation are used as plotting symbols (1=red,
2=blue, 3=turquoise, 4=purple, 5=yellow, 7=black).

U -matrix is a (1× 9)-vector,

U = (u1, u12, u2, u23, u3, u34, u4, u45, u5), (12.7)

where uij =‖ mi − mj ‖ is the Euclidean distance between neighbor-
ing representatives, and ui is a representative-specific value; for example,
u3 = (u23 + u34)/2 is the average distance from that representative to all
neighboring representatives. A small value in a U -matrix indicates that the
SOM nodes are close together in input space, whereas a large value indi-
cates that the SOM nodes, even though they are neighbors in output space,
are quite far apart in input space. Thus, the U -matrix provides a useful
guide to the underlying probability density function of X projected onto
two dimensions.

Rather than displaying these U -matrix values as a 3D landscape (with
low valleys showing clusters and high ridges showing separations between
clusters), it is usual instead to discretize the distance values and then color-
code them in a 2D colormap, where the colors show the gradations in values.
In the SOM Toolbox for Matlab, for example, large distances in the
U -matrix are colored as yellow and red and indicate a cluster border, whereas
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0.219

2.34

4.47

U−matrix

FIGURE 12.11. The U -matrix from the batch SOM with hexagonal grids
for the Landsat satellite image data.

small distances are colored as blue and indicate items in the same cluster.
Figure 12.11 displays the U -matrix with an hexagonal grid for the Landsat
image data, where a number of clusters are visible.

A hierarchical SOM (HSOM) is a tree of maps (U -matrices), where the
“lower” maps on the tree act as a preprocessing stage to the “higher” maps.
As we climb up the hierarchy, the information becomes more abstract.
HSOMs have been successfully used in the development of bibliographic
information retrieval tools. For example, a “document map” has been cre-
ated for organizing astronomical text documents (Lesteven, Poinçot, and
Murtagh, 2001). Using more than 10,300 articles published in several lead-
ing astronomy journals, the authors selected 269 keywords, each of which
appeared in at least five different articles. By clicking on an individual
node in the map, information about the articles located at that node can
be retrieved. From this information, the user can then access article content
(title, authors, abstract, and the on-line full paper).

12.5.5 Component Planes

An additional useful visualization tool is a colormap of the various com-
ponent planes. In general, the “components” are the individual input vari-
ables that make up X.

Figure 12.12 shows the 36 component planes for the Landsat data. Be-
cause these data have an easily visualized physical structure, the compo-
nent planes are arranged into four groups of nine images (corresponding
to the four spectral bands and the nine positions). The component planes
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FIGURE 12.12. Colormaps of the 36 component planes from the batch-
SOM algorithm with hexagonal grids for the Landsat image data. The com-
ponent planes are arranged into four groups (corresponding to the four
spectral bands, 1, 2, 3, and 4), each group having nine component planes
(corresponding to the nine positions (TL, TC, TR; CL, CC, CR; BL, BC,
BR, where T is top position, C is center, B is bottom, L is left, C is center,
R is right) in the 3×3 pixel neighborhoods.
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show that the variable values differ substantially between the four spectral
bands. Within each set of 3×3 pixel neighborhoods, the component planes
show some differences, but those differences are not as significant as be-
tween spectral bands. In this example, the component planes have given us
a good view of the differences in measurement of each of the four spectral
bands.

The U -matrix and component planes derived from SOMs have been ap-
plied to the visualization of gene clusters derived from microarray data (see,
e.g., Tomayo, Slonim, Mesirov, Zhu, Kitareewan, Dmitrovsky, Lander, and
Golub, 1999). In particular, if the genes are expressed at different points in
time or at different temperatures, then the component planes, which can be
thought of as “slices” of the U -matrix, show the cluster structure obtained
at each timepoint or temperature.

12.6 Clustering Variables

We can use the same clustering methods for variables as we used for
clustering observations, the main difference being the measure of distance
between variables. For clustering variables, we generally use a distance met-
ric based upon the correlation matrix for the r variables. The correlations
provide a reasonable measure of “closeness” between pairs of variables.
Those pairs of variables with relatively large correlations can be thought
of as being “close” to each other; those pairs for which the corresponding
correlations are small are considered to be “far away” from each other.

If we standardize each of the r variables to have zero mean and unit
variance, then it is not difficult to show that

1
2(n− 1)

n∑
i=1

(Xji −Xki)2 = 1− ρjk, (12.8)

where ρjk is the correlation between variables Xj and Xk. This shows us
that using squared Euclidean distance,

∑
i(Xji − Xki)2, is equivalent to

using 1− ρjk as a dissimilarity measure. Either distance metric enables us
to utilize any of the hierarchical or nonhierarchical/partitioning clustering
methods discussed above, and the graphical output can be a dendrogram
or a silhouette plot as appropriate.

12.6.1 Gene Clustering

The most popular use of variable clustering has been in clustering the
thousands or tens of thousands of genes measured using a microarray ex-
periment. Concern over the enormous volume of biological information in
an organism’s genome has led to the idea of grouping together those genes
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with similar expression patterns. This type of clustering is referred to as
gene clustering, where, in addition to the usual hierarchical and partition-
ing methods, some specialized methods have been developed.

In gene clustering, the (r×n) data matrix X = (Xij) contains the gene-
expression data derived from a microarray experiment, where i indexes the
row (gene), j indexes the column (tissue sample), and Xij is, for example,
the intensity log-ratio of the abundance of the ith gene in the experimental
sample relative to some reference sample; in other words, Xij is a measure-
ment of how strongly the ith gene is expressed in the jth sample. Because
Xij is the log of a ratio, it follows that those ratios with values between 0
and 1 will yield negative Xij , whereas those ratios greater than 1 will yield
positive Xij . For typical microarray experiments, r � n, so that matrix X
will be “vertically long and skinny.”

12.6.2 Principal-Component Gene Shaving

Suppose our goal is to discover a gene cluster that has high variability
across samples. Let Sk denote the set of (row) indices of a cluster of k
genes. Consider the jth tissue sample (i.e., jth column of X ) and compute
the average gene-expression over the k genes for that sample,

X̄j,Sk
=

1
k

∑
i∈Sk

Xij , j = 1, 2, . . . , n. (12.9)

The variance of the X̄j,Sk
, j = 1, 2, . . . , n, is given by

var{X̄Sk
} =

1
n

n∑
j=1

(X̄j,Sk
− X̄Sk

)2, (12.10)

where

X̄Sk
=

1
n

n∑
j=1

X̄j,Sk
=

1
kn

n∑
j=1

∑
i∈Sk

Xij . (12.11)

Given all possible clusters of size k, we can search for that cluster Sk with
the highest var{X̄Sk

}. Unfortunately, such a search procedure is computa-
tionally infeasible because it entails evaluating

(
r
k

)
different subsets, which

gets big very quickly for r large, as would be common in gene clustering.
Gene shaving (Hastie, Tibshirani, Eisen, Alzadeh, Levy, Staudt, Chan,

Botstein, and Brown, 2000) has been proposed as a method for clustering
genes, where the primary goal is to identify small subsets (i.e., clusters) of
highly correlated (“coherent”) genes that vary as much as possible between
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samples. This method differs from those described previously in that genes
are allowed to be included as members of more than one cluster.

Consider the linear combination,

Zj = aτXj =
r∑

i=1

aiXij , (12.12)

of the jth column gene expressions, where Xj = (X1j , · · · ,Xrj)τ , a =
(a1, · · · , ar)τ , the{ai}arepositive,negative,orzeroweights,and

∑r
i=1 a2

i = 1.
For example, for given k, we could set ai = ±1/

√
k for i ∈ Sk, and zero

otherwise. We wish to find the coefficients {ai} such that the variance of Zj

is maximized.
The solution is given by the first principal component (PC1) of the r rows

of X . The min(r−1, n) principal components of X are referred to as eigen-
genes. The individual genes may be ordered according to the magnitude
(from largest to smallest in absolute value) of their respective coefficients
in the first eigen-gene PC1; we expect that many of the coefficients in PC1
will be close to zero. We could threshold those “near-zero” coefficients (i.e.,
set the coefficient value equal to zero if it is smaller than a prespecified
limit), thereby removing those particular genes from the cluster, but, from
experience with simulations, we can do better.

As a selection process for weeding out unimportant genes, we instead
compute the inner product (or correlation) of each gene with PC1 and
“shave off” (i.e., remove) those genes (rows of X ) with the 100α% smallest
absolute inner products (e.g., α = 0.1). This shaving process decreases the
size of the set of available genes, say to k1 genes. From the reduced subset
of k1 rows, we recompute the first principal component, which, in turn, is
shaved to a subset of, say, k2 rows. This iteration is repeated until a finite
sequence of nested gene clusters, Sr ⊃ Sk1 ⊃ Sk2 ⊃ · · · ⊃ S1, is obtained,
where Sk denotes the set of indices of a cluster of k genes.

The next step is to decide on k and Sk. For a given value of k, define the
following ANOVA-type decomposition of the total variance,

VT =
1
kn

∑
i∈Sk

n∑
j=1

(Xij − X̄Sk
)2 = VB + VW , (12.13)

where

VB =
1
n

n∑
j=1

(X̄j,Sk
− X̄Sk

)2, (12.14)

VW =
1
n

n∑
j=1

[
1
k

∑
i∈Sk

(Xij − X̄j,Sk
)2
]

(12.15)
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are the between-variance and within-variance, respectively. A natural sta-
tistic is

R2(Sk) =
VB

VT
× 100% =

VB/VW

1 + VB/VW
× 100%, (12.16)

which is the percentage of the total variance explained by the gene cluster
Sk. The larger the value of R2, the more coherent the gene cluster.

Hastie et al. now determine the cluster size k by a permutation argument
applied to the R2-value in (12.16). The “significance” of the R2-value is
judged by comparing it with its expectation computed under a suitable ref-
erence null distribution; in this case, the reference distribution assumes the
rows and columns of X are independent. Randomly permute the elements
of each row of X to get X ∗. Do this B times to get X ∗b, b = 1, 2, . . . , B.
Apply the shaving algorithm to X ∗b, that gives S∗b

k , and then compute
R2(S∗b

k ), b = 1, 2, . . . , B.
The gap statistic (Tibshirani, Walther, and Hastie, 2001) is defined as

Gap(k) = R2(Sk)−R2(S∗k), (12.17)

where R2(S∗k) is the average of all the {R2(S∗b
k ), b = 1, 2, . . . , B}. We choose

that value, k̂, of k (and, hence, S
k̂
) which results in the maximum gap; that

is, k̂ = arg maxk Gap(k). A useful graphical technique is to plot the gap
curve, which is a plot of Gap(k) against cluster size k. Set k̂ = k̂(1).

After determining the number, k̂(1), of genes and their identities, we look
for a second gene cluster. Before we do that, we need to remove the effects
of the first cluster of genes. Hastie et al. apply an orthogonalization trick:
first, compute the first supergene, X̄(1) = (X̄(1)

1 , · · · , X̄(1)
r )τ , an r-vector

of average genes corresponding to the first cluster S
k̂(1) , where X̄

(1)
j =∑

i∈Ŝ
k(1)

Xij/k̂(1), j = 1, 2, . . . , r; second, orthogonalize X by regressing

each row of X on the supergene X̄(1) and replacing the rows of X by the
residuals from each such regression. This gives us the matrix X1. Rerun
the shaving algorithm on X1 and then use the gap statistic to obtain k̂(2),
the second gene cluster S

k̂(2) , and the second supergene X̄(2). This process
is applied repeatedly a total of t times, where t is prespecified, by modifying
X and X̄ at each step; at the kth step, X is orthogonal to all the previously
obtained supergenes X̄(�), � = 1, 2, . . . , k − 1.

One of the main steps in the gene-shaving process is the use of the gap
statistic to determine the cluster size k. Hastie et al. report good results
for the gap statistic when the clusters are well-separated. However, there is
evidence that the gap statistic tends to overestimate the number of clusters
(Dudoit and Fridlyand, 2002; Simon et al., 2003, p. 151).

After identifying each gene cluster, the rows of X can be reordered to
display those gene clusters more explicitly. The tissue samples (columns of
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X ) can also be reordered according to either the average gene expression
of each column of X or some external covariate reflecting additional infor-
mation, such as tissue type or cancer class. A supervised version of gene
shaving (Hastie et al., 2000) has been developed, which, for example, is able
to identify gene clusters that are closely associated with patient survival
times.

12.6.3 Example: Colon Cancer Data

We apply PC gene-shaving to the colon cancer microarray data described
in Section 2.2.1. The microarray data consist of expression levels of 92
genes obtained from a microarray study on 62 colon tissue samples. The
gene-expression heatmap for the colon cancer data is displayed in Figure
2.1. Figure 12.13 shows the gap curves for the first four clusters derived
using the gene-shaving algorithm. For each cluster, the value of k at which
the gap curve attains its maximum is chosen to be the estimated size of
the cluster. The estimated cluster sizes for the first four clusters are 41,
15, 6, and 19, respectively. The four heatmaps for those gene clusters are
displayed in Figure 12.14, where the samples are ordered by the values of
the column averages; each panel gives the values of the total variance VT ,
the between-variance VB , the ratio VB/VW , and R2 = VB/VT × 100%, the
percentage of the total variance explained by that cluster. The largest R2

value was that of the third cluster at 64.8%.
The four clusters in Figure 12.14 display different patterns of gene ex-

pression. The first cluster has an interesting feature in that the genes split
into two equal-sized subgroups: for a given tissue sample, when the “up-
per” subgroup of genes are strongly upregulated (red color), the “lower”
subgroup are strongly downregulated (green color), and vice versa. Fur-
thermore, the red/green split depends upon whether the sample is a tumor
sample or a normal sample. The second and third clusters of genes have
the same overall appearance: in both, the tumor samples (mostly located
on the right of the heatmap) tend to be upregulated, whereas normal sam-
ples (mostly located on the left of the heatmap) tend to be downregulated.
The reds and greens of the fourth cluster are somewhat more randomly
sprinkled around the heatmap, although there are pockets of adjacent cells
(e.g., the top few rows and a portion of the right-hand side) that seem to
share similar expression patterns.

12.7 Block Clustering

So far, our focus has been on clustering observations (cases, samples) or
variables separately. Now, we consider the problem of clustering observa-
tions and variables simultaneously.
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FIGURE 12.13. Gap curves for the first four clusters of colon cancer
data. The gap estimate of cluster size is that value of k for which the gap
curve is a maximum. The estimated cluster sizes are first cluster (top-left
panel), 41; second cluster (top-right panel), 15; third cluster (bottom-left
panel), 6; and fourth cluster (bottom-right panel), 19.

The simplest way to do this is to apply a hierarchical clustering method
to rows and columns separately. Figure 12.15 displays the heatmap of
the colon cancer data, where rows and columns have been rearranged
through separate hierarchical clustering algorithms. We see a partition of
the heatmap into blocks of mainly reds or greens. The rearrangement of
rows (colon tissue samples) does not correspond to the known division into
tumor samples and normal samples.

Block clustering, also known as direct clustering (Hartigan, 1972), pro-
duces a simultaneous reordering of the rows and columns of the (r × n)
data matrix X = (Xij) so that the data matrix is partitioned into K sub-
matrices or “data clusters.” As an example, Hartigan (1974) clustered the
voting records of 126 nations on 50 selected issues at the United Nations,
where each vote was coded as 1 (= yes), 2 (= abstain), 3 (= no), 5 (=
absent), or 0 (= unknown), and the “absents” are treated as missing data.
To motivate the two-way clustering, a natural problem was whether “blocs”
of countries exist that vote alike on “blocs” of questions that arise from
the same issue.
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FIGURE 12.14. Heatmaps for the first four gene clusters for the colon
cancer data, where each cluster size is determined by the maximum of that
gap curve. The genes are the rows and the samples are the columns. The
samples are ordered by the values of the column averages.
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FIGURE 12.15. Separate hierarchical clustering of rows (colon tissue
samples) and columns (genes) of the colon cancer data.

In block clustering, each entry in the data matrix appears in one and only
one data cluster, and each data cluster corresponds to a particular “row
cluster” and a particular “column cluster.” The block-clustering algorithm
given in Table 12.8 partitions the rows and columns of X into homogeneous,
disjoint blocks (i.e., where the elements of each block can be closely approx-
imated by the same value) so that the row clusters and column clusters are
hierarchically arranged to form row and column dendrograms, respectively.

12.8 Two-Way Clustering of Microarray Data

For clustering gene expression data, it can be argued that creating dis-
joint blocks of genes and samples may be an over-simplification of the sit-
uation. Biological systems are notoriously complicated, and interrelations
between these systems may result from some genes possessing multiple
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TABLE 12.8. Hartigan’s block-clustering algorithm.

1. Start with all data in a single block (i.e., K = 1).

2. Let B1, B2, . . . , BK denote a partition of the rows and columns of X into
K blocks (or data clusters), where Bk = (Rk, Ck) consists of a set, Rk, of
rk rows and a set, Ck, of ck columns of X , k = 1, 2, . . . , K.

3. Within the kth block Bk, compute X̄k, the average of all the Xij within that

block. Approximate X by the matrix X̂ = (X̂ij), where the X̂ij = X̄k are

constant within block Bk. Compute ESS =
∑K

k=1

∑
(i,j)∈Bk

(Xij − X̄k)2,

the total within-block variance.

4. At the hth step, there will be h blocks, B1, B2, . . . , Bk, . . . , Bh. Suppose we
destroy Bk by splitting it into two subblocks, B′

k and B′′
k , either by splitting

the rows or the columns. Consider a row-split of the block Bk = (Rk, Ck).
Suppose Rk contains a previous row-split of a different block B� = (R�, C�)
into B′

� = (R′
�, C′

�) and B′′
� = (R′′

� , C′′
� ). Then, the only row-split allowable

for Bk is a fixed split given by R′
k = R′

� and R′′
k = R′′

� . Similarly for column
splits. A free split is a split in which no such restrictions are specified.

5. The reduction in ESS due to row-splitting Bk into B′
k and B′′

k is given by

∆ESS = ckr′k[X̄(B′
k) − X̄(Bk)]2 + ckr′′k [X̄(B′′

k ) − X̄(Bk)]2,

where X̄(B) denotes the average of X over the block B.

6. At each step, compute ∆ESS for each (row or column) split of all existing
blocks. Choose that split that maximizes ∆ESS.

7. Stop when any further splitting leads to ∆ESS becoming too small or when
the number of blocks K becomes too large.

functions. Hence, it may be more realistic to accept the idea that certain
clusters should naturally overlap each other. Furthermore, similarities be-
tween related genes and between related samples may be more complex
due to gene-sample interaction effects.

12.8.1 Biclustering

With this in mind, the biclustering approach (Cheng and Church, 2000)
seeks to divide the (r×n)-matrix X = (Xij) of gene-expression data into a
pre-specified number of “biclusters,” which do not have to be disjoint. Each
bicluster corresponds to a subset of the genes and a subset of the samples
that possess a high degree of similarity. So, certain rows and columns of
X will appear in several biclusters. The basic idea is to determine in a
sequential fashion one bicluster at a time.
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A bicluster is defined as a submatrix, X (I,J ), of X , where I is a subset
of nI rows and J is a subset of nJ columns in X . Consider the expression
level Xij , i ∈ I, j ∈ J . If we model the bicluster by an additive two-way
analysis of variance (ANOVA) model, then we can write

Xij ≈ µ + αi + βj , i ∈ I, j ∈ J , (12.18)

where µ is the overall mean effect, αi represents the effect of the ith row, βj

the effect of the jth column, and, for uniqueness, we assume that
∑

i∈I αi =∑
j∈J βj = 0. Least-squares estimates of µ, αi, and βj are given by

µ̂ = X̄··, α̂i = X̄i· − X̄··, β̂j = X̄·j − X̄··, (12.19)

where
X̄i· = n−1

J
∑
j∈J

Xij , X̄·j = n−1
I

∑
i∈I

Xij (12.20)

X̄·· = (nInJ )−1
∑
i∈I

∑
j∈J

Xij . (12.21)

The least-squares residual at Xij is defined as

êij = Xij − µ̂− α̂i − β̂j = Xij − X̄i· − X̄·j + X̄··, i ∈ I, j ∈ J . (12.22)

Let
RSS(I,J ) =

∑
i∈I

∑
j∈J

ê2
ij (12.23)

be the residual sum of squares for the bicluster. The objective function is

H(I,J ) =
RSS(I,J )

nInJ
, (12.24)

which is proportional to the residual mean square RMS(I,J ) for the bi-
cluster; that is, RMS = [(nI − 1)(nJ − 1)/nInJ ]H. The aim is to find a
row set I and a column set J such that H(I,J ) has a small value.

A bicluster is constructed by sequentially deleting one or multiple rows or
columns at a time from X , where the choice is determined at each step so as
to achieve the largest decrease in the value of H. Deleting rows or columns
will reduce the value of H. A similar result allows one to add some rows or
columns without increasing H. Like all greedy algorithms, this algorithm
needs a threshold value; it is usual to fix a maximum-acceptable threshold
δ ≥ 0 for the value of H while running the algorithm.

As each bicluster is found, the elements of X corresponding to that bi-
cluster are replaced by random numbers (so that no recognizable pattern
from that bicluster is retained that could be correlated with future biclus-
ters), and the next bicluster is sought. The random numbers are sampled
from a uniform density over a range appropriate for the given application.
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12.8.2 Plaid Models

Plaid models (Lazzeroni and Owen, 2002) form a family of models for car-
rying out block-clustering, in which sums of “layers” of two-way ANOVA
models are fitted to gene-expression data. As such, it generalizes the bi-
clustering approach. Each “layer” is formed by a subset of the rows and
columns and can be viewed as a two-way clustering of the elements of the
data matrix, except that genes can be members of different layers or of
none of them. Hence, overlapping clusters (i.e., layers) are allowed.

There are several different types of plaid models, some more detailed
than others. Consider the following simple model,

Xij ≈ µ0 +
K∑

k=1

µkρikκjk. (12.25)

In this model, µ0 represents the expression level for the background layer,
µk represents the expression level in the kth layer, and ρik and κjk are
two indicators whose value is 1 if the subscripts are equal and 0 otherwise.
Thus, ρik = 1 (or 0) indicates the presence (or absence) of the ith gene
in the kth gene-layer, whereas κjk = 1 (or 0) indicates the presence (or
absence) of the jth sample in the kth sample-layer. The expression level µk

is said to be upregulated if µk > 0 and downregulated if µk < 0.
Requiring each gene and each sample to be in exactly one cluster would

mean that
∑

k ρik = 1 for every i, and
∑

k κjk = 1 for every j, respectively.
To allow overlapping levels, these constraints would have to be relaxed: for
example, we could set

∑
k ρik ≥ 2 for some i, or

∑
k κjk ≥ 2 for some j. We

would also need to recognize that there may be genes or samples that do
not belong naturally to any layer; for such genes,

∑
k ρik = 0, and for such

samples,
∑

k κjk = 0. In general, we do not need to impose any restrictions
on the {ρik} and {κjk}.

A more general ANOVA-type model is given by

Xij ≈ µ0 +
K∑

k=1

(µk + αik + βjk)ρikκjk, (12.26)

where αik and βjk measure the effects of the ith row (genes) and jth column
(samples), respectively, in the kth layer. To avoid overparameterization, we
require

∑
i ρikαik =

∑
j κjkβjk = 0, k = 1, 2, . . . ,K. The description of

model (12.26) as a “plaid” model derives from the visual appearance of the
fitted heatmap of µk + αik + βjk, where we see the row-stripes of the {ρik}
and the column-stripes of the {κjk}.

Let θijk = µk + αik + βjk, k = 1, 2, . . . ,K. Then, we can write the plaid
model (12.26) as

Xij ≈ θij0 +
K∑

k=1

θijkρikκjk. (12.27)
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To estimate the parameters {θijk} in (12.27), we minimize the criterion,

Q =
1
2

r∑
i=1

n∑
j=1

(
Xij − θij0 −

K∑
k=1

θijkρikκjk

)2

, (12.28)

with respect to {θijk}, {ρik}, {κjk}, where ρik, κjk ∈ {0, 1}. Given the num-
ber of layers K, this optimization problem quickly becomes computation-
ally infeasible (each gene and each sample can be in or out of each layer, and
so there are (2r − 1)(2n − 1) possible combinations of genes and samples).

To overcome this problem, the minimization of Q is turned into an iter-
ative process, where we add one layer at a time. Suppose we have already
fitted K−1 layers, and we need to identify the Kth layer by minimizing Q.
If we let

Zij = Xij − θij0 −
K−1∑
k=1

θijkρikκjk (12.29)

denote the “residual” remaining after the first K − 1 layers, then we can
write Q as

Q =
1
2

r∑
i=1

n∑
j=1

(Zij − θijKρiKκjK)2 (12.30)

=
1
2

r∑
i=1

n∑
j=1

(Zij − (µK + αiK + βjK)ρiKκjK)2 . (12.31)

We wish to minimize Q subject to the identifying conditions

r∑
i=1

αiKρ2
iK =

n∑
j=1

βjKκ2
jK = 0. (12.32)

From (12.31) and (12.32), we set up the usual Lagrangian multipliers, dif-
ferentiate wrt µK , αiK , and βjK , set the derivatives equal to zero, and
solve. The results give:

µ∗
K =

∑
i

∑
j ZijρiKκjK

(
∑

i ρ2
iK)(

∑
j κ2

jK)
(12.33)

α∗
iK =

∑
j(Zij − µKρiKκjK)κjK

ρiK(
∑

j κ2
jK)

(12.34)

β∗
jK =

∑
i(Zij − µKρiKκjK)ρiK

κjK(
∑

i ρ2
iK)

. (12.35)

Given the values of ρ
(s−1)
iK and κ

(s−1)
jK from the (s − 1)st iteration, we use

(12.33)–(12.35) to update θ
(s)
ijK at the sth iteration. Note that updating
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α∗
iK only requires data for the ith gene, and updating β∗

jK only requires
data for the jth sample; hence, the resulting iterations are very fast.

Given values for θijK , the update formulas for ρiK and κjK are found by
differentiating (12.14) wrt ρiK and κjK , setting the results equal to zero,
and solving. This gives:

ρ∗iK =

∑
j ZijθijKκjK∑

j θ2
ijKκ2

jK

(12.36)

κ∗
jK =

∑
i ZijθijKρiK∑

i θ2
ijKρ2

iK

. (12.37)

So, set the initial values of all the ρs and the κs to be in (0, 1) (say, make
them all equal to 0.5). Then, given values of θ

(s)
ijK and κ

(s−1)
jK , we use (12.20)

to update ρ
(s)
iK . Similarly, given values of θ

(s)
ijK and ρ

(s−1)
iK , we use (12.21) to

update κ
(s)
jK . The trick is to keep ρ and κ away from 0 and 1 early in the

iteration process, but to force ρ and κ toward 0 and 1 late in the process.
At convergence, the estimated parameters for the kth layer are denoted by
µ̂k, α̂ik, and β̂jk, k = 1, 2, . . . ,K.

The absolute values of the row effects, |µ̂k + α̂ik|, and the column effects,
|µ̂k + β̂jk|, for the kth layer (k = 1, 2, . . . ,K) can each be ordered to show
which genes and samples are most affected by the biological conditions of
that layer. Within the kth layer, genes are upregulated if µ̂k + α̂ik > 0,
whereas genes with µ̂k + α̂ik < 0 are said to be downregulated. The “size”
or “importance” of the kth layer is indicated by the value of

σ2
k =

n∑
i=1

r∑
j=1

ρ∗ijκ
∗
jkθ2

ijk, (12.38)

and this quantity is used in a permulation argument by Lazzeroni and
Owen to choose the number of layers K.

12.8.3 Example: Leukemia (ALL/AML) Data

The data for this example4 are obtained from a study of two types of
acute leukemias — acute lymphoblastic leukemia (ALL) and acute myeloid
leukemia (AML) (Golub et al, 1999). The leukemia data, which consist
of gene expression levels for 7,219 probes from 6,817 human genes, were

4The leukemia data can be found in the file ALL AML Merge.txt on the book’s website.
The data are available in the Bioconductor R package golubEsets, and the preprocess-
ing code is in the Bioconductor R package multtest, both of which can be downloaded
from the website http://www.bioconductor.org.
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derived using Affymetrix high-density oligonucleotide arrays. There are 72
mRNA samples made up of 47 ALL samples (38 B-cell and 9 T-cell) and 25
AML samples extracted from bone marrow (BM) or from peripheral blood
(PB).

The leukemia data were preprocessed following the methods of Golub
et al. (see Dudoit, Fridlyand, and Speed, 2002): (1) a floor and ceiling of 100
and 16,000, respectively, were set for the expression levels; (2) any gene that
has low variability (i.e., any gene with either max /min ≤ 5 or max−min ≤
500) over all tissue samples was excluded; (3) the remaining expression
levels were transformed using a logarithmic (base-10) transformation; (4)
the preprocessed leukemia data were standardized by centering (mean 0)
and scaling (variance 1) each of the mRNA samples across rows (genes).
This left a data array, X = (Xgi), consisting of 3,571 rows (genes) by 72
columns (mRNA samples), where Xgi denotes the expression level for the
gth gene in the ith mRNA sample.

We applied the plaid model to the leukemia data. Our strategy consisted
of (1) four shuffles in the stopping rule; (2) a common sign for µ + αi and
for µ + βj within each layer; and (3) any row (or column) released from a
layer if being part of a layer failed to reduce its sum of squares by at least
0.51. The algorithm stopped after finding 11 layers, each containing αi and
βj components. After the 11th layer, the algorithm failed to find a layer
that retained any rows under the release criterion.

Table 12.9 shows the composition of each of the 11 layers. We see that
layer 4 is completely composed of AML samples, layer 5 consists of only
ALL B-cell samples, and layers 3 and 11 contain only ALL samples. All
other layers are mixed ALL and AML samples. Only 55 of the 72 samples
are contained in the 11 layers, so that 17 samples were not included in any
layer. The biggest percentage omission is for the ALL T-cell samples with
5 out of 9 samples not included; 9 of the 38 ALL B-cell samples and 3 of
the 25 AML samples are omitted.

Table 12.10 gives the estimated column effects, µ̂k + β̂jk, in the first
8 layers; notice that the signs of each column effect are the same within
each layer. We see a pattern of similar mRNA samples appearing in the
odd layers 1, 3, 5, 7, and 11, and in the even layers 2, 4, 6, and 8. These
odd-even patterns, however, are switched in layers 9 and 10.

While we see from Table 12.9 that the number of samples in the different
layers is about the same, the number of genes decreases from more than
200 in the first few layers to a much smaller number in each of the last few
layers. About half of the genes in each of the first two layers are the same,
whereas a third of the genes in layer 3 are present in layer 4 and vice versa.
The amount of gene overlap in the other layers is negligible.
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TABLE 12.9. Plaid analysis of the leukemia data. Composition of each
layer by the number of genes (rows) and number of samples (columns), and
the number of ALL B-cells, ALL T-cells, and AML samples in each layer.

Layer Genes Samples ALL-B ALL-T AML

1 230 14 12 0 2
2 222 16 9 1 6
3 265 13 12 1 0
4 238 19 0 0 19
5 61 14 14 0 0
6 13 16 3 2 11
7 15 13 11 0 2
8 3 17 6 2 9
9 11 17 5 1 11

10 5 14 13 0 1
11 10 10 9 1 0

12.9 Clustering Based Upon Mixture Models

So far, our treatment of clustering has been algorithmic; rather than
creating clustering methods based upon a statistical model with stochastic
elements (so that the the full force of the traditional statistical inference
framework could be applied), we have used nonstochastic methods whose
computational solution in each case is an iterative algorithm, which is a
general optimization routine for the treatment of incomplete data. The
EM algorithm has been found to be especially valuable for clustering data
in problems from machine learning, computer vision, vector quantization,
image restoration, and market segmentation.

Suppose X ∼ p(·|ψ), where ψ is an unknown parameter vector. The
complete-data likelihood is given by

L(ψ|X) = p(X|ψ). (12.39)

Now, suppose some components of X are missing. We can write

X = (Xτ
obs,X

τ
mis)

τ , (12.40)

where Xobs is the observed part of X, and Xmis is the missing part of X. If
the probability that a particular variable is unobserved depends only upon
Xobs and not on Xmis, then the observed-data likelihood is obtained by
integrating Xmis out of the complete-data likelihood,

Lobs(ψ|Xobs) =
∫

p(Xobs,Xmis|ψ) dXmis. (12.41)
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TABLE 12.10. Plaid analysis of the leukemia data. Estimated column
effects (µ̂ + β̂j) for the first 8 layers. Samples whose estimated effects do
not appear in a column are not included in that layer.

Sample 1 2 3 4 5 6 7 8

ALLT 3 0.72 0.53
ALLB 4 0.63
ALLB 5 –1.04 1.15 –0.63
ALLT 6 0.66 0.84
ALLB 7 0.81 1.37
ALLB 8 1.09 0.74 1.58
ALLB 13 –0.86 1.10 –0.68
ALLT 14 0.61
ALLB 15 –1.19 1.07 –0.82 –0.96
ALLB 16 0.63
ALLB 19 –0.51
ALLB 20 –1.24 1.39 –0.99
ALLB 21 –0.81 1.47
ALLB 22 0.65
ALLT 23 0.49
ALLB 24 0.96
ALLB 27 1.54 0.70 1.54
AML 28 –0.65 0.47 0.67
AML 29 –0.77 –0.85
AML 30 –0.79
AML 31 –0.54 0.70
AML 32 –0.70 0.71
AML 33 0.86 –1.13 0.78 0.60
AML 34 0.69 –0.70 0.84
AML 35 1.06 –0.62
AML 36 –0.96 0.69
AML 37 –0.92 0.88 0.39
AML 38 0.67 –0.84 0.93
ALLB 39 0.72 0.96
ALLB 40 0.86
ALLB 41 –1.09 1.08 –0.63 –0.78
ALLB 43 –1.25
ALLB 44 –0.72 –0.43 –0.63
ALLB 45 –0.74 –0.41 –0.75
ALLB 46 –0.80 –0.47 –0.89
ALLB 47 0.63 –0.60
ALLB 48 –0.74 1.25 –0.78 –0.69
ALLB 49 1.29 1.07
AML 50 –0.85 0.93 1.31
AML 51 –0.85 0.97
AML 53 –0.94 0.77 0.85
ALLB 56 0.85 0.63
AML 58 1.04 –0.78 0.77 0.68
ALLB 59 –0.36 –0.67
AML 61 0.71 –0.59 0.58
AML 62 –0.60
AML 63 –0.68
AML 64 1.06 –0.82 0.76
AML 65 –0.49
AML 66 –1.04 –0.71
ALLB 68 –1.26 1.19 –0.74 –1.01
ALLB 69 –1.04 0.90 –0.76 –0.83
ALLB 70 –0.53
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TABLE 12.11. The EM algorithm.

1. Input: ψ̂(0) = initial guess for the parameter vector ψ.

2. Let X = (Xτ
obs,X

τ
mis)

τ represent the “complete” data, where Xobs and
Xmis are the portions of X which are observed and missing, respectively.

3. For m=0,1,2,. . . , iterate between the following two steps:

• E-step: Compute

Q(ψ | ψ̂(m)) = E
{

�(ψ|X) | Xobs, ψ̂
(m)

}

as a function of ψ.

• M-step: Find ψ̂(m+1) = arg maxψ Q(ψ | ψ̂(m)).

4. Stop when convergence of the log-likelihood is attained.

The MLE for ψ based upon the observed data Xobs is the ψ that maximizes
Lobs(ψ|Xobs). Unfortunately, a direct attack on this problem usually fails.

The EM algorithm is tailor-made for this type of problem. It is a two-
step iterative process, incorporating an expectation step (E-step) with a
maximization step (M-step); see Table 12.11 for the algorithmic details.
The E-step computes the conditional expectation of the complete-data log-
likelihood given the observed data and the current parameter estimate, and
the M-step updates the parameter estimate by maximizing the conditional
expectation from the E-step.

Because p((Xmis|Xobs,ψ) = p(Xobs,Xmis|ψ)/p(Xobs|ψ), the observed-
data log-likelihood is

�(ψ|Xobs) = log p(Xobs|ψ)
= �(ψ|X)− log p(Xmis|Xobs,ψ), (12.42)

where �(ψ|X) is the complete-data log-likelihood, which may be easy to
compute, and log p(Xmis|Xobs,ψ) is the part of the complete-data log-
likelihood due to the missing data. Taking expectations of (12.39) wrt the
conditional density p(Xmis|Xobs,ψ

′), where ψ′ is a current value of ψ,
yields

�(ψ|Xobs) = Q(ψ|ψ′)−H(ψ|ψ′), (12.43)

where

Q(ψ|ψ′) =
∫

�(ψ|X)p(Xmis|Xobs,ψ
′)dXmis

= E{�(ψ|X)|Xobs,ψ
′}, (12.44)
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and

H(ψ|ψ′) =
∫

log p(Xmis|Xobs,ψ)p(Xmis|Xobs,ψ
′)dXmis

= E{log p(Xmis|Xobs,ψ)|Xobs,ψ
′}. (12.45)

If we now set

h(Xmis) =
p(Xmis|Xobs,ψ)
p(Xmis|Xobs,ψ

′)
, (12.46)

then,

H(ψ|ψ′)−H(ψ′|ψ′) = E{log h(Xmis)|Xobs,ψ
′}

≤ E{h(Xmis|Xobs,ψ
′)} − 1

= 0, (12.47)

where we have used the inequality log x ≤ x−1. Thus, H(ψ|ψ′) ≤ H(ψ′|ψ′).
From (12.43), the difference in �(ψ|Xobs) at the mth and (m + 1)st

iterations is

�(ψ(m+1)|Xobs)− �(ψ(m)|Xobs)

≥ Q(ψ(m+1)|ψ(m))−Q(ψ(m)|ψ(m)) ≥ 0, (12.48)

where we have used (12.44) and the fact that the EM algorithm finds
ψ(m+1) to make Q(ψ(m+1)|ψ(m)) > Q(ψ(m)|ψ(m)). Thus, the log-likelihood
function increases at each iteration (more accurately, it does not decrease).
From this result, it can be shown that (under reasonably mild regularity
conditions) convergence of the log-likelihood, at least to a local maximum,
is ensured by this iterative process (Wu, 1983). Note, however, that local
convergence of the log-likelihood does not automatically imply local con-
vergence of the parameter estimates, although the latter convergence holds
under additional regularity conditions.

The EM algorithm possesses reliable convergence properties and low cost
per iteration, does not require much storage space, and is easy to program.
Yet, it can be extremely slow to converge if there are many missing data
and if the size of the data set is large. (We note that some effort has been
made to speed up the EM algorithm.) Furthermore, because convergence
is guaranteed only to a local maximum, and because likelihood surfaces
often possess many local maxima, it is usually necessary to run the EM
algorithm using different random starts to try to find a global maximum
of the likelihood function.

12.9.1 The EM Algorithm for Finite Mixtures

In mixture problems, if we knew which observations belonged to which
group or class, then we could divide up the data by class and then estimate
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the parameters of each component density separately. Not knowing the
class labels means that the labels and the parameters have to be estimated
simultaneously.

One of the first applications of the EM algorithm was to the finite mix-
tures problem. The “trick” here is to introduce a K-vector of dummy vari-
ables,

Xi,mis = (Xi1,mis, · · · ,XiK,mis)τ , (12.49)

where

Xik,mis =
{

1 if Xi,obs ∈ Πk

0 otherwise (12.50)

k = 1, 2, . . . ,K, and use it to augment the ith observation, Xi,obs, to pro-
duce a “complete” data vector,

Xi = (Xτ
i,obs,X

τ
i,mis)

τ , i = 1, 2, . . . , n. (12.51)

This idea of creating “missing data” for this problem as indicators of the
unknown class labels was a key innovation of Dempster, Laird, and Rubin
(1977).

Assume now that Xi,mis is iid according to a single draw from a K-class
multinomial distribution with probabilities πk = Prob{Xi,obs ∈ Πk}, k =
1, 2, . . . ,K. That is,

Xi,mis
iid∼ MultK(1,π), i = 1, 2, . . . , n, (12.52)

where π = (π1, . . . , πK)τ . Hence,

Xi,obs|Xi,mis ∼
K∏

k=1

[fk(Xi,obs|θk)]Xik,mis . (12.53)

From (13.49) and (13.50), the complete-data log-likelihood is

�(ψ|X) = �({θk}, {πk}, {Xik,mis}|X)

=
n∑

i=1

K∑
k=1

Xik,mis log{πkfk(Xi,obs|θk)}. (12.54)

The E-step computes Q(ψ|ψ̂(m)) by replacing each dummy variable Xik,mis

in (12.54) by its conditional expectation,

X̂
(m)
ik,mis = E{Xik,mis|Xi,obs, ψ̂

(m)}, (12.55)

where ψ̂(m) is the current estimate of ψ. In other words, at the mth iter-
ation, Xik,mis is estimated by the posterior probability that Xi,obs ∈ Πk;
from Section 9.5.1, this is

X̂
(m)
ik,mis =

π̂
(m)
k fk(Xi,obs|θ̂

(m)

k )
∑K

j=1 π̂
(m)
j fj(Xi,obs|θ̂

(m)

j )
. (12.56)
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The M-step then takes the probabilities of class membership provided by
the E-step, inserts them into (12.54) in place of Xik,mis, and updates the
parameter values from the E-step by maximizing (12.54) wrt {πk}, {θk}.
The M-step for the mixture proportions {πk} is given by

π̂
(m+1)
k = n−1

n∑
i=1

X̂
(m)
ik,mis, k = 1, 2, . . . ,K. (12.57)

The M-step for the parameter vector ψ depends upon the context. The
E-step and M-step are iterated as many times as it is necessary to achieve
convergence of the log-likelihood. The ML determination of the class of
the ith observation is then the class corresponding to the largest value of
X̂ik,mis, k = 1, 2, . . . ,K.

Consider, for example, a mixture of the two univariate Gaussian densities
φ(x|θ1) and φ(x|θ2), where the parameter vectors are θ1 = (µ1, σ

2
1)τ and

θ2 = (µ2, σ
2
2)τ , and the mixture proportions are π1 = 1 − π and π2 = π.

We also drop the subscript k. The E-step (13.56) reduces to

X̂
(m)
i,mis =

π̂(m)φ(Xi,obs|θ̂(m)
2 )

(1− π̂(m))φ(Xi,obs|θ̂(m)
1 ) + π̂(m)φ(Xi,obs|θ̂(m)

2 )
, (12.58)

where π̂(m) = n−1
∑n

i=1 X̂
(m)
i,mis.Bymaximizing(13.54)whilefixingXik,mis =

X̂
(m)
ik,mis, the M-step yields the estimates

µ̂
(m+1)
1 =

∑n
i=1(1− X̂

(m)
i,mis)Xi,obs∑n

i=1(1− X̂
(m)
i,mis)

, (12.59)

(σ̂2
1)(m+1) =

∑n
i=1(1− X̂

(m)
i,mis)(Xi,obs − µ̂

(m+1)
1 )2

∑n
i=1(1− X̂

(m)
i,mis)

, (12.60)

µ̂
(m+1)
2 =

∑n
i=1 X̂

(m)
i,misXi,obs∑n

i=1 X̂
(m)
i,mis

, (12.61)

(σ̂2
2)(m+1) =

∑n
i=1 X̂

(m)
i,mis(Xi,obs − µ̂

(m+1)
2 )2

∑n
i=1 X̂

(m)
i,mis

. (12.62)

Experimentation with this mixture model has shown that whereas conver-
gence of the log-likelihood may be incredibly slow, most of the progress
toward convergence tends to occur during the first few iterations (Redner
and Walker, 1984).

In the multivariate Gaussian mixture problem (see Exercise 12.9), the
“curse of dimensionality” raises its ugly head, where the number of para-
meters grows quickly with the increase in dimensionality. Although PCA
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is often used as a first step to reduce the dimensionality, this does not help
in mixtures problems because any class structure as exists may not be pre-
served by the principal components (Chang, 1983). Furthermore, whenever
estimates of the covariance matrix become singular or nearly singular, the
EM algorithm breaks down; this can happen, for example, if the mixture
has too many components and at least one of those components has too
few observations, or when the dimensionality is greater than the number of
observations, such as occurs with microarray experiments. This is currently
an area of much research (Fraley and Raftery, 2002).

12.9.2 How Many Components?

The number of components, K, is one of the most important ingredients
in mixture modeling, which becomes more complicated when the value of
K is unknown. As a result, much attention has been paid to this issue. By
and large, attempts at formulating test criteria to decide on the number of
components have not been successful.

For example, an early decision procedure was the likelihood-ratio test
statistic −2 log λk, where λk is the likelihood ratio (LR) (Wolfe, 1970).
The LR compares a mixture having k components with a mixture having
k + 1 components and then repeats the test for a succession of increasing
values of k, each time comparing the result to a reference χ2-distribution.
The testing stops the first time that a k-mixture density is not rejected in
favor of a (k +1)-mixture density. Recent empirical evidence indicates that
this test tends to overestimate the value of K. More seriously, the regularity
conditions for the χ2 approximation do not hold in finite-mixture problems.

Several alternatives to the likelihood ratio test have since been proposed.
The two most prominent approaches are a nonparametric bootstrap assess-
ment of the number of modes in the data using a kernel density estimator
with a sequence of decreasing window-widths (Silverman, 1981, 1983) and
a Bayesian solution that uses the EM algorithm to fit the mixture model
and then computes approximate Bayes factors to decide on K (Fraley and
Raftery, 2002). Silverman’s approach is promising, but there are a number
of anomolies in its behavior (Izenman and Sommer, 1988). Bayes factors
(Kass and Raftery, 1995) are ratios of high-dimensional integrals and are
often impossible to compute; arguments have been made to justify BIC as
approximate Bayes factors to estimate K, even though the regularity con-
ditions for the BIC approximation do not hold for finite-mixture models.

12.10 Software Packages

Almost all the major statistical software packages contain hierarchical and
non-hierarchical clustering routines for clustering observations or variables
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as appropriate. Software for two-way clustering methods, model-based clus-
tering methods, and other recently developed methods have to be down-
loaded from the Internet.

There are two SOM methods, batchSOM and SOM, in the R package (Ven-
ables and Ripley, 2002, pp. 310–311) and a CRAN package som (formerly
GeneSOM) for gene expression data. A SOM Toolbox for Matlab can be
downloaded free from www.cis.hut.fi/projects/somtoolbox/.
Another package for computing SOMs is GeneCluster, which can be
downloaded from the website
www-genome.wi.mit.edu/cancer/software/software.html.
The U -matrix and component planes in Figures 13.11 and 13.12 were com-
puted using Matlab somtoolbox.

A fast algorithm for gene-shaving forms the basis for the software package
GeneClust, which can be downloaded free from
odin.mdacc.tmc.edu/~kim/geneclust; see Do, Broom, and Wen (2003).
Software and documentation (Owen, 2000) for applying plaid models to a
data array can be downloaded from
www-stat.stanford.edu/ owen/clickwrap/plaid.html.

Most research into model-based clustering from a Bayesian viewpoint has
been carried out by Adrian Raftery and colleagues. Their S-Plus functions
mclust and mclust-em and documentation (Fraley and Raftery, 1998) can
be downloaded from
www.stat.washington.edu/raftery/Research/Mclust.
The Emmix software package can fit a mixture model with Gaussian or
t-components (McLachlan, Peel, Basford, and Abrams, 1999) and can be
downloaded from www.jstatsoft.org.

Bibliographical Notes

Books that focus on cluster analysis include Kaufman and Rousseeuw
(1990) and Hartigan (1975). Cluster analysis can be found as a chapter of
most books on multivariate analysis: Rencher (2002, Chapter 14), Lattin,
Carroll, and Green (2003, Chapter 8), Johnson and Wichern (1998, Chapter
12), Seber (1984, Chapter 7). See also Ripley (1996, Section 9.3).

Books on self-organizing maps include Oja and Kaski (2003), and Kohonen
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Review articles on the use of clustering in analyzing microarray data
include Sebastiani, Gussoni, Kohane, and Ramoni (2003), Bryan (2004),
and Chipman, Hastie, and Tibshirani (2003).
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There is a huge literature on mixtures of distributions. Book references
include Everitt and Hand (1981), Titterington, Smith, and Makov (1985),
McLachlan and Basford (1988), and McLachlan and Peel (2000). The idea
of representing a density function as a mixture of two Gaussian components
was popularized by Tukey (1960) as a way of modeling outliers in data,
where he assumed equal means but different variances, one variance much
larger than the other.

The EM algorithm has a long and interesting history, with the earliest
version published in 1926. It was named in Dempster, Laird, and Rubin
(1977), who showed the monotonic behavior of the log-likelihood function
and gave examples of the general applicability of the algorithm. Books
that give good accounts of the EM algorithm include Hastie, Tibshirani,
and Friedman (2001, Section 8.5), Schafer (1997, Chapter 3), Ripley (1996,
Appendix A.2), and Little and Rubin (1987, Chapter 7). See also the edited
volume by Wanatabe and Yamaguchi (2004). An excellent review of model-
based clustering is given by Fraley and Raftery (2002).

Exercises

12.1 Run the clustering algorithms for the satimage data, but only using
the center pixels (i.e., variables CC1, CC2, CC3, CC4) of each 3×3 neigh-
borhood. Compare your results with those in Table 12.10.

12.2 Write a computer program to implement single-linkage, average-
linkage, and complete-linkage agglomerative hierarchical clustering. Try it
out on a data set of your choice.

12.3 Cluster the primate.scapulae data using single-linkage, average-
linkage, and complete-linkage agglomerative hierarchical clusteringmethods.
Find the five-cluster solutions for all three methods, which allows comparison
with the true primate classifications. Find the misclassification rate for all
three methods. Show that the lowest rate occurs for the complete-linkage
method and the highest for the single-linkage method.

12.4 Using the leukemia (ALL/AML) data, run a SOM algorithm (ei-
ther on-line or batch) to cluster the genes. Draw a SOM plot and identify
the genes captured by each representative. Consult with a biologist to see
whether the clusters of genes are biologically meaningful. Compute the
U -matrix and the component planes. Solely on the basis of the patterns
provided by the component planes, can you separate them into the three
groups of ALL-B, ALL-T, and AML tissue samples?

12.5 Microarray data from the National Cancer Institute can be found in
the file ncifinal.txt on the book’s website. There are 5,244 genes and 61
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samples in this data set; the samples are derived from tumors with different
sites of origin: 7 breast, 5 central nervous system (CNS), 7 colon, 6 leukemia,
8 melanoma, 9 non–small-cell lung carcinoma (NSCLC), 6 ovarian, and 9
renal. There are also data from independent microarray experiments yield-
ing 2 leukemia samples (K562) and 2 breast cancer samples (MCF7). Use
the gene shaving method to cluster the genes in this data set into 8 clusters.
Describe the appearance of the heatmap for each cluster, and use the gap
statistic to determine the number of genes in each cluster.

12.6 Nutritional data from 961 different food items is given in the file
food.txt, which can be downloaded from the book’s website or from
http://www.ntwrks.com/~mikev/chart1.html. For each food item, there
are 7 variables: fat (grams), food energy (calories), carbohydrates (grams),
protein (grams), cholesterol (milligrams), weight (grams), and saturated
fat (grams). To equalize out the different types of servings of each food,
first divide each variable by weight of the food item. Next, because of the
wide variations in the different variables, standardize each variable. The
resulting data are X = (Xij). Apply plaid models to these data. Describe
your findings for each of the first 10 layers.

12.7 Establish the ML estimates (12.57), (12.59)–(12.62) for the parame-
ters of the two-component univariate Gaussian mixture.

12.8 Using the EM algorithm, find the ML estimates of the parameters
of a finite mixture of multivariate Gaussian densities with equal covariance
matrice Σ. Show that the ML estimate Σ̂(m) has to be inverted at each
iteration m, which is one of the factors slowing down the computational
speed of the algorithm.

12.9 Run a batch-SOM analysis on the Wisconsin Breast-Cancer data
wbcd. Find the “circles” representation for the data and describe how well
the SOM method clusters the tumor cases into benign and malignant.
Compute the U -matrix and discuss its representation for these data.



13
Multidimensional Scaling
and Distance Geometry

13.1 Introduction

Imagine you have a map of a particular geographical region, which includes
a number of cities and towns. Usually, such a map will be accompanied by
a two-way table displaying how close a selected number of those towns and
cities are to each other. Each cell of that table will show the degree of
“closeness” (or proximity) of the row city to the column city that identifies
that cell. The notion of proximity between two geographical locations is
easy to understand, even though it could have different meanings: for ex-
ample, proximity could be defined as straight-line distance or as shortest
traveling distance.

In more general situations, proximity could be a more complicated con-
cept. We can talk about the proximity of any two entities to each other,
where by “entity” we might mean an object, a brand-name product, a na-
tion, a stimulus, etc. The proximity of a pair of such entities could be a
measure of association (e.g., the absolute value of a correlation coefficient),
a confusion frequency (i.e., to what extent one entity is confused with an-
other in an identification exercise), or some other measure of how alike (or
how different) one perceives the entities. If we are studying a set of linked In-
ternet webpages, we may be interested in visualizing a hypermedia network

A.J. Izenman, Modern Multivariate Statistical Techniques,
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in which proximity would be based upon a notion of network distance (i.e.,
the number of hyperlinks needed to jump from one node to another).

The general problem of multidimensional scaling (MDS) essentially re-
verses that relationship: given only a two-way table of proximities, we wish
to reconstruct the original map as closely as possible. A further wrinkle in
the problem is that we also do not know the number of dimensions in which
the given entities are located. So, determining the number of dimensions is
another major problem to be solved.

MDS is not a single procedure but a family of different algorithms, each
designed to arrive at an optimal low-dimensional configuration for a partic-
ular type of proximity data. MDS is primarily a data visualization method
for identifying “clusters” of points, where points in a particular cluster are
viewed as being “closer” to the other points in that cluster than to points
in other clusters.

In this chapter, we describe a number of MDS methods. Specifically, we
describe and illustrate classical scaling (also called “distance geometry” by
those in bioinformatics) and distance scaling (divided according to whether
the distances are of metric or nonmetric type). Distance scaling is also re-
ferred to as metric and nonmetric MDS. The standard treatment of classical
scaling yields an eigendecomposition problem and as such is the same as
PCA if the goal is dimensionality reduction. The distance scaling methods,
on the other hand, use iterative procedures to arrive at a solution.

In Table 13.1, we list some of the application areas of MDS. We shall see
that the essential ideas behind MDS also play prominent roles in evaluating
random forests (Chapter 14) and revealing nonlinear manifolds (Chapter
16).

13.1.1 Example: Airline Distances

As a simple example of the MDS problem, consider Table 13.2, which
is taken from p. 131 of the Revised 6th Edition (1995) of the National
Geographic Atlas of the World. The table lists the airline distances (in
kms) between n = 18 cities: Beijing, Cape Town, Hong Kong, Honolulu,
London, Melbourne, Mexico, Montreal, Moscow, New Delhi, New York,
Paris, Rio de Janeiro, Rome, San Francisco, Singapore, Stockholm, and
Tokyo. For this application of MDS, the problem is to re-create the map
that yielded the table of airline distances. Because the cities are scattered
around the surface of a sphere, we should expect to recover a solution in
three dimensions. Furthermore, because airplanes do not fly through the
earth but over its surface, airline distances between cities do not always
obey the triangle inequality and so may not be Euclidean.

We used the classical scaling method to obtain 2D and 3D maps of the
MDS reconstruction, where each map has 18 points, one for each city. We
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TABLE 13.1. Some application areas and research topics in MDS.

Psychology: Study the underlying structure of perceptions of different classes
of psychological stimuli (e.g., personality traits, gender roles) or physical
stimuli (e.g., human faces, everyday sounds, fragrances, colors) and create
a “perceptual map” of those stimuli. Understand the psychological dimen-
sions hidden in the data so that we can describe how proximity judgments
are generated.

Marketing: Derive “product maps” of consumer choice and product preference
(e.g., automobiles, beer) so that relationships between products can be dis-
cerned. Use these maps to position new products appropriately, to modify
an existing product image to emphasize brand differentiation, or to design
future experiments to determine what type of consumer can best discrim-
inate between similar products and on which dimensions.

Ecology: Provide “environmental impact maps” of pollution (e.g., oil spills,
sewage pollution, drilling-mud dispersal) on local communities of animals,
marine species, and insects. Use such maps to develop a biological taxon-
omy to classify populations using morphometric or genetic data or from
evolutionary theory.

Molecular Biology: Reconstruct the spatial structures of molecules (e.g.,
amino acids) using biomolecular conformation (3D structure). Interpret
their interrelations, similarities, and differences. Construct a 3D “protein
map” as a global view of the protein structure universe.

Computational Chemistry: Use a measure of molecular similarity (e.g., in-
teratomic distance) to characterize the behavior and function of molecules
derived from large collections of compounds.

Social Networks: Develop “telephone-call graphs,” where the vertices are tele-
phone numbers and the edges correspond to calls between them. Recognize
instances of credit card fraud and network intrusion detection. Identify
clusters in large scientific collaboration networks.

Graph Layout: Design a diagram to describe a network and the system it repre-
sents using a graph-theoretic distance (e.g., minimum-path length) between
pairs of nodes or vertices. Examples include communications networks,
electrical circuit diagrams, wiring diagrams, and protein-protein interac-
tion graphs. Create graphic visualizations of digital image libraries, with
images as vertices and proximities (e.g., perceptual differences) between
pairs of images as edge weights.

Music: Use a measure of musical sound quality (e.g., a set of spectral compo-
nents with high resolution at low frequencies to mimic the human auditory
system) as input to a nonlinear distance measure to assess the similarities
and differences between a variety of songs.
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TABLE 13.2. Airline distances (km) between 18 cities. Source: Atlas of
the World, Revised 6th Edition, National Geographic Society, 1995, p. 131.

Beijing Cape Town Hong Kong Honolulu London Melbourne

Cape Town 12947
Hong Kong 1972 11867
Honolulu 8171 18562 8945

London 8160 9635 9646 11653
Melbourne 9093 10338 7392 8862 16902

Mexico 12478 13703 14155 6098 8947 13557
Montreal 10490 12744 12462 7915 5240 16730

Moscow 5809 10101 7158 11342 2506 14418
New Delhi 3788 9284 3770 11930 6724 10192
New York 11012 12551 12984 7996 5586 16671

Paris 8236 9307 9650 11988 341 16793
Rio de Janeiro 17325 6075 17710 13343 9254 13227

Rome 8144 8417 9300 12936 1434 15987
San Francisco 9524 16487 11121 3857 8640 12644

Singapore 4465 9671 2575 10824 10860 6050
Stockholm 6725 10334 8243 11059 1436 15593

Tokyo 2104 14737 2893 6208 9585 8159

Mexico Montreal Moscow New Delhi New York Paris

Montreal 3728
Moscow 10740 7077

New Delhi 14679 11286 4349
New York 3362 533 7530 11779

Paris 9213 5522 2492 6601 5851
Rio 7669 8175 11529 14080 7729 9146
Rome 10260 6601 2378 5929 6907 1108
S.F. 3038 4092 9469 12380 4140 8975

Singapore 16623 14816 8426 4142 15349 10743
Stockholm 9603 5900 1231 5579 6336 1546

Tokyo 11319 10409 7502 5857 10870 9738

Rio Rome S.F. Singapore Stockholm

Rome 9181
S.F. 10647 10071

Singapore 15740 10030 13598
Stockholm 10682 1977 8644 9646

Tokyo 18557 9881 8284 5317 8193
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FIGURE 13.1. Two-dimensional map of 18 world cities using the classi-
cal scaling algorithm on airline distances between those cities. The colors
reflect the different continents: Asia (purple), North America (red), South
America (orange), Europe (blue), Africa (brown), and Australasia (green).

expect cities with low airline mileage between them to correspond to points
in the display that are close together and cities with high airline mileage to
correspond to points far apart from each other. In Figure 13.1, we display
a scatterplot of the 2D solution.

The 3D solution is given in Figure 13.2. Different colors are used to label
the different continents. A dynamic “brush and spin” of the 3D solution
shows that the points appear to be scattered around the surface of a sphere;
we also see three outliers: Melbourne, Rio de Janeiro, and Cape Town. We
expect to see (and we do see) geographically related clusters of points.

Note that the points are not in their customary locations on a globe, and
it may be necessary to carry out a rotation and reflection to get them into
their usual positions. The computational details needed to produce Figures
13.1 and 13.2 can be found in Section 13.6.3.



468 13. Multidimensional Scaling and Distance Geometry

2nd prin
cipal coordinate

1st principal coordinate

3rd principal coordinate

FIGURE 13.2. Three-dimensional map of 18 world cities using the clas-
sical scaling algorithm on airline distances between those cities. The colors
reflect the different continents: Asia (purple), North America (red), South
America (yellow), Europe (blue), Africa (brown), and Australasia (green).

13.2 Two Golden Oldies

The primary goal of MDS is to rearrange the entities in some optimal
manner so that distances between different entities in the resulting spatial
configuration correspond closely to the given proximities. The rearrange-
ment of entities takes place in a space of specified low dimension (usually, 1,
2, or 3 dimensions), where MDS ensures that the given proximities between
the entities are well-reproduced by the new configuration.

Before we get into details about the different MDS methods, we first
look at a couple of classic examples that were instrumental in paving the
way to a greater understanding of the power of MDS for researchers in
various fields. These classic examples are the pairwise comparison of color
stimuli and of Morse-code signals, where the similarity or dissimilarity of
the members of each pair is evaluated by a number of subjects.

13.2.1 Example: Perceptions of Color in Human Vision

In an experiment designed to study the perceptions of color in human
vision (Ekman, 1954), 14 colors differing only in their hue (i.e., wavelengths
from 434 µm to 674 µm) were projected two at a time onto a screen in an
all-pairs design (see Section 13.3 for definition) to 31 subjects, who rated
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FIGURE 13.3. Two-dimensional nonmetric MDS representation of color
dissimilarities showing the “color circle.” The colors correspond to the
following wavelengths: 434=indigo, 445=blue, 472=blue-green, 504=green,
555=yellow-green, 600=yellow, 628=orange-yellow, 651=orange, 674=red.

each of the possible m = 91 pairs on a five-point scale from 0 (“no similarity
at all”) to 4 (“identical”). The rating for each pair of colors was averaged
over all subjects and the result divided by 4 to bring the similarity ratings
into the interval [0, 1]. These mean similarity ratings were then collected
into a (14×14) table (see Exercise 13.1), which was treated as a correlation
matrix. A visual inspection of the similarities shows that the higher values
cluster on the diagonal closest to the main diagonal.

A nonmetric MDS solution for the the color experiment (Shepard, 1962)
essentially reproduces the well-known two-dimensional “color circle.” Figure
13.3 shows a two-dimensional circular configuration of points representing
the 14 colors arranged in order of their wavelengths. A one-dimensional
solution would not work because a projection onto the x-axis would make
points 434 and 555 lie very close to each other, whereas the dissimilarity
between those two colors was one of the largest.

13.2.2 Example: Confusion of Morse-Code Signals

Morse code consists of 36 short signals of dots and dashes (26 letters
of the alphabet and the digits 0–9). In a study of the extent of confusion
over these different codes (Rothkopf, 1957), the 36 Morse-code signals were
acoustically presented by machine in pairs to 598 subjects who had no
knowledge of Morse code; each pair of signals was presented twice (e.g.,
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FIGURE 13.4. Two-dimensional nonmetric MDS representation of
Morse-code dissimilarities. The left panel shows the configuration of letters
and numbers, and the right panel shows the corresponding Morse code.
A “beep” is a dot or a dash. A dot (short beep) is coded as a “1” and a
dash (long beep) is coded as a “2.” Colors are used to distinguish between
code lengths: one beep (purple), two beeps (brown), three beeps (green),
four beeps (red), and five beeps (blue).

A then B, and B then A), and the subjects had to determine whether
the members of each pair were the same or different. The results of this
experiment yielded 1,260 proximities (instead of the usual m = 630) due
to asymmetric results from the repeated and inverted presentation of each
paired signal. The proximities are given in Exercise 13.2.

A two-dimensional nonmetric MDS solution (Shepard, 1963) is displayed
in Figure 13.4. For ease in visualization, dots and dashes are coded by using
a “1” for a dot and a “2” for a dash. The graph shows the complexity of
the signals. We see that the horizontal axis accounts for code length (i.e.,
the total number of dots and dashes in the Morse-code symbol) and the
vertical axis accounts for the fraction of dots (i.e., ratio of number of dots
to code length).

A reanalysis of the MDS solution to the Morse-code data (Buja and
Swayne, 2002; Buja, Swayne, Littman, and Hofmann, 2002) using XGvis,
an interactive data visualization system for MDS calculations based upon
the XGobi package, found evidence that code length and fraction of dots
are slightly confounded: long codes that have many dots are more often
confused with shorter codes that have many dashes, and vice versa, thereby
suggesting a confusion effect due to the physical duration of the code.
Furthermore, two additional dimensions were suggested by the graphical
analysis: a dummy dimension for the codes of length one and a dummy
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dimension for initial exposure position (i.e., a dot or dash in the starting
position) for the long codes.

13.3 Proximity Matrices

The focus on pairwise comparisons of entities is fundamental to MDS.
The “closeness” of two entities is measured by a proximity measure, which
can be defined in a number of different ways. On the one hand, a proximity
can be a continuous measure of how physically close one entity is to another
(i.e., a bona fide distance measure, as in the airline distances example) or
it could be a subjective judgment recorded on an ordinal scale, but where
the scale is sufficiently well-calibrated as to be considered continuous.

In other cases, especially in studies of perception, a proximity will not be
quantitative but will be a subjective rating of similarity (or dissimilarity)
recorded on a pair of entities. A similarity rating is designed to indicate
how “close” a pair of entities are to each other, whereas a dissimilarity
rating shows the opposite, how unalike are the pair.

In many types of experiments, proximity data are obtained from a group
of subjects, each of whom make similarity (or dissimilarity) judgments on
all possible m =

(
n
2

)
= 1

2n(n − 1) unordered pairs of n entities. This
type of experiment is said to have an all-pairs design (Ramsay, 1982). For
example, the color stimuli and Morse-code experiments both followed all-
pairs designs. It is unusual for such an experiment to be repeated with the
same group of subjects (due to boredom, fatigue, or memory of previous
responses), although designs have been constructed to present fewer than
all possible pairs to each subject.

It is irrelevant whether we use similarities or dissimilarities as our mea-
sure of proximity between two entities. In other words, “closeness” of
one entity to another could be measured by a small or large value. The
only thing that matters when carrying out MDS is that there should
be a monotonic relationship (either increasing or decreasing) between the
“closeness” of two entities and the corresponding similarity or dissimilarity
value. Anyway, we usually convert similarities into dissimilarities through
a monotonically decreasing transformation.

Consider a particular collection of n entities. Let δij represent the dissim-
ilarity of the ith entity to the jth entity. We arrange the m dissimilarities,
{δij}, into an (m×m) square matrix,

∆ = (δij), (13.1)

called a proximity matrix. The proximity matrix is usually displayed as a
lower-triangular array of nonnegative entries, with the understanding that
the diagonal entries are all zeroes and that the upper-triangular array is a
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mirror image of the given lower-triangle (i.e., the matrix is symmetric). In
other words, for all i, j = 1, 2, . . . , n,

δij ≥ 0, δii = 0, δji = δij . (13.2)

In order for a dissimilarity measure to be regarded as a metric distance, we
also require that δij satisfy the triangle inequality,

δij ≤ δik + δkj , for all k. (13.3)

In some applications (such as the Morse-code example described above),
we should not expect symmetry; in such cases, adjustments (e.g., setting
δij ← 1

2 (δij + δji) to form a symmetrized version of ∆) can be made.

13.4 Comparing Protein Sequences

There are about 100,000 different proteins in the human body, and they
provide the internal structure of cells and tissues. Proteins are macromole-
cules and carry out important bodily functions, including supporting cell
structure (skin, tendons, hair, nails, bone), protecting against infection
from bacteria and viruses (antibodies, immune system), aiding movement
(muscles), transporting materials (hemoglobin for oxygen), and regulating
control (enzymes, hormones, metabolism, insulin) of the body. Nearly all
of these proteins have a similar chemical structure and, in some instances,
even share a common evolutionary origin.

Of major interest in the study of molecular biology is the notion of a
spatial “protein map,” which would show how existing protein families re-
late to one another, structurally and functionally. One would hope that
such a map would yield important insight into the evolutionary origins of
existing protein structures. In this way, researchers might be able to predict
the functions of newly discovered proteins from their spatial locations and
proximities to other proteins in the map, where we would expect neighbor-
ing proteins to have very similar biochemical properties. This also raises the
issue of whether a protein map can help justify classifications of proteins
into empirically determined classes, such as the four primary classes (α,
β, α/β, and α + β) of proteins as defined by the Structural Classification
System of Proteins (SCOP).

13.4.1 Optimal Sequence Alignment

The argument used to compute the proximity of two proteins centers
on the idea that amino acids can be altered by random mutations over a
long period of evolution. Mutations of a protein sequence can take various
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TABLE 13.3. The 20 amino acids (and their 3-letter and 1-letter abbre-
viations).

Alanine (ala, A), Arginine (arg, R), Asparagine (asn, N),
Aspartic acid (asp, D), Cysteine (cys, C), Glutamine (gln, Q),
Glutamic acid (glu, E), Glycine (gly, G), Histidine (his, H),

Isoleucine (ile, I), Leucine (leu, L), Lysine (lys, K),
Methionine (met, M), Phenylalanine (phe, F), Proline (pro, P),

Serine (ser, S), Threonine (thr, T), Tryptophan (trp, W),
Tyrosine (tyr, Y), Valine (val, V)

forms, such as the deletion or insertion of amino acids, or swapping similar
amino acids for ones already in the sequence. For an evolving organism to
survive, the structure and functionality of the most important segments of
its protein sequences would have to be preserved (or even be improved).
Thus, researchers try to understand the evolutionary process of proteins
by studying relationships between their respective amino acid sequences.

The comparison problem is complicated by the fact that each sequence is
actually a “word” composed of a string of letters selected from a 20-letter
alphabet; see Table 13.3. It is a nontrivial task to compute a similarity value
between two sequences that have different lengths and different amino acid
distributions. The trick here is to align the two sequences (or segments of
each of them) so that as many letters in one sequence can be “matched”
with the corresponding letters in the other sequence. The extent to which
matching occurs will have some bearing on how related (or unrelated) we
consider the sequences to be.

There are several methods for carrying out sequence alignment. These
are generally divided into global and local methods. Global alignment tries
to align all the letters in the two entire sequences assuming that the two
sequences are very similar from beginning to end, whereas local alignment
assumes that the two sequences are highly similar only over short segments
of letters. Alignment methods use dynamic programming algorithms as the
primary tool (Needleman and Wunsch, 1970; Smith and Waterman, 1981).
For searching the huge databases available today, local methods, such as
BLAST (Altschul, Gish, Miller, Myers, and Lipman, 1990) and FASTA
(Pearson and Lipman, 1988), which use more heuristic-type techniques,
have become popular because of their extremely fast computation times,
even though their solutions may be slightly suboptimal.

A sequence alignment is declared to be “optimal” if it maximizes an
alignment score. For a particular alignment of two sequences, an alignment
score is the sum of a number of terms, each term comparing an element
from the first sequence and a corresponding element in the same position
from the second sequence, where an element is either an amino acid or
a “gap.” When the amino acids in a given position are identical in both
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TABLE 13.4. The BLOSUM62 amino acid substitution matrix. The rows
correspond to the amino acids in one protein sequence and the columns
correspond to the amino acids in another sequence. At a given position
in an alignment of the two sequences, the substitution score of the aligned
amino acids is given in the appropriate cell of the matrix. The diagonal
entries (in blue) show the scores applied to identities, whereas off-diagonal
positive scores are given in red.

A C D E F G H I K L M N P Q R S T V W Y
A 4 0 –2 –1 –2 0 –2 –1 –1 –1 –1 –2 –1 –1 –1 1 0 0 –3 –2
C 0 9 –3 –4 –2 –3 –3 –1 –3 –1 –1 –3 –3 –3 –3 –1 –1 –1 –2 –2
D –2 –3 6 2 –3 –1 –1 –3 –1 –4 –3 1 –1 0 –2 0 –1 –3 –4 –3
E –1 –4 2 5 –3 –2 0 –3 1 –3 –2 0 –1 2 0 0 –1 –2 –3 –2
F –2 –2 –3 –3 6 –3 –1 0 –3 0 0 –3 –4 –3 –3 –2 –2 –1 1 3
G 0 –3 –1 –2 –3 6 –2 –4 –2 –4 –3 0 –2 –2 –2 0 –2 –3 –2 –3
H –2 –3 –1 0 –1 –2 8 –3 –1 –3 –2 1 –2 0 0 –1 –2 –3 –2 2
I –1 –1 –3 –3 0 –4 –3 4 –3 2 1 –3 –3 –3 –3 –2 –1 3 –3 –1
K –1 –3 –1 1 –3 –2 –1 –3 5 –2 –1 0 –1 1 2 0 –1 –2 –3 –2
L –1 –1 –4 –3 0 –4 –3 2 –2 4 2 –3 –3 –2 –2 –2 –1 1 –2 –1
M –1 –1 –3 –2 0 –3 –2 1 –1 2 5 –2 –2 0 –1 –1 –1 1 –1 –1
N –2 –3 1 0 –3 0 1 –3 0 –3 –2 6 –2 0 0 1 0 –3 –4 –2
P –1 –3 –1 –1 –4 –2 –2 –3 –1 –3 –2 –2 7 –1 –2 –1 –1 –2 –4 –3
Q –1 –3 0 2 –3 –2 0 –3 1 –2 0 0 –1 5 1 0 –1 –2 –2 –1
R –1 –3 –2 0 –3 –2 0 –3 2 –2 –1 0 –2 1 5 –1 –1 –3 –3 –2
S 1 –1 0 0 –2 0 –1 –2 0 –2 –1 1 –1 0 –1 4 1 –2 –3 –2
T 0 –1 –1 –1 –2 –2 –2 –1 –1 –1 –1 0 –1 –1 –1 1 5 0 –2 –2
V 0 –1 –3 –2 –1 –3 –3 3 –2 1 1 –3 –2 –2 –3 –2 0 4 –3 –1
W –3 –2 –4 –3 1 –2 –2 –3 –3 –2 –1 –4 –4 –2 –3 –3 –2 –3 11 2
Y –2 –2 –3 –2 3 –3 2 –1 –2 –1 –1 –2 –3 –1 –2 –2 –2 –1 2 7

sequences, we say that an identity has occurred and give it a high positive
score. When two different amino acids are present at the same position in
an alignment, we call it a substitution and give it a score that could be
negative, zero, or positive.

To each possible pairing of amino acids (one from each sequence, at
the same position in the alignment), we assign a substitution score, which
gives a quantitative measure of the “cost” of replacing one amino acid by
another. The substitution scores for all 210 possible pairs of amino acids
are collected together to form a symmetric, (20 × 20) substitution matrix,
which is used to measure the closeness of the two sequences. One of the
most popular substitution matrices is BLOSUM62 (BLOcks SUbstitution
Matrix; see Table 13.4), which assumes that no more than 62% of the letters
in the two sequences are identical (Henikoff and Henikoff, 1996).

A gap (or indel) is an empty space (denoted by a “-”) introduced into
an alignment to compensate for an insertion or a deletion of an amino
acid in one sequence relative to the other. A gap is penalized by assigning
to it a large value (the gap score, usually set by the user), which is then
subtracted from the alignment score. There are two types of gap penalties,
one for starting (or opening) a gap and another for extending the gap;
typically, the latter is considered to be more serious than is the former,
so that opening a gap merits a smaller penalty than does extending that
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gap. Gap-scoring methods usually define the gap penalty as q + rk, where
q and r are chosen by the user; the gap open penalty uses k = 1 and the
gap extension penalty uses k = 2, 3, . . ..

The alignment score s is the sum of the identity and substitution scores,
minus the gap score. Implicitly, we are assuming that the score for a partic-
ular position in the alignment is independent of scores derived from neigh-
boring positions (Karlin and Altschul, 1990); such an assumption appears
to be reasonable for protein sequences. The optimal alignment between two
sequences (including gaps) corresponds to that alignment with the highest
alignment score.

In general, given n proteins from some database, let sij be the alignment
score between the ith and jth protein, i, j = 1, 2, . . . , n. Because closely
related proteins will have a high alignment score, the alignment score is
a similarity and so has to be transformed into a dissimilarity using δij =
smax− sij , where smax is the largest alignment score among all m = n(n−
1)/2 protein pairs. The proximity matrix is then given by ∆ = (δij).

13.4.2 Example: Two Hemoglobin Chains

Suppose we wish to compare the hemoglobin alpha chain protein (Swiss-
Prot database code HBA HUMAN, AC# P69905/P019122) having length 141
with the related hemoglobin beta chain protein (Swiss-Prot database code
HBB HUMAN, AC# P68871/P02023) having length 146. Both of these human
proteins transport oxygen from the lungs to the various peripheral tissues.
HBA gives blood its red color, and defects in HBB are the cause of sickle
cell anemia.

To compare these proteins, we use the BLOSUM62 matrix and the gap
scoring method with q = 12, r = 4. The SIM algorithm (Huang and Miller,
1991), which is a local similarity program using dynamic programming
techniques, finds that the optimal alignment over 145 amino acids is:

LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSH

L+P +K+ V A WGKV + E G EAL R+ + +P T+ +F F D

LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVM

GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCL

G+ +VK HGKKV A ++ +AH+D++ + LS+LH KL VDP NL+LL + L

GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVL

LVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKY

+ LA H EFTP V A+ K +A V+ L KY

VCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKY}

The first line is a portion of the HBA HUMAN protein sequence, and the third
line is a portion of HBB HUMAN. The sequences have been “locally” aligned
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(with gaps). Looking at the middle line, we see 86 positive substitution
scores (the 25 “+”s and the 61 identities). The alignment score is s = 259.
For different values of q and r, we would obtain different optimal alignments
and alignment scores.

13.5 String Matching

The problem of comparing different protein sequences is closely related to
a more general class of problems involving the matching of different strings
of letters, characters, or symbols drawn from a common alphabet A. The
alphabet could be binary {0, 1}, decimal {0, 1, 2, . . . , 9}, English language
{A,B,C, . . . , Z}, the four DNA bases {A,C,G, T}, or the 20 amino acids.
In pattern matching, we study the problem of finding a given pattern (typ-
ically, a collection of strings described in terms of some alphabet A) within
a body of text. If a pattern is a single string, the problem is called string
matching. We can imagine, for example, a string-matching problem in which
we need to know whether a particular word or phrase can be found within
a given sentence, paragraph, article, or book.

String matching is used extensively in text-processing applications; in
particular, it is used in searching a document for a word, phrase, or an ar-
bitrary string of letters; designing spell-checkers; predicting unknown words
when writing in a second language; and name-retrieval systems in genealog-
ical research. The Unix programming environment (Kernighan and Pike,
1984), for example, employs various string- and pattern-matching algo-
rithms (e.g., awk, diff, and grep), and the Perl language was designed
specifically to possess powerful string-matching capabilities. The related
problems of string- and pattern-matching have obvious implications for
the design of an Internet search engine (e.g., GoogleTM, www.google.com),
where the text is the union of all linked webpages (Brin and Page, 1998).

String matching techniques are needed in many different applications, in-
cluding matching melodies in large databases of digital music (Uitdenbogerd
and Zobel, 1999), dating trees by the sequence of rings they contain (Wenk,
1999), and comparing different speech pronunciations in computational lin-
guistics (Nerbonne, Heeringa, and Kleiweg, 1999).

13.5.1 Edit Distance

A popular numerical measure of the similarity between two strings is edit
distance (also called Levenshtein distance), which was adapted from meth-
ods used to compare two different protein sequences. The usual definition
of edit distance is the fewest number of editing operations (insertions, dele-
tions, substitutions) which would be needed to transform one string into
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the other. An insertion inserts a letter into the sequence, a deletion deletes
a letter from the sequence, and a substitution replaces one letter in the
sequence by another letter. Identities (or matches) are not counted in the
distance measure. In some definitions of edit distance, each editing oper-
ation is assigned a nonnegative cost, that reduces to the above definition
if each editing operation has unit cost. The sequence of editing operations
that achieves the minimum edit distance will probably not be unique.

An early application of edit distance was to comparative biochemistry
(de Duve, 1984, p. 354), where it was used to construct a phylogenetic
tree — a diagram laying out a possible evolutionary history — of a single
protein. The resulting proximity matrix shows the number of amino-acid
substitutions in the protein cytochrome c from 25 different species, includ-
ing mammals and other vertebrates, invertebrates, plants, and fungi. The
entries in the matrix show the fewest number of nucleotide substitutions in
DNA (according to the genetic code) needed to account for the observed
amino-acid replacements.

13.5.2 Example: Employee Careers at Lloyds Bank

An unusual example of string matching using edit distance is that of
analyzing changes in employee careers over a given period of time. The ca-
reers of two individuals can be compared by determining the fewest number
of changes necessary to transform one career into the other (Abbott and
Hrycak, 1990). Each type of change incurs a cost, and the total cost of
transforming one career into another is the sum of all such costs.

One fascinating study looked at a large database of employee information
from Lloyds Bank, one of England’s oldest and largest banks, during the
period 1890–1970 (Stovel, Savage, and Bearman, 1996). The authors were
interested in tracing how “static, status-based employment arrangements”
of the early 1900s had been replaced, less than two generations later, by
“highly-dynamic, achievement-oriented careers” within large bureaucratic
organizations, such as the British banking system and, in particular, Lloyds
Bank.

The available data give every job held by each employee of the bank.
The data are described by a rectangular array, where each row corresponds
to a different employee and the columns (variables) record the various jobs
held by that employee over the number of years of the study. In this par-
ticular study, job termination (resignation, death, firing) is coded by type
of termination, and each year the employee is absent from bank employ-
ment is coded as 999. These termination codes and 999s are not used in
the matching algorithm.

An employee’s job at Lloyds Bank is characterized by three factors:
branch size and type (1=small rural, 2=large rural, 3=small urban, 4=large
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urban [London], 5=specialist head office, and 6=head office) and job cate-
gory (1=clerk, 2=senior clerk, 3=regular manager, and 4=specialist man-
ager). Thus, there are 6× 4 = 24 branch-position categories of jobs, where
a job would be characterized as “years@branch·position.” For example, a
45-year career at Lloyds might be summarized as {15@11, 6@22, 24@23},
which translates into 15 years as a clerk in a small rural branch, then a
move to a large rural branch where he spent 6 years as a senior clerk and
24 years as a regular manager.

In this example, we reanalyze two data sets on the careers of Lloyds’
employees. The data sets consist of sequential employment records for ran-
dom samples of n = 80 employees drawn from two different cohorts, those
who started work at Lloyds during the period 1905–1909 and those who
started during 1925–1929.1 (See also Oh and Raftery, 2001, who used only
the 1905-1909 cohort data.) Each data set contains an ID variable, a vari-
able containing the first year of the employee’s employment, and r = 71
variables containing the sequential data of the employment history of each
employee.

A (24× 24) substitution matrix with branch-position categories forming
its rows and columns was constructed from the entire collection of employee
records (Stovel, Savage, and Bearman, 1996, Table A3). The entries in
the substitution matrix represent costs; they range from 0.5 to 6.5 and
reflect the notion that unlikely changes are costly and frequent changes are
inexpensive. The cost of an insertion or deletion was fixed at the maximum
substitution cost, 6.5. The career records, the substitution matrix, and
the edit-distance method were then used by an alignment algorithm to
construct an (80 × 80) non-Euclidean proximity matrix for each cohort of
employees.

13.6 Classical Scaling and Distance Geometry

The airline-distances example (see Section 13.1.1) illustrates the classical
scaling method of MDS. Suppose we are given n points X1, . . . ,Xn ∈ 
r.
From these points, we compute an (n × n) proximity matrix ∆ = (δij) of
dissimilarities, where

δij = ‖Xi −Xj‖ =

{
r∑

k=1

(Xik −Xjk)2
}1/2

(13.4)

1The author thanks Katherine Stovel for kindly providing him with the employment
data on the two cohorts of Lloyds’ employees and for the corresponding two (80 × 80)
proximity matrices. The data can be found in the files samp05 and samp25, and the
proximity matrices in the files samp05d and samp25d, all on the book’s website.



13.6 Classical Scaling and Distance Geometry 479

is the dissimilarity between the points Xi = (Xik) and Xj = (Xjk); these
dissimilarities are the Euclidean distances between all m = 1

2n(n−1) pairs
of points in that space.

Actually, there is no requirement that the {δij} be Euclidean distances;
they can be any kind of distances. For example, the Minkowski or Lp dis-
tance is given by

δij =

{
r∑

k=1

|Xik −Xjk|p
}1/p

, (13.5)

where p ≥ 1 is set by the user. When p = 1, we have the city-block or
Manhattan distance, and when p = 2, we have Euclidean distance.

13.6.1 From Dissimilarities to Principal Coordinates

From (13.4), we note that

δ2
ij = ‖Xi‖2 + ‖Xj‖2 − 2Xτ

i Xj . (13.6)

Let bij = Xτ
i Xj = − 1

2 (δ2
ij − δ2

i0 − δ2
j0), where δ2

i0 = ‖Xi‖2 is the squared
distance from the point xi to the origin. Summing (13.6) over i and over j
yields the following identities:

n−1
∑

i

δ2
ij = n−1

∑
i

δ2
i0 + δ2

j0 (13.7)

n−1
∑

j

δ2
ij = δ2

i0 + n−1
∑

j

δ2
j0 (13.8)

n−2
∑

i

∑
j

δ2
ij = 2n−1

∑
i

δ2
i0. (13.9)

Substituting (13.7)–(13.9) into (13.6) and simplifying, we get

bij = aij − ai· − a·j + a··, (13.10)

where aij = − 1
2δ2

ij , and the usual “dot” notation is used, ai· = n−1
∑

j a2
ij ,

a·j = n−1
∑

i a2
ij , and a·· = n−2

∑
i

∑
j a2

ij . If we set A = (aij) to be the
matrix of squared dissimilarities and B = (bij), then A and B are related
through B = HAH, where H = In−n−1Jn is a centering matrix and Jn is
an (n× n)-matrix of ones. The matrix B is said to be a “doubly centered”
version of A.

In the dimensionality-reduction aspect of MDS, we wish to find a t-
dimensional representation, Y1, . . . ,Yn ∈ 
t (referred to as principal coor-
dinates), of those r-dimensional points (with t < r), such that the interpoint
distances in t-space “match” those in r-space. When dissimilarities are de-
fined as Euclidean interpoint distances, this type of “classical” MDS is
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equivalent to PCA in that the principal coordinates are identical to the
scores of the first t principal components of the {Xi}.

Typically, in classical scaling (Torgerson, 1952, 1958) we are not given the
{Xi} ⊂ 
r; instead, we are given only the dissimilarities {δij} through the
(n×n) proximity matrix ∆. Using ∆, we form A, and then B. Motivation
for classical scaling comes from a least-squares argument similar to the one
employed for PCA; see Section 7.2.2. The idea is to find a matrix B∗ = (b∗ij)
with rank at most t that minimizes tr{(B − B∗)2} =

∑
i

∑
j(bij − b∗ij)

2.
It can be shown (Mardia, 1978) that if {λk} are the eigenvalues of B and
{λ∗

k} are the eigenvalues of B∗, then the minimum of tr{(B−B∗)2} is given
by

∑n
k=1(λk − λ∗

k)2, where λ∗
k = max(λk, 0) for k = 1, 2, . . . , t, and zero

otherwise. Because of the rank constraint, at least n−t of the eigenvalues of
B∗ have to be zero. If any of the eigenvalues of B are negative, a suitable
constant can be added to the dissimilarities, or the negative eigenvalues
can be ignored. The first t principal coordinates, as defined by the classical
scaling algorithm in Table 13.5, are taken to be the required projections in
t-dimensional space.

The classical scaling algorithm is based upon an eigendecomposition of
the matrix B. This eigendecomposition produces Y1, . . . ,Yn ∈ 
t, t < r,
a configuration whose Euclidean interpoint distances,

d2
ij = ‖Yi −Yj‖2 = (Yi −Yj)τ (Yi −Yj), (13.11)

match those given in the matrix ∆. The classical scaling algorithm auto-
matically sets the mean Ȳ of all n points in the configuration to be the
origin in 
t. To see this, we note that because H1n = 0, we have that
B1n = 0, whence, n2ȲȲ = (Yτ1n)τ (Yτ1n) = 1nB1n = 0, and so Ȳ = 0.

The solution of the classical scaling problem is not unique. Consider
an orthogonal transformation of two points that are obtained through the
classical scaling algorithm: Yi → PYi and Yj → PYj , where P is an
orthogonal matrix. Then, PYi −PYj = P(Yi −Yj), whence,

‖P(Yi −Yj)‖2 = (Yi −Yj)τPτP(Yi −Yj) = ‖Yi −Yj‖2. (13.12)

So, a common orthogonal transformation of the points in the configuration
found by classical scaling yields a different solution of the classical scaling
problem.

13.6.2 Assessing Dimensionality

One way of determining the dimensionality of the resulting configuration
is to look at the eigenvalues of B.

The usual strategy is to plot the ordered eigenvalues (or some function
of them) against dimension and then identify a dimension at which the
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TABLE 13.5. The classical scaling algorithm.

1. Given an (n×n)-matrix of interpoint distances ∆ = (δij), form the (n×n)-
matrix A = (aij), where aij = − 1

2
δ2

ij .

2. Form the “doubly centered,” symmetric, (n×n)-matrix B = HAH, where
H = In − n−1Jn and Jn = 1n1τ

n is an (n × n)-matrix of ones.

3. Compute the eigenvalues and eigenvectors of B. Let Λ = diag{λ1, · · · , λn}
be the diagonal matrix of the eigenvalues of B and let V = (v1, · · · ,vn) be
the matrix whose columns are the eigenvectors of B. Then, by the spectral
theorem, B = VΛVτ .

4. If B is nonnegative-definite with rank r(B) = t < n, the largest t eigen-
values will be positive and the remaining n − t eigenvalues will be zero.
Denote by Λ1 = diag{λ1, · · · , λt} the (t × t) diagonal matrix of the posi-
tive eigenvalues of B and let V1 = (v1, · · · ,vt) be the corresponding matrix
of eigenvectors of B. Then,

B = V1Λ1V
τ
1 = (V1Λ

1/2
1 )(Λ

1/2
1 V1) = YYτ ,

where Y = V1Λ
1/2
1 = (

√
λ1v1, · · · ,

√
λtvt) = (Y1, · · · ,Yn)τ .

5. The principal coordinates, which are the columns, Y1, . . . ,Yn, of the (t ×
n)-matrix Yτ , yield the n points in t-dimensional space whose interpoint
distances dij = ‖Yi − Yj‖ are equal to the distances δij in the matrix ∆.

6. If the eigenvalues of B are not all nonnegative, then either ignore the neg-
ative eigenvalues (and associated eigenvectors) or add a suitable constant
to the dissimilarities (i.e., δij ← δij + c if i �= j, and unchanged otherwise)
and return to step 1. If t is too large for practical purposes, then the largest
t′ < t positive eigenvalues and associated eigenvectors of B can be used to
construct a reduced set of principal coordinates. In this case, the interpoint
distances dij approximate the δij from the matrix ∆.

eigenvalues become “stable” (i.e., do not change perceptively). At that
dimension, we may observe an “elbow” that shows where stability occurs. If
Xi ∈ 
t, i = 1, 2, . . . , n, then stability in the plot should occur at dimension
t + 1. For easier graphical interpretation of a classical scaling solution, we
hope that t is small, of the order 2 or 3.

13.6.3 Example: Airline Distances (Continued)

In Table 13.6, we give the 18 eigenvalues of the matrix B. One can
see three large positive eigenvalues, eight negative eigenvalues, six smaller
positive eigenvalues, and one zero eigenvalue (due to the double-centering
operation). Ignoring the negative eigenvalues (which, in this case, result
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TABLE 13.6. Eigenvalues of B and the eigenvectors corresponding to the
first three largest eigenvalues (in red) for the airline distances example.

Eigenvalues Eigenvectors

1 471582511 0.245 –0.072 0.183
2 316824787 0.003 0.502 -0.347
3 253943687 0.323 –0.017 0.103
4 –98466163 0.044 –0.487 -0.080
5 –74912121 –0.145 0.144 0.205
6 –47505097 0.366 –0.128 –0.569
7 31736348 –0.281 –0.275 –0.174
8 –7508328 –0.272 –0.115 0.094
9 4338497 –0.010 0.134 0.202

10 1747583 0.209 0.195 0.110
11 –1498641 –0.292 –0.117 0.061
12 145113 –0.141 0.163 0.196
13 –102966 –0.364 0.172 –0.473
14 60477 –0.104 0.220 0.163
15 –6334 –0.140 –0.356 –0.009
16 –1362 0.375 0.139 –0.054
17 100 –0.074 0.112 0.215
18 0 0.260 –0.214 0.173

TABLE 13.7. First three principal coordinates of the 18 cities in the air-
line distances example.

Principal Coordinates
City 1st 2nd 3rd

Beijing 5315.24 –1272.90 2920.75
Cape Town 57.63 8935.14 –5522.26
Hong Kong 7010.90 –306.52 1645.53
Honolulu 962.86 –8677.05 –1270.47

London –3157.53 2557.96 3268.11
Melbourne 7948.29 –2283.67 –9062.28

Mexico –6108.97 –4896.64 –2778.04
Montreal –5912.57 –2039.70 1495.92

Moscow –220.84 2377.27 3221.22
New Delhi 4528.94 3474.33 1751.50
New York –6341.02 –2078.66 972.39

Paris –3058.30 2910.08 3118.95
Rio de Janeiro –7905.60 3067.34 –7537.69

Rome –2262.26 3916.47 2595.85
San Francisco –3041.92 –6341.23 –142.88

Singapore 8139.01 2470.83 –867.84
Stockholm –1610.37 1997.61 3429.67

Tokyo 5656.51 –3810.66 2761.56
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FIGURE 13.5. Estimated and observed airline distances. The left panels
show the 2D solution and the right panels show the 3D solution. The top
panels show the estimated distances plotted against the observed distances,
and the bottom panels show the residuals from the the fit (residual = esti-
mated distance – observed distance) plotted against sequence number.

from the distances not being Euclidean due to the earth’s curvature), we
see that the magnitudes of the three largest positive eigenvalues suggest
that a 3D solution makes the most sense here for recreating the world
map. As a result, we retain only the eigenvectors corresponding to the first
t = 3 eigenvalues. In Table 13.7, we display the n = 18 scores of the first
three principal coordinates using step 4 of the classical scaling algorithm.
The 2D solution is given in Figure 13.1 and the 3D solution in Figure 13.2.

Figure 13.5 shows the estimated and observed airline distances plotted
against each other for the 2D and 3D solutions. In the top-left panel, the
scatterplot corresponding to the 2D solution shows that many of the ob-
served distances are severely underestimated, with a number of them also
being overestimated. In the top-right panel, the scatterplot corresponding
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to the 3D solution indicates a better fit to the observed distances, yet it
also shows that the observed distances are consistently overestimated.

We should not really be surprised at the results in this example. The
differences occur because of the fact that the estimated airline distances
are taken to be Euclidean. Airline distances are measured over a curved
surface rather than a flat one. We should, therefore, expect to see a certain
amount of distortion when we use a Euclidean metric to estimate distances
between cities distributed across the surface of a globe.

The Euclidean distance between two cities “near” each other is close to its
airline distance; see, for example, the European, Asian, or North American
clusters of cities in Figure 13.1, whose 2D configurations are similar to
their usual geographical locations. However, when the cities are far apart
from each other, maybe on opposite sides of the globe, we expect large
distortions to be introduced. We see this effect in the 2D and 3D solutions,
with the three cities of Cape Town, Rio de Janeiro, and Melbourne each
involved in producing all the largest absolute residuals (where residual =
dij − δij); see the bottom two panels of Figure 13.5, where residuals are
plotted against sequence number. The largest residuals in the 3D solution
are the Cape Town–Rio de Janeiro and Melbourne–Tokyo distances.

13.6.4 Example: Mapping the Protein Universe

Molecular evolution has led to the development of “families” of proteins,
so that information on the shape and function of one protein can be used to
predict the shape and function of another protein within the same family.
Sifting through the 100,000 or so amino acid sequences to group similar
proteins into families becomes more difficult when the evolutionary dis-
tances between proteins grow too large. In such cases, it is natural to turn
toward comparing the three-dimensional shapes of proteins (rather than
their one-dimensional amino acid sequences).

Molecular biologists would, therefore, like to obtain a global represen-
tation (i.e., a map) of the “protein structure universe,” in which adjacent
points represent structurally related proteins. In order to do this, biologists
have been using the classical scaling algorithm under the name “distance
geometry” (Havel, Kuntz, and Crippen, 1983) to construct various 2D and
3D protein maps (see, e.g., Holm and Sander, 1996; Hou, Sims, Zhang, and
Kim, 2003).

In this example, we reanalyze data on 498 proteins taken from the SCOP
(Structural Classification System of Proteins) database.2 We applied the

2The author thanks Sung-Hou Kim and Jingtong Hou for kindly providing him with
their list of 498 proteins and the resulting (498 × 498) proximity matrix ∆. The list of
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FIGURE 13.6. The first 25 ordered eigenvalues of B obtained from the
classical scaling algorithm on 498 proteins.

classical scaling algorithm (Table 13.5) to the proximity matrix ∆. From
inspection of the largest 25 eigenvalues of B (see Figure 13.6), we see that
the first three eigenvalues are dominant, suggesting a 3D configuration is
probably most appropriate.

A 2D map of the first two principal coordinate scores for the 498 proteins
is given in Figure 13.7. We can clearly see three arms with four clusters
of points corresponding to four of the SCOP classes. The first (red dots)
arm contains 136 α-helix proteins (class 1), the second (blue dots) arm
contains 92 β-sheet proteins (class 2), the third (green dots) arm consists
of 94 α/β proteins (class 3, mainly parallel β-sheets), and the 176 α + β
proteins (class 4, mainly antiparallel β-sheets) congregate (brown dots) at
the junction of the three arms. Class 1 does not overlap with class 3 and
has minimal overlap (two outlying points) with class 2; classes 2 and 3
have only two overlapping points; class 4, however, spreads and mixes with
all three other classes. These results suggest that certain proteins may be
misclassified by SCOP. We also notice the presence of a few outliers in the
display.

A 3D map of the first three principal coordinates for the 498 proteins
shows more interesting structure; see Figure 13.8. The blue points of class 1
(the α-helix proteins) and the red points of class 2 (the β-sheet proteins)

proteins may be found in the file 498.SCOP.txt and the proximity matrix is in the file
498.matrix.txt on the book’s website.
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FIGURE 13.7. Two-dimensional map of four protein classes using
the classical scaling algorithm on 498 proteins. Class 1 (red dots) are
α-proteins, class 2 (blue dots) are β-proteins, class 3 (green dots) are α/β-
proteins, and class 4 (brown dots) are α + β-proteins.

appear to fall along two separate axes. The black points of class 4 (the α+β
proteins, a random mixture of α-helix and β-sheet proteins) jut out from
the middle of those two axes and lie on the plane formed by those axes.
The green points representing the proteins in class 3 (the α/β proteins) are
actually scattered around a third axis, perpendicular to the other two axes.
These results are very similar to those discovered by Hou, Sims, Zhang, and
Kim (2003).

13.7 Distance Scaling

Given n items (or entities) and the matrix of their dissimilarities, ∆ =
(δij), we saw that the classical scaling problem is to find a configuration
of points in a lower-dimensional space such that the interpoint distances
{dij} satisfy dij ≈ δij . In distance scaling, this relationship is relaxed; we
wish to find a suitable configuration for which

dij ≈ f(δij), (13.13)

where f is some monotonic function. The function f transforms the dis-
similarities into distances. The use of “metric” or “nonmetric” distance
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FIGURE 13.8. A three-dimensional map of four protein classes using the
classical scaling algorithm on 498 proteins. The graph shows two separate
axes, one for the blue points of the α-helix class of proteins and the other
for the red points of the β-sheet class of proteins. A third axis of green
points for the α/β class of proteins is also visible in both panels. Lying
midway in the plane formed by the α and β axes, we see the black points
of the α + β class of proteins.

scaling depends upon the the nature of the dissimilarities. If the dissimilar-
ities are quantitative (e.g., ratio or interval scale), we use metric distance
scaling, whereas if the dissimilarities are qualitative (e.g., ordinal), we use
nonmetric distance scaling. In the MDS literature, metric distance scaling
is traditionally called metric MDS and nonmetric distance scaling is called
nonmetric MDS.

13.8 Metric Distance Scaling

In metric distance scaling, the dissimilarities {δij} are quantitative mea-
surements, usually Euclidean, but other distance metrics are possible. The
function f is usually taken to be a parametric monotonic function, such
as f(δij) = α + βδij , where α and β are unknown positive coefficients.
In some MDS software (e.g., SAS PROC MDS), metric distance scaling
is characterized in three ways: absolute MDS (α = 0, β = 1), ratio MDS
(α = 0, β > 0), and interval MDS (α ≥ 0 and β ≥ 0). It is worth noting
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that absolute MDS is not very useful in practice. If the {δij} are similarities
(rather than dissimilarities), then we need β < 0.

13.8.1 Metric Least-Squares Scaling

Because f is a parametric function, the distances {dij} can be fitted
to {f(δij)} by least-squares (LS). The result is metric LS scaling. If the
dissimilarities are Euclidean distances and f is taken to be the identity
function, then classical scaling can be viewed as an example of metric LS
scaling. In fact, metric distance scaling is often regarded as synonymous
with classical scaling.

A given configuration of points {Yij} ⊂ 
t can be evaluated by com-
puting the pairwise distances {dij} and then, for an unknown monotone
function f , using the weighted loss function,

Lf (Y1, . . . ,Yn;W) =
∑
i<j

wij(dij − f(δij))2, (13.14)

as a goodness-of-fit criterion, where W = (wij) is a given matrix of weights.
For a specific dimensionality t, the square-root of Lf ,

stress = [Lf (Y1, . . . ,Yn;W)]1/2, (13.15)

is known as the metric stress function. Minimizing stress over all t-dimen-
sional configurations {Yij} and monotone f yields an optimal metric dis-
tance scaling solution. Weighting systems include wij = {

∑
k<� δ2

k�}−1 and
wij = δ−2

ij . More general loss functions, where g(dij) replaces dij in (13.14),
for some function g, have also been proposed.

13.8.2 Sammon Mapping

The so-called Sammon nonlinear mapping, which has become a popular
tool for pattern recognition, is a special case of metric LS scaling, where
wij = δ−1

ij {
∑

k<� δk�}−1 is used as the weighting system in (13.14) and f
is the identity function (Sammon, 1969). This weighting system normalizes
the squared-errors in pairwise distances by using the distance in the original
space. As a result, Sammon mapping preserves the small δij , giving them a
greater degree of importance in the fitting procedure than for larger values
of δij ; this can be a useful strategy if one is trying to identify clusters in
the data.

Differentiating (13.14) with Sammon weights yields a set of nonlinear
least-squares equations, which are then solved using an iterative numerical
procedure. The usual algorithm (see, e.g., Cox and Cox, 2001, Section 2.4)
starts at the classical scaling solution, then follows that up by using a
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pseudo-Newton iterative procedure with step size reduced by a “magic”
factor, usually in the range 0.3–0.4; in some cases, this factor has to be set
to a much smaller value to carry the algorithm to convergence.

13.8.3 Example: Lloyds Bank Employees

As an example of metric LS scaling, we compare the two-dimensional
Sammon mapping and classical scaling solutions of the 1905–1909 and
1925–1929 cohorts of the Lloyds Bank employee data (see Section 13.5.2).
Figure 13.9 displays the two types of metric MDS for each cohort. We see
that whereas the plotted points for classical scaling and Sammon mapping
appear to have similar patterns, with a number of well-separated clus-
ters, the points in the Sammon map for each cohort are considerably more
spread out than are those derived from classical scaling. A similar effect
using different data was also noticed by Ripley (1996, p. 309).

For the 1905–1909 cohort, there are three employees (1587, 1590, 3240)
who can be considered as outliers with respect to the remaining employees.
The two employees 1590 and 3240 only worked at Lloyds Bank for two
years (the next shortest employment tenure was 10 years) and employee
1587 worked there for 59 years (the next longest tenure was 48 years). The
Sammon mapping algorithm stopped (no further iterations) at the classical
scaling solution, so that the upper-left and upper-right panels of Figure 13.9
are identical.

13.8.4 Bayesian MDS

In certain situations, it may be reasonable to assume that the observed
dissimilarities in the proximity matrix ∆ = (δij) are tainted by measure-
ment error. We may see this, for example, when the elements of ∆ are
clearly measured in three dimensions, but the stress value for the three-
dimensional solution is not zero as it should be; instead, it may require a
much-higher dimensional solution to reduce stress down to zero. One way
to incorporate measurement error into metric MDS is to adopt a more ex-
plicit modeling framework, such as a Bayesian viewpoint (Oh and Raftery,
2001).

A cautionary note: in general, it is often difficult to verify the types of dis-
tributional assumptions used in statistical modeling, and the assumptions
used in Bayesian MDS are no exception.

In this model, we assume the dissimilarity, δij > 0, between entities i
and j is observed with Gaussian error:

δij = δ0
ij + εij , (13.16)

where δ0
ij is the true dissimilarity and εij ∼ N (0, σ2), i, j = 1, 2, . . . , n.
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FIGURE 13.9. Two-dimensional MDS solutions for the Lloyds Bank
data. The left panels show classical scalings and the right panels show Sam-
mon mappings. The upper panels show the 1905–1909 cohorts of Lloyds
Bank employees and the lower panels show the 1925–1929 cohorts.

Thus, given δ0
ij , the observed dissimilarity δij , which is a function of the

unknown {Xi}, follows the truncated Gaussian distribution,

δij ∼ N (δ0
ij , σ

2)I[δij>0], i �= j, i, j = 1, 2, . . . , n. (13.17)

The likelihood function of ({Xi}, σ2), given ∆, is given by

L({Xi}, σ2|∆) =
∏
i<j

1√
2πσ2

exp

{
−

(δij − δ0
ij)

2

2σ2

}{
1− Φ

(
−

δ0
ij

σ

)}−1

∝ (σ2)−m/2exp

⎧⎨
⎩−

ESS

2σ2
−
∑
i<j

log Φ

(
δ0
ij

σ

)⎫⎬
⎭ , (13.18)

where ESS =
∑

i<j(δij−δ0
ij)

2 is the error sum of squares, Φ(·) is the stan-
dard Gaussian cdf, and m = n(n−1)/2 is the number of dissimilarities. The
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second term in the exponent of the likelihood function is the modification
to the normalizing constant due to the truncation.

Next, we assume that the {Xi} are iid with a common multivariate-
Gaussian prior density,

Xi ∼ Nr(0,ΣXX), i = 1, 2, . . . , n, (13.19)

where ΣXX = diag{λ1, . . . , λr}. Then, the full conditional posterior density
of the {Xi}, that is, π({Xi}|σ2, {λj}), is proportional to

(σ2)−m/2

⎛
⎝

r∏
j=1

λ
−n/2
j

⎞
⎠ exp

⎧⎨
⎩−

Q1 + Q2

2
−
∑
i<j

log Φ

(
δ0
ij

σ

)⎫⎬
⎭ , (13.20)

where Q1 = ESS/σ2 and Q2 =
∑n

i=1(X
τ
i Σ

−1
XXXi) =

∑r
j=1 λ−1

j sj are
quadratic functions of the {xi}, and sj =

∑n
i=1 X2

ij .

We now assume that the error variance σ2 has the (conjugate) prior

σ2 ∼ IG(a, b), (13.21)

where IG(a, b) is the inverse-gamma distribution with parameters a and b

(i.e., π(σ2) ∝ (σ2)−(a+1)e−b/σ2
, a, b > 0; see, e.g., Bernardo and Smith,

1994, p. 119). Similarly, the prior for λj is taken to be

λj ∼ IG(α, βj) (13.22)

(i.e., π(λj) ∝ λ
−(α+1)
j e−βj/λj , α, βj > 0), independently for each j =

1, 2, . . . , r. Finally, the prior densities of {Xi}, {λj}, and σ2 are assumed
to be independent.

The joint posterior density of ({Xi}, {λj}, σ2), given the proximity ma-
trix ∆ = (δij), is

p({Xi}, {λj}, σ2|∆) = L({Xi}, σ2|∆) · π({xi}) · π(σ2) · π({λj})

∝ (σ2)−(m/2+a+1)

⎛
⎝

r∏
j=1

λ
−(n/2+α+1)
j

⎞
⎠ e−A, (13.23)

where

A =
Q1 + Q2

2
+
∑
i<j

log Φ

(
δ0
ij

σ

)
+

b

σ2
+

r∑
j=1

βj

λj
. (13.24)

The posterior distribution (13.23) is a complicated function of the unknown
quantities ({xi}, {λj}, σ2).

The numerical integration necessary to compute Bayes estimates of these
quantities is best accomplished using Markov chain Monte Carlo (MCMC)
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methods. Oh and Raftery used a random-walk, Metropolis–Hastings algo-
rithm. Initial values for the {Xi} and the other unknown parameters, σ2

and {λj}, of the posterior distributions are taken from a classical scaling
solution. For the algorithmic details, we refer the reader to the original
article.

13.9 Nonmetric Distance Scaling

In many applications of MDS, dissimilarities are known only by their
rank order, and the spacing between successively ranked dissimilarities is of
no interest or is unavailable. This may happen because the data collected
involve only ordinal information (possibly through pairwise comparisons
of a set of entities). See, for example, the color stimuli and Morse code
examples in Section 13.2. In these types of situations, we have no metric
to deal with such comparisons.

In nonmetric distance scaling (also known as ordinal MDS), we assume
that f is an arbitrary function that satisfies the monotonicity constraint
f(δij) ≤ f(δk�) whenever δij < δk�, for all i, j, k, � = 1, 2, . . . , n. Explana-
tions as to why f should be a monotone transformation of a dissimilarity
include the following:

People vary remarkably in the way in which they use rating
scales in general, with some showing tendencies to avoid ex-
treme ratings, others using specific categories disproportionately
often, and still others piling their judgments up against one ex-
treme of the scale. (Ramsay, 1988)

In psychophysical applications, the measuring device by which
dissimilarities are observed is the human mind, which is known
to perceive distances in ways that are subject to monotonic dis-
tortion. (For example, the mind has a tendency to underesti-
mate large distances.) (Trosset, 1998)

So, rather than using subjective judgment as a distance measure, we choose
instead to construct f to preserve the rank-order of the dissimilarities.

13.9.1 Disparities

Suppose we have a symmetric matrix ∆ = (δij) of dissimilarities (with
zero diagonal entries) between a collection of n r-dimensional entities. Ig-
noring the diagonal entries in ∆ (which avoids the problem in the Morse-
code example), we have m = 1

2n(n − 1) dissimilarities, which we further
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assume can be strictly ordered from smallest to largest:

δi1j1 < δi2j2 < · · · < δimjm
, (13.25)

where (i1, j1) indicates the pair of entities having the smallest dissimilarity,
and (im, jm) indicates the pair of entities having the largest dissimilarity.

The objective is to represent these r-dimensional entities as a configura-
tion of n points in the lower-dimensional space 
t, where for the moment
we assume that the dimensionality t is given. Denote the points in this
configuration by Y1, . . . ,Yn and let

dij = ‖Yi −Yj‖ = {(Yi −Yj)τ (Yi −Yj)}1/2 (13.26)

be the Euclidean distance between the points Yi and Yj , i < j. Nonmetric
distance scaling finds a configuration such that the ordering of the distances

di1j1 < di2j2 < · · · < dimjm
(13.27)

matches exactly the ordering of the dissimilarities in (13.25).
A plot of the configuration distances {dij} against their rank-order will

not necessarily produce a monotonically looking scatterplot, thereby vi-
olating the monotone condition (13.27). To overcome this difficulty, we
approximate the {dij} by {d̂ij}, say (usually called disparities), which are
monotonically related to the {dij} and where

d̂i1j1 ≤ d̂i2j2 ≤ · · · ≤ d̂imjm
. (13.28)

This formulation allows for possible ties in the disparities. Think of the
{d̂ij} as fitted values obtained from fitting a monotonically increasing func-
tion to the {dij}; the {d̂ij} are not themselves distances, and there may
be no configuration of points {yi} for which the {d̂ij} are its interpoint
distances. These disparities, which are joined up to form a “curve,” are
then superimposed upon the plot of the configuration distances against
rank-order. The resulting plot is usually called a Shepard diagram.

There are two main methods for computing nondecreasing disparities for
the nonmetric distance-scaling problem. The first method, isotonic regres-
sion (also known as monotonic regression) (Kruskal, 1964b), results in a
step-like function, whereas the second, monotone splines, yields a smoother
transformation.

Isotonic Regression: A Simple Example

Consider the following artificial example with n = 6 entities. Suppose the
rank-order of the 15 dissimilarities, {δij}, is given in Table 13.8 by the col-
umn marked “rank.” Suppose, further, that a specific configuration yields
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TABLE 13.8. Finding the disparities by isotonic regression for an artifi-
cial example with n = 6 and m = 15. The columns I, II, III, IV, V, and
VI display a sequence of trial solutions for the disparities. The cells in red
indicate the active block at each trial solution. The value of S is 6.85%.

rank dij I II III IV V VI d̂ij

1 2.3 2.3 2.3 2.30 2.30 2.30 2.30 2.30
2 2.7 2.7 2.7 2.70 2.70 2.70 2.70 2.70
3 8.1 8.1 6.9 6.67 6.67 6.67 6.67 6.67
4 5.7 5.7 6.9 6.67 6.67 6.67 6.67 6.67
5 6.2 6.2 6.2 6.67 6.67 6.67 6.67 6.67
6 8.1 8.1 8.1 8.10 8.13 7.80 7.80 7.80
7 8.6 8.6 8.6 8.60 8.13 7.80 7.80 7.80
8 7.7 7.7 7.7 7.70 8.13 7.80 7.80 7.80
9 6.8 6.8 6.8 6.80 6.80 7.80 7.80 7.80

10 9.3 9.3 9.3 9.30 9.30 9.30 9.30 9.30
11 10.5 10.5 10.5 10.50 10.50 10.50 10.15 10.10
12 9.8 9.8 9.8 9.80 9.80 9.80 10.15 10.10
13 10.0 10.0 10.0 10.00 10.00 10.00 10.00 10.10
14 12.6 12.6 12.6 12.60 12.60 12.60 12.60 12.60
15 12.8 12.8 12.8 12.80 12.80 12.80 12.80 12.60

the estimated dissimilarities, {dij}, given in the second column. Clearly, the
estimates are not rank-ordered to fit with the ranks of the dissimilarities.

We partition the estimated dissimilarities into blocks, and at each step of
the algorithm one of these blocks becomes “active.” A “block” is a consecu-
tive set of dissimilarities that have to be set equal to each other to maintain
monotonicity. A trial solution consists of averaging the values within the
active block. Table 13.8 shows the complete sequence of trial solutions for
this example to obtain the set of disparities for a single iteration.

From the second column of Table 13.8, we see that the first three dij are
increasing (2.3, 2.7, 8.1). The next distance (5.7) is smaller only than the
preceding 8.1, so the active block is (8.1, 5.7), whose values are averaged to
get 6.9. The next distance 6.2 is smaller than the two previous 6.9s, so the
active block is (6.9, 6.9, 6.2), with an average of 6.67. The two distances
(8.1, 8.6) are increasing, but the next one (7.7) is smaller than the preceding
two. The active block is now (8.1, 8.6, 7.7), and their average value is 8.13.
The next distance (6.8) is smaller than the three 8.13s, so the active block
is (8.13, 8.13, 8.13, 6.80), with an average of 7.80. The next two distances
(9.3, 10.5) are increasing, but 9.8 is smaller than 10.5. So, we average the
two distances (10.5, 9.8) to get 10.15. The next distance 10.0 is smaller than
the two 10.15s, so we average the three values to get 10.1. The remaining
distances satisfy the monotonicity requirement, and the procedure stops.

The last column of Table 13.8 shows the disparities {d̂ij}. The Shepard
diagram of the {dij} and the {d̂ij} is given in the left panel of Figure
13.10. In preparation for the next step in the algorithm (i.e., updating the
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FIGURE 13.10. Shepard diagram for the artificial example. Left panel:
Isotonic regression. Right panel: Monotone spline. Horizontal axis is rank
order. For the red points, the vertical axis is the dissimilarity dij, whereas
for the fitted blue points, the vertical axis is the disparity d̂ij.

configuration), the disparities are normalized so that their sum-of-squares
equals 1

2n(n− 1).

Monotone Splines

As we see from the left panel of Figure 13.10, the disparities are plot-
ted as a step-like function. We would like to make the transformation
smoother than a step function while retaining the property that it be non-
decreasing. We now describe a class of monotone spline transformations
(Ramsay, 1988), which can be constrained to be everywhere nondecreasing
and smooth. Monotone splines are constructed from polynomials defined
over a grid of subintervals so that adjacent polynomials are joined up in a
very smooth way at the interval boundaries.

Let [L,U ] ⊂ 
 be an interval. Define a grid in the interior of that interval
by the sequence of points (or knots) L = ξ0 < ξ1 < · · · < ξq < ξq+1 = U .
This grid has q interior knots, ξ1, . . . , ξq. Let pi represent the rank of the
ith dissimilarity, i = 1, 2, . . . ,m. The grid of points defines a sequence of
adjacent subintervals, [ξ0, ξ1], [ξ1, ξ2], . . . , [ξq, ξq+1], so that each pi falls into
one of these subintervals. Within the jth subinterval [ξj , ξj+1], the function
f consists of a polynomial Pj having a given degree k− 1 (or order k). The
smoothness of f is characterized by the two polynomials Pj and Pj+1 having
equal (and, hence, continuous) derivatives up to order k− 2 at the knot ξj ,
i = 1, 2, . . . , q; that is, (Di−1Pj)(ξj) = (Di−1Pj+1)(ξj), i = 1, 2, . . . , k − 1,
where (Di−1P )(ξ) = di−1P/dxi−1 evaluated at the point ξ if i > 1 and
(D0P )(ξ) = P (ξ).
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Thus, if k = 1, the spline is a step function discontinuous at the knots; if
k = 2, the spline is a sequence of piecewise linear segments that join up con-
tinuously at the knots; if k = 3, we have piecewise quadratic segments with
continuous first derivatives at the knots; and if k = 4, we have piecewise
cubic segments with continuous first and second derivatives at the knots
(usually called a cubic spline). Note that the number of knots and their
placement play important roles in the definition of any spline function; a
poor choice of knots can result in a low-quality spline fit to the data.

It can be shown that a monotone spline of degree k with q interior knots
can be computed using the equation,

d̂ = b01m + Mb, (13.29)

where M = (M1, · · · ,Mk+q) is an (m × (k + q))-matrix, b is a (k + q)-
vector of nonnegative weights, and b0 is a nonnegative constant. These
type of splines are also called regression splines. The columns {Mj} of M
are each piecewise polynomial functions of the pi. The first max{0, j − k}
intervals of Mj are each zero and the last max{0, q− j +1} intervals of Mj

are each one. For example, suppose k = 2 (quadratic) and q = 4 interior
knots. Then, M1 has ones in the last four intervals, M2 has ones in the
last three intervals, M3 has a zero in the first interval and ones in the last
two intervals, M4 has zeroes in the first two intervals and a one in the last
interval, M5 has zeroes in the first three intervals, and M6 has zeroes in
the first four intervals. The remaining intervals constitute an appropriate
polynomial in the pi with equal derivatives at the knots.

More formally, let Mij denote the ith element of the jth column Mj of
the matrix M, i = 0, 1, 2, . . . ,m − 1, j = 1, 2, . . . , k + q, where q is the
number of interior knots. A zero-order (k = 0) spline has Mij equal to zero
if ξ0 ≤ pi < ξj and one if ξj ≤ pi < ξq+1. A linear (k = 1) spline has
elements

Mij =

⎧⎨
⎩

0 if ξ0 ≤ pi < ξj−1

aij if ξj−1 ≤ pi < ξj

1 if ξj ≤ pi < ξq+1

(13.30)

where aij = (pi − ξj)/(ξj − ξj−1). For a quadratic spline (k = 2), we have
that:

Mij =

⎧⎪⎪⎨
⎪⎪⎩

0 if ξ0 ≤ pi < ξj−2

bij if ξj−2 ≤ pi < ξj−1

1− cij if ξj−1 ≤ pi < ξj

1 if ξj ≤ pi < ξq+1

(13.31)

where bij = (ξj−2−pi)2/(ξj−1− ξj−2)(ξj − ξj−2) and cij = (ξj −pi)2/(ξj −
ξj−1)(ξj − ξj−2). For j = 1, we set ξ−1 = ξ0, and for j = q + 1, we set
ξq+1 = ξq. In the special case that q = m−1 and k = 0, the monotone spline
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(using appropriately located knots) is identical to a monotone regression
transformation (see Exercise 13.4).

Thus, we can write the ith disparity (i.e., ith element of the m-vector d̂)
as the linear combination,

d̂i =
k+q∑
j=0

bjMij , (13.32)

with nonnegative weights, bj ≥ 0, j = 0, 1, 2, . . . , k + q, where we set
Mi0 = 1, i = 1, 2, . . . ,m. Redefine M to be an (m×(k+q+1))-matrix with
first column 1m to take care of the constant b0. Then, b = (b0, b1, · · · , bk+q)τ

is the coefficient vector having nonnegative elements. The vector of dispar-
ities is defined as d̂ = Mb.

We now wish to find nonnegative b that will solve the LS problem,

b∗ = arg min
b≥0

(d−Mb)τ (d−Mb). (13.33)

This problem can be solved using the following alternating least-squares
(ALS) algorithm. First, fix all entries of b except bj . We now choose a
nonnegative bj to minimize (13.33). Compute the “residual” êj = d −∑

k �=j bkMk. Then, êj − bjMj = d−Mb, and (êj − bjMj)τ (êj − bjMj) =
êτ

j êj + b2
jM

τ
j Mj − 2bjMτ

j êj , which is minimized when bj = Mτ
j êj/Mτ

j Mj .
If bj < 0, set bj = 0. Thus, bj ≥ 0. Repeat this computation for every
other element of b while keeping all other elements of b fixed. These steps
constitute the first iteration of the ALS algorithm, which yields b ≥ 0. We
update these values in an iterative fashion until no change is observed in b.
This algorithm has been shown to converge to a global minimum of the
nonnegative LS problem.

In the right panel of Figure 13.10, we show the monotone spline fitted
to the artificial data example given in Table 13.8.

13.9.2 The Stress Function

If we square the horizontal deviations, dij− d̂ij , from a Shepard diagram
and then add them up, we get a form of residual sum of squares,

raw stress = S∗(Y1, . . . ,Yn) =
∑
i<j

(dij − d̂ij)2, (13.34)

which acts as a measure of goodness of fit. Although this measure is invari-
ant under translations, reflections, and rotations (orthogonal transforma-
tions) of the {Yi}, it is not scale-invariant under stretching (or shrinking)
of each of the {Yi} by some constant k; we see that Yi → kYi means
dij → kdij and d̂ij → kd̂ij , so that S∗ → k2S∗. Thus, raw stress can
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always be reduced in magnitude by scaling down (shrinking) the config-
uration to a single point where all the dij = 0. To counter this effect of
scale-dependency, we normalize the measure S∗ to have the general form,

⎧⎨
⎩
∑
i<j

wij(dij − d̂ij)2

⎫⎬
⎭

1/2

, (13.35)

where the {wij} are weights chosen by the user. The most popular nor-
malization is where wij = (

∑
i<j d2

ij)
−1, so that (13.34) becomes (Kruskal,

1964a)

stress = S(Y1, . . . ,Yn) =

{∑
i<j(dij − d̂ij)2∑

i<j d2
ij

}1/2

, (13.36)

where it is understood that the summations in both the numerator and
denominator of S are computed for all i, j = 1, 2, . . . , n such that i < j.
The stress value S lies between 0 and 1.

The stress criterion S (more commonly known as Kruskal’s stress formula
one or Stress-1) can be interpreted as a loss function that depends upon the
configuration points {Yi} and the disparities {d̂ij} and measures how well
a particular configuration fits the given dissimilarities. It is worth noting
that certain authors refer to S2 as the stress function.

A slightly different version of S (called stress formula two or Stress-2)
has weights given by

wij =

⎧⎨
⎩
∑
i<j

(dij − d̄)2

⎫⎬
⎭

−1

, (13.37)

where d̄ is the average distance. The normalization (13.37) has been used in
situations where certain types of degeneracies occur. Other recommended
normalizations include wij = d̂−2

ij and wij = (
∑

i<j d̂ij)−1d̂−1
ij (Sammon,

1969). The sstress criterion, which uses squared distances and squared dis-
parities,

sstress =
∑
i<j

(d2
ij − d̂2

ij)
2, (13.38)

is the minimization criterion of choice in the MDS program Alscal (Takane,
Young, and de Leeuw, 1977). A disadvantage of the sstress criterion (13.38)
is that it emphasizes larger dissimilarities at the expense of smaller ones.
More general versions of all these stress functions are available.
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TABLE 13.9. The nonmetric distance-scaling algorithm.

1. Order the m = 1
2
n(n − 1) dissimilarities {δij} from smallest to largest as

in (13.25).

2. Fix the number t of dimensions and choose an initial configuration of points
Yi ∈ �t, i = 1, 2, . . . , n.

3. Compute the set of distances {dij} between all pairs of points in the initial
configuration.

4. Use an isotonic regression algorithm to produce fitted values {d̂ij}. Com-
pute the initial value of stress.

5. Change the configuration of points by applying an iterative gradient search
algorithm (e.g., method of steepest descent) to the stress criterion. This
step will produce a new set of {dij}.

6. Use an isotonic regression algorithm to produce revised values of the {d̂ij},
together with a smaller stress value.

7. Repeat steps 5 and 6 until the current configuration produces a minimum
stress value, so that no further improvement in stress can take place by
further reconfiguring the points.

8. Repeat the previous steps using a different value of t. Plot stress against
t. Choose that value of t that gives a reasonably small value of stress and
where no significant decrease in stress can result from increasing t. This is
usually exhibited by an “elbow” in the plot.

13.9.3 Fitting Nonmetric Distance-Scaling Models

The goal here is to find a configuration of points {Yi} ⊂ 
t that min-
imizes the stress value S under the monotonicity condition (13.28) for
the disparities. To minimize such a nonlinear function in many variables,
gradient-based optimization algorithms (e.g., method of steepest descent)
have traditionally been used (Kruskal, 1964b).

Starting with an arbitrary configuration (which may be a random scat-
ter of points having little relationship to the given dissimilarities or the
configuration found from carrying out metric MDS on ∆), we change the
locations of the points in an iterative fashion. At each iteration, we im-
prove the configuration by finding the direction for which S decreases most
quickly, and we move the points in the configuration a short step in that
direction. This iterative scheme is carried out until S does not decrease
significantly. The algorithm is listed in Table 13.9.

Let Yτ = (Y1, · · · ,Yn) be a (t× n)-matrix whose columns are the con-
figuration points. Let y = vec(Yτ ) = (Yτ

1 , · · · ,Yτ
n)τ be the nt-vector ob-

tained by placing the columns of Yτ under one another successively. Stress
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S = S(y) is now a function of y. The method of steepest descent moves
the configuration in a direction determined by the partial derivatives of S
with respect to y. Thus, given the configuration y(m) at the mth iteration,
a revised configuration at the next iteration is given by:

y(m+1) = y(m) − αm+1z, (13.39)

where αm+1 is the step-size at the (m + 1)th iteration and

z =
∂S

∂y
/|∂S

∂y
| (13.40)

is the (normalized) gradient function. Explicit formulas for z were first
given by Kruskal (1964b). See also Cox and Cox (2001, Section 3.2.2). Step
size should be changed at each iteration to speed up the algorithm (Kruskal
suggests starting in general with α0 = 0.2).

This gradient-based procedure has been extended and generalized in
many different ways. However, there is no guarantee that any of these
algorithms will find a global minimum. Indeed, it is not unusual for these
algorithms to find only local minima. As a result, the best that can often be
accomplished is to try different initial configurations (i.e., random starts)
to check the convergence properties of the algorithm. This may be accom-
plished by choosing a very large step size to start the iteration process all
over again whenever a local minimum is thought to have been reached. If
the same solution is obtained from repeated application of the algorithm,
then the common solution is probably a global minimum.

13.9.4 How Good Is an MDS Solution?

Kruskal’s experience with various types of real and simulated data led
him to assess the global fit of any nonmetric distance-scaling solution
by various levels of stress values (Kruskal, 1964a); see Table 13.10. The
distance-scaling solution for the color-stimuli example has a clear elbow at
two dimensions in the scree plot and a 2D minimum-stress value of 0.023,
which would classify the configuration as an excellent fit to the data.

The assessment given by Table 13.10 should be considered only as a pos-
sible guideline of how well an MDS solution fits the “true” data structure;
in fact, this guideline often fails to do this, especially in situations where the
data are noisy. For example, in the distance-scaling solution for the Morse-
code example, the scree plot shows no elbow and the minimum-stress value
for the 2D solution is 0.18, which would declare the configuration close to
a poor fit to the data. In general, if the number of subjects is larger in
one study than in another, then we would expect the stress value from the
former study to be larger. We see this in the Morse-code example, where
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TABLE 13.10 Evaluation of “stress.”

Stress Goodness of Fit
0.20 Poor
0.10 Fair
0.05 Good
0.025 Excellent
0.0 “Perfect”

the number of subjects is much larger than in the color-stimuli example
and so would be expected to have a higher stress value.

13.9.5 How Many Dimensions?

Stress S measures the goodness of fit of a given configuration in 
t, and
the configuration that best matches the dissimilarities enjoys minimum
stress. Furthermore, as we increase t, we find that the minimum stress
decreases. In fact, if t ≥ n − 1, the minimum stress is exactly zero, a
solution that is clearly undesirable; too large a dimensionality implies that
we are including in the solution overly many noisy dimensions, which, in
turn, leads to overfitting.

The goal is to choose a configuration for which t is reasonably small
(typically, 2 or 3, if possible). With this consideration in mind, we compute
the minimum value of stress, S

(t)
min, for different dimensionalities t, plot the

points (t, S(t)
min), and then join up the plotted points. The resulting “curve”

will be monotonically decreasing from right to left, with the decrease be-
coming less severe as t gets larger. This “curve” is sometimes called a scree
plot if all minimum-stress values for t from 1 to r are computed.

We choose that value of t for which the minimum stress is small and any
further increase in t does not significantly decrease the minimum stress. Us-
ing an informal selection procedure also found in PCA and factor analysis,
we look for a t that exhibits an “elbow” in the plot. That value of t is taken
as the chosen dimensionality. The results of simulation studies with noise-
perturbed distances (e.g., Spence and Graef, 1974), however, have shown
that “elbows” are not all that obvious in scree plots even when noise is
kept at a fairly low level.

13.10 Software Packages

Classical scaling can be carried out in S-Plus and R by using the com-
mandcmdscale [in library(mva)] (VenablesandRipley,2002,p.306).Sammon
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mapping can be computed using the S-Plus and R command sammon [in
library(MASS)] (Venables and Ripley, 2002, p. 308) and is also available
in the SOM toolbox in Matlab. A Fortran program, bmds, written by
Oh and Raftery to compute Bayesian MDS is available at the StatLib

website. R (version 1.9.0) contains the command isoreg [now in pack-
age stats, moved from package modreg] to compute isotonic regression.
Kruskal’s method of nonmetric distance scaling using the stress function
(13.36) and isotonic regression can be carried out in S-Plus and R by
using the command isoMDS [in library(MASS)] (Venables and Ripley, 2002,
p. 308).

Bibliographical Notes

Book-length descriptions of MDS include Cox and Cox (1994) and Borg
and Groenen (1997).

The early development of MDS procedures was dominated by applica-
tions to psychology. Another very popular area for MDS application has
been marketing, where the entities are different brand-name products, and
the distance between a pair of those products gives a measure of how closely
associated the two products appear to be in the eyes of consumers. Re-
searchers in areas of molecular biology (Crippen and Havel, 1978; Havel,
1991; Glunt, Hayden, and Raydan, 1993; Basalaj and Eilbeck, 2003; Hou,
Sims, Zhang, and Kim, 2003), computational chemistry (Trosset, 1998), so-
cial networks (Theus and Schonlau, 1998), and graph layout and drawing
(Kruskal and Seery, 1980; Di Battista, Eades, Tamassia, and Tollis, 1994)
have shown that those areas can also profit from using MDS. We note that
the MDS application to network design (Kruskal and Seery, 1980) is used as
part of the Isomap algorithm for nonlinear manifold learning (see Section
16.7.3), but where geodesic distance along the manifold is used instead of
Euclidean distance.

Classical scaling was introduced by Torgerson (1952, 1958). Gower (1966)
called it principal coordinate analysis because of its close resemblance to
PCA. Its roots go back to the results of Eckart and Young (1936) and Young
and Householder (1938). Classical scaling has variously been referred to as
Torgerson scaling, Torgerson–Gower scaling, and Torgerson–Young scaling.

In 1995, the National Academy Commission on Physical Sciences, Math-
ematics, and Applications published a report entitled Mathematical Chal-
lenges from Theoretical/Computational Chemistry. In Chapter 3 of that
report, “distance geometry” was described as “an important technique in
computational chemistry” and “a key tool in the NMR spectroscopist’s ar-
senal, providing not only the [3D] structures, but also a [quantification] of
how accurately they are known.”
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Useful books on protein sequence alignment include Durbin, Eddy, Krogh,
and Mitchison (1998) and Deonier, Tavaré, and Waterman (2005). An ex-
cellent account of BLAST can be found in the book by Korf, Yandell, and
Bedell (2003), where Altschul reports that the name BLAST was originally
chosen to be a pun on the name FASTA, but then morphed into its current
expanded name. The SIM sequence alignment program can be found at the
website us.expasy.org/tools/sim-prot.html.

Nonmetric MDS was formulated by Kruskal (1964a,b), who introduced
the notion of stress and gave an iterative computational algorithm for car-
rying out MDS. Monotone splines have been used as a main ingredient in
a model-based framework for statistical inference in MDS (Ramsay, 1982).
We note that even though the idea of extending nonmetric MDS into a
model-based methodology is very controversial (see the discussion accom-
panying Ramsay’s article), monotone splines in MDS have been found to
be a useful exploratory tool for calculating disparities.

The algorithms that are still being used for MDS are known to be very
slow and inefficient and do not scale well for very large data sets. Accord-
ingly, workshops on MDS algorithms are being held to develop new and
different algorithms for MDS.

Exercises

13.1 Consider the color-stimuli experiment outlined in Section 14.2.1. The
similarity ratings are given in the file color-stimuli on the books’s web-
site. Carry out a classical scaling of the data and show that the solution
is a “color circle” ranging from violet (434 mµ) to blue (472 mµ) to green
(504 mµ) to yellow (584 mµ) to red (674 mµ). Compare your solution to
the nonmetric scaling solution given in Section 13.2.

13.2 Consider the Morse-code experiment outlined in Section 13.2.2. The
file Morse-code on the book’s website gives a table of the percentages of
times that a signal corresponding to the row label was identified as being
the same as the signal corresponding to the column label. A row of this
table shows the confusion rate for that particular Morse-code signal when
presented before each of the column signals, whereas a column of the table
shows the confusion rate for that particular signal when presented after
each of the row signals. This table of confusion rates is not symmetric
and the diagonal elements are not each 100%. Now, every square matrix
M can be decomposed uniquely into the sum of two orthogonal matrices,
M = A + B, where A = 1

2 (M + Mτ ) is symmetric (Aτ = A), and B =
1
2 (M−Mτ ) is skew-symmetric (Bτ = −B) with zero diagonal entries. Find
the decomposition for the Morse-code data. Ignore that part of the Morse-
code data provided by B and carry out a nonmetric scaling only of the
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symmetric part A. Decide how many dimensions you think are appropriate
for representing the data.

13.3 Let ‖M‖2 =
∑

i

∑
j M2

ij . From the decomposition in Exercise 13.2,
show that ‖M‖2 = ‖A‖2 + ‖B‖2. This result enables us to analyze sepa-
rately the symmetric part (see Exercise 13.2) and the asymmetric part of
the Morse-code data. Ignore the diagonal entries in M, A, and B. Find
the sum of squares of the remaining entries of all three matrices and argue
why you may think that the symmetric part of the data plays a major role
in the analysis, whereas the asymmetric part plays only a minor role.

13.4 Show that the dissimilarities in the matrix ∆ are Euclidean distances
if and only if the doubly centered matrix B = HAH is nonnegative definite,
where A is given in the classical scaling algorithm of Table 13.5.

13.5 This exercise shows that monotone regression is a special case of
monotone spline transformations. Consider a zero-order (k = 0) monotone
spline with q = m− 1 interior knots (where m is the number of dissimilar-
ities). Let pi = i, i = 0, 1, 2, . . . ,m − 1. Let m = 5 and put the knots at
the points ξ0 = 0.5, ξ1 = 1.5, ξ2 = 2.5, ξ3 = 3.5, ξ4 = 4.5, ξ5 = 5.5. Find the
(5 × 4)-matrix M and the vector of disparities d̂ = b01m + Mb, for any
nonnegative bi, i = 0, 1, . . . ,m−1. Show that the disparities obey the same
monotonicity property as they do in (13.27) for monotone regression.

13.6 In the British-towns file on the book’s website, there is a proximity
matrix of the distances between 48 towns in Great Britain. Carry out a
classical scaling of these pairwise distances and construct a map of Great
Britain.

13.7 In ratio MDS and interval MDS, find the LS estimates of α and β
in each case, where the minimizing criterion is the weighted loss function
(13.14).



14
Committee Machines

14.1 Introduction

One of the most important research topics in machine learning is the prob-
lem of how to lower the generalization error of a learning algorithm, either
by reducing the bias or the variance (or both). A major complication of
any attempt to reduce variance or bias (or both) is that the definitions of
“bias” and “variance” of a classification rule are not as obvious as they are
in regression. In fact, there have been several conflicting suggestions for the
bias-variance decomposition for classification problems.

Such a desire to control bias and variance, and, hence, generalization
error, is related to the idea of “instability” of a prediction or classification
method. If a small perturbation of the learning set induces major changes in
the resulting predictor or classifier, we say that the associated regression or
classification method is unstable. Unstable predictors or classifiers have high
variance (due to overfitting) and low bias. High bias occurs for predictors
or classifiers that underfit the data. Decision trees and neural nets are, by
this definition, unstable, whereas linear discriminant analysis is an example
of a stable classifier with low variance and possibly high bias.

In this chapter, we show that the instability of a predictor or classifier (or,
more generally, of any learning algorithm) is an important tool that can be

A.J. Izenman, Modern Multivariate Statistical Techniques,
doi: 10.1007/978-0-387-78189-1 14, 505
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used to improve the accuracy of that learning algorithm. Novel approaches
to the problem of predictor instability include bagging and boosting. Both
of these approaches exploit the presence of instability in order to create a
more accurate learning method (i.e., predictor or classifier). By perturbing
the learning set, these methods generate an ensemble of different base pre-
dictors or base classifiers, which are then combined into a single combined
predictor or combined classifier, as appropriate. The success of such com-
bined learning methods — called ensemble learning or committee machines
— often depends upon the degree of instability of the base predictors or
classifiers.

Bagging and boosting can be distinguished from each other by the man-
ner in which their respective perturbations are generated. The bagging
process (Breiman, 1996b) generates perturbations by random and indepen-
dent drawings from the learning set, whereas the boosting process (Freund
and Schapire, 1998) is deterministic and generates perturbations by succes-
sive reweightings of the learning set, where current weights depend upon the
misclassification history of the process. Bagging was designed specifically to
reduce variance, whereas boosting appears to have more of a bias-reducing
flavor. Another example of a committee machine that will be described in
this chapter is random forests (Breiman, 2001b).

14.2 Bagging

The word bagging is an acronym for the phrase “bootstrap aggregating”
(Breiman, 1996b). Bagging was the first procedure that successfully com-
bined an ensemble of learning algorithms to improve performance over a
single such algorithm.

Bagging is most successful if the predictor is unstable. If the learning
procedure is stable, the bagged predictor will not differ much from the single
predictor and may even weaken its performance somewhat. However, when
the learning procedure is unstable, we tend to see a significant improvement
for the bagged predictor over the original unstable procedure.

As before, we denote the learning set of n observations by

L = {(Xi, Yi), i = 1, 2, . . . , n}, (14.1)

where the {Yi} are continuous responses (a regression problem) or un-
ordered class labels (a classification problem). Bagging takes an ensemble
of learning sets, {Lk}, say, each containing n observations drawn from the
same underlying distribution as those in L, and combines the predictors
from those learning sets in such a way that the resulting predictor improves
upon that obtained from the single learning set L.

The bagging procedure starts by drawing B bootstrap samples from L.
Each bootstrap sample is obtained by repeated sampling with replacement
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from L. In other words, we place equal probabilities on the sample points
(i.e., pi = 1/n on the ith observation (Xi, Yi) in L, i = 1, 2, . . . , n) and
then sample n times with replacement from this distribution. We denote
the bootstrap samples by

L∗b = {(X∗b
i , Y ∗b

i ), i = 1, 2, . . . , n}, b = 1, 2, . . . , B. (14.2)

Some of the original learning set will appear in L∗b, some will appear several
times, whereas others will not appear at all. What we do next depends upon
whether we are dealing with a classification or a regression problem.

14.2.1 Bagging Tree-Based Classifiers

In the classification case, Yi ∈ {1, 2, . . . ,K} is a class label attached to
Xi. We grow a classification tree T ∗b from the bth bootstrap sample L∗b. To
reduce bias, we grow this tree very large without pruning. Suppose (X, Y )
is independently drawn from the same joint distribution as the members in
L. We drop X down each of the B bootstrap trees. For each tree, when X
falls into a terminal node associated with a particular class, we say that the
tree “votes” for that class. We then predict the class of X by the class that
receives the most number of votes over all B trees. We call this classification
procedure the majority-vote rule.

In order to evaluate the bagging method, we need an independent test
set of observations. The fact that we are sampling (with replacement) from
L means that about 37% of the observations in L will not be chosen for
each bootstrap sample (see Section 5.5.3). Let L − L∗b denote those ob-
servations in L that are not selected for the bth bootstrap sample L∗b. If
the observation (X, Y ) is in L − L∗b (which we write as (X, Y ) /∈ L∗b),
then (X, Y ) is called an out-of-bag (OOB) observation. The collection of
OOB observations (which we call an OOB sample) corresponding to the
bootstrap sample L∗b will function as an independent test set.

The OOB approach to estimating generalization error is equivalent to us-
ing an independent test set of the same size. The OOB approach is also able
to use all the data, rather than partitioning the data into a separate (and
smaller) learning set and a test set, and it does not require any additional
computing as is needed for cross-validation.

Suppose (Xi, Yi) /∈ L∗b. We drop Xi down the classification tree T ∗b

grown from L∗b, and predict the class label for Xi. This acts as a classi-
fication vote on Xi. Suppose there are ni (≤ B) trees for which Xi is a
member of the corresponding OOB sample. Drop Xi down each of those
ni trees and aggregate the votes for each of the K classes. Summarize the
results by the K-vector,

p̂(xi) = (p̂1(xi), p̂2(xi), · · · , p̂K(xi))τ , (14.3)
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where p̂k(xi) is the proportion of the ni trees that votes for Xi = xi to be
a member of the kth class Πk. The proportion p̂k(xi) is an estimate of the
true probability, p(Πk|xi) = Prob(X ∈ Πk|X = xi), that the observed xi

belongs to Πk. The OOB classifier, Cbag(xi), of xi is then obtained by the
majority-vote rule:

Cbag(xi) = arg max
k
{p̂k(xi)}. (14.4)

That is, it assigns xi to that class that enjoys the largest number of votes.
We repeat this for every observation in L. The OOB misclassification rate,

PEbag = n−1
n∑

i=1

I[Cbag(xi) �=yi], (14.5)

is the proportion of times that the predicted class, Cbag(xi), is different
from the true class, Y = yi, for all observations in L, and is an unbiased
estimate of generalization error.

Examples of Bagging Classification Trees

As a first example of bagging classification trees, we estimate the OOB
misclassification rate for the binary classification data set spambase, which
consists of 57 variables measured on 4,601 messages, each one classified as
spam (1,813 messages) or e-mail (2,788 messages). If we declare every mes-
sage as non-spam, we get a baseline misclassification rate of 1, 813/4, 601 =
0.394.

We grew different-sized classification trees (stumps, 4-node trees, 8-node
trees, and largest-possible trees) and then bagged them using B = 10(25)200
bootstrap replications; each combination of tree-size and B was then re-
peated 10 times. Figure 14.1 plots the average OOB misclassification rates
for bagging different size trees against B (left panel) and parallel boxplots
for bagging the largest-possible trees (right panel). We see that bagging
stumps is obviously a bad idea. Otherwise, as the complexity of the tree
increases, the OOB misclassification rates decrease significantly.

In Figure 14.2, we display the results of bagging classification trees for the
two-class data sets BUPA liver disorders and Wisconsin diagnostic
breast cancer (wdbc) and for the multiclass data sets glass (six classes)
and yeast (ten classes) as parallel boxplots. For each data set, the largest-
possible tree was grown, the number of bootstrap samples was varied as
B = 10, 25(25)200, and for each B, we repeated the bagging procedure 10
times. The results, which are representative of many different data sets,
show that for binary classification problems, as we increase B, the misclas-
sification rate declines, until about B = 50, when it appears to stabilize. For
multiclass classification problems, and especially in situations where there
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FIGURE 14.1. Bagging classification trees for the spambase data. Left
panel: Comparison of average profiles (over 10 repetitions) of out-of-bag
(OOB) misclassification rates plotted against number of bootstrap samples
(B = 10, 25(25)200) for different size trees (stumps, 4-node trees, 8-node
trees, and the largest-possible trees). Notice how poorly stumps perform as
base classifiers, and misclassification rates decline as tree complexity in-
creases. Right panel: Parallel boxplots of OOB misclassification rates for the
spambase data plotted against the number of bootstrap samples B, where
largest-possible trees were grown.

are a large number of classes, the misclassification rate tends to stabilize
when B is taken to be 75–100.

14.2.2 Bagging Regression-Tree Predictors

In the regression case, Yi ∈ 
. Bagging regression-tree estimates is a
very similar procedure to that applied to classification trees, but instead of
using a voting mechanism to determine the predicted class of an observa-
tion, we average the predicted response values obtained from the individual
regression trees.

Specifically, from the bth bootstrap sample L∗b, we grow a regression
tree T ∗b and obtain the predictor µ̂∗b(X). We drop X down each of the B
regression trees and then average the predictions,

µ̂bag(X) = B−1
B∑

b=1

µ̂∗b(X), (14.6)

to arrive at a bagged estimate of Y .
To evaluate the predictive abilities of a bagged regression estimate such as

(14.6), we again use the OOB approach. Let (Xi, Yi) ∈ L. We drop Xi down
each of the ni bootstrap trees whose OOB samples contain (Xi, Yi). The
OOB regression estimate, µ̂bag(Xi), is found by averaging the ni bootstrap
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FIGURE 14.2. Parallel boxplots of out-of-bag (OOB) misclassification
rates plotted against the number of bootstrap samples B. Top-left panel:
BUPA liver disorders (K = 2); top-right panel: WDBCt (K = 2); bottom-
left panel: Glass (K = 6); bottom-right panel: Yeast (K = 10), where K
is the number of classes. For each B = 10, 25(25)200, 10 repetitions were
generated.

predicted values; that is,

µ̂bag(Xi) = n−1
i

∑
b∈Ni

µ̂∗b(Xi), (14.7)

where Ni is the set of ni bootstrap samples that do not contain (Xi, Yi).
We repeat this procedure for all observations in L. We then estimate the
generalization error of the bagged estimate by the OOB error rate,

PEbag = n−1
n∑

i=1

(Yi − µ̂bag(Xi))2, (14.8)
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which is computed as the mean-squared-error between the bagged estimates
and their true response values.

14.3 Boosting

The underlying notion of “boosting” is to enhance the accuracy of a
“weak” binary classification learning algorithm. This idea originated in
a field known in machine learning as “probably approximately correct”
(PAC) learning (Valiant, 1984). The first successful boosting algorithms
were provided by Schapire (1990) and Freund (1995). The name derives
from the idea of creating a “strong” classifier by substantially improving or
“boosting” the performance of a single “weak” classifier, where improve-
ment is obtained by combining the classification votes from an ensemble of
similar classifiers.

We define a weak (or base) classifier to be one that correctly classifies
slightly more than 50% of the time (i.e., a little better than random guess-
ing). Boosting algorithms combine M base classifiers C1, C2, . . . , CM in the
following way. For an observation X = x, the boosted classifier is given by:

Cα(x) = sign{fα(x)}, (14.9)

where

fα(x) =
M∑

j=1

(
αj∑
j′ αj′

)
Cj(x), (14.10)

and α = (α1, · · · , αM )τ is an M -vector of constant coefficients.
Suppose, for example, we wish to determine whether a particular e-mail

is spam (i.e., junk e-mail) or not without actually opening it. If we decide
it is spam, we delete the e-mail without looking at it; if not, we read it.
Suppose we have software that automatically detects whether an e-mail
contains any particular word, say, the word “money,” and then classifies
the e-mail as spam or not spam depending upon whether that word is
or is not in the e-mail. This is an example of a weak classifier because
by itself it may classify too many legitimate e-mails as spam and give
the appearance of pure guessing. We could improve upon this classifier by
combining it with other weak classifiers each of which detects one word
thought to characterize spam, say, “free,” “order,” “credit,” and so on. We
would then expect the resulting combined classifier to be a much stronger
classifier than any of them separately.

More often than not, boosting (and the other ensemble methods) is ap-
plied to classifiers derived from decision trees. The weak classifier described
above is an example of a “stump” classifier, a decision tree having only a
single split and two terminal nodes. In that example, the stump classifier
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asks only one question: Does the e-mail contain the word “money”? If it
does, classify it as spam (i.e., +1); otherwise, as not spam (i.e., –1). More
complicated problems may require a weak classifier to be derived from two-
or three-level decision trees. A strong classifier has a much smaller misclas-
sification rate using a test set of observations.

Suppose, in the spam/not spam example, we use four (M = 4) stump
classifiers that separately use the words “money,” “free,” “order,” and
“credit” to characterize spam. Define these classifiers as follows:

C1(e-mail) =
{

+1 if e-mail contains word “money”
−1 otherwise

C2(e-mail) =
{

+1 if e-mail contains word “free”
−1 otherwise

C3(e-mail) =
{

+1 if e-mail contains word “order”
−1 otherwise

C4(e-mail) =
{

+1 if e-mail contains word “credit”
−1 otherwise

Now, linearly combine these four classifiers by using nonnegative weights
summing to one. Suppose the combined classifier is

f(e-mail) =
0.2C1(e-mail) + 0.1C2(e-mail) + 0.4C3(e-mail) + 0.3C4(e-mail).

How should an e-mail having the words “money,” “order,” and “credit”
be classified? We calculate f(e-mail) = 0.2 − 0.1 + 0.4 + 0.3 = 0.8. The
classification is given by sign{f(e-mail)} = sign{0.8} = +1, and so we
classify the e-mail as spam.

Different versions of boosting have been applied to a wide variety of
data sets with enormous success; consequently, this class of improvement
algorithms has become an important research topic in both the statistics
and machine learning communities. The most well-known of these boosting
algorithms is AdaBoost (Freund and Schapire, 1997).

14.3.1 AdaBoost: Boosting by Reweighting

AdaBoost (an acronym for “adaptive boosting”) is an algorithm that
is designed to improve performance in binary classification problems; it
is generally regarded as the first step toward a truly practical boosting
procedure. Details of the algorithm are shown in Table 14.1. It is also
known as “Discrete AdaBoost” (because the goal is to predict class la-
bels). A simple generalization of AdaBoost to more than two classes
is called “AdaBoost.M1.” AdaBoost was originally devised with the
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TABLE 14.1. AdaBoost algorithm for binary classification.

1. Input: L = {(Xi, Yi), i = 1, 2, . . . , n}, Yi ∈ {−1, +1}, i = 1, 2, . . . , n, C =
{C1, C2, . . . , CM}, T = number of iterations.

2. Initialize the weight vector: Set w1 = (w11, · · · , wn1)
τ , where wi1 = 1/n,

i = 1, 2, . . . , n.

3. For t = 1, 2, . . . , T :

• Select a weak classifier Cjt(x) ∈ {−1, +1} from C, jt ∈ {1, 2, . . . , M},
and train it on the learning set L, where the ith observation (Xi, Yi)
has (normalized) weight wit, i = 1, 2, . . . , n.

• Compute the weighted prediction error:

PEt = PE(wt) = Ew{I[Yi �=Cjt
(Xi)]} =

(
wτ

t

1τ
nwt

)
et,

where Ew indicates taking expectation with respect to the probability
distribution of wt = (w1t, · · · , wnt)

τ , and et is an n-vector with ith
entry [et]i = I[Yi �=Cjt

(Xi)].

• Set βt = 1
2

log
(

1−PEt
PEt

)
.

• Update weights:

wi,t+1 =
wit

Wt
exp{2βtI[Yi �=Cjt

(Xi)]}, i = 1, 2, . . . , n,

where Wt is a normalizing constant needed to ensure that the vector
wt+1 = (w1,t+1, · · · , wn,t+1)

τ represents a true weight distribution
over L; that is, 1τ

nwt+1 = 1.

4. Output: sign{f(x)}, where f(x) =
∑T

t=1
βtCjt(x) =

∑M

j=1
αjCj(x), and

αj =
∑T

t=1
βtI[jt=j].

specific intention of driving the prediction error from the learning set (i.e.,
the learning set error) quickly to zero.

In the AdaBoost algorithm for binary classification, we start with a
learning set L = {(xi, yi)}, where xi is an r-vector of inputs and yi ∈
{−1,+1} is a class label. AdaBoost weights the observations in L by a
weight vector, w = (w1, w2, · · · , wn)τ , and these weights are recalculated
at each iteration. Initially, we use equal weights for each observation in L.

At each iteration, the algorithm selects a “weak” classifier from a very
large, but finite, set C of all possible weak classifiers. The finiteness as-
sumption always holds for classification problems where each classifier in C
has a finite set of possible outputs. For example, in binary classification, at
most 2n distinct labelings can be applied to the learning set. Because C is
finite, it is entirely possible that, in constructing the ensemble, certain of
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the weak classifiers in C will be selected more than once (i.e., the smaller
the set, the more likely that repetitions will occur).

At the tth iteration of AdaBoost, we modify the weighting system so
that observations misclassified in the previous iteration will be more heavily
weighted in the current iteration. In this way, AdaBoost tries hard to
classify correctly any previously misclassified observations.

After T iterations, we have a sequence, Cj1(x), Cj2(x), . . . , CjT
(x), of

weak classifiers, where jt ∈ {1, 2, . . . ,M}, t = 1, 2, . . . , T . If the weak clas-
sifier Cj is selected multiple times in the process of the algorithm, then
the coefficient for that component in the combined classifier is the sum of
those coefficients obtained at all iterations when Cj was chosen. If the clas-
sifiers are small decision trees (as they often are when boosting is applied),
then the jth weak classifier can be parameterized as Cj(x;aj), where the
parameter vector aj contains information on the splitting variables, split
points, and the mean at each terminal node of the jth tree.

The value of the boosted classifier C(x) depends upon the sign of the
linear combination, f(x) =

∑M
j=1 αjCj(x), of the weak classifiers, where

αj is the coefficient for Cj . In other words, C(x) = +1 if f(x) > 0, and −1
otherwise. AdaBoost does not restrict the sum of the coefficients {αj},
which may grow to be very large; all AdaBoost assumes is that f is in the
linear span of the class C of weak classifiers. If we restrict the coefficients
to be nonnegative with a fixed sum λ, say, this produces a regularized
version of AdaBoost, where λ acts as a smoothing parameter; in this
case, f ∈ conv(C), the convex hull of C (see, e.g., Lugosi and Vayatis,
2004).

14.3.2 Example: Aqueous Solubility in Drug Discovery

In order to identify high-quality candidate drugs, pharmaceutical compa-
nies need to assess the absorption, distribution, metabolism, and excretion
(ADME) characteristics of compounds, including biopharaceutical prop-
erties such as aqueous solubility, permeability, metabolic stability, and in
vivo pharmacokinetics. One of the most fundamental tests to perform is
that of solubility of a compound in water (or a solvent mixture), which
now takes place routinely prior to biological testing. In fact, “aqueous-
solubility” testing now usually occurs very early within the drug discovery
and development process. Moreover, the Biopharmaceutics Classification
System classifies compounds based upon their solubility and other proper-
ties.

Because patients tend to prefer oral medication, the commercial viabil-
ity of a candidate drug would be greatly improved if the drug were soluble
in water and could be delivered orally. For compounds that are not water
soluble, results from experimental in vitro screening assays (which test the
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ability of a compound to dissolve in water) may not be reliable or repro-
ducible and can lead to biological problems and increased drug-development
costs. In recent years, the pharmaceutical industry has seen more candidate
drugs that are highly insoluble, and this has become a real problem in drug
development.

This example examines a data set involving 5,631 compounds on which
an in-house solubility screen was performed.1 Based upon this screen, com-
pounds were categorized as either “insoluble” (3,493 compounds) or “sol-
uble” (2,138 compounds). Then, for each compound, 72 continuous, noisy
structural variables were recorded. One variable (71) had a large number
(14%) of missing data and so was deleted from the data set. For propri-
etary reasons, the identities of the variables and compounds were not made
publicly available.

The 5,631 compounds were randomly separated into a learning set (2,815
compounds) and a test set (2,816 compounds). We applied the discrete
AdaBoost algorithm (using an exponential loss function; see below) and
the results are displayed in Figure 14.3, where we plot the misclassification
rate of both the learning set and the test set.

When we use “stumps” as classification trees in this example (left panel),
the misclassification rates of both the learning set and the test set continue
to decline, even after 2,000 iterations of AdaBoost, where the misclassi-
fication rates are 0.2298 for the learning set and 0.2553 for the test set.
When we use 16-node trees (right panel), we see a different picture: after
500 boosting iterations, the learning set has a misclassification rate of zero,
reached at iteration 312, and the test set declines to about 0.205.

In Figure 14.4, we show a comparison of test-set misclassification rates us-
ing different size trees: stumps (red curve), 4-node trees (magenta), 8-node
trees (blue), and 16-node trees (green). We see that using AdaBoost on
stumps actually performs the worst, whereas 16-node trees perform best.
However, boosting 32-node trees (not shown here) yields slightly higher
test-set misclassification rates than does boosting 16-node trees.

14.3.3 Convergence Issues and Overfitting

Empirical experiments have demonstrated that AdaBoost tends to be
quite resistant to overfitting: the test set error (an estimate of generalization

1These data are available at the book’s website under the filename soldat. The
data are part of the R-package ada (Culp, Johnson, and Michailidis, 2006), which
implements several versions of boosting, and can be downloaded from the website
www.stat.lsa.umich.edu/~culpm/math/ada/img.html. The description of the data set
is taken from that article. The author thanks Mark V. Culp for discussions about the
ada package and the soldat data set.
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FIGURE 14.3. AdaBoost for the solubility data (soldat). Misclassifi-
cation rates for the training set (blue curve) and test set (red curve) plotted
as a function of the number of boosting iterations. An exponential loss func-
tion was used with the discrete Adaboost algorithm. Left panel: Stumps
are used as classification trees and AdaBoost was run for 2,000 iterations.
Right panel: 16-node trees and AdaBoost was run for 500 iterations.

error) almost always continues to decline (and then levels off) as we increase
the number of classifiers involved even after the learning-set error has been
driven to zero! Recall that in a typical classification scenario, test-set error
decreases for a little while and then begins to increase as the classifier be-
comes more and more complex. The discovery that AdaBoost is resistant
to overfitting led to it being called the “most accurate, general-purpose,
classification algorithm available” (Breiman, 2004).

Since AdaBoost was introduced, hundreds of articles have been pub-
lished attempting to penetrate the “mysterious” secret of why it appears
to be resistant to overfitting. Many explanations have been attempted, but
the question still remains open. This mystery has been described as “the
most important unsolved problem in machine learning” (Breiman, 2004).

This does not mean, however, that AdaBoost never overfits. Indeed,
examples of AdaBoost have been constructed in which the test-set er-
ror increases (i.e., AdaBoost does overfit) as the number of iterations
increases.

In a simulated 2D example of 150 observations drawn from each of two
circular-Gaussian distributions with some overlap, Breiman (2002) reports
that the test-set error decreases to a minimum after about 5,000 iterations,
but then reverses direction and starts to increase. Friedman, Hastie, and
Tibshirani (2000) observed much the same behavior when they applied
AdaBoost to 400 observations drawn from each of two 10-dimensional,
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FIGURE 14.4. Comparison of test-set misclassification rates for the solu-
bility data using different size trees: stumps, 4-node trees (2-Splits), 8-node
trees (4-Splits), and 16-node trees (8-Splits), where AdaBoost was run
for 500 iterations.

spherical-Gaussian distributions having the same mean, where the reversal
occurs at about 50 iterations.

Breiman (2004) suggests that the AdaBoost process may actually con-
sist of two stages. In the first stage (which may consist of several thousand
iterations), the test-set error approaches close to the optimal Bayes er-
ror, mimicking its population (i.e., infinite sample size n) behavior. (In its
population version, Breiman showed that AdaBoost is Bayes consistent;
that is, its risk converges in probability to the Bayes risk.) If, for what-
ever reason, convergence fails, its test-set error then starts increasing. This
second-stage behavior is not yet understood.

Further study of the convergence problem has shown that, for finite sam-
ple sizes, AdaBoost can be Bayes consistent only if it is regularized; see,
for example, the articles on boosting in the February 2004 issue of The
Annals of Statistics. One possible type of regularization for AdaBoost is
that of stopping the algorithm very early (e.g., after 10 or 100 iterations),
rather than letting it run forever; essentially, the argument is that overfit-
ting will occur as soon as the classifier becomes too complicated and that
continuing to run the algorithm will only produce larger misclassification
rates. Jiang (2004) and Bickel and Ritov (2004) show that for any finite
n, there is a stopping time tn such that if the algorithm is stopped at tn
iterations, then AdaBoost will be Bayes consistent. The question then be-
comes, if the strategy is to stop AdaBoost early, how does one determine
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the best time to stop (i.e., an optimal tn)? One suggested method is to use a
data-based procedure, such as cross-validation. Other regularized versions
of AdaBoost are discussed in Section 14.3.6.

There is empirical evidence (Mease and Wyner, 2007) that shows that
early stopping may not be the panacea needed to prevent overfitting; in-
deed, the evidence suggests that overfitting tends to occur very early in
the life of the algorithm and that running the algorithm for a much larger
number of iterations actually reduces the amount of overfitting (to a level
close to that of the Bayes risk) rather than increases it.

14.3.4 Classification Margins

One interesting argument put forward to explain why boosting works so
well in classification problems involves the concept of a “margin” (Schapire,
Freund, Bartlett, and Lee, 1998).

Let C be the set of all potential weak classifiers. For example, weak
classifiers could be chosen from all those decision trees that have a speci-
fied number of terminal nodes. Consider a boosted classifier f of the type
(14.9), where the weights, {αt}, are each nonnegative and sum to one.
Then, f ∈ conv(C) is a weighted average of weak classifiers from C. If the
weak classifiers are defined by a voting scheme, then the prediction is that
label y that receives the highest vote from the weak classifiers.

Let g(x, y) denote a classifier that predicts the label y for an observa-
tion x. Then, g predicts y iff g(x, y) > maxy′ �=y g(x, y′). The classification
margin of the labeled observation (x, y) is defined as

m(x, y) = g(x, y)−max
y′ �=y

g(x, y′). (14.11)

Thus, if y is the correct label for x, then g misclassifies x iff m(x, y) < 0.
If g(x, y) =

∑
t I[Cjt (x)=y] denotes the total number of votes for y obtained

from all the weak classifiers, then the classification margin is the amount
by which the total vote for the correct class y exceeds the highest total
vote for any incorrect class. That is,

m(x, y) =
∑

t

I[Cjt (x)=y] −max
y′ �=y

{∑
t

I[Cjt (x)=y′]

}
. (14.12)

Thus, an observation (x, y) is misclassified by the voting scheme iff its
margin is not positive. Because the observation (x, y) is misclassified by
the boosted classifier f only if yf(x) ≤ 0, we can think of the margin of
(x, y) with respect to f as m(x, y) = yf(x). The margin of the boosted
classifier f is the minimum margin over all n observations in L.

In binary classification problems (with labels −1 and +1), the margin
can be viewed in the following terms: the bigger the margin, the more
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“confidence” we have that the observation has been correctly classified. If
the margin is large but negative, this tells us we are very confident that the
observation has been misclassified. Small margins indicate doubtful reliance
on classifications.

To assess the performance of a boosted classifier, Schapire et al. (1998)
derive a probabilistic upper-bound on its generalization error. The upper
bound turns out to depend upon the sum of the empirical margin distrib-
ution, n−1

∑n
i=1 I[yif(xi)≤δ], and the VC-dimension of the class of boosted

classifiers (Vapnik and Cheronenkis, 1971), but is independent of the num-
ber of weak classifiers being combined. From the upper-bound, they argue
that the bigger the margins (over a learning set), the lower the gener-
alization error of the classifier. They then conjecture that AdaBoost is
successful because it produces large margins for the learning set.

Unfortunately, the probabilistic upper-bound only tells part of the story.
Schapire et al. (1998) realized that their bound is much too loose to be use-
ful for a majority-vote classifier. Although not asymptotic by construction
(the bound is not dependent upon the size of the learning set), empirical
results show that for the bound to be of any practical use, the size of the
learning set would have to be huge (of the order tens of thousands). Con-
structing tighter upper bounds on the generalization error remains an open
problem (see, e.g., Koltchinskii and Panchenko, 2002).

Breiman (1999) demonstrated also that high margins alone cannot ex-
plain the success of AdaBoost. Using a game-theoretic argument, he con-
structed a boosted classifier that not only had large margins (higher indeed
than obtained by AdaBoost on each of a number of data sets) but also
had higher generalization error in each case.

14.3.5 AdaBoost and Maximal Margins

So far, we have adopted a “nonoptimal” point of view (or strategy) for
AdaBoost, where it is only necessary to provide a “sufficiently good”
classifier at each iteration (not necessarily the best one) from the set C
of weak classifiers; examples of nonoptimal AdaBoost include decision
trees and neural networks. We can also identify an “optimal” AdaBoost

strategy, where the best weak classifier is selected at each iteration from
C. This strategy has the effect of introducing an optimality step into the
AdaBoost algorithm, so that, in principle, specific weak classifiers can be
chosen again and again from C.

From the above discussion, we know that AdaBoost induces “large”
margins. In fact, if ρ is the maximum achievable margin, then AdaBoost

produces a margin m(x, y) that is bounded below and above by
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FIGURE 14.5. The margin achieved by AdaBoost as a function of the
maximal-achievable margin ρ. Shown are the upper bound (green line), the
lower bound (red curve), and the line ρ/2 (blue line). The lower bound was
derived by Rätsch and Warmuth (2005).

ρ

2
≤ − log(1− ρ2)

log
(

1+ρ
1−ρ

) ≤ m(x, y) ≤ ρ (14.13)

(Schapire et al., 1998; Rätsch and Warmuth, 2005). In Figure 14.5, we plot
the lower and upper bounds of m(x, y) based upon (14.13), and the line
ρ/2. The vertical distance between the upper and lower bounds has been
referred to as the “gap in theory” (Rätsch and Warmuth, 2005). The lower
bound (i.e., the red curve in Figure 14.5) has been shown to be exactly
tight, however, for the nonoptimal AdaBoost strategy (Rudin, Schapire,
and Daubechies, 2007).

Recall that the closer a classifier gets to the maximum margin, the more
confidence we have in that classifier. Even though AdaBoost was not
specially designed to attain the maximum margin (margin theory came
just after the introduction of AdaBoost), there is widespread belief that
(as a by-product of its remarkable practical properties) AdaBoost also
maximizes the margin. Rätsch and Warmuth (2005) noted, however, that
empirical evidence (simulations and Figure 14.3) showed that might not
always be the case.

The conjecture that AdaBoost does not always attain the maximum
possible margin turns out to be true (Rudin, Daubechies, and Schapire,
2004). Because the margin does not increase monotonically as the iterations
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proceed, standard methods for examining convergence properties of Ad-

aBoost margins are not applicable. Instead, following the remarkable work
by Rudin et al., we look at the limiting performance of the sequence of
weight vectors {wt} that defines AdaBoost.

Let Q = (Qij) be an (n × M)-matrix, where Qij = yiCm(xi), i =
1, 2, . . . , n, j = 1, 2, . . . ,M , are the margin values. The columns of Q are
the M weak classifiers in C, the rows are the n observations in L, and Qij

is +1 if xi is correctly classified by the weak classifier Cj and −1 otherwise.
In applications, the values of n and M may be huge; as a result, Q is a
matrix that is unlikely to be used in practice. However, Q has proved most
useful in understanding certain properties of AdaBoost.

If the learning algorithm selects classifier Cjt
, we can write Qijt

=
I[yi=Cjt (xi)] − I[yi �=Cjt (xi)] = 1 − 2I[yi �=Cjt (xi)]. Substituting I[yi �=Cjt (xi)] =
1
2 (1−Qijt

) into the weighted prediction error in Table 14.1 yields

PEt =
1
2
− 1

2
rt, (14.14)

where

rt = [wτ
t Q]jt

=
n∑

i=1

witQijt
(14.15)

is the edge of Cjt
over L, and where the wt are normalized. Thus, rt shows

how much Cjt
varies from a pure-chance classifier.

The “edge” can be used to select a weak classifier from C. Up to this
point, we have not explained how to select an element of C at each iteration.
Corresponding to the two types of AdaBoost strategies, we consider the
following two selection rules:

optimal strategy: jt ∈ arg maxj [wτ
t Q]j

nonoptimal strategy: jt ∈ {j : [wτ
t Q]j ≥ ρ},

where ρ is the maximum achievable margin for Q. In other words, the
optimal strategy selects the classifier from C that has the largest edge,
whereas the nonoptimal strategy selects any classifier in C whose edge is at
least ρ.

The next step is to initialize the M -vector of coefficients by setting
β1 = 0. Substituting PEt from (14.14) into the expression for the coef-
ficient βt in Table 14.1 yields

βt =
1
2

log
(

1 + rt

1− rt

)
. (14.16)

By iterating on the update formula for the weights, we have that wit ∝
e−[Qβt]i , where [Qβt]i =

∑t
j=1 yiβjCj(xi) is the ith entry of the n-vector
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Qβt, and the proportionality factor does not involve the subscript i. We
can update βt by the formula

βt+1 = βt + δjt
(14.17)

where δjt
is an M -vector with βt in the jtth position and zeroes in all other

positions. The normalized weights {wit} can now be written as:

wit =
e−[Qβt]i

∑n
i′=1 e−[Qβt]i′

, i = 1, 2, . . . , n. (14.18)

Note that the initialization step β1 = 0 yields wi1 = 1/n, i = 1, 2, . . . , n.
From (14.16) and the fact that the elements of Q are ±1, we have that

e−Qijt βt =
(

1− rt

1 + rt

)Qijt /2

=
(

1−Qijt
rt

1 + Qijt
rt

)1/2

, (14.19)

whence, the update for the weights is given by

wi,t+1 =
wite

−Qijt βt

∑n
i′=1 wi′te

−Qi′jt
βt

=
wit

∑n
i′=1 wi′t

(
1−Qi′jt

rt

1+Qi′jt
rt

)1/2 (
1+Qijt rt

1−Qijt rt

)1/2
. (14.20)

The first line uses (14.17); the second line divides both numerator and
denominator by

∑n

i′=1
e−[Qβt]i′ , and then uses (14.18); and the third line

uses (14.19).
To simplify the denominator of (14.20), consider the two cases, Qijt

= −1
and Qijt

= +1, separately. Then, for each case, divide the summation
into two sets of indices, {i′ : Qi′jt

= −1} and {i′ : Qi′jt
= +1}. Let

w−,t =
∑

{i′:Qi′jt
=−1} wi′t and w+,t = 1 − w−,t. On the set {i′ : Qi′jt

=

−1}, we have rt = 1 − 2w−,t, or w−,t = 1
2 (1 − rt). Similarly, on the set

{i′ : Qi′jt
= +1}, we have w+,t = 1

2 (1 + rt). Simple algebra yields the
update formula,

wi,t+1 =
wit

1 + Qijt
rt

, i = 1, 2, . . . , n. (14.21)

Note that
∑n

i=1 wi,t+1 = 1. Thus, the weight vector wt (at iteration t) in
the AdaBoost algorithm can be expressed as a nonlinear iterated map
(14.21) that connects wt+1 directly to wt, including renormalization.

The update formula (14.21) was discovered by Rudin, Daubechies, and
Schapire (2004). The version derived here is for the nonoptimal AdaBoost

strategy; the corresponding optimal strategy can be obtained by incorpo-
rating a step into the algorithm that, at each iteration, picks the weak
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classifier from C that has the largest edge and, hence, is furtherest away
from a pure-chance classifier.

Rudin et al. showed that AdaBoost can be written as a dynamic system,
which can be analyzed in terms of fixed points and stable limit cycles.
AdaBoost is said to exhibit “cyclic behavior” if the same weak classifiers
keep turning up again and again and the sequence of weight vectors keeps
repeating with constant periodicity; that is, a cycle with period s (called
an “s-cycle”) occurs if there exists an integer s such that, at some iteration
t, wt+s = wt. Large-scale simulations have shown that it is not unusual for
AdaBoost to produce periodic cycles in its weight vectors. A fixed point
is produced if, at some iteration t, wt+1 = wt.

Using specific low-dimensional examples that are simple enough for the
details to be worked out completely, Rudin et al. showed that AdaBoost

does not always converge to a maximum-margin solution. Instead, Ad-

aBoost may converge to a solution whose margin is significantly below
the maximum value. It may do this for nonoptimal AdaBoost even if op-
timal AdaBoost converges to a maximum-margin solution. AdaBoost

can also operate in chaotic mode, where the algorithm moves into and out
of cyclic behavior, possibly due to a sensitivity to initial conditions.

With so much attention paid to AdaBoost and maximum margins, it
was only natural for alternative boosting algorithms to be designed specif-
ically to maximize the margin. Such algorithms include arc-gv (Breiman,
1999) and AdaBoost* (Rätsch and Warmuth, 2002), neither of which
are based upon coordinate-descent optimization. Two related algorithms,
Coordinate-Ascent Boosting and Approximate Coordinate-Ascent Boost-
ing algorithms (Rudin, Schapire, and Daubechies, 2004), do use a coordi-
natewise optimization method to find the classifier to maximize the margin.

14.3.6 A Statistical Interpretation of AdaBoost

Can we give a statistical interpretation of the AdaBoost algorithm?
Friedman, Hastie, and Tibshirani (2000) showed that AdaBoost is equiv-
alent to running a coordinate-descent algorithm to fit an additive, logistic-
discrimination model to the learning set. That article (and the discussants)
had much to say about the philosophical, statistical, and computational is-
sues of boosting; we outline some of their development work here.

Let {Cj , j = 1, 2, . . . ,M} be a set of M base classifiers, where each Cj ∈
{−1,+1}. Consider the following linear combination of those classifiers:

f(x) =
M∑

j=1

αjCj(x), (14.22)

where the {αj} are constants. This has the general form of an additive
model. Because αjCj(x) ∈ 
, the combined binary classifier is defined as
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sign{f(x)}. We wish to find the {αj} and {Cj} in (14.22) to minimize some
optimality criterion.

To evaluate the classifier f(x), we would like to minimize the number
of misclassifications using a criterion based upon the usual zero-one loss
function,

L(y, f(x)) = I[y �=f(x)] = I[yf(x)≤0]. (14.23)

Unfortunately, this minimization problem will not work. Instead, we use a
smooth, strictly convex, differentiable loss function of the random variable
Y f(X). In this case, the risk function,

R(f) = EX,Y {L(Y, f(X))}, (14.24)

is constructed using the exponential loss function,

L(y, f(x)) = e−yf(x), y ∈ {−1,+1}. (14.25)

In (14.24), the expectation E is a population expectation (taken over the
joint distribution of X and Y ). If y �= f(x), then, yf(x) ≤ 0, and so,
e−yf(x) ≥ 1. Thus,

I[yf(x)≤0] ≤ e−yf(x) (14.26)

(Schapire and Singer, 1998). It follows that the generalization error (in this
case, the probability of misclassification),

Prob{Y �= f(X)} = E{I[Y f(X)≤0]} ≤ R(f), (14.27)

is bounded above by R(f).
The objective now is to minimize R(f). Because

R(f) = EX[ EY {L(Y, f(x))| x} ], (14.28)

it suffices to carry out the minimization conditional on X = x; that is, we
wish to find f(x) to minimize

�(f(x)) = EY {L(Y, f(x))| x}. (14.29)

Plugging the exponential loss function (14.25) into (14.29), we have that

EY {e−Y f(x)|x} = ef(x)Prob{Y = −1|x}+ e−f(x)Prob{Y = 1|x}. (14.30)

Differentiating (14.30) wrt f(x) and setting the result equal to zero gives

ef(x)Prob{Y = −1|x} − e−f(x)Prob{Y = 1|x} = 0. (14.31)

Solving for f yields

f(x) =
1
2

log
(

Prob{Y = 1|x}
Prob{Y = −1|x}

)
, (14.32)
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which is half the log-odds of the class probabilities. Rearranging (14.32),
we have

Prob{Y = 1|x} =
1

1 + e−2f(x)
, (14.33)

Prob{Y = −1|x} =
1

1 + e2f(x)
, (14.34)

which gives us the logistic regression model.
Next, consider an empirical version of the risk function (14.24) for the

classifier f . In this case, we replace the expectation E by an average over
the learning set; this gives us the learning-set prediction error for f :

PE = n−1
n∑

i=1

L(yi, f(xi)) = n−1
n∑

i=1

I[yi �=f(xi)]. (14.35)

Because of the nonconvexity of the indicator function, this makes the prob-
lem of minimizing (14.35) wrt f a computationally difficult task. A way of
avoiding this problem is to minimize instead a convex upper bound on the
indicator function (see, e.g., Schapire and Singer, 1998). First, note that
I[yi �=f(xi)] = I[yif(xi)≤0]; then, from the inequality (14.26), we have that

PE ≤ n−1
n∑

i=1

e−yif(xi). (14.36)

Thus, the exponential criterion (14.36) is a differentiable upper bound on
PE.

Now, let the partial sum, fj(xi) =
∑j

k=1 αkCk(xi), of (14.22) be an
additive model in the first j classifiers, j = 1, 2, . . . ,M . We can write fj as
an update to fj−1; that is,

fj(xi) = fj−1(xi) + αjCj(xi). (14.37)

Then, the minimization problem can be formulated as

(αj , Cj) = arg min
α,C

n∑
i=1

e−yi[fj−1(xi)+αC(xi)]. (14.38)

AdaBoost solves this minimization problem using a coordinate-descent
optimization algorithm; see Table 14.2. Friedman et al. (2000) call this pro-
cedure a forward-stagewise minimization (see Section 5.9.1) of an additive
model; in this case, the model is an additive, logistic-regression model.

We solve (14.38) in two steps: first, by fixing α and minimizing (14.38)
wrt C, and then, given Cj , minimizing the result wrt α to get αj . Now,

e−yi[fj−1(xi)+αC(xi)] = wi,j−1e
−yiαC(xi), (14.39)
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TABLE 14.2. Coordinate-descent algorithm for fitting an additive model.

1. Input: L = {(Xi, Yi), i = 1, 2, . . . , n}, T = number of iterations, h(x; θ) is
a parametric function of x with unknown parameters θ.

2. Initialize: f0(x) = 0.

3. For t = 1, 2, . . . , T :

• Compute (βt, θt) = arg min
β,θ

∑n

i=1
L(yi, ft−1(xi) + βh(xi; θ)).

• Set ft(x) = ft−1(x) + βth(x; θt).

4. Output: f̂(x) = fT (x) =
∑T

t=1
βth(x; θt).

where wi,j−1 = e−yifj−1(xi) is a weight. Using the fact that yiC(xi) = −1
if yi �= C(xi) and +1 otherwise, the criterion is

eα
n∑

i=1

wi,j−1I[yi �=C(xi)] + e−α
n∑

i=1

wi,j−1{1− I[yi �=C(xi)]}, (14.40)

which can be written as

e−α
n∑

i=1

wi,j−1 + (eα − e−α)
n∑

i=1

wi,j−1I[yi �=C(xi)]. (14.41)

The only term depending upon C is the second sum, and so, we take

Cj = arg min
C

{
n∑

i=1

wi,j−1I[yi �=C(xi)]

}
. (14.42)

Next, we substitute Cj from (14.42) into (14.41) and minimize the result
wrt α. Differentiating (14.41) wrt α and setting the result equal to zero,
we get

−e−αj

n∑
i=1

wi,j−1 + (eαj + e−αj )Cj = 0, (14.43)

which, solving for αj , yields

αj =
1
2

log
(

1− PEj

PEj

)
, (14.44)

where

PEj =
Cj∑n

i=1 wi,j−1
=

n∑
i=1

(
wi,j−1∑n

�=1 w�,j−1

)
I[yi �=Cj(xi)]) (14.45)
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is the weighted learning-set prediction error. Plugging (14.44) into (14.37)
gives us the update formula for f(xi):

fj(xi) = fj−1(xi) +
1
2

log
(

1− PEj

PEj

)
Cj(xi). (14.46)

Using (14.37), we update the weights,

wij = e−yifj(xi) = wi,j−1e
−yiαjCj(xi). (14.47)

From above, we have that

−yiCj(xi) = 2I[yi �=Cj(xi)] − 1. (14.48)

Substituting (14.48) into (14.47) gives

wij = wi,j−1e
2αjI[yi �=Cj(xi)]e−αj . (14.49)

We can ignore the final term e−αj in (14.49) as it is a multiplying constant
with respect to all the weights and, thus, is removed when the weights are
normalized. These results constitute the AdaBoost algorithm (see Table
14.1).

Notice that the coordinate-descent algorithm (Table 14.2) used in Ad-

aBoost fits the terms in the additive model one term (or coordinate) at
a time, not jointly. At each iteration, the procedure fits only a single term
of the model, unlike a stepwise procedure, which readjusts all currently ex-
isting terms to compensate for adding a new term. This fitting procedure
is contrary to the usual statistical way of fitting a model with many terms
(see, e.g., Buja’s discussion of Friedman et al., 2000). If the model has a
large number of terms, as happens with AdaBoost, then coordinatewise
fitting, one term at a time, makes a lot more sense — computationally
— than does fitting all the terms simultaneously, even though the latter
would be optimal. Coordinatewise algorithms are typically quite efficient,
converge fairly rapidly, and are simple to program. Thus, although coordi-
natewise fitting is a suboptimal procedure, it enables AdaBoost to work
successfully.

14.3.7 Some Questions About AdaBoost

Since the Friedman, Hastie, and Tibshirani (2000) paper on the statisti-
cal view of boosting appeared, much has been written on the subject, with
extensions in many directions. Many studies using real and simulated data
have appeared that try to examine the statistical issues discussed in the
Friedman et al. paper. Simulated data have been particularly important
in understanding the behavior of AdaBoost because then the joint dis-
tribution of (X, Y ) is completely known. However, several major questions
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about AdaBoost have been left unanswered by Friedman et al. and other
researchers. Here, we offer brief discussions of a few of these issues.

Why Does AdaBoost Work?

This is probably the most important question of interest to users of Ad-

aBoost. As we have seen, AdaBoost can be viewed as algorithmically
similar to an approach consisting of an amalgam of three separate compo-
nents: (1) an additive logistic regression model (e.g., a linear combination
of classification trees), (2) an exponential loss criterion, and (3) a coor-
dinatewise fitting procedure. This interpretation of AdaBoost has since
encouraged researchers to develop other boosting algorithms by changing
either the type of smooth, convex loss function used in the basic algorithm,
or the numerical fitting procedure, or both.

But this still begs the question of why AdaBoost works so well. Ad-

aBoost yields very small misclassification rates (compared with other
competing classifiers) over a wide variety of data sets and is (in most cases)
highly resistant to overfitting. As we have already noted, not all data sets
are immune to overfitting; there are a number of specially constructed ex-
amples that show that AdaBoost can indeed overfit. What Friedman et
al. gave us is a useful description of a way of thinking — statistically —
about AdaBoost. But they did not address the main issue of why Ad-

aBoost is so resistant to overfitting, whether for simulated or real data.
Since the appearance of that article, many suggestions have been made

as to why AdaBoost is successful in classification situations. Some re-
searchers have pointed to the stagewise fitting machine, or to the 0–1 loss
function, or to the notion of margin, but none of these explanations are
really convincing. It is still an open question as to why AdaBoost works
as well as it does. Specifically, we would like to know under what conditions
we can expect AdaBoost not to overfit, and under what conditions we
should expect AdaBoost to overfit.

How Well Can AdaBoost Estimate Conditional Class Probabilities?

On a related problem to classification, we may wish to estimate the
conditional class probability function,

p(x) = P{Y = 1|x}. (14.50)

If we can estimate p(x) well across the entire range of x, we would then
be able to obtain a solution to the classification problem by choosing an
appropriate quantile q of this function to be the class boundary; that is,
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find q such that all cases in the region p(x) > q are classified as positive
(+1).

Building upon the connection between AdaBoost and logistic regres-
sion, Friedman, Hastie, and Tibshirani (2000, Algorithm 3) introduced the
LogitBoost algorithm to estimate p(x) directly using the link function
(14.33); that is,

p̂j(x) =
1

1 + e−2fj(x)
, (14.51)

where fj is the classifier evaluated at the jth iteration and which satisfies
(14.37). LogitBoost is a modified version of the AdaBoost algorithm
that uses stagewise minimization of the binomial log-likelihood loss function
(in place of exponential loss). Thus, the current estimate of the boosted
classifier fj(x) is transformed via the link (14.51) to produce a current
estimate of p(x).

In simulations, Mease, Wyner, and Buja (2007) show that boosting clas-
sification trees (and LogitBoost, in particular) is not well-suited to esti-
mating p(x), except for estimating the median of that probability function
(and other special cases). Indeed, there is empirical evidence that boosting
can severely overfit the estimate of p(x) — even when the AdaBoost clas-
sification rule performs well with no appearance of overfitting. These results
throw doubt on the popularly made claim that the success of boosting is
due to its close relationship to logistic regression.

Do Stumps Make the Best Base Classifiers for AdaBoost?

It has been argued (Friedman, Hastie, and Tibshirani, 2000, pp. 360–361;
Hastie, Tibshirani, and Friedman, 2001, Section 10.11) that larger trees in-
troduce higher-level interaction effects among the input variables X. Thus,
stumps represent main effects (Xj), the second level of 4 nodes represents
first-order interactions (XjXk), the third level of 8 nodes represents second-
order interactions (XjXkX�), and so on. Such higher-order interactions, it
is argued, then lead to overfitting. A corollary to this argument is that if
we believe that the optimal Bayes risk can be closely approximated by an
additive function of elements of X, then only stumps provide an additive
model. Although larger trees are not ruled out as base classifiers, stumps,
in this context, are said to provide an “ideal match” and, according to this
argument, are to be preferred to larger trees.

Yet, simulations have shown (Mease and Wyner, 2007) that stumps do
not necessarily provide the best base classifiers for AdaBoost even if the
optimal Bayes risk is additive, and that larger trees can actually be more
effective. The solubility example in Section 14.3.2 shows that using stumps
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as base classifiers gives a relatively ‘poor’ performance when compared with
the results from using larger trees with 4, 8, or 16 terminal nodes.

14.3.8 Gradient Boosting for Regression

We saw that one of the crucial steps in the derivation of AdaBoost was
the minimization of �(f(x)). Given an exponential loss criterion and an
additive model, the minimization procedure led to a coordinate-descent al-
gorithm. In an extension of that idea, Friedman (2001) showed that other
boosting strategies could be obtained by using different minimizing pro-
cedures combined with different loss functions. In particular, he adapted
the well-known gradient-descent (also known as steepest-descent) algorithm
to derive a more general boosting procedure — which he called “gradient
boosting” — primarily for regression situations.

The general minimization problem is to find f̂ such that

f̂(x) = arg min
f

�(f(x)). (14.52)

For a given x, let f0(x) be an initial guess and let ft−1(x) be the current
approximation to f̂(x). According to the gradient-descent algorithm, we
update ft−1(x) by moving a small step-size ρt > 0 in the direction of the
negative gradient, and evaluate the result at ft−1(x). In other words, we
set

ft(x) = ft−1(x)− ρtgt(x), (14.53)

where −ρtgt(x) is the best steepest-descent step direction toward f̂(x),

gt(x) =
∂�(f(x))
∂f(x)

∣∣∣∣
f(x)=ft−1(x)

=
∂EY {L(Y, f(x))| x}

∂f(x)

∣∣∣∣
f(x)=ft−1(x)

= EY

{
∂L(Y, f(x))

∂f(x)

∣∣∣∣
f(x)=ft−1(x)

| x
}

(14.54)

is the gradient (assuming differentiation and integration can be exchanged),
and the step-size (or learning rate) ρt is determined from the line search,

ρm = arg min
ρ

EX,Y {L(Y, ft−1(X)− ρgt(X))}. (14.55)

Choice of ρm is crucial to the steepest-descent method: too large a ρm

may lead to overshooting the minimum and possibly divergent oscillations,
whereas too small a ρm will slow down the search and greatly increase
computation time.

The expectations in (14.54) and (14.55) are estimated using the learning
set L = {(xi, yi), i = 1, 2, . . . , n}. For example, the gradient (14.54) at xi
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is estimated by

gt(xi) =
∂L(yi, f(xi))

∂f(xi)

∣∣∣∣
f(xi)=ft−1(xi)

, i = 1, 2, . . . , n, (14.56)

the step-size ρt by

ρt = arg min
ρ

n∑
i=1

L(yi, ft−1(xi)− ρgt(xi)), (14.57)

and the update rule by ft = ft−1 − ρtgt, where ft = (ft(xi)), ft−1 =
(ft−1(xi)), and gt = (gt(xi)) are each n-vectors.

The important point to note here is that the gradient vector gt is only
defined at a very specific set L of n points; we cannot use this formulation
to compute the gradient and step-size at any set of points not in L.

Friedman (2001) found an ingenious way around this problem by approx-
imating the negative gradient −gt(x) by a parametric function, h(x;θt),
with parameter vector θt. For example, if we use a J-terminal-node regres-
sion tree as a base learner, then h(x;θt) takes the simple form (see Section
14.3),

h(x;θt) =
J∑

j=1

ȳjI[x∈Rj ], (14.58)

where the components of the parameter vector θt = ({ȳj , Rj})τ define the
entire tree: the {Rj} are the J disjoint regions of input space and represent
the terminal nodes of the tree, and the {ȳj} are terminal-node means that
define the region boundaries.

How can we choose θt? A simple idea is to choose θt so that h(x;θt) is
most highly correlated with the negative gradient −gt(x). This is a least-
squares minimization problem: define n “pseudoresponses” as ỹi = −g(xi),
i = 1, 2, . . . , n, and solve

(θt, βt) = arg min
θ,β

n∑
i=1

(ỹi − βh(xi;θ))2. (14.59)

The update formula is

ft(x) = ft−1(x) + ρth(x;θt), (14.60)

where ρt is found from the line search,

ρt = arg min
ρ

n∑
i=1

L(yi, ft−1(xi) + ρh(xi;θt)). (14.61)

These steps constitute the Gradient.Boost algorithm (Friedman, 2001,
Algorithm 1) given in Table 14.3. If each h(x;θt) is a J-terminal-node
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TABLE 14.3. Gradient.Boost algorithm for fitting an additive model.

1. Input: L = {(xi, yi), i = 1, 2, . . . , n}, T = number of iterations.

2. Initialize: f0(x) = arg minρ

∑n

i=1
L(yi, ρ).

3. For t = 1, 2, . . . , T :

• ỹi = −gt(xi) = − ∂L(yi,f(xi))
∂f(xi)

∣∣∣
f(xi)=ft−1(xi)

, i = 1, 2, . . . , n,

• Compute (θt, βt) = arg minθ,β

∑n

i=1
(ỹi − βh(xi; θ))2.

• Compute ρt = arg minρ

∑n

i=1
L(yi, ft−1(xi) + ρh(xi; θt)).

• Set ft(x) = ft−1(x) + βth(x; θt).

4. Output: f̂(x) = fT (x) =
∑T

t=1
βth(x; θt).

regression tree, the algorithm is referred to as the Gradient.TreeBoost

algorithm.

14.3.9 Other Loss Functions

Several different loss functions have been proposed as alternatives to
exponential loss (14.25) as part of AdaBoost or for gradient boosting.
These include the following:

logistic (log)loss: L(y, ft(x)) = log
{
1 + e−2yft(x)

}
, y ∈ {−1,+1}.

This loss function is used in the LogitBoost algorithm (Friedman
et al., 2000) for classification, where ft(x) = Ct(x); see Exercise 14.3.

squared-error loss: L(y, ft(x)) = 1
2 (y − ft(x))2, y ∈ 
.

For continuous Y ∈ 
, this loss function is used for least-squares
regression boosting by the LS.Boost (and the LS.TreeBoost) al-
gorithm (Friedman, 2001, Algorithm 2) and the L2Boost algorithm
(Buhlmann and Yu, 2003); see Exercise 14.4.

absolute-error loss: L(y, ft(x)) = |y − ft(x)|, y ∈ 
.

This loss function is used in the LAD.TreeBoost algorithm (Fried-
man, 2001, Algorithm 3) for boosting regression trees using least-
absolute-deviation. The resulting procedure is robust against outliers
in both input and output variables.

Huber loss: L(y, ft(x)) =
{

1
2 (y − ft(x))2, if |y − ft(x)| ≤ δ,
δ(|y − ft(x)| − δ/2), otherwise.
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FIGURE 14.6. A comparison of loss functions for binary classification
(left panel), where the label y is −1 or +1, and regression (right panel),
where y is real-valued. The predictor is f . Left panel: Shown are the expo-
nential (e−yf , blue curve), binomial (scaled version of log{1 + e−2yf}, red
curve), squared-error ((y − f)2 = 2(1 − yf), green curve), and misclassi-
fication (I[yf<0], black step-function) loss functions, graphed as functions
of the margin yf . Right panel: Shown are the absolute-error (|y − f |, blue
curve), squared-error ((y − f)2, green curve), and Huber (with δ = 1, red
curve) loss functions, graphed as functions of the error y − f .

This loss function (specially constructed for Huber’s theory of robust
M -regression) combines features of squared-error loss and absolute-
error loss (Huber, 1964), and is used by the M.TreeBoost algorithm
(Friedman, 2001, Algorithm 4). The constant δ is used to identify
outlying residuals, whose loss is measured by absolute error instead
of squared error.

The left panel of Figure 14.6 shows graphs of the exponential, bino-
mial, and squared-error loss functions, each of which can be regarded as a
continuous, convex approximation to misclassification loss, a step function
having a loss of one for yf < 0 and zero for yf > 0. We can clearly see that
squared-error loss is a poor approximation to misclassification loss. Instead
of being a monotonically decreasing function of the margin yf as are the
exponential, binomial, and misclassification losses, squared-error loss be-
comes larger the more confidently we can classify an observation (i.e., the
larger the margin value)! The right panel shows graphs of absolute-error
loss, squared-error loss, and the Huber loss function (with δ = 1).

14.3.10 Regularization

Regularization by restricting the fitting process is popularly used as an
antidote to overfitting. There are several ways to do this; one possible ap-
proach is that of model selection, whereby the number of components in the
combined classifier or predictor is not allowed to get too large. Another ap-
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proach shrinks the values of all coefficients in the model. As a general rule,
regularization by restricting the number of components is not as effective
as shrinking the coefficient values.

Regularized predictors are obtained using a penalty function p(α) to
restrict the size of the coefficient vector α = (α1, · · · , αM )τ of the combined
predictor f(x) =

∑M
j=1 αjCj(x). The penalized estimates are given by the

solution to the constrained minimization problem:

α̂λ = arg min
α

{
n∑

i=1

L(yi, f(xi)) + λp(α)

}
, (14.62)

where L is any of the loss functions listed above and λ > 0 is a small
regularization parameter usually interpreted as a “learning rate.” We then
apply the forwards-stagewise (or a related gradient-boosting) procedure
to the constrained-minimization problem. There are two types of penalty
functions that have been suggested for use in the boosting context:

L1-Penalty: The coefficients are constrained so that the sum of their
absolute values,

p1(α) =
M∑

j=1

|αj |, (14.63)

is smaller than a given value. In the case of squared-error loss function
for regression boosting, this L1-penalty yields a method closely related to
the Lasso algorithm and to the least-angle regression (LARS) algorithm;
see Sections 5.8 and 5.9. As we noted in Section 5.8, empirical evidence
suggests that the L1-penalty works best when there are a small-to-medium
number of moderate-sized true coefficients.

L2-Penalty: This penalty function restricts the sum of squares of the
coefficients,

p2(α) =
M∑

j=1

α2
j . (14.64)

When the combined learner is a convex combination of base learners and
we use squared-error loss, the optimum penalized-regression predictor is
the ridge regression estimator of Section 6.3.3.

As we vary the value of λ in the above constrained-minimization problem,
we obtain a sequence of values of the components of the estimated coeffi-
cient vector α̂λ. We then plot the trace of each coefficient α̂j,λ against λ.

Friedman (2001) introduces a regularization parameter λ into the Gra-

dient.Boost algorithm in Table 14.3 by adding λ ∈ (0, 1] to the input
line, and then changing the fourth line in the for-loop to

ft(x) = ft−1(x) + λ · βth(x;θt), (14.65)
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where h(x;θt) is a parametric function. This particular form of regular-
ization is also referred to as “shrinkage.” The parameter λ operates (in
conjunction with the number of iterations T ) to find the best fit to the
data. However, there is a “trade-off” between the values of λ and T in the
fitting process: the best value for T is observed to be higher for smaller
values of λ. From simulations, Friedman notes that the performance of the
gradient-boosting method is generally enhanced (sometimes dramatically)
by using as large a value of T as is computationally feasible and then set-
ting λ to be a small (but not too small) value (e.g., λ = 0.1) so that an
appropriate criterion is optimized close to the chosen value for T . Using a
value of λ close to one typically produces evidence of serious overfitting.

14.3.11 Noisy Class Labels

In classification problems, label noise exists when the learning set con-
tains observations with incorrect class labels. Dietterich (2000) showed that
noisy labels degrade the accuracy of AdaBoost when applied to classifica-
tion trees, whereas bagging appears to be quite robust against label noise.

We can create label noise by randomly selecting (without replacement)
a fraction (e.g., 5%) of the observations from a data set and then changing
the class label of each chosen observation using a random assignment from
the set of incorrect class labels. In Section 5.6.2, we saw that, on average,
about 37% of the observations from the learning set are omitted from each
bootstrap sample; thus, it is likely that a large proportion of the misla-
beled observations will not appear in a bootstrap sample. The omission
of misclassified observations (which should behave like regression outliers)
from the bootstrap sample will increase instability and, hence, improve the
performance of bagging.

On the other hand, after a few iterations, AdaBoost will keep assigning
large weights to the fraction of mislabeled observations because it will have
difficulty classifying the “corrupted” observations, and this may, in turn,
degrade performance and lead to overfitting.

When noisy class labels are present, there is empirical evidence (Krieger,
Long, and Wyner, 2001) that we can improve the classifier’s performance
if we apply bagging following boosting (a “BB” algorithm). Specifically, we
generate B = ρn bootstrap samples from the learning set (0 < ρ < 1),
compute a boosted classifier from each bootstrap sample using M itera-
tions, combine the B different boosted classifiers into an ensemble, and
then average over the ensemble. Studies show, using real data, that the
BB classifier averages out (or smoothes) the overfitting in AdaBoost and,
hence, decreases test error.
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14.4 Random Forests

We have seen how perturbing the learning set L in various ways can be
used to generate an ensemble (or forest) of tree-structured classifiers. A
classification tree Tk is grown for each perturbation Lk of the learning set,
k = 1, 2, . . . ,K; a test set observation x is dropped down each tree; and
the classifier predicts the class of that observation by that class that enjoys
the largest number of total votes over all of the trees.

In bagging, randomization is used only in selecting the data set on which
to grow each tree. An extension of this idea is random forests (Breiman,
2001b), where randomization adds another layer onto bagging and is a
crucial part of constructing each tree. Suggestions on how to introduce
randomization into tree construction include random split selection in which
each node is split by randomly choosing one of the t best splits at that
node (Dietterich, 2000) and random input selection in which the split at
each node is decided by a random choice of subset of the r input features
(Ho, 1998).

14.4.1 Randomizing Tree Construction

In random forests, we start in the same way that bagging starts, with
B bootstrap samples drawn from the learning set L, but the difference is
how the trees are grown from those samples. The idea is to introduce a
randomization component into tree construction so that, for the tree T ∗b,
each node is split in a random manner. Possible options for developing
a randomized splitting strategy at each node include using some form of
random input selection and linear combinations of inputs.

Recall that bagging applied to a tree-structured classifier reduces vari-
ance (due to aggregation) and bias (if the trees are fully grown). A random
forest reduces the correlation between the tree-structured classifiers that
enter into the averaging step. The algorithm is given in Table 14.4.

There are only two tuning parameters for a random forest: the number m
of variables randomly chosen as a subset at each node and the number B of
bootstrap samples. The procedure is relatively insensitive to a wide range
of values of m and B. A good starting point is to take m as

√
r; if that is

not sufficient, it is recommended to rerun the program with m = 2
√

r and
m = 0.5

√
r as a way of monitoring the procedure. We have often found that

values smaller than
√

r yield smaller misclassification rates. The number
B of bootstrap samples can be taken to be at least 1,000, and if r is very
large, then B can be around 5,000.
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TABLE 14.4. Random forest classification algorithm using random input
selection at each tree node.

1. Input: L = {(xi, yi), i = 1, 2, . . . , n}, yi ∈ {1, 2, . . . , K}, m = number of
variables to be chosen at each node (m << r), B = number of bootstrap
samples.

2. For b = 1, 2, . . . , B:

• Draw a bootstrap sample L∗b from the learning set L.

• From L∗b, grow a tree classifier T ∗b using random input selection: at
each node, randomly select a subset m of the r input variables, and,
using only the m selected variables, determine the best split at that
node (using entropy or the Gini index). To reduce bias, grow the tree
to a maximum depth with no pruning.

• The tree T ∗b generates an associated random vector θb, which is in-
dependent of the previous θ1, . . . , θb−1, and whose form and dimen-
sionality are determined by context.

• Using θb and an input vector x, define a classifier h(x, θb) having a
single vote for the class of x.

3. The B randomized tree-structured classifiers {h(x, θb)} are collectively
called a random forest.

4. The observation x is assigned to the majority vote-getting class as deter-
mined by the random forest.

14.4.2 Generalization Error

Consider an ensemble (or committee) of B randomized tree-structured
classifiers,

h(x,θ1), h(x,θ2), . . . , h(x,θB). (14.66)

Define the generalization error for a random forest having B trees as

PEB = PX,Y {mB(X, Y ) < 0}, (14.67)

where

mB(X, Y ) = B−1
B∑

b=1

I[h(X,θb)=Y ] −max
k �=y

{
B−1

B∑
b=1

I[h(X,θb)=k]

}
(14.68)

is the classification margin for the ensemble, and the probability is com-
puted over the (X, Y )-space. Note that if mB(X, Y ) > 0, then the commit-
tee votes for the correct classification, whereas otherwise it does not.
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Breiman (2001b) showed, using the strong law of large numbers, that,
as the number of trees increases (B → ∞), PEB converges almost surely
({θb}) to the generalization error,

PE = PX,Y {m(X, Y ) < 0} , (14.69)

where

m(X, Y ) = PΘ{h(X,Θ) = Y } −max
k �=Y

PΘ{h(X,Θ) = k}. (14.70)

is defined as the margin function for a random forest. The margin, m(X, Y ),
is the amount by which the average number of votes at (X, Y ) for the
correct class exceeds the average vote for any other class. This limiting
result is important: it shows that as we increase the number of trees in the
forest, generalization error for a random forest converges to a limit; in other
words, random forests cannot overfit, even if we have an infinite number of
trees in the forest.

14.4.3 An Upper Bound on Generalization Error

The generalization error of a random forest can be bounded by a quantity
that depends upon two parameters: a first-order parameter µ measuring the
“strength” of any single tree in the forest and a second-order parameter
ρ̄ measuring the overall “correlation” between pairs of trees in the forest
(Breiman, 2001b). These two parameters can be used to assess the accuracy
of classifiers and the amount of dependence between them. For an accurate
classification, we would like a strong classifier (large µ) with low correlation
(small ρ̄) between trees.

Consider the set of classifiers (14.66). From (14.68), define

µ = EX,Y {m(X, Y )} (14.71)

to be the expected “strength” of the set of classifiers, which is assumed
to be positive. Think of strength as a measure of accuracy of a tree in
the forest. In the binary case, we see from (14.68) that m(X, Y ) can be
written as

m(X, Y ) = 2 · PΘ{h(X,Θ) = Y } − 1, (14.72)

and the condition µ > 0 translates to EX,Y PΘ{h(X,Θ) = Y } > 0.5; this
result mimics the learning condition that a “weak” classifier is one that
correctly classifies at a rate higher than 50%.

Our goal in this section is to provide an upper bound on the generaliza-
tion error,

PE∗ = PX,Y {|m(X, Y )− EX,Y {m(X, Y )}| > µ}, (14.73)
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of a random forest. Applying Chebychev’s inequality to (14.73), it follows
that

PE∗ ≤ varX,Y {m(X, Y )}
µ2

. (14.74)

We now derive a suitable expression for the numerator of this upper bound.
Let k̃ = k̃(X, Y ) denote the class with the most incorrect votes; that is,

k̃ = arg max
k �=Y

PΘ{h(X,Θ) = k}. (14.75)

Then, from (14.70),

m(X, Y ) = PΘ{h(X,Θ) = Y } − PΘ{h(X,Θ) = k̃}
= EΘ{m∗(X, Y,Θ)}, (14.76)

where
m∗(X, Y,θ) = I

[h(X,θ)=Y ]
− I

[h(X,θ)=k̃]
(14.77)

can be regarded as a “raw” margin function. Assuming that Θ and Θ′ are
iid,

[m(X, Y )]2 = [EΘ{m∗(X, Y,Θ)}]2 = EΘ,Θ′{m∗(X, Y,Θ)m∗(X, Y,Θ′)}.
(14.78)

Thus, the variance function is

varX,Y {m(X, Y )} = EΘ,Θ′{covX,Y (m∗(X, Y,Θ),m∗(X, Y,Θ′))}
= EΘ,Θ′{ρ(Θ,Θ′)σ(Θ)σ(Θ′)}, (14.79)

where, for fixed θ and θ′,

ρ(θ,θ′) = corrX,Y {m∗(X, Y,θ),m∗(X, Y,θ′)} (14.80)

is the correlation between the raw margin functions of two different mem-
bers in the forest, and, for fixed θ, σ(θ) is the square-root of

σ2(θ) = varX,Y {m∗(X, Y,θ)}. (14.81)

Hence, from (14.79) and the definition of variance,

varX,Y {m(X, Y )} = ρ̄ · [EΘ{σ(Θ)}]2 ≤ ρ̄ · EΘ{σ2(Θ)}, (14.82)

where

ρ̄ =
EΘ,Θ′{ρ(Θ,Θ′)σ(Θ)σ(Θ)}

EΘ,Θ′{σ(Θ)σ(Θ)} (14.83)

is the average correlation between all possible pairs of trees in the forest.
Note that, from (14.82), we can write

ρ̄ =
varX,Y {m(X, Y )}

[EΘ{σ(Θ)}]2 . (14.84)
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Now, from (14.81),

EΘ{σ2(Θ)} = EΘ{EX,Y [(m∗(X, Y,Θ))2]− [EX,Y (m∗(X, Y,Θ))]2}.
(14.85)

In the first term on the rhs, m∗(X, Y,Θ) is the difference of two indicator
functions; see (14.77). So, [m∗(X, Y,Θ)]2 ≤ 1. The second term on the rhs
can be written as

EΘ{[EX,Y (m∗(X, Y,Θ))]2} ≥ [EΘ(EX,Y (m∗(X, Y,Θ))]2

= [EX,Y (EΘ(m∗(X, Y,Θ))]2

= [EX,Y (m(X, Y ))]2

= µ2 (14.86)

The first line used the inequality E(X2) ≥ [E(X)]2. Thus,

EΘ{σ2(Θ)} ≤ 1− µ2. (14.87)

Substituting the inequality (14.87) into (14.82), and the result into (14.74)
gives us an upper bound on generalization error for a random forest in
terms of µ and ρ̄:

PE∗ ≤ ρ̄(1− µ2)
µ2

. (14.88)

This upper bound was derived by Breiman (2001b); however, the bound is
generally quite loose.

Estimation of µ and ρ̄ can be carried out as follows. Let L∗b be the bth
bootstrap sample and let h(x,θb) be the bth classifier of x based upon L∗b.
For an OOB observation (x, y), let

p̂(x, y) =

∑
b I

[h(x,θb)=y;(x,y)/∈L∗b]∑
b I[(x,y)/∈L∗b]

(14.89)

denote the proportion of votes received for class y. It is an estimate of
PΘ{h(x,Θ) = y}. The strength (14.71), which is the expected value of
(14.70), can be estimated by:

µ̂ = n−1
n∑

i=1

{p̂(xi, yi)− p̂(xi, ỹi)} , (14.90)

where ỹi = arg maxy′ �=y p̂(xi, y
′
i).

To estimate ρ̄ in (14.84), we estimate the numerator and denominator
separately. The numerator,

varX,Y {m(X, Y )} =

EX,Y

{
PΘ[h(X,Θ) = Y ]− PΘ[h(X,Θ) = Ỹ ]

}2

− µ2, (14.91)



14.4 Random Forests 541

can be estimated by

n−1
n∑

i=1

{p̂(xi, yi)− p̂(xi, ỹi)}2 − µ̂2. (14.92)

The standard deviation is

σ(θ) = {p1 + p2 + (p1 − p2)2}1/2, (14.93)

where p1 = EX,Y {h(X,Θ) = Y } and p2 = EX,Y {h(X,Θ) = Ỹ }. We can
estimate p1 and p2 for the bth OOB sample by

p̂1,b = n−1
b

∑
(xi,yi)/∈L∗b

I
[h(xi,θb)=yi]

, (14.94)

p̂2,b = n−1
b

∑
(xi,yi)/∈L∗b

I
[h(xi,θb)=ỹi]

, (14.95)

respectively, where nb =
∑n

i=1 I[(xi,yi)/∈L∗b] is the number of observations in
the bth OOB sample. The denominator of (14.84) is found by substituting
(14.94) and (14.95) into (14.93) to get an estimate of σ(θb), and then
averaging over all OOB samples:

σ̂(θ) = B−1
B∑

b=1

{p̂1,b + p̂2,b + (p̂1,b − p̂2,b)2}1/2. (14.96)

14.4.4 Example: Diagnostic Classification of Four Childhood
Tumors

Gene expression profiling using cDNA microarrays has become a very
popular way of studying diseases. In this example, we analyze data from
microarray experiments (Khan et al., 2001) on the small, round, blue-cell
tumors (SRBCTs) of childhood, which include the distinct diagnostic cat-
egories of neuroblastoma (NB), rhabdomyosarcoma (RMS), non–Hodgkin
lymphoma (NML), and the Ewing family of tumors (EWS). SRBCTs are
so-named because of their similar appearance on routine histology; they
often masquerade as each other, making correct clinical diagnosis difficult.
Getting the diagnosis correct impacts directly upon the type of treatment,
therapy, and prognosis the patient receives. Currently, there is no single
clinical test that can discriminate between these cancers.

Gene-expression data were collected with a goal of distinguishing between
the four types of SRBCT categories.2 The data initially consisted of 83 cases

2The data are publicly available and can be downloaded from the website
research.nhgri.nih.gov/microarray/Supplement.
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(29 EWS, 11 BL, 18 NB, and 25 RMS) of both tumor biopsy material and
cell lines measured on microarrays containing 6,567 genes. Requiring that
each gene should have a certain minimal level of intensity reduced the
number of genes to 2,308.

A random forest was applied to these data using 500 fully grown trees,
where at each node we specified that 25 variables were to be randomly
sampled (from the 2,308 variables available) as candidates for splitting.
Over the 500 trees, the 83 cases were OOB the following numbers of times:

1 2 3 4 5 6 7 8 9 10
194 170 187 189 181 179 201 187 175 195

11 12 13 14 15 16 17 18 19 20
175 190 174 195 199 189 162 174 187 189

21 22 23 24 25 26 27 28 29 30
175 185 179 180 201 192 170 180 192 191

31 32 33 34 35 36 37 38 39 40
163 165 182 179 173 193 184 168 186 166

41 42 43 44 45 46 47 48 49 50
165 169 191 186 186 187 185 191 183 185

51 52 53 54 55 56 57 58 59 60
183 177 178 172 194 180 185 188 176 185

61 62 63 64 65 66 67 68 69 70
192 165 198 179 179 180 176 205 187 180

71 72 73 74 75 76 77 78 79 80
172 187 183 181 184 181 186 183 188 193

81 82 83
181 172 193

From these OOB instances, we obtain, for each case, the fraction of “votes”
from the random forest for each disease category; each case is then classified
according to the category with the highest fraction of votes received; and
the OOB misclassification rate is calculated over all 83 classified cases. For
this example, the results are indeed impressive: all 83 samples are correctly
classified (0% OOB misclassification rate).

14.4.5 Assessing Variable Importance

If the objective is to classify new observations, it is useful to know which
variables really control the classification process; in a regression situation,
we need to know which subset of variables best explains the response values.
We recognize, of course, that identifying which variables are important can
be complicated by the existence of interactions between variables. Random
forests can be used to evaluate the variables in a data set and provide a
graphical display to assess the importance of each variable.
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Computations are carried out one tree at a time. As before, let T ∗b be the
tree classifier constructed from the bootstrap sample L∗b. First, drop the
OOB observations corresponding to L∗b down the tree T ∗b, record the re-
sulting classifications, and compute the OOB error rate, PEb(OOB). Next,
randomly permute the OOB values on the jth variable Xj while leaving
the data on all other variables unchanged. If Xj is important, permuting
its observed values will reduce our ability to classify successfully each of
the OOB observations. Then, we drop the altered OOB observations down
the tree T ∗b, record the resulting classifications, and compute the OOB
error rate, PEb(OOBj), which should be larger than the error rate of the
unaltered data. A raw T ∗b-score for Xj can be computed by the difference
between those two OOB error rates,

rawb(j) = PEb(OOBj)− PEb(OOB), b = 1, 2, . . . , B. (14.97)

Finally, average the raw scores over all the B trees in the forest,

imp(j) =
1
B

B∑
b=1

rawb(j), (14.98)

to obtain an overall measure of the importance of Xj . Call this measure
the raw permutation accuracy importance score for the jth variable.

Assuming the B raw scores (14.97) are independent from tree to tree, we
can compute a straightforward estimate of the standard error. Empirical
studies using many different types of data sets show that a good case can be
made for independence: indeed, scores between the trees appear to have low
correlations. If this estimate of standard error is acceptable, we compute a
z-score by dividing the raw score by the estimated standard error and then
compute an appropriate Gaussian-based significance level for that z-score.
Call this z-score the mean decrease in accuracy for the jth variable.

A second measure of variable importance derives from the fact that the
Gini impurity index for a given parent node is larger than the value of that
measure for its two daughter nodes. By averaging the (Gini) decreases in
node impurities over all trees in the forest, we obtain a measure we call the
Gini importance index.

For the example of childhood SRBCTs, the 30 most important vari-
ables for classification are displayed in Figure 14.7. The 10 variables [gene
ID, gene description] that give the largest mean decrease in accuracy (left
panel) are, in order of importance: 742 [756847, suppressin (nuclear de-
formed epidermal autoregulatory factor-1 (DEAF-1)-related)], 1955 [80410,
farnesyl diphosphate synthase], 246 [345538, cathepsin L], 1003 [825433,
ESTs], 1389 [525799, GTP cyclohydrolase I feedback regulatory protein],
509 [37553, protein phosphatase 2A, regulatory subunit B’ (PR 53)], 2050
[244154, KIAA0875 protein], 2046 [128054, ESTs], 1799 [196189,
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FIGURE 14.7. Variable-importance plots for the SRBCT data.

cytochrome b-5], and 1319 [146868, mitogen-activated protein kinase ki-
nase kinase 11],

The 14 variables [gene ID] that give the largest mean decrease in the Gini
index (right panel) are, in order of importance: 742 [756847 ], 1955 [80410].
246 [345538], 1389 [525799], 1003 [825433], 509 [37553], 2050 [244154], 1645
[839374, exostoses (multiple)-like 2], 1601 [725188, malate dehydrogenase
1, NAD (soluble)], 1319 [146868, mitogen-activated protein kinase kinase
kinase 11], 2046 [128054], 1194 [48285, p53-induced protein], 129 [298062,
troponin T2, cardiac], and 255 [154472, fibroblast growth factor receptor 1
(fms-related tyrosine kinase 2, Pfeiffer syndrome)].

Note that the rankings of important variables changes with the number
of variables randomly chosen for splitting at each node, the initial seed for
randomization, and the number of bootstrap trees in the forest.

14.4.6 Proximities for Classical Scaling

One of the most useful notions incorporated into random forests is that
of computing proximities between pairs of observations. Using proximities,
we can apply MDS (see Chapter 13) to the learning set to give a graphical
view of data clustering in a lower-dimensional space. Proximities can also
be used for imputing missing values and identifying multivariate outliers,
if they are present in the data.
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Suppose we construct a random forest of trees {T ∗b} from a learning
set L. Recall that each tree T ∗b is unpruned and, hence, each terminal
node in T ∗b will contain only a few observations. If we drop all cases in
L (including the OOB observations) down all the trees in the forest, how
often do pairs of observations occupy the same terminal node? The answer
to this question gives us a measure of “closeness” (or “proximity”) of those
pairs of observations to each other.

We, therefore, wish to define a similarity measure, prox(xi,xj), between
pairs of observations, xi and xj , say, so that the closer xi and xj are to
each other, the larger the value of prox(xi,xj). If the two observations xi

and xj end up at the same terminal node in T ∗b, we increase prox(xi,xj)
by one. We repeat this procedure over all B trees in the forest, and then
divide the frequency totals of pairwise proximities by the number, B, of
trees in the forest; this gives us the proportion of all trees for which each
pair of observations end up at the same terminal nodes. The results are
subtracted from one to yield dissimilarities:

δij = 1− prox(xi,xj), xi,xj ∈ L, i, j = 1, 2, . . . , n. (14.99)

We collect these pairwise dissimilarities into an (n×n) proximity matrix
∆ = (δij), which is symmetric, positive-definite, with diagonal entries equal
to zero. The proximity matrix is then used as input into the classical-
scaling algorithm (see Table 13.5); this algorithm provides us with a visual
comparison of the n observations in a lower-dimensional setting, where
the interpoint distances between all pairs of observations are preserved (as
much as possible) in the reduction to a lower-dimensional space.

A graphical display of pairs of principal coordinates (typically, the first
plotted against the second) often yields a worthwhile comparison of the
data in the learning set. In Figure 14.8, we show the MDS plot of proximi-
ties for the SRBCT data (left panel) and the BUPA data (right panel). We
see that the SRBCT plot separates the data into four clusters correspond-
ing to the four classes of SRBCTs, which probably contributes to its 0%
OOB misclassification rate. The BUPA MDS plot, by contrast, shows three
“arms” corresponding to the two classes in the data; the clusters have a
number of overlapping points, and the OOB misclassification rate is 24.35%
(500 bootstrap trees in the forest and 2 variables selected at random from
the six for splitting each node in each tree), although this rate depends
upon the same factors as listed at the end of the previous section.

14.4.7 Identifying Multivariate Outliers

Detecting and identifying outliers in multivariate data can be very diffi-
cult, especially when the dimensionality is high. So, any procedure that is
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FIGURE 14.8. MDS plots of the SRBCT data (left panel) and the BUPA
data (right panel). The types of tumors in the SRBCT plot are (number
of points, color): BL (11, red), EWS (29, blue), NB (18, green), and RMS
(25, purple). The points in the BUPA plot correspond to Class 1 (145, red)
and Class 2 (200, blue).

successful in outlier-detection is worth its weight in gold. The proximities
computed for random forests can be used to detect outliers.

The basic idea is that we identify an outlier by how far away it is from
all other observations belonging to its class in the learning set. Suppose
xi ∈ Πk. If the proximity of, say, xi to another kth-class observation, say,
xj is small, then it is rare for those two observations to end up at the
same terminal nodes when they are simultaneously dropped down all the
trees in the forest. In other words, xi and xj are far apart from each other
iff their proximity is small. If xi is far away from all the other kth-class
observations in the learning set, then all the proximities, prox(xi.x�), of xi

with x�, � �= i, will be small. Breiman and Cutler (2004) suggest that a raw
outlier measure for the ith observation, xi, in the kth class be given by

uik =
n∑

x�∈Πk,� �=i[prox(xi,x�)]2
, i = 1, 2, . . . , n, (14.100)

where k = 1, 2, . . . ,K. Thus, if xi is really an outlier for the kth class, the
denominator of (14.100) will be small, so that uik will be large.

Let mk = medx�∈Πk
{u�k} be the median of the raw outlier measures

over all kth-class observations. Then, for k = 1, 2, . . . ,K, a standardized
version of uik is given by

ũik =
uik −mk∑

x�∈Πk
|u�k −mk|,

. i = 1, 2, . . . , n. (14.101)
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FIGURE 14.9. Outlier plot for the SRBCT data. The types of tumors in
the SRBCT plot are BL (red), EWS (blue), NB (green), and RMS (purple).

The values of (14.101) are plotted against sequence number, with each
class’s values plotted using either a different symbol or color. Values of
(14.101) in excess of 10 should generate concern. The SRBCT data set
does not appear to have any outliers; see Figure 14.9.

14.4.8 Treating Unbalanced Classes

A major impediment to good classification in practical problems occurs
when at least one of the classes (often the class of primary interest) con-
tains only a very small proportion of the observations. Examples of such
“unbalanced” situations include detection of fraudulent telephone calls, in-
formation retrieval and filtering, diagnosis of rare thyroid diseases, and de-
tection of oil spills from satellite images (Chen, Liaw, and Breiman, 2004).
In each of these examples, the result is wildly varying prediction errors for
the different classes.

Classification algorithms, which focus on minimizing the overall mis-
classification rate, classify most observations according to the class of the
majority of observations (the “majority” class); as a result, the misclassi-
fication rate will be very low, but the observations belonging to the class
of primary interest (the “minority” class) will be totally misclassified. In
the case of random forests, for example, the bootstrap samples will contain
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very few (and maybe none) of the minority class observations, and so we
will see poor class prediction (i.e., high prediction error) for the minority
class.

To alleviate such difficulties, various modifications to the random forest
classifier were considered by Chen, Liaw, and Breiman (2004), including
balanced random forest (BRF), where the majority class is undersampled,
and weighted random forest (WRF), where a heavier weight is placed upon
selecting the minority class in bootstrap samples in order to prevent mis-
classifying that class. Based upon experiments with various data sets, no
real difference in prediction error has been found between BRF and WRF,
although BRF turns out to be computationally more efficient.

14.5 Software Packages

Bagging for classification or regression can be carried out in R using the
package ipred (short for Improved Predictors), which can be downloaded
from an appropriate CRAN site. For bagging decision trees, ipred uses
the package rpart. For R users, there are several packages that carry out
boosting using AdaBoost: ada, boost, and adabag each use rpart and
each can be downloaded from an appropriate CRAN site. The AdaBoost

computations were carried out here using the ada package.
Breiman’s random forest software is now a commercial product that is

licenced exclusively to Salford Systems (www.salford-systems.com). See the
URL www.stat.berkeley.edu/users/breiman/RandomForests. An R-interface
to the random forests classifier has been written by A. Liaw and M. Wiener
based upon original Fortran code written by Breiman and Cutler. R docu-
mentation and help files for version 4.4–2 are available at

lib.stat.cmu.edu/R/CRAN/doc/packages/randomForest.pdf.
Software to carry out bagging, boosting, and random forests is also available
in other packages, such as Matlab, Weka, and Statistica.

Bibliographical Notes
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into optimal and nonoptimal strategies can be found in Rätsch and War-
muth (2002); see also Rudin, Daubechies, and Schapire (2004) and Rudin,
Schapire, and Daubechies (2007).

The section on random forests is based upon Breiman (2001b) and the
short course he and Adele Cutler gave at the 26th Symposium on the
Interface, which was held in Baltimore, MD, in May 2004. Breiman’s in-
spiration for random forests came from reading Amit and Geman (1997).
This author thanks Adele Cutler for conversations on random forests and
especially for pointing out and correcting a typographical error in Breiman
(2001, equation (8)).

Exercises

14.1 Let Y ∈ {−1,+1} and let C(x) ∈ {−1,+1} be a classifier of x. Show
that Y ∗ = (Y + 1)/2 is a Bernoulli variable that takes the value 0 with
probability p(x) = eC(x)/(eC(x) + e−C(x)) and the value 1 with probability
1 − p(x). Find the binomial log-likelihood and show that it is equal to
L(y, C(x)) = loge{1 + e−2yC(x)}.

14.2 Consider the regression situation, where Y is continuous. Assume
squared-error loss: L(y, fm(x)) = 1

2 (y − fm(x))2. Show that the pseudore-
sponses are given by ỹi = yi − fm−1(xi), i = 1, 2, . . . , n, and that the
learning rate is ρm = βm. Hence, show that the Gradient.Boost algo-
rithm reduces to an iterative least-squares fitting of the current residuals.

14.3 Show that (14.19) can be reduced to (14.20). Furthermore, show that∑n
i=1 wi,m+1 = 1.

14.4 Consider the following 10 two-dimensional points: the first five points,
(1, 4), (3.5, 6.5), (4.5, 7.5), (6, 6), (1.5, 1.5), belong to Class 1, and the
second five points, (8, 6.5), (3, 4.5), (4.5, 4), (8, 1.5), (2.5, 0), belong to
Class 2. Plot these points on a scatterplot using different symbols or col-
ors to distinguish the two classes. Carry through by hand the AdaBoost

algorithm on these points, showing the weights at each step of the process.
Determine the final classifier and calculate its misclassification rate.

14.5 Write a program that implements AdaBoost for tree-based binary
classification. Extend your program to more than two classes.

14.6 Use AdaBoost to classify the pima-indian-diabetes data. Com-
pare your results with the classification tree results. Can you do any better
with random forests?

14.7 Use a random forest to classify the spambase data. Repeat the analy-
sis 100 times using different random seeds to start each replication. For each
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repetition, find the OOB misclassification rate and draw the boxplot for
OOB misclassification rates. Repeat this for different values of m (number
of variables selected as candidates for splitting) and B (number of boot-
strap trees in the forest). What can you say about the effect of m and B
on the OOB misclassification rate?

14.8 Carry out the same computations as in Exercise 14.7 for the glass
data. What do you notice about the MDS plot?

14.9 Carry out the same computations as in Exercise 14.7 for the Wis-
consin Diagnostic Breast Cancer data (wdbc).

14.10 Run random forests 100 times on the SRBCT data, and each time
find the 30 most-important variables. Set B = 500 bootstrap trees and
m = 25, and for each run use different random seeds as starting values.
You should see different sets of variables being ranked as the 30 most
important for each run. Create a method for visualizing the overall ranking
of the variables. Repeat these operations using different B and different m.
Using the Internet, try to get some corroboration for your findings.



15
Latent Variable Models
for Blind Source Separation

15.1 Introduction

Models incorporating “latent” variables have been commonplace in the
social and behavioral sciences for a long time. The most popular of those
models is the factor analysis model, in which a set of observed continuous
variables is explained in terms of a much smaller set of continuous latent
variables (called factors), and the relationship is taken to be a linear one.

Latent variables, which can be continuous or discrete, are quite differ-
ent from observed variables in that they are artificial or hypothetical con-
structs. Latent variables are typically used to give a formal representation
of ideas or concepts that cannot be well-defined or measured directly. In
educational and psychometric research, for example, fuzzy concepts such
as “general intelligence,” “verbal ability,” “ambition,” “socioeconomic sta-
tus,” “quality of life,” and “happiness” are constructed from certain ob-
served variables that are regarded as proxies for those unobservable con-
cepts. Moreover, it is not unusual to hear of a causal relationship between
a latent variable and a set of given observable variables (e.g., “it is be-
cause of a person’s high level of intelligence that he or she does so well on
standardized tests”).

A.J. Izenman, Modern Multivariate Statistical Techniques,
doi: 10.1007/978-0-387-78189-1 15, 551
c© Springer Science+Business Media, LLC 2008
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Latent variables are also known, for example, as hidden variables in
neural network modeling and as sources that are statistically indepen-
dent of each other in independent component analysis. Latent variables
have been introduced into MCMC sampling as auxiliary variables and as a
data-augmentation technique in missing-value problems. Latent variables
are usually formed as linear combinations of observable variables for the
purpose of reducing the dimensionality of a data set. Indeed, it is easier to
consider a single latent variable interpreted as “quantitative ability” than
to have to deal with understanding a battery of different arithmetic and
mathematics test scores. As we will see, latent variables play the funda-
mental role of “sources” in blind source separation problems.

15.2 Blind Source Separation
and the Cocktail-Party Problem

A common type of problem that arises in such diverse fields as telecom-
munications, sound and image processing, brain imaging, speech enhance-
ment, predicting stock-price movements, remote sensing, biomedical
engineering, and signal processing — all situations in which the data con-
sist of multiple time series — is to find a way of solving the blind source
separation (BSS) problem. The BSS problem involves decomposing an un-
known mixture of non-Gaussian signals into its independent component
signals (Cardoso, 1998). BSS is similar to the classical electrical engineer-
ing problem of source separation, but in BSS there is no prior knowledge
of the signals that make up the mixture.

The best-known example of BSS is the so-called cocktail-party problem
(Cherry, 1953). In this problem, m people are speaking simultaneously at a
party, and each of r microphones placed in the same room at different dis-
tances from each speaker records a different mixture of the speakers’ voices
at n time points. The question is whether, based upon these microphone
recordings, we can separate out the individual speech signals of each of
the m speakers. Despite the fact that the cocktail-party problem assumes
the speakers babble on independently without considering the presence of
other partygoers (who usually speak in clustered groups), it does give a
fairly simplistic explanation of how one can envision BSS problems.

Thus, we see that mixtures of signals occur everywhere, and it is of
great interest to develop methods for separating (or “unmixing”) those
signals so that we can view the individual raw signals that make up that
mixture. With this in mind, we describe in this chapter a general latent
variable model that is proposed to solve the BSS problem. Special cases of
this model include independent component analysis, (exploratory) factor
analysis, and independent factor analysis.
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15.3 Independent Component Analysis

Independent component analysis (ICA) is a multivariate statistical tech-
nique that seeks to uncover hidden variables in high-dimensional data. As
such, it belongs to the class of latent variable models. Furthermore, because
of its success in analyzing signal processing data, ICA is also regarded as
a digital signal transform method.

In its most basic form, the ICA model is assumed to be a linear mix-
ture of an unknown number of unknown hidden source variables, where the
mixing coefficients are also unknown. A totally “blind” approach to deter-
mining both the hidden variables and the mixing coefficients solely from
the observed multivariate data fails because the problem as stated is not
well-defined.

To build more structure into the problem, we require the hidden vari-
ables to be mutually independent and also (with at most one exception)
non-Gaussian. ICA is actually an amalgam of several related approaches
to this problem, and these approaches are characterized by the types of
assumptions visited upon the distributions of the independent source vari-
ables and whether or not a separate noise component should be included
in the ICA model.

15.3.1 Applications of ICA

ICA has been extensively applied to the study of human brain functions.
Patterns of human brain-wave activity can be viewed through noninvasive
recordings made by r (usually around 20, sometimes a lot more) electrodes
placed evenly around a subject’s head during different periods of conscious-
ness and sleep. The electrodes capture a mixture of brain waves from dif-
ferent areas of the brain. Electroencephalographic (EEG) recordings make
it possible to relate certain types of behavior to changes in the electrical
activity of the cerebral cortex; event-related potential (ERP) recordings are
finely-tuned EEGs resulting from the stimulation of specific visual, audi-
tory, or sensory systems; and magnetoencephalographic (MEG) recordings
measure the strength of magnetic fields that are generated by cortical ac-
tivity. ICA has been used successfully to separate EEG, ERP, and MEG
recordings into individual (and meaningful) source signals.

ICA has also been successful in extracting three-dimensional spatial
recordings (called component maps) from functional magnetic resonance
imaging (fMRI) experiments used to study the human brain. These ex-
periments consist of a number of trials in which subjects perform certain
experimental and control psychomotor tasks. The component maps take
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the form of a mixture of signals from thousands of voxels (volume ele-
ments) located in each of several brain slices and measured over a given
period of time. The voxel values indicate brain regions that are actively in-
volved in the cognitive processing of the specified tasks. If the active voxels
are sparsely distributed in the maps and are mostly nonoverlapping, then
the maps are considered to be independent. ICA has been used to sepa-
rate fMRI data into m independent component maps together with their
corresponding component activation patterns.

Other applications of ICA include extracting structure from financial
stock returns, mapping the cosmic microwave background anisotropy from
satellite radiometric sky maps, separating out the effects of major volcanic
eruptions from climate and temperature data, identifying spatial-variation
patterns in manufacturing processes such as automobile assembly, Web im-
age retrieval and classification, wireless communications and speech recog-
nition systems, and agricultural remote sensing images. Classification of
microarray gene expression profiles using ICA methods has also become a
popular research issue.

15.3.2 Example: Cutaneous Potential Recordings
of a Pregnant Woman

In prenatal diagnostics, it is important for a physician to be able to
monitor — in a non-invasive way — the fetal heart activity of a pregnant
woman so that the health and condition of the fetus can be assessed. A
multichannel electrocardiogram (ECG) can be used to obtain a mixture
of maternal and fetal electrical activity, including fetal heart rate and ma-
ternal heart rate; however, the maternal ECG signal is many hundreds or
thousands times stronger than the fetal ECG signal, and the signals are
further contaminated by respiration baseline wandering and other sources
of electrical interference.

The data1 for this example consist of 2,500 ECG points sampled at 500
Hz using 8-channel cutaneous (i.e., on the skin) potential recordings of a
pregnant woman (de Lathauwer, de Moor, and Vandewalle, 2000). The 8
sets of cardiac rhythms are displayed in Figure 15.1; the 2,500 points are
recorded over a period of 5 seconds, one point every 0.002 seconds. Note
that the range of amplitudes increases as we go from Channel 1 to Channel
8. The first five channels (1–5) are measured near the fetus and, hence,
show abdominal signals. Fetal contributions are visible in Channels 1, 2,

1These data are included in DaISy: “Database for the Identification of Sys-
tems,” de Moor, B.L.R. (1997) (ed.), Department of Electrical Engineering,
ESAT/SISTA, K.U. Leuven, Belgium, and can be downloaded from the website
www.esat.kuleuven.ac.be/~smc/daisy/daisydata.html.
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FIGURE 15.1. Cardiac rhythms obtained from 2,500 ECG points sampled
at 500 Hz using an 8-channel cutaneous potential recording of a pregnant
woman.

and 3, but their magnitudes are quite weak. The other three channels (6–8)
were placed on the mother’s thorax (chest), near the heart; note that the
high magnitudes of the maternal ECG in the thoracic signals tend to swamp
the fetal ECG signals. We illustrate the power of ICA methods for this ex-
ample by reconstructing the fetal ECG from multichannel potential record-
ings on the mother’s skin.

First, we preprocess the data by applying PCA to the sample correlation
matrix; this produces 8 uncorrelated and ordered principal components
whose variances decrease in magnitude. Only the first two PCs have eigen-
values greater than unity, and together they account for about 93% of the
total variation of the data. For this example, we retain all 8 PCs as inputs
to ICA.
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FIGURE 15.2. Eight independent components from the ICA of the
8-channel cutaneous potential recordings of a pregnant woman. The red
curves (IC1, IC2, IC4, IC8) reflect the cardiac rhythms of the mother,
whereas the blue curves (IC5, IC6) reflect the cardiac rhythms of the fetus.
The purple curve (IC3) shows a respiration component, and the black curve
(IC7) shows the noise level of the sensors.

We then apply the FastICA algorithm (see Section 15.3.11) to all 8
sets of principal component scores, which, in turn, yields 8 independent
components (ICs). These ICs are displayed in Figure 15.2. We see four ICs
that reflect the mother’s cardiac rhythm (red curves: IC1, IC2, IC4, IC8)
and two ICs reflecting the fetal cardiac rhythm (blue curves: IC5, IC6). The
purple curve (IC3) probably reflects a low-periodic respiration component,
and IC7 displays a noise component.

15.3.3 Connection to Projection Pursuit

The technical aspects of ICA in its basic formulation are remarkably sim-
ilar to those of exploratory projection pursuit (PP) (Friedman and Tukey,
1974), a methodology developed more than a decade earlier than ICA.
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ICA and PP methodologies look at the same data in very different ways,
yet they both use the same (or similar) computational tool (numerically
optimizing an objective function) to achieve a common statistical goal of
finding low-dimensional, non-Gaussian projections of the data. The differ-
ences between ICA and PP derive from the different problems they were
originally built to solve.

For example, ICA was introduced to resolve a separation problem, starting
with the estimation of independent components, whereas PP was designed
to be an exploratory tool for data visualization, focusing on dimensionality
reduction of a high-dimensional space. Furthermore, the manner in which
PP and ICA extract a sequence of signals from a given collection of mixtures
differs: PP extracts signals one at a time, whereas ICA can extract the entire
set of signals in parallel. The PP and ICA solutions are also related: PP also
makes no assumptions about the data or about independent components, as
does ICA; if the ICA model holds, then the optimization process produces
independent components, whereas if the model does not hold, then we obtain
the PP solution.

Although much of the PP methodology has been incorporated into the ICA
toolkit, there has been little cross-pollination in the other direction. Recent
enhancements of the ICA model that take into account time-structure and
nonlinearity of the mixing coefficients have further helped to distinguish ICA
from PP.

15.3.4 Centering and Sphering

Suppose we observe a random r-vector, X = (X1, · · · ,Xr)τ , of correlated
measurements with mean r-vector E{X} = µ and (r × r) covariance ma-
trix cov{X} = ΣXX . Prior to carrying out PP or ICA applications, we
preprocess X so that its r components have commensurate scales. We do
this by first centering X so that its components have zero mean, and then
by sphering (or whitening) the result so that its components are uncorre-
lated with unit variances.

Sphering is a linear transformation that removes all traces of scale and
correlation structure from X. From the spectral decomposition of the co-
variance matrix, ΣXX = UΛUτ , where the columns of the orthogonal
matrix U are the eigenvectors of ΣXX and Λ is a diagonal matrix with
diagonal elements the eigenvalues of ΣXX . The columns of U and the
diagonal elements of Λ are ordered by the decreasing magnitudes of the
eigenvalues of ΣXX .

Assume that µ and ΣXX are both known. Then, we can write Σ−1/2
XX =

UΛ−1/2Uτ , The (centered and) sphered version of X is given by

X← Λ−1/2Uτ (X− µ). (15.1)
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This transformation is equivalent to computing the principal components
of X−µ and then rescaling each of the principal components to have unit
variance. If ΣXX has less than full rank, only those principal components
having nonzero variance would be retained (and rescaled). A benefit of
sphering X is that it is now affine invariant, with µ = 0 and ΣXX = Ir.

In practice, µ and ΣXX will be unknown. Thus, we use n indepen-
dent observations, X1, . . . ,Xn, on X to compute X̄ = n−1

∑n
i=1 Xi and

Σ̂XX = n−1
∑n

i=1(Xi − X̄)(Xi − X̄)τ = ÛΛ̂Ûτ , respectively. Centering
and sphering the data using Xi ← Λ̂−1/2Ûτ (Xi − X̄), i = 1, 2, . . . , n,
transform an elliptically shaped symmetric cloud of points into a spheri-
cally shaped cloud. To reduce the dimensionality of the data, only the first
J < r sphered variables need be retained, where J is chosen to explain
a certain (high) proportion of the total variance. If outliers are present,
robust versions of the sphering process can be used (see, e.g., Tukey and
Tukey, 1981).

We note that the practice of sphering is somewhat controvertial. Al-
though sphering has computational and interpretational advantages (see,
e.g., Friedman, 1987), arguments have been made that the act of sphering
is too closely tied to underlying unimodal (and especially Gaussian) dis-
tributions, an environment we wish to avoid (see, e.g., the comments of
Gower, and Hastie and Tibshirani in the discussion of Jones and Sibson,
1987). However, we follow PP and ICA practice by assuming that the com-
ponents of X have been preprocessed to be mutually uncorrelated, each
having zero mean and unit variance.

15.3.5 The General ICA Problem

In its most general form, the ICA model assumes that X is generated by

X = f(S) + e, (15.2)

where S = (S1, · · · , Sm)τ is an (unobservable) random m-vector variate
of sources whose components {Sj} are independent latent variables each
having zero mean, f : 
m → 
r is an unknown mixing function, and e
is a zero-mean, additive, r-vector-valued component that represents mea-
surement noise and any other type of variability that cannot be directly
attributed to the sources. Independence of the sources means that each
individual source signal is thought to be generated by a process unrelated
to any other source signal. We assume that E(S) = 0 and cov(S) = Im,
but that the distribution of S is otherwise unknown.

The BSS problem is to invert f and estimate S. As it stands, this problem
is ill-posed and needs some additional constraints or regularization on S,
f , and e. If we take f to be a linear function, f(S) = AS, where A is a
“mixing” matrix, then (15.2) is described as a linear ICA model, whereas
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if f assumed to be nonlinear, then (15.2) is described as a nonlinear ICA
model. Most applications of ICA assume no additive noise e and that all
noise in the model is to be associated with the components of the random
vector S. Such a model is referred to as noiseless ICA. If e is included in
(15.2), the model is described as noisy ICA.

It turns out that the noiseless ICA model with linear mixing, X = AS,
can only be solved if the vector S with independent components is not
Gaussian. We can see this by assuming the contrary. Suppose that the
sources, S1, . . . , Sm, are independent and Gaussian, each with zero mean
and unit variance. Their joint density is given by qS(s) =

∏m
j=1 qSj

(sj) =
(2π)−m/2e−‖s‖2/2, where ‖s‖2 =

∑
j s2

j . If the mixing matrix A is square
(m = r) and, hence, orthogonal (Ir = ΣXX = AAτ , so that A−1 = Aτ ),
then one can show that the density of X = AS is given by pX(x) =
(2π)−m/2e−‖Aτx‖2/2|det(Aτ )|. But A is orthogonal, and so ‖Aτx‖2 =
‖x‖2 and |det(Aτ )| = 1. Thus, the density of X reduces to pX(x) =
(2π)−m/2e−‖x‖2/2, which is identical to the density of S, so that the or-
thogonal mixing matrix A cannot be identified for independent Gaussian
sources. Thus, it makes sense to require that, with the exception of at most
one component, the remaining independent source components cannot be
Gaussian distributed.

There are a number of ways of estimating this type of ICA model while
ensuring that the components of S are as statistically independent and non-
Gaussian as possible. Usually, we are in possession of n repeated r-variate
observations, Xi = (Xi1, · · · ,Xir)τ , i = 1, 2, . . . , n, on X, which constitute
our data set. From this, our goal is to recover the m independent sources,
Si = (Si1, · · · , Sim)τ , i = 1, 2, . . . , n, which generated the data through
Xi = ASi, i = 1, 2, . . . , n. Several efficient computational algorithms have
been created to reach this goal.

In most ICA applications, X is regarded as an r-vector-valued stochastic
process X(t) = (X1(t), · · · ,Xr(t))τ , such as audio or music signals, EEG or
MEG tracings, or seismic recordings, where t is a time or index parameter.
We usually assume that X(t) is an unknown non-Gaussian process with
zero mean. In the linear noiseless ICA model with temporally structured
sources and static mixing (i.e., A is an fixed matrix of constants, non-time-
varying, without trends or delays), the model is written as X(t) = AS(t),
where S(t) = (S1(t), · · · , Sm(t))τ is assumed to be an m-vector of stationary
sources, 1 ≤ t ≤ n. For example, in the cocktail-party problem, Si(t) is the
tth sound spoken by the ith speaker (i = 1, 2, . . . ,m), and Xj(t) is the tth
acoustic recording made by the jth microphone (j = 1, 2, . . . , r).

In this formulation, ICA is closely related to the deconvolution of time
series; see, for example, Donoho (1981), who discusses at length the single-
channel (r = 1) deconvolution problem and its application to exploratory
seismology. Donoho points out that the geophysicist’s technique of minimum
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entropy deconvolution is actually a PP method with kurtosis as the projec-
tion index. See Huber (1985, Section 18). Extensions to the multi-channel
(general r) case have also been studied.

If the mixing matrix A = A(t) is allowed to depend upon the time
parameter, then we refer to the model as dynamic mixing. By incorporating
the temporal structure of the sources into the ICA model, there is a good
chance that the separation properties of the analysis can be improved. In
our description of ICA models, we omit the explicit dependence of X on t
unless specifically needed in the exposition.

15.3.6 Linear Mixing: Noiseless ICA

The simplest form of the ICA model is the linear mixing version with no
additive noise, usually called the noiseless (or classical) ICA model. In this
scenario, X is modeled deterministically as

X = AS, (15.3)

where S = (S1, · · · , Sm)τ is a latent random m-vector of independent source
components, and A is a full-rank (r ×m) mixing matrix of unknown pa-
rameters. Usually, m ≤ r. For model (15.3), where the sources have mean
zero, X has mean zero and covariance matrix AAτ . Given n iid obser-
vations on X, the BSS (and ICA) problem is to estimate A and, hence,
recover S.

For a given A with full-rank, there exists a separating (or unmixing ma-
trix) W such that the sources can be recovered exactly from the observed
X by S = WX, where W = (AτA)−1Aτ . If the number of independent
sources is equal to the number of measurements (i.e., m = r), then we refer
to (15.3) as the square invertible mixing model, and, for that special case,
W = A−1. As we saw above, if X has been centered and sphered, then
the resulting square mixing matrix A in model (15.3) is orthogonal, and so
W = Aτ .

In practice, A is unknown and the goal is to estimate the separating
matrix and the source components based solely upon the observed X. Given
an estimate Ŵ = (ŵ1, · · · , ŵm)τ of the separating matrix W, the source
component vector S is approximated by

Y = ŴX, (15.4)

where the elements, Y1 = ŵτ
1X, . . . , Ym = ŵτ

mX, of Y are taken to be
statistically independent and as non-Gaussian as possible.

15.3.7 Identifiability Aspects

Given X, the model (15.3) suffers from a certain amount of arbitrariness:
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1. The original sources are ordered arbitrarily. Let P be an (m × m)
permutation matrix (a permutation of the rows and columns of the identity
matrix such that every row and column has exactly one 1). Then, the model
(15.3) can be written as X = AP−1PS, where AP−1 is a new mixing
matrix and PS permutes the elements of S. In practical terms, S and PS
are indistinguishable.

2. The elements of A (and S) have arbitrary scaling. Multiplying Sj

by an arbitrary nonzero constant cj (i.e., increasing the amplitude of that
particular signal) while dividing the jth column of A by the same cj , j =
1, 2, . . . ,m, will not change the product AS. In other words, we cannot
recover the original scalings of the source signals in S.

3. There is an arbitrary rotational factor in the matrix A that cannot
be resolved by just observing X. Setting A∗ = AT and S∗ = TτS, where
T is an orthogonal matrix, we see that X∗ = A∗S∗ has the same mean and
covariance matrix as X = AS

Thus, we should expect the columns of the separating matrix W to be
a scaled and permuted version of the true W0. In practice, identifiabil-
ity issues are not really serious; as long as we require at most one of the
components of X to be Gaussian, then W is identifiable up to scaling and
permutation of its rows, and we are able to extract the independent source
components.

15.3.8 Objective Functions

The general strategy behind ICA is very similar to that of PP described
in Section 7.4. Note that a projection index of PP is called an objective (or
contrast) function in ICA. In practice, objective functions should be non-
negative and equal to zero iff the projections are mutually independent.
In the case of PP, interest is primarily in one- and two-dimensional (and,
sometimes, three-dimensional) projections, while for ICA, we would be in-
terested in a specified number of projections (possibly m > 3, depending
upon context).

The same projection indexes of PP (third- and fourth-order cumulants,
polynomial-based indexes, and negentropy; see Section 7.4) are often used
as objective functions in ICA, especially as a means of approximating the
entropy H(Y ) of Y = ŵτX. The main difficulty of using such moment-
based indexes arises from their well-known lack of robustness.

Researchers working with ICA now tend to use instead objective func-
tions based upon nonpolynomial approximations of the density function to
maximize the entropy H(Y ).
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15.3.9 Nonpolynomial-Based Approximations

Suppose Gi(Y ), i = 1, 2, . . . , N , are different nonpolynomial functions
of Y which (like Hermite polynomials) form an orthonormal system with
respect to the standard Gaussian density φ,

∫
φ(y)Gi(y)Gj(y)ds = δij , (15.5)

where δij = 1 or 0 according as i = j or i �= j, respectively, and which are
orthogonal to all polynomials of up to second order,

∫
φ(y)Gi(y)ykdy = 0, k = 0, 1, 2. (15.6)

The orthogonality constraints (15.5) and (15.6) can always be satisfied
by using ordinary Gram–Schmidt orthonormalization. We further assume
that the expectations of the first N of the Gi(Y ) are given by the following
values:

E{Gi(Y )} =
∫

Gi(y)qY (y)dy = ci, i = 1, 2, . . . , N. (15.7)

Assuming also that Y has mean 0 and variance 1 yields two more con-
straints,

GN+1(y) = y, cN+1 = 0, (15.8)
GN+2(y) = y2, cN+2 = 1. (15.9)

If the probability density p0
Y (y) satisfies the constraints (15.5)–(15.9) and

also has the largest entropy among all such densities, then it can be shown
that

p0
Y (y) = A exp

{∑
i

aiGi(y)

}
, (15.10)

where A and the {ai} are constants to be determined from (15.7). If we
further assume that pY (y) ≈ φ(y), then for (15.10) to be close to e−y2/2,
the only substantial coefficient has to be aN+2 ≈ −1/2. We can rewrite
(15.10) as follows:

p0
Y (y) = A exp

{
−y2/2 + aN+1y + (aN+2 + 1/2)y2 +

N∑
i=1

aiGi(y)

}

= Ā φ(y)

(
1 + aN+1y + (aN+2 + 1/2)y2 +

N∑
i=1

aiGi(y)

)
, (15.11)

where Ā = (2π)1/2A and where we used the approximation eε ≈ 1 + ε.
Furthermore,

1 =
∫

p0
Y (y)dy = Ā[1 + (aN+2 + 1/2)] (15.12)
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0 = E{Y } =
∫

p0
Y (y)ydy = ĀaN+1 (15.13)

1 = E{Y 2} =
∫

p0
Y (y)y2dy = Ā[1 + 3(aN+2 + 1/2)] (15.14)

ci =
∫

p0
Y (y)Gi(y)dy = Āai, i = 1, 2, . . . , N. (15.15)

These equations are easily solved to give ai = ci, i = 1, 2, . . . , N, aN+1 =
0, aN+2 = −1/2, and Ā = 1. Substituting these values into (15.11) yields

p0
Y (y) = φ(y)

(
1 +

N∑
i=1

ciGi(y)

)
, (15.16)

which is referred to as the approximate maximum entropy density. Compare
this representation with that given by (15.10).

From (15.16), the entropy of Y , H(Y ) = −
∫

pY (y) log pY (y)dy, can be
approximated by

H(Y ) ≈ −
∫

p0
Y (y) log p0

Y (y)dy

= −
∫

φ(y)

(
1 +

N∑
i=1

ciGi(y)

)
log

[
φ(y)

(
1 +

N∑
i=1

ciGi(y)

)]
dy

≈ −
∫

φ(y) log φ(y)dy −
N∑

i=1

ci

∫
φ(y)Gi(y) log φ(y)dy

−
∫

φ(y)

(
1 +

N∑
i=1

ciGi(y)

)
log

(
1 +

N∑
i=1

ciGi(y)

)
dy

= H(Z)−
N∑

i=1

ci

∫
φ(y)Gi(y) log φ(y)dy −

N∑
i=1

ci

∫
φ(y)Gi(y)dy

−1
2

N∑
i=1

c2
i

∫
φ(y)G2

i (y)dy − o

(
N∑

i=1

c2
i

∫
φ(y)G2

i (y)dy

)

= H(Z)− 0− 0− 1
2

N∑
i=1

c2
i + o

(
N∑

i=1

c2
i

)
, (15.17)

where we have used the conditions (15.5) and (15.6), the expansion (1 +
ε) log(1 + ε) = ε + ε2/2 + o(ε2) for ε small, and Z ∼ N (0, 1). From (15.7)
and (15.17), we have that

H(Z)−H(Y ) = J (Y ) ≈ JN (Y ) ≡ 1
2

N∑
i=1

(E{Gi(Y )})2 . (15.18)
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All that remains now is to choose the functions {Gi(Y )}.
The simplest choice of these functions has N = 1 or N = 2. First, taking

N = 2, we can make G1 an odd function (G1(−y) = −G1(y), reflecting
symmetry vs. asymmetry) and G2 an even function (G2(−y) = G2(y), re-
flecting sub-Gaussian (negative kurtosis) vs. super-Gaussian (positive kur-
tosis) distributions). One can show that in this case, the approximation
(15.18) boils down to

J2(Y ) = β1 (E{G1(Y )})2 + β2 (E{G2(Y )} − E{G2(Z)})2 , (15.19)

where β1 and β2 are positive constants. If we take N = 1, the approximation
becomes

J1(Y ) = β (E{G(Y )} − E{G(Z)})2 , β > 0, (15.20)

for any nonquadratic objective function G, where Z ∼ N (0, 1). So, we see
that (15.20) generalizes the objective functions (7.111), where G(Y ) = Y 4,
and (7.112), where G is given by the standard Gaussian density φ.

The approximation (15.20) to negentropy is used in the R/S-Plus and C
code implementation (Marchini, Heaton, and Ripley, 2003) of the FastICA
algorithm (see Section 15.3.11), where β = 1. By choosing G carefully, we
can do much better than (7.111), which is sensitive to outliers. In particular,
the following choices of the G function are more robust performers:

• logcosh : G(y) = 1
α log cosh(αy), 1 ≤ α ≤ 2 (usually, α = 1),

• exp : G(y) = −e−y2/2 = −(2π)1/2φ(y).

The logcosh function has been found to be good for most types of ICA
problems, and the exp function is probably best for highly super-Gaussian
source components where robustness is a serious consideration. The logcosh
function has also been used successfully as a flexible family of Bayesian prior
distributions, especially for the image reconstruction of photon emission
computed tomographic data (Green, 1990; Weir and Green, 1994; Weir,
1997).

The exp function yields a version of J1(Y ) that is proportional to the
objective functions I0

H(Y ) and I0
CBC(Y ) (see Section 7.4.1). An immediate

consequence of this result is that the FastICA algorithm can be used for PP
as a fast computational method for finding “interesting” one-dimensional
projections of multivariate data, as well as for finding a single source com-
ponent by ICA.

15.3.10 Mutual Information

The relative entropy or Kullback–Leibler divergence of a multivariate prob-
ability density p with respect to another multivariate probability density
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q is defined as

KL(p ‖ q) =
∫

p(y) log
p(y)
q(y)

dy

= −H(Y)−
∫

p(y) log q(y) dy, (15.21)

where H(Y) is the entropy of the vector Y, and −
∫

p(y) log q(y)dy is the
cross-entropy between p and q (Cover and Thomas, 1991, Chapter 2). Note
that Kullback–Leibler divergence is nonnegative,

KL(p ‖ q) = Ep

{
log

p(y)
q(y)

}

≥ − log Ep

{
q(y)
p(y)

}

= − log
{∫

q(y)dy
}

= 0, (15.22)

and is zero if p = q. In (15.22), we used Jensen’s inequality E{f(x)} ≥
f(E{x}) for the convex function f(x) = − log(x), and Ep indicates expec-
tation taken with respect to the density p. However, KL(p ‖ q) is not a
bona fide distance measure because it is not a symmetric function of p and
q; that is, KL(p ‖ q) �= KL(q ‖ p).

We define the amount of mutual information (MI) between the m com-
ponents, Y1, . . . , Ym, of Y by setting q in (15.22) to be the product of the
marginal densities of Y, q(y) =

∏m
j=1 pj(yj), where pj(yj) is the (marginal)

density of Yj :

MI(Y) = KL(p ‖
∏
j

pj)

= −H(Y)−
∫

p(y) log

⎛
⎝

m∏
j=1

pj(yj)

⎞
⎠ dy

=
m∑

j=1

H(Yj)−H(Y). (15.23)

Thus, mutual information can be regarded as the difference between the
total amount of information carried by each of the components of Y and
the information carried by the components jointly.MI(Y) is always non-
negative and is zero if and only if the components of Y are statistically
independent (i.e., p(y) =

∏
j pj(yj)).

In the square-mixing case (i.e., m = r), let Y = WX be the m-vector
of recovered source components, where W = (wi, · · · ,wm)τ minimizes the
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mutual information of the transformed components {Sj}. Then, the entropy
of Y = (Y1, · · · , Ym)τ is given by

H(Y) = log |det(W)|+H(X). (15.24)

Assuming that each Yj = wτ
j X has zero mean and unit variance, j =

1, 2, . . . ,m, and that the {Yj} are uncorrelated, we have that E{YYτ} =
WΣXXWτ = I, whence, det(W) = [det(ΣXX)]−1/2, which does not de-
pend upon W. If X has been centered and sphered, (15.24) reduces to
H(Y) = H(X). Thus, we can write (15.23) as

MI(Y) = c−
m∑

j=1

J (Yj), (15.25)

where c = mH(Z) − H(X) does not depend upon W and, hence, is con-
stant (Z is a standard Gaussian variate). In terms of optimizing the mutual
information between the m components of Y with respect to the square
separating matrix W, we see that mutual information is the negative of
the sum of the negentropies of each of the {Yj}. In other words, minimiz-
ing the mutual information between the components of Y is equivalent to
maximizing the sum of the negentropies of the independent components
of Y.

15.3.11 The FastICA Algorithm

Let Y be a projection, Y = wτX, of X. The idea is to find that di-
rection w that optimizes a given objective function. For example, if the
variance of the projection, var(Y ) = wτΣXXw, where ‖w‖ = 1, is taken
as the objective function, then maximizing that function with respect to w
yields the first principal component of X. In this case, the solution is the
eigenvector corresponding to the largest eigenvalue of ΣXX . Subsequent
principal components can be sequentially extracted by maximizing projec-
tion variance within the orthogonal complement of the space spanned by
previously derived eigenvectors. PCA is, therefore, a special case of ICA
(but not vice versa), but whereas PCA obtains uncorrelated components,
ICA yields independent components. Hence, sphering by PCA is typically
used as a preprocessing tool in ICA algorithms.

In this section, we describe the FastICA algorithm that is popularly used
for optimizing a given objective function and thereby extracting a single
component or multiple independent components from X.

Extracting a Single Source Component

First, consider a single (m = 1) source component Y = wτX, where
the r-vector w represents a direction for a one-dimensional projection. We
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TABLE 15.1. Nonquadratic density functions and their first and second
derivatives to be used as input to the FastICA algorithm. Note that for the
logcosh density, 1 ≤ α ≤ 2.

Density G(y) g(y) = G′(y) g′(y) = G′′(y)

logcosh 1
α

log cosh(αy) tanh(αy) α(1 − tanh2(αy))

exp −e−y2/2 ye−y2/2 (1 − y2)e−y2/2

wish to find that w that maximizes the approximation (15.20) to negen-
tropy subject to the sphering constraint E{(wτX)2} = ‖w‖2 = 1 on the
projection. In other words, w is to be that direction that makes the density
of the one-dimensional projection Y = wτX as far away from the Gaussian
density as possible.

Because the maxima of the negentropy J (wτX) are typically obtained
at certain maxima of E{G(wτX)}, we set

F (w) = E{G(wτX)} − λ

2
(‖w‖2 − 1), (15.26)

where λ is the Lagrangian multiplier. To maximize (15.26), the Newton–
Raphson iterative method (see, e.g., Thisted, 1988, Section 4.2.2) yields
the iteration

w← w −
(

∂2F (w)
∂w2

)−1 (
∂F (w)

∂w

)
. (15.27)

We, thus, need to find the first and second partial derivatives of F (w) with
respect to w.

Differentiating (15.26) with respect to w yields

∂F (w)
∂w

= E(Xg(wτX))− λw, (15.28)

where g = ∂G/∂w. The stationary values of the function F are found by
equating (15.28) to zero. Premultiplying both sides of the resulting equation
by wτ yields

λ = E(wτXg(wτX)). (15.29)
Differentiating (15.28) with respect to w gives the approximate second
derivative of F ,

∂2F (w)
∂w2

= E{(XXτg′(wτX)} − λIr

≈ E{(XX)τ}E{g′(wτX)} − λIr

= (E{g′(wτX)} − λ)Ir, (15.30)
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TABLE 15.2. FastICA algorithm for determining a single source compo-
nent.

1. Center and whiten the data to give X.

2. Choose an initial version of the r-vector w with unit norm.

3. Choose G to be any nonquadratic density with first and second partial
derivatives g and g′, respectively. If the choice is either the logcosh or exp
density, g and g′ are given in the text.

4. Let w ← E(Xg(wτX)) − wE(g′(wτX)). In practice, the expectations are
estimated using sample averages.

5. Let w ← w/‖w‖.
6. Iterate between steps 4 and 5. Stop when convergence is attained.

where we used the fact that X has been sphered. Substituting (15.28) and
(15.30) into (15.27), the iteration reduces to

w← w − E{Xg(wτX)} − λw
E{g′(wτX)} − λ

. (15.31)

If we set E1 = E{Xg(wτ
k−1X)} and E2 = E{g′(wτ

k−1X)}, then (15.31) can
be written as wk = wk−1−(E1−λwk−1)/(E2−λ) for the kth iteration. Mul-
tiplying both sides by λ−E2 yields wk(λ−E2) = E1−wk−1E2. Because we
divide w by its norm ‖w‖ at each step of the iterative procedure, the factor
λ− E2 can be ignored. The iteration (15.31) is, therefore, equivalent to

w← E{Xg(wτX)} −wE{g′(wτX)}. (15.32)

For the logcosh and exp densities, the functions g and g′ are given in
Table 15.1. Substituting for g and g′ in (15.32) for either the logcosh or
exp density as appropriate yields the FastICA algorithm, which is given in
Table 15.2.

The values of w can change substantially from iteration to iteration;
this is because the ICA model cannot determine the sign of w, so that
−w and w become equivalent and define the same direction. In light of
this comment, “convergence” of the FastICA algorithm is taken to have a
different meaning than usual, and is taken here to mean that successive
iterative values of w (i.e., wk−1 and wk for some k) are oriented in the
same direction (i.e., wτ

kwk−1 is very close to 1).

Extracting Multiple Source Components

The FastICA package (Hurri, Gävert, Särelä, and Hyvärinen, 1998) in-
cludes two different ways of extracting more than one independent source
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component. Both methods (termed “deflation” and “parallel” methods)
repeatedly call the single component extraction algorithm of Table 15.2.
Essentially, at each step in the algorithic cycle:

deflation: the single component routine finds a new component, that new
component is orthogonalized using the Gram–Schmidt method with
respect to all previously found components, and then the resulting
new component is normalized.

parallel: the single component routine is carried out in parallel for each
independent component to be extracted, and then a symmetric or-
thogonalization is carried out on all components simultaneously.

The deflation method extracts independent components sequentially one-
at-a-time, whereas the parallel method extracts all the independent com-
ponents at the same time. Both algorithms are listed in Table 15.3. Note
that the parallel algorithm is used for minimizing mutual information
MI(Y) because the deflation algorithm is not appropriate.

15.3.12 Example: Identifying Artifacts
in MEG Recordings

Brain signals are very weak electrical signals. Neurons located in the
brain conduct electrical activity, which, in turn, produces magnetic fields.
Because magnetic signals pass unchanged through brain tissue and the
skull, they can be recorded outside the head and used to identify the lo-
cations of brain activity. A MEG device is used for real-time mapping
of changes in the magnetic field caused by brain activity. However, such
recordings often contain artifacts due to external disturbances such as eye
movements or blinks, or sensory malfunctions. It is, therefore, advisable to
detect, identify, and remove such artifacts from the records. In this exam-
ple, we discuss the issue of separating artifacts from true brain activity. The
primary assumption here is that artifacts are an anatomically and physio-
logically separate process from brain activity, so that, statistically, the two
types of magnetic signals generated by such processes can be considered to
be independent.

In a noninvasive experiment carried out by the ICA group at the Helsinki
University of Technology (Vigário, Jousmäki, Hämäläinen, Hari, and Oja,
1997), the MEG signals of a test subject were recorded in a magnetically
shielded room. Measurements were taken using a whole-scalp neuromag-
netometer (a helmet-shaped device; see Figure 15.3) with 122 SQUID (su-
perconducting quantum interference device) sensors organized in pairs at
61 grid locations uniformly distributed around the head. The weak mag-
netic fields produced by brain activity are detected by these sensors. The
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TABLE 15.3. Two FastICA algorithms for extracting multiple indepen-
dent source components.

Deflation algorithm

1. Center and whiten the data to give X.

2. Decide on the number, m, of independent components to be extracted.

3. For k = 1, 2, . . . , m,

• Initialize (e.g., randomly) the r-vector wk to have unit norm.

• Let wk ← E(Xg(wτ
kX)) − wkE(g′(wτ

kX)) be the FastICA single-
component update for wk, where g and g′ are given in Table 15.1. In
practice, the expectations are estimated using sample averages.

• Use the Gram–Schmidt process to orthogonalize wk with respect to
the previously chosen w1, . . . ,wk−1:

wk ← wk −
k−1∑
j=1

(wτ
kwj)wj .

• Let wk ← wk/‖wk‖.
• Iterate wk until convergence.

4. Set k ← k + 1. If k ≤ m, return to step 3.

Parallel algorithm

1. Center and whiten the data to give X.

2. Decide on the number, m, of independent components to be extracted.

3. Initialize (e.g., randomly) the r-vectors w1, . . . ,wm, each to have unit
norm. Let W = (w1, · · · ,wm)τ .

4. Carry out a symmetric orthogonalization of W by W ← (WWτ )−1/2W.

5. For each k = 1, 2, . . . , m, let wk ← E(Xg(wτ
kX)) − wkE(g′(wτ

kX)) be the
FastICA single-component update for wk, where g and g′ are given in Table
15.1. In practice, the expectations are estimated using sample averages.

6. Carry out another symmetric orthogonalization of W.

7. If convergence has not occurred, return to step 5.
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FIGURE 15.3. Helmet-shaped device with array of sensors uniformly
distributed around the head to provide MEG measurements. Source:
ltl.tkk.fi/research/brain/head.jpg

MEG signals were deliberately contaminated by having the test subject
induce the following artifacts: (1) blink his eyes; (2) make horizontal sac-
cades (quick, simultaneous movements of both eyes at the same time in the
same direction) to simulate typical ocular (eye) artifacts; and (3) bite his
teeth for as long as 20 seconds to simulate myographic (muscle) artifacts.
Two more artifacts were added: (4) a piece of metal was placed next to the
navel to simulate breathing artifacts; and (5) a digital watch was placed
one meter away from the helmet in the shielded room to simulate a general
artifact.

The data consist of n = 17, 730 amplitudes of each of r = 122 MEG
signals recorded over a period of 2 minutes.2 A sample of 12 of these signals
is displayed in Figure 15.4. We first used PCA to convert the MEG data
into principal components with decreasing variance; see Figure 15.5 for a
scree plot of the eigenvalues. Because we used the sample correlation matrix
for PCA, we retained only those PCs whose eigenvalues were greater than
unity, which also corresponded to an “elbow” in Figure 15.5. This reduced
the 122-dimensional data to 22 PCs, which accounted for 77.8% of total
variance. Next, we extracted 22 independent components from the PCs
(using the parallel FastICA algorithm). The 22 ICs are displayed in Figure
15.6.

We see certain patterns in the ICs. Counting from the top of Figure
15.6, IC1–IC10 (purple curves) show low-fequency, bump-like, overlearning
artifacts (Särelä and Vigario, 2003); IC11 and IC12 (light-blue curves) show

2The data are publicly available and can be downloaded from the website
www.cis.hut.fi/projects/ica/eegmeg/MEG data.html.
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FIGURE 15.4. Spontaneous MEG signals for a sample of 12 channels (lo-
cations) of a 122-channel whole-scalp neuromagnetometer over the frontal,
temporal, and occipital areas of a test subject’s scalp. Artifacts were intro-
duced by saccades, blinking, and biting, in that order.

horizontal eye movements, and IC13 and IC14 (green curves) show eye
blinks; IC15 (red curve) represents a cardiac cycle artifact, and IC16 (dark-
blue curve) shows the digital watch artifact, both signals of which are not
visible in the raw data; and IC17 and IC18 (orange curves) correspond
to the muscle (biting) artifact. The remaining four signals reflect noise
components.

15.3.13 Maximum-Likelihood ICA

Another way of carrying out ICA is to specify a parametric distribu-
tion, pS(s), for the latent source variables S and then apply the maximum-
likelihood (ML) method to estimate the parameters of that distribution. In
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FIGURE 15.5. Scree plot of the 122 ordered eigenvalues (variances) of
the sample correlation matrix computed from the MEG data.

this section, we describe a fixed-point algorithm (which utilizes the FastICA
algorithm) for square mixing (m = r).

Suppose the density of the m-vector S = (S1, · · · , Sm) of sources is pS(s),
and suppose X = AS, where A is square and nonsingular. Let W = A−1.
Then, the density of X is pX(x) = |det(W)|pS(s). Because the sources are
assumed to be statistically independent, then,

pX(x) = |det(W)|
m∏

j=1

pSj
(wτ

j x), (15.33)

where pSj
(sj) is the density of Sj and wτ

j is the jth row of W. Given n
i.i.d. observations, X1. . . . ,Xn, on X, the log-likelihood function for W is

n−1 logL(W|{Xi}) = log |det(W)|+ n−1
n∑

i=1

⎧⎨
⎩

m∑
j=1

log pSj
(wτ

j Xi)

⎫⎬
⎭ .

(15.34)

In this case, the parameters are the elements of W. To find the ML esti-
mator of W, we derive a fixed-point algorithm that will maximize (15.34)
numerically.

For convenience, we write “E” in the second term on the right-hand side
of (15.34) for the sample average over the n observations. The derivative
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FIGURE 15.6. Twenty-two independent components (ICs) extracted from
the MEG data. Visible in this display are the saccades (IC11, IC12; light-
blue curves), blinking (IC13, IC14; green curves), digital watch (IC16; dark-
blue curve), and biting (IC17, IC18; orange curves) artifacts, and also car-
diac cycle (IC15; red curve) and bump-like overlearning or breathing (IC1–
IC10; purple curves) artifacts. The last four ICs are noise components.

of logL(W) with respect to W is given by the matrix gradient,

n−1 ∂ logL(W)
∂W

= (Wτ )−1 + E

⎧⎨
⎩

∂

∂W

m∑
j=1

log pSj
(wτ

j X)

⎫⎬
⎭

= (Wτ )−1 + E {(g1(wτ
1X), · · · , gm(wτ

mX))Xτ}
= (Wτ )−1 + E{g(WX)Xτ}, (15.35)

where
g(WX) = (g1(wτ

1X), · · · , gm(wτ
mX)) (15.36)

and

gj(wτ
j X) =

p′Sj
(wτ

j X)

pSj
(wτ

j X)
(15.37)
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is the jth score function. The update rule for the kth iterate of W is

Wk = Wk−1 − α
∂ logL(W)

∂W
|W=Wk−1 , (15.38)

where α is the step-size parameter of the optimization rule, depending upon
n and possibly k. Setting ∆W = Wk −Wk−1 as the difference between
successive iterates of W, and using (15.35), we can write (15.38) in the
form

∆W ∝ (Wτ )−1 + E{g(WX)Xτ}. (15.39)

Postmultiplying the right-hand side of (15.39) by WτW gives the fixed-
point algorithm,

W←W + µ[Im + E{g(Y)Yτ}]W, (15.40)

where Y = WX and µ is the learning rate, which may be reduced in size
until convergence. This modification produces an algorithm that avoids the
matrix inversions of (15.39) and speeds up convergence considerably.

Hyvärinen (1999) recognized that (15.40) is really just a special case of
the FastICA algorithm. The link between the two algorithms can be seen
if we write Step 5 of the parallel FastICA algorithm in Table 15.3 in
matrix form as

W←W + Dα [Dλ − E{g(Y)Yτ}]W, (15.41)

where Y = (Y1, · · · , Ym)τ , Yi = wτ
i X, λi = E{Yig(Yi)}, αi = 1/(E{g′(Yi)−

λi}, Dα = diag{αi}, and Dλ = diag{λi}. The second term on the right-
hand side of (15.41) can be rearranged to give

W←W + Dαλ[Im −D−1
λ E{g(Y)Yτ}]W, (15.42)

where Dαλ = diag{αiλi} and D−1
λ = diag{λ−1

i }. Thus, the FastICA algo-
rithm as given in Table 15.4 can be interpreted as maximizing the likeli-
hood (15.34), thereby directly obtaining the ML estimate of W. Comparing
(15.42) with (15.40), we see that the scalar learning rate µ has now become
a more flexible part of the iterative process. Furthermore, simulation stud-
ies have demonstrated that careful choice of {αi} and {λi} can speed up
convergence of the FastICA algorithm.

15.3.14 Kernel ICA

A radically different approach to ICA was developed by Bach and Jordan
(2002). Their approach, which they call Kernel ICA, still involves build-
ing an appropriate objective function and then optimizing that objective
function using a numerical algorithm. The difference between the Kernel
ICA approach and those of the more “traditional” approaches described in
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TABLE 15.4. FastICA algorithm for obtaining the maximum likelihood
estimate of a square separating matrix W.

1. Center the data, and then sphere the result to give X.

2. Decide on the number, m, of independent components to be extracted.

3. Randomly initialize a separating matrix W.

4. Compute Y = WX.

5. Compute λi = E(Yig(Yi)), αi = 1/(E(g′(Yi)) − λi), i = 1, 2, . . . , m. The
function g is usually taken to be the tanh function (see Table 15.1). Set
Dα = diag{αi} and Dλ = diag{λi}.

6. Update W by W ← W + Dα [Dλ − E(g(Y)Yτ )]W. In practice, the ex-
pectation is estimated using a sample average.

7. Carry out a symmetric orthogonalization of W by W ← (WWτ )−1/2W.

8. If convergence has not occurred, return to step 4.

this chapter is that the development consists of searching the functions in
a reproducing kernel Hilbert space. This approach reduces to finding the
eigenvalues and eigenvectors of a certain matrix, which we show is derived
from a kernelized version of CVA.

Kernel CVA

The CVA method of Section 7.3 has been generalized to the nonlinear
case using similar ideas as were developed for support vector machines.
(We will see nonlinear PCA in Chapter 16.) The resulting methodology
has been applied to problems as varied as that of extracting correlated
gene clusters from multiple genomic data to cross-language latent semantic
indexing. In many multivariate applications, the standard CVA method
will not be feasible if the dimensionality of the problem is too large or if
the data cannot be represented as vectors.

The nonlinear version of CVA that we describe here assumes that we
carry out a nonlinear transformation, Φ1 : 
r → H1, of one set of input
data, Xi ∈ 
r, i = 1, 2, . . . , n, and another nonlinear transformation, Φ2 :

s → H2, of a second set of input data, Yi ∈ 
s, j = 1, 2, . . . , n.

CVA in Feature Space

We now carry out CVA between the two transformed sets of input data,
{Φ1(Xi), i = 1, 2, . . . , n} and {Φ2(Yi), i = 1, 2, . . . , n}, where we assume
that both sets of transformed data have been centered. We wish to find
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f1 ∈ H1 and f2 ∈ H2 such that the features f1(X) = 〈Φ1(X), f1〉 and
f2(Y) = 〈Φ2(Y), f2〉 have maximal correlation.

We search for f1 and f2 in the linear spaces, S1 and S2, respectively,
which are spanned by these Φ-images. These are reproducing kernel Hilbert
spaces (rkhs). For a given f1, f2, we can write

f1 =
n∑

i=1

α1iΦ1(Xi) + f⊥
1 , f2 =

n∑
i=1

α2iΦ2(Yi) + f⊥
2 , (15.43)

where f⊥
1 and f⊥

2 are orthogonal to S1 and S2, respectively. Then, we
can write f1(X) = 〈Φ1(X), f1〉 =

∑n
i=1 α1i〈Φ1(X),Φ1(Xi)〉 and f2(Y) =

〈Φ2(Y), f2〉 =
∑n

i=1 α2i〈Φ2(Y),Φ2(Yi)〉.
We could maximize the covariance of f1(x) and f2(y) subject to con-

straints on the variances as we did previously. However, we consider in-
stead the equivalent problem of maximizing the (canonical) H-correlation
(H = H1 ×H2) between f1(X) and f2(X) as defined by

ρ̂H(X,Y) = max
(f1,f2)∈H1×H2

ĉov{f1(X), f2(Y)}
(v̂ar{f1(X)})1/2(v̂ar{f2(Y)})1/2

, (15.44)

where

ĉov{f1(X), f2(Y)} = n−1
n∑

i=1

f1(Xi)f2(Yi)

= n−1
n∑

i=1

〈Φ1(Xi), f1〉〈Φ2(Yi), f2〉

= n−1
n∑

i=1

n∑
j=1

n∑
k=1

α1jK1(Xi,Xj)K2(Yi,Yk)α2k

= n−1ατ
1K1K2α2 (15.45)

v̂ar{f1(X)} = n−1ατ
1K

2
1α1 (15.46)

v̂ar{f2(Y)} = n−1ατ
2K

2
2α2, (15.47)

α1 = (α11, · · · , α1n)τ , α2 = (α21, · · · , α2n)τ , and the matrices K1 and
K2 are the (n × n) Gram matrices associated with {Xi, i = 1, 2, . . . , n}
and {Yi, i = 1, 2, . . . , n}, respectively. The kernelized version of the CVA
problem is, therefore, given by

ρ̂H(K1,K2) = max
α1,α2∈�n

ατ
1K1K2α2

(ατ
1K

2
1α1)1/2(ατ

2K
2
2α2)1/2

. (15.48)

Differentiating (15.48) with respect to α1 and α2 and then setting the
results equal to zero yields the generalized eigenequation,

Kα = λDα, (15.49)
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where

K =
(

0 K1K2

K2K1 0

)
, D =

(
K2

1 0
0 K2

2

)
, α =

(
α1

α2

)
. (15.50)

The problem with this eigenequation is that D will be singular because
centering renders both Gram matrices, K1 and K2, singular. It also turns
out that all pairs of “kernel canonical variates” in feature space will be
perfectly correlated, which will happen even if the non-centered K1 and
K2 are invertible. As it stands, then, this “naive” kernel method cannot
provide us with a useful estimate of the population canonical correlation,
ρH(X,Y).

Regularization

One way out of this predicament is to apply regularization to the problem.
This solution is in the same spirit as ridge regression and smoothing in
functional CVA (Leurgans, Moyeed, and Silverman, 1993). In this case,
penalizing the H1-norm of f1 and the H2-norm of f2 each by the same
small constant value κ > 0 means replacing K2

1 by (K1 + κIn)2 and K2
2 by

(K2 + κIn)2 in the definition of D in (15.50). This can be seen as follows:
if θ is a regularization parameter, then,

v̂ar{f1(Xi)}+ θ‖f1‖2H1
= n−1ατ

1K
2
1α1 + θατ

1K1α1

≈ n−1ατ
1 (K1 + κIn)2 α1 (15.51)

v̂ar{f2(Yj)}+ θ‖f2‖2H1
≈ n−1ατ

2 (K2 + κIn)2 α2, (15.52)

where κ = nθ/2 (Bach and Jordan, 2002).
The regularized version of (15.48) is given by

ρ̂H(K1,K2) =

max
α1,α2∈�n

ατ
1K1K2α2

(ατ
1 (K1 + κIn)2 α1)1/2(ατ

2 (K2 + κIn)2 α2)1/2
. (15.53)

We see in (15.53) that the covariance term in the numerator is to be com-
pared with the variance and the penalty function of each term in the de-
nominator. The value of κ determines the weight to be placed upon the
penalty terms compared with the variance terms. As κ gets close to zero,
the variance term dominates, whereas as κ gets larger, the variance term
becomes more affected by the amount of roughness allowed by the penalty
term. Some careful compromise is needed here when deciding upon the
value of κ.

Differentiating (15.53) with respect to α1 and α2 and then setting the
results equal to zero yields two equations, which can be written in matrix
form as

Kα = λDκα, (15.54)
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where K is given by (15.50),

Dκ =
(

(K1 + κIn)2 0
0 (K2 + κIn)2

)
, (15.55)

and α is given by (15.50). This is a generalized eigenequation, which has
2n paired eigenvalues

{λ1,−λ1, . . . , λn,−λn}, (15.56)

each of which lies between −1 and 1. The first eigenvalue, λ1, is the largest
canonical correlation. The equation (15.54) can be written in the alternate
form,

Kκα = (1 + λ)Dκα, (15.57)

where

Kκ =
(

(K1 + κIn)2 K1K2

K2K1 (K2 + κIn)2

)
, (15.58)

Dκ is given by (15.55) and α is given by (15.50). Equation (15.57) has
paired eigenvalues {1 + λ1, 1− λ1, . . . , 1 + λn, 1− λn}.

Note that (15.57) can be expressed as a standard eigenproblem,

K̃κα̃ = λ̃α̃, (15.59)

where K̃κ = D−1/2
κ KκD−1/2

κ , α̃ = D−1/2
κ α, and λ̃ = 1+λ. We are, therefore,

interested in the eigenvalues and eigenvectors of the (2n× 2n)-matrix

K̃κ =
(

In Kκ
1K

κ
2

Kκ
2K

κ
1 In

)
, (15.60)

where Kκ
j = (Kj + κIn)−1Kj , j = 1, 2.

The kernel canonical variate scores are then given by f1(X) = K1α1 and
f2(Y) = K2α2.

Choice of Parameter Values

It is important that the parameters in the eigenproblem be chosen care-
fully. There are two “free” parameters that have to be chosen by the user:

1. Bach and Jordan (2002) recommend that the regularization parame-
ter θ be set to θ = 2 × 10−3 for n > 1, 000 and θ = 2 × 10−2 for
n ≤ 1, 000. Leurgans, Moyeed, and Silverman (1993), in a slightly
different context, consider cross-validation as a method for determin-
ing a good choice of θ; they found, however, that cross-validation
works much better for the leading canonical variate than it does for
subsequent canonical variates.
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2. If a Gaussian radial basis kernel is used as the kernel in this method,
Bach and Jordan recommend that the scale parameter σ be assigned
the value σ = 1/2 for n > 1, 000 and σ = 1 for n ≤ 1,000.

Kernel ICA

The kernel CVA results can be generalized to m > 2 by using an analogue
of (15.57). In this case, the equation can be written as

Kκα = (1 + λ)Dκα, (15.61)

where

Kκ =

⎛
⎜⎜⎜⎝

(K1 + κIn)2 K1K2 · · · K1Km

K2K1 (K2 + κIn)2 · · · K2Km

...
...

...
KmK1 KmK2 · · · (Km + κIn)2

⎞
⎟⎟⎟⎠ (15.62)

is the (mn×mn) covariance matrix of the m vectors y1, . . . ,ym,

Dκ =

⎛
⎜⎜⎜⎝

(K1 + κIn)2 0 · · · 0
0 (K2 + κIn)2 · · · 0
...

...
...

0 0 · · · (Km + κIn)2

⎞
⎟⎟⎟⎠ (15.63)

is the (mn ×mn) block-diagonal matrix of the individual covariance ma-
trices, and α = (ατ

1 , · · · ,ατ
m)τ . Note that (15.61) can be expressed as a

standard eigenproblem,
K̃κα̃ = λ̃α̃, (15.64)

where K̃κ = D−1/2
κ KκD−1/2

κ , α̃ = D1/2
κ α, and λ̃ = 1 + λ. Thus, the eigen-

vector α of Kκ gets transformed into the eigenvector α̃j = (Kj + κIn)αj

of K̃κ, with an identical eigenvalue. We are, therefore, interested in the
eigenvalues and eigenvectors of the (mn×mn)-matrix

K̃κ =

⎛
⎜⎜⎜⎝

In Kκ
1K

κ
2 · · · Kκ

1K
κ
m

Kκ
2K

κ
1 In · · · Kκ

2K
κ
m

...
...

...
Kκ

mKκ
1 Kκ

mKκ
2 · · · In

⎞
⎟⎟⎟⎠ , (15.65)

where Kκ
j = (Kj + κIn)−1Kj , j = 1, 2, . . . ,m.

From (15.65), Bach and Jordan suggest two possible objective functions
for ICA:
• ÎHK

(K1, . . . ,Km) = − 1
2 log λmin(K̃κ),
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• ÎHK
(K1, . . . ,Km) = − 1

2 log det(K̃κ),

where λmin(K̃κ) is the smallest eigenvalue of K̃κ, and det(K̃κ) is the ker-
nel generalized variance associated with the eigenproblem. Both objective
functions are functions of the Gram matrices K1, . . . ,Km through the sepa-
rating matrix W and, hence, can be optimized with respect to that matrix.

As one would expect with such huge (mn × mn)-matrices, computa-
tional issues become paramount to the success of this method. The so-
lution implemented by Bach and Jordan reduces the dimensionality of
the problem by using low-rank approximations to the m Gram matrices
{Kκ

j , j = 1, 2, . . . ,m}. Computations are based upon incomplete Cholesky
decompositions and a deflation algorithm similar to that outlined in Table
15.3.

Extensive simulations and comparisons with other ICA algorithms show
Kernel ICA to have greater accuracy and to be more robust to outliers
and insensitive to asymmetry of the source distributions. Because of its
computational complexity, however, running time is somewhat slower than
that of the other ICA algorithms.

15.4 Exploratory Factor Analysis

Tukey’s distinction between exploratory and confirmatory data analysis
has been extended to the techniques of factor analysis. What was once known
as “common factor analysis” is now considered as exploratory methodology,
and is referred to as exploratory factor analysis (EFA).

The main contributors to the development of EFA as a statistical pro-
cedure were Thurstone, Spearman, Harman, Lawley, Guttman, Kaiser,
Joreskog, Rao, Harris, and many others. The fact that so many were in-
volved in its growth perhaps reflects the many divergent opinions as to the
direction it should ultimately follow. The procedure has been used exten-
sively in its different guises by social and behavioral scientists (especially in
education, sociology, and psychology), who have used EFA to study latent
characteristics such as mental ability, intellect, personality, and individual-
ity through large batteries of tests. Lately, research workers in marketing,
medicine, archaeology, meteorology, and other sciences have noted its use-
fulness and have applied it to many interesting problems.

However, this is not to say that EFA has been completely accepted. In-
deed, it is still regarded by many with a marked degree of skepticism. This
may be due, in part, to the type of data commonly used as input to factor
analysis programs; in part, to the many subjective judgments involved in
using the technique of EFA; and, in part, to the very personal interpre-
tations of what exactly the derived factors represent. Computer packages
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that include a factor analysis routine now provide enough methodologi-
cal options to satisfy any factor analyst. The plethora of such available
methods, however, can also create a sense of confusion for the researcher.
Furthermore, such extensive automation of the subject has also produced
its fair share of mindless abuse.

15.4.1 The Factor Analysis Model

The linear mixing version of the noisy ICA model,

X = AS + e, (15.66)

where A = (aij) is a full-rank (r ×m) mixing matrix with unknown coef-
ficients, is usually associated with exploratory factor analysis (Lawley and
Maxwell, 1971; Harman, 1976). If we assume that the noise component e
has zero mean and a diagonal (r× r) covariance matrix, cov(e) = Ψ, with
positive diagonal entries, and that S and e are uncorrelated, E(Seτ ) = 0,
then (15.66) reduces to the classical common factor analysis model (FA),
where the sources are called factors. For the model (15.66), E{X} = µ = 0
and

ΣXX = AAτ + Ψ. (15.67)

The EFA (as well as the BSS and ICA) problem is to estimate A and
recover S.

Assume that each of the r observed input variables X1,X2, . . . , Xr has
been standardized to have zero mean and unit variance. We can write the
EFA model in (15.66) by the following system of linear equations:

Xj = a1jS1 + a2jS2 + · · ·+ amjSm + ej , j = 1, 2, . . . , r, (15.68)

where Sl, S2, . . . , Sm are m unobservable random variables (usually called
latent variables or common factors), the {aij} are unknown constants (re-
ferred to as factor loadings), and the el, e2, . . . , er are unobservable random
variables that are called specific (or unique) factors because ej only appears
in the equation involving Xj . We can also think of ej as the unobservable
error in fitting the jth equation. We assume that the relationships between
the observed input variables, X1, . . . , Xr, are explained only by the under-
lying common factors and not by the errors. Thus, we assume that the {Sj}
are independent of the {ej}, and that the {ej} are independent. The com-
mon factors, {Sj}, are called orthogonal if they are pairwise uncorrelated,
while if they are correlated, they are called oblique factors.

From (15.67), we see that the ith diagonal entry of ΣXX is given by
1 = h2

i + ψii, where h2
i =

∑
j a2

ij is called the communality and ψii is the
uniqueness given by the ith diagonal entry of Ψ.
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15.4.2 Principal Components FA

Without making any distributional assumption (e.g., Gaussian) for the
sources (factors) in (15.66), we can determine A using a least-squares ap-
proach. In fact, premultiplying (15.66) by the Moore–Penrose generalized
inverse, B = (AτA)−1Aτ , of A, and then substituting the result in terms
of S back into (15.66), we can re-express the model as

X = CX + E, (15.69)

where C = AB has rank m, A and B are full-rank matrices each of rank
m, E = (I−C)e, and X and E both have mean zero. The model (15.69) is
the multivariate reduced-rank regression model corresponding to principal
component analysis (see Chapters 6 and 7). The least-squares criterion,

E{(X−ABX)τ (X−ABX)} (15.70)

is, therefore, minimized by setting

A = (v1, · · · ,vm) = Bτ , (15.71)

where vj is the eigenvector corresponding to the jth largest eigenvalue of
ΣXX . The rows of the matrix B give the coefficients of the m principal
components scores, vτ

j X, j = 1, 2, . . . , m, and the eigenvalues of ΣXX ,
which are usually ordered from largest to smallest, measure the variance
(or power) of the m sources. This approach, which essentially ignores the
matrix Ψ, is usually referred to as the principal components method.

Typically, ΣXX will be unknown and so we estimate it from the stan-
dardized input data by Σ̂XX , the sample correlation matrix. Estimates of
A and B are given by

Â = (v̂1, · · · , v̂m) = B̂τ , (15.72)

respectively, where v̂j is the eigenvector corresponding to the jth largest
eigenvalue of Σ̂XX , j = 1, 2, . . . ,m. One of the difficult problems faced
by factor analysts is to determine the value of m, the number of common
factors. Because the r eigenvalues of Σ̂XX sum to r (the trace of Σ̂XX),
a popular decision rule (Kaiser, 1960) is that m should be taken to be the
number of those sample eigenvalues that are greater than unity.

The m-vector of estimated factor scores corresponding to a standardized
sample observation X = (X1, · · · ,Xr)τ is given by

f̂ = B̂X = (v̂τ
1X, · · · , v̂τ

mX)τ . (15.73)

For a sample of n sample observations, X1,X2, . . . ,Xn, it is common to
plot the estimated factor scores corresponding to the first two factors on a
scatterplot, where possible outliers can be identified.
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Because C = (AT)(TτB) for any orthogonal (m×m)-matrix T, we can
only determine A (and, hence, also S) up to a rotation. In factor analysis,
this is generally referred to as the problem of factor indeterminancy. Al-
though this leads to a problem of identifiability, it can be made to work in
our favor. We would like to choose a rotation matrix T so that f̂∗ = Tτ f̂
has some desirable property. For example, can T be chosen to make ÂT
have an interesting interpretive structure? When the elements of ÂT have
a particular pattern so that certain elements are zero, that matrix is said
to have simple structure. The problem of choosing such a T is known as
the problem of factor rotation, for which there exist many different ap-
proaches. Probably the most popular rotation method is the varimax ro-
tation (Kaiser, 1958), which seeks to find an orthogonal transformation T
to maximize the sum, over all factors, of the variance of the squares of the
scaled loadings (the estimated loadings divided by hi, the square-root of
the communalities) for each factor.

A modification of the principal components method, which takes account
of the diagonal matrix Ψ, is the principal-factor method. In this method,
the correlation matrix ΣXX , with ones along the main diagonal, is replaced
in the eigenanalysis by the reduced correlation matrix ΣXX − Ψ, which
has instead the communalities {h2

j} along the diagonal. In practice, Ψ is
also unknown and, hence, the communalities have to be estimated. The
most common estimate of h2

j is the squared multiple correlation between
Xj and the remaining r − 1 input variables, which can be obtained as
ĥ2

j = 1− (1/rjj), where rjj is the jth diagonal element of the inverse of the
sample correlation matrix. The matrix Σ̂XX − Ψ̂, with numbers less than
unity in the main diagonal, will not necessarily be positive-definite, so that
its eigenvalues will be both positive and negative. Because the sum of the
positive eigenvalues exceeds the sum of the communalities, the number of
factors, m, is usually taken to be at most the maximum number of positive
eigenvalues whose sum is less than tr(Σ̂XX − Ψ̂).

Although many analysts have abandoned the principal factor method in
favor of the maximum-likelihood (ML) method because of computational
issues, this method still occupies a prominent place in many factor analysis
programs.

15.4.3 Maximum-Likelihood FA

The ML method (MLFA) assumes a fully parametric model in which
the m sources in (15.66) are distributed as multivariate Gaussian, S ∼
Nm(0, Im), independent of the noise, which is also multivariate Gaussian,
e ∼ Nr(0,Ψ), where Ψ is diagonal. In some formulations, Ψ = a2Ir, where
a is an unknown constant. These assumptions in turn imply that X is also
multivariate Gaussian, X ∼ Nr(0,ΣXX), where ΣXX is given by (15.67).
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Given n independent observations, X1, . . . ,Xn, on X, we compute the
sample covariance matrix Σ̂XX as before, which has a Wishart distribu-
tion: nΣ̂XX ∼ Wr(n,ΣXX). ML estimators of A and Ψ are obtained by
maximizing the logarithm of the likelihood function,

loge L = −n

2
loge |AAτ + Ψ| − n

2
tr{Σ̂XX(AAτ + Ψ)−1}, (15.74)

where we have ignored constants and terms that do not involve Λ or Ψ.
We apply the EM algorithm to maximize loge L with respect to A and

Ψ (Rubin and Thayer, 1982). See Table 15.5. The algorithm treats the
unobservable source scores {si} as if they were missing data. If the {si}
were actually observed, the complete-data likelihood would be given by the
joint distribution of the {si} and the {ei = xi −Asi},

Lik =
n∏

i=1

{
(2π)r/2|Ψ|−1/2e−

1
2eτ

i Ψ−1ei(2π)−r/2e−
1
2 fτ

i si

}

=

⎧⎨
⎩(2π)r

r∏
j=1

ψjj

⎫⎬
⎭

−n/2

e
− 1

2

∑n

i=1

∑r

j=1

(xij−Ajsi)
2

ψjj

× {(2π)r}−n/2
e−

1
2

∑n

i=1
sτ

i si , (15.75)

where xij is the jth component of xi, Aj is the jth row of A, and ψjj is the
jth diagonal element of the diagonal matrix Ψ. Given the observed data
{xij} and the current estimated values of the parameters, the conditional
expectation of (15.75), taken over the distribution of the missing data {Si},
is equal to eloge L.

The logarithm of (15.75) is

loge(Lik) = −n

2

r∑
j=1

loge(ψjj)−
1
2

n∑
i=1

r∑
j=1

(xij −Ajsi)2

ψjj
− 1

2

n∑
i=1

Aτ
i si.

(15.76)
The E-step of the EM algorithm entails finding the conditional expectation
of (15.76), given the observed data {xi} and the current values of the
parameters A and Ψ. Because the joint distribution of xi and si given A
and Ψ, is (r + t)-variate Gaussian, the conditional distribution of si given
xi is

(si|xi,A,Ψ) ∼ Nt(δxi,∆), (15.77)

where
δ = Aτ (AAτ + Ψ)−1 (15.78)

∆ = It −Aτ (AAτ + Ψ)−1A. (15.79)
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TABLE 15.5. EM algorithm for maximum-likelihood factor analysis.

1. Let Â0 and Ψ̂0 be initial guesses for the parameter matrices Â and Ψ̂,
respectively.

2. For k = 1, 2, . . . , iterate between the following two steps:

• E-Step: Compute

CXX = n−1

n∑
i=1

XiX
τ
i

C
(k−1)
XS = CXXδτ

k−1

C
(k−1)
SS = δk−1CXXδτ

k−1 + ∆k−1

where

δk−1 = Âτ
k−1(Âk−1Â

τ
k−1 + Ψ̂k−1)

−1

∆k−1 = It − δk−1Âk−1.

• M-Step: Update the parameter estimates,

Âk ← C
(k−1)
XS (C

(k−1)
SS )−1

Ψ̂k ← diag{CXX − C
(k−1)
XS (C

(k−1)
SS )−1C

(k−1)τ
XS }.

3. Stop when convergence has been attained.

To find the expectation of (15.77), we need to find the expectations of the
following sufficient statistics,

CXX = n−1
n∑

i=1

XiXτ
i , CXS = n−1

n∑
i=1

XiSτ
i , CSS = n−1

n∑
i=1

SiSτ
i .

Given the data {Xi = xi} and parameters A and Ψ, the expectations are

C∗
XX = E(CXX |{xi},A,Ψ) = CXX (15.80)

C∗
XS = E(CXS |{xi},A,Ψ) = CXXδτ (15.81)

C∗
SS = E(CSS |{xi},A,Ψ) = δCXXδτ + ∆. (15.82)

Equations (15.80) through (15.82) define the E-step based upon the ob-
served data {xi} and the current values of the parameter estimates Λ
and Ψ.

The M -step provides the updated versions of the ML estimates by using
the regression estimates,

Λ̂ = C∗
XSC∗−1

SS (15.83)

Ψ̂ = diag{C∗
XX −C∗

XSC∗−1
SS C∗τ

XS}. (15.84)
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The current estimates (15.83) and (15.84) are substituted for A and Ψ,
respectively, in (15.78) and (15.79) to get updated estimates of δ and ∆,
which are then used to recompute C∗

XS and C∗
SS , and get new values of Â

and Ψ̂. The method is iterated until we arrive at convergence.

15.4.4 Example: Twenty-four Psychological Tests

This classic data set in the factor analysis literature consists of 24 psycho-
logical tests administered to 301 seventh and eighth grade students (with
ages ranging from 11 to 16) in a suburb of Chicago: a group of 156 students
(74 boys, 82 girls) from the Pasteur School and a group of 145 students
(72 boys, 73 girls) from the Grant-White School (Holzinger and Swineford,
1939).3 The 24 psychological tests are as follows:

(1) visual perception, (2) cubes, (3) paper form board, (4) flags, (5) general
information, (6) paragraph comprehension, (7) sentence completion, (8)
word classification, (9) word meaning, (10) addition, (11) code, (12) count-
ing dots, (13) straight-curved capitals, (14) word recognition, (15) number
recognition, (16) figure recognition, (17) object-number, (18) number-figure,
(19) figure-word, (20) deduction, (21) numerical puzzles, (22) problem rea-
soning, (23) series completion, (24) arithmetic problems.

Many of these tests were multiple-choice and all of the tests were timed,
ranging from 2 minutes to 24 minutes. Actually, the students from the
Grant–White school took 26 tests, where the two additional tests — 25 (pa-
per form board “b”) and 26 (flags “b”) — were attempts to develop better
tests than tests 3 and 4. When analyzing only the 145 Grant-White school
students, it is common practice (see, e.g., Harman, 1976, pp. 123–124) to
use variables 25 and 26 in place of variables 3 and 4. We note that the
means, standard deviations, and correlation matrix of all 24 tests (1, 2, 25,
26, 5–24) obtained in this example are slightly different from those given
by Harman.

The estimated loadings, uniquenesses, and sum-of-squares of the loadings
for the 5-factor MLFA solution are given in Table 15.6. We see that the
first factor, S1, is a “verbal” factor because it loads heavily on tests 5–9;
the second factor, S2, is a “deduction of relations” factor because it loads
heavily on tests 1, 2, 25, 26, and 23; the third factor, S3, is a “speed” factor
because it loads heavily on tests 10–13; the fourth factor, S4, is a “memory”
factor because it loads heavily on tests 14–18; and the fifth factor, S5, is
another “speed” factor because it loads heavily on test 13.

3The raw data can be downloaded from the book’s website. Source:
www.psych.yorku.ca/friendly/lab/files/psy6140/data/psych24r.sas. Also available
on the website are more detailed descriptions of the 24 tests.
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TABLE 15.6. The Grant–White student data. Estimated loadings for the
five-factor MLFA solution with varimax rotation. The ith factor is denoted
by Si. The rightmost column lists the uniquenesses for each test, and the
last row gives the sum-of-squares of the loadings for each factor. The largest
loadings for each factor are printed in boldface.

Test S1 S2 S3 S4 S5 Unique

1 0.165 0.655 0.124 0.181 0.208 0.453

2 0.108 0.442 0.087 0.095 0.003 0.777
25 0.134 0.559 –0.048 0.111 0.094 0.646
26 0.230 0.533 0.089 0.081 0.014 0.648
5 0.738 0.189 0.191 0.149 0.056 0.357
6 0.772 0.187 0.031 0.248 0.125 0.291
7 0.798 0.214 0.143 0.088 0.051 0.286
8 0.571 0.343 0.239 0.127 0.044 0.481
9 0.808 0.203 0.033 0.219 –0.007 0.257

10 0.181 –0.108 0.845 0.180 0.029 0.208
11 0.195 0.066 0.422 0.436 0.419 0.413
12 0.030 0.232 0.694 0.102 0.131 0.436
13 0.186 0.432 0.477 0.077 0.540 0.253
14 0.185 0.061 0.044 0.552 0.080 0.649
15 0.104 0.122 0.059 0.509 –0.002 0.712
16 0.070 0.406 0.056 0.509 0.055 0.565
17 0.154 0.072 0.210 0.595 –0.026 0.572
18 0.032 0.300 0.322 0.458 0.006 0.596
19 0.156 0.221 0.144 0.378 0.046 0.761
20 0.373 0.462 0.127 0.293 –0.193 0.509
21 0.172 0.398 0.431 0.238 0.002 0.569
22 0.364 0.423 0.114 0.320 –0.068 0.568
23 0.361 0.542 0.249 0.231 –0.113 0.447
24 0.368 0.179 0.495 0.321 –0.066 0.480

SS 3.639 2.958 2.450 2.386 0.633

For comparison purposes, an MLFA (with varimax rotation) was con-
ducted separately on the data collected from the Grant-White students
and from the Pasteur students, where we used the first 24 variables com-
mon to both sets of students. The results are very similar (with certain
exceptions). A scatterplot of the first two factor scores from the rotated
MLFA solution for each school is given in Figure 15.7; we see that there is
little difference in the structure of the individual plots.

15.4.5 Critiques of MLFA

The ML method still has not been universally accepted among factor
analysts, and a certain amount of controversy surrounds it. Critics have
charged that:

1. MLFA, which is based upon Gaussian assumptions, has been rou-
tinely applied to non-Gaussian or discrete data. Whereas deviations
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FIGURE 15.7. MLFA (with varimax rotation) of the 24 psychological
tests of Holzinger and Swineford. Superimposed scatterplot of the first two
factor scores of the 145 students from the Grant-White school (blue points)
and the 156 students from the Pasteur school (red points).

from normality in social survey data are often short-tailed in nature
(due to the discreteness of questions with finite range), we should
expect heavy tails to be the more relevant consideration in biometric
or geological applications.

2. There are substantial numerical problems that have long plagued the
MLFA method, such as the existence of multiple local maxima of
the likelihood function. Factor analysts try to obtain a view of the
likelihood surface by comparing the solutions obtained from starting
the iterative process at several points.

3. MLFA enables approximate standard errors to be obtained in a rela-
tively simple manner using the second-derivative matrix evaluated at
a mode; however, in instances where the likelihood function is mul-
timodal, the use of such standard errors can be viewed as being of
dubious value (Rubin and Thayer, 1982).

4. Heywood cases, which occur when the sample correlation matrix is
singular and some squared multiple correlations have values greater
than unity, appear in too many (over half) of the MLFA applications.
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Furthermore, in these days of high-performance computing, there should
be no reason to restrict attention to linear models for FA, especially when
subject-matter theory suggests nonlinear relationships between test scores
and factors. Indeed, some progress has been made toward formulating non-
linear latent variable models and deriving iterative algorithms for nonlinear
MLFA (Yalcin and Amemiya, 2001).

15.4.6 Confirmatory Factor Analysis

During the past 40 years, EFA has been supplemented by the work of
Karl Jöreskog and his colleagues, who introduced and developed confir-
matory factor analysis (CFA) (Jöreskog, 1969). In CFA, the number of
common factors is specified, certain elements of the factor loadings matrix
are set to zero, and factor variances are specified; then, using Gaussian dis-
tribution assumptions, the remaining unknown parameters of the restricted
factor model are estimated by maximum likelihood.

The specified factor structure is more likely to be regarded by a re-
searcher as a theory-testing model, and such a restricted model can be
evaluated using an appropriate (e.g., chi-squared) goodness-of-fit criterion.
If the proposed model is not supported by the data, the model is rejected
as a possible representation of the correlation structure of the underlying
variables. It is not unusual to find more than one CFA model (i.e., different
specifications of zero loadings) that fits the data.

There are a number of additional models that Jöreskog developed to pro-
vide more flexiblity in carrying out a confirmatory analysis of factor struc-
tures. Such models include the analysis of covariance structures (Jöreskog,
1970) and structural equations modeling (Jöreskog, 1977).

15.5 Independent Factor Analysis

Although MLFA is a very popular multivariate statistical technique, it
cannot solve the BSS problem. For example, Figure 15.8 shows the first
four factor scores obtained from an MLFA of the ECG signals recorded
from a pregnant woman (see Section 15.2.3). These recovered signals do
not separate the mother’s ECG signal from the fetus’s ECG signal, as did
ICA.

This inability of MLFA to solve the BSS problem is due precisely to its
use of Gaussian assumptions for the probability distributions of the factors.
Gaussian variables that are mutually uncorrelated are also automatically
independent, and so MLFA only requires that the sources be uncorrelated.
Furthermore, MLFA suffers from a similar ailment as does principal com-
ponent FA: the likelihood function is rotationally invariant in factor space,
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FIGURE 15.8. The first four sets of factor scores from an EFA of the
ECG signals recorded on a pregnant woman. The factor scores do not exhibit
any visible separation between the mother’s ECG signal and the ECG signal
of the fetus.

and so the sources S and the mixing matrix A in the BSS problem can
only be defined up to an arbitrary rotation.

Independent factor analysis (IFA) (Attias, 1999) was proposed as an
alternative to ICA to deal with the BSS problem and also as an alternative
to EFA. IFA essentially adopts the MLFA model but employs arbitrary non-
Gaussian densities for the factors. Specifically, the model is still given by

X = AS + e, e ∼ Nr(0,Ψ), (15.85)

with Ψ not necessarily diagonal, but now each unobserved source sig-
nal Sj is assumed to be independently distributed according to a non-
Gaussian density qSj

(sj |θj) characterized by the parameter vector θj , j =
1, 2, . . . ,m. In this set-up, the collection of parameters is given by (A,Ψ,θ),
where θ = (θ1, · · · ,θm).

In the IFA model, each source density, qSj
(sj |θj), is modeled paramet-

rically by an arbitrary mixture of univariate Gaussian (MoG) densities,
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TABLE 15.7. Eight-channel ECG recordings of a pregnant woman: esti-
mated loadings for the four independent sources IFA solution, where the ith
source is denoted by Si. The rightmost column lists the uniquenesses (i.e.,
the diagonal entries of Ψ) for each channel.

Channel S1 S2 S3 S4 Unique

1 0.684 0.447 0.384 0.067 0.101
2 -0.964 0.509 0.176 -0.017 0.015
3 0.967 -0.150 -0.157 0.078 0.072
4 0.112 -0.746 0.099 -0.133 0.445
5 1.010 -0.216 0.054 0.012 0.039
6 0.990 -0.032 -0.009 -0.118 0.012
7 -0.965 -0.093 0.008 -0.111 0.011
8 -0.810 -0.398 0.008 -0.090 0.028

qSj
(sj |θj) =

Ij∑
i=1

wijφ(sj |ηij), j = 1, 2, . . . ,m, (15.86)

where φ(s|ηij) is N (µij , σ
2
ij), ηij = (µij , σ

2
ij), and wij > 0 is the mix-

ing proportion attached to the ith component of the jth source density,
i = 1, 2, . . . , Ij , with

∑Ij

i=1 wij = 1, j = 1, 2, . . . ,m. Note that θj =
{(wij , µij , σij), i = 1, 2, . . . , Ij}. The MoG density (15.86) can mimic both
super-Gaussian and sub-Gaussian densities by using a large enough set of
component densities. The main disadvantage of working with MoG densi-
ties is that the total number of parameters can grow to be very large.

The model parameters (A,Ψ,θ) are estimated by ML using an appro-
priate version of the EM algorithm in Table 15.5. Details may be found in
Attias (1999). When the model source densities are Gaussian, IFA reduces
to EFA. Reconstructing the sources S can be carried out by least-squares
or by Bayesian MAP estimation.

As an illustration of IFA, consider again the example of the 8-channel
ECG signals recorded on a pregnant woman. We specified four independent
sources, modeled each source distribution as a mixture of three Gaussians,
and then used the EM algorithm to find the IFA solution. The resulting
estimates are as follows: an estimate of the mixing matrix A is given in
Table 15.7; the estimated distributions of the four independent sources,
each a mixture of three Gaussians, with estimated weights, means, and
variances, are given by

S1 ∼ (0.199)N (0.745, 0.360) + (0.755)N (0.032, 0.024)
+ (0.046)N (−3.774, 3.344),

S2 ∼ (0.376)N (−0.170, 0.067) + (0.538)N (0.031, 0.009)
+ (0.086)N )0.544, 10.803),
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FIGURE 15.9. Four sets of IFA scores of the ECG signals recorded on a
pregnant woman. The horizontal axis is measured in seconds. The source
distributions were each taken as a mixture of three Gaussians. We see traces
of the mother’s ECG signal in all four sets of IFA scores, and hints of traces
of the fetal ECG signal in the third and fourth IFA scores, but these plots
do not exhibit any visible separation between the mother’s ECG signal and
the ECG signal of the fetus.

S3 ∼ (0.302)N (0.294, 0.286) + (0.396)N (−0.106, 0.106)
+ (0.150)N (0.379, 5.909),

S4 ∼ (0.361)N (0.294, 0.286) + (0.396)N (0.004, 0.131)
+ (0.243)N (−0.430, 3.169);

and an estimate of the diagonal matrix Ψ is given by the rightmost column,
titled “Unique” in Table 15.7. In Figure 15.9, we display time plots of the
four sets of IFA scores. All four plots show traces of the mother’s ECG
signals, and two of them show hints of the fetus’s ECG signals, but no clear
separation is visible between the mother’s and the fetus’s ECG signals as
we saw in the ICA solution.

One of the main difficulties with (ML-via-EM-MoG) IFA is that it is an ex-
tremely computationally intensive procedure when there are many sources
to be separated; this occurs because the MoG model is quite complex,
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and EM is a slow algorithm that does not necessarily converge to a global
maximum of the log-likelihood. Another important aspect of the IFA proce-
dure that has to be resolved is the determination of the number of Gaussians
in the mixture for each component and whether such an MoG formulation
appears justified. Furthermore, simple toy examples have indicated that
IFA does not seem to be appropriate for all BSS situations: in particular,
there appears to be identifiability aspects of the method, and it is not yet
understood whether an additive noise model such as IFA gains anything
over the ICA model with no additive noise component.

15.6 Software Packages

ICA can be carried out in S-Plus and R using the fastICA library; fas-

tICA is also available in Matlab as an ICA Toolbox. The KernelICA
algorithm is implemented as a Matlab program, which can be downloaded
from the website cmm.ensmp.fr/~bach/kernel-ica/. KernelICA employs
two parameters to be set by the user: the regularization parameter κ and
the width of the Gaussian kernel σ. See Section 15.6.3 for recommended
values of these parameters.

Factor analysis programs are standard in almost every major statistical
package. The general acceptance of CFA techniques, especially in the socio-
metric, psychometric, and even biometric sciences is primarily due to the
ready availability of good software (e.g., Lisrel, Amos, EQS, Mplus) to
carry out the extensive computations. IFA models can be fitted using the
EM algorithm in the R package ifa (written by Cinzia Viroli).
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and Amari, 2003; Hyvärinen, Karhunen, and Oja, 2001; Lee, 1998) and
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books by Everitt (1984) and Bartholomew (1987). Factor analysis is covered
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in almost every textbook on multivariate analysis. More specialized books
on factor analysis include Harman (1976) and Lawley and Maxwell (1971).

Exercises

15.1 Let a and c be constants. If X is a random variable, show that (i)
H(X + c) = H(X), (ii) H(aX) = H(X) + log |a|.

15.2 Let X be a random r-vector and let W be an (r × r)-matrix of
constants. Show that H(WX) = H(X) + log |det(W)|.

15.3 Suppose X is a random r-vector with zero mean and covariance
matrix Σ. Show that H(X) ≤ (1/2)[r + log{(2π)r}|det(Σ)|].

15.4 Suppose X ∼ Nr(0,Σ). Show that the differential entropy of X
is given by H(X) = (1/2)[r + log{(2π)r}|det(Σ)|]. This shows that the
multivariate Gaussian distribution maximizes differential entropy among
all multivariate distributions having the same covariance matrix Σ.

15.5 Show that the differential entropy of the Cauchy distribution, p(x) =
π−1(1 + x2)−1, x ∈ 
, is log(4π) ≈ 2.531.

15.6 Show that the differential entropy of the logistic distribution, p(x) =
e−x(1 + e−x)−2, x ∈ 
, is 2.

15.7 Generate n = 500 values for X1(t) = cos(t) and X2(t) = e−t−5e−t/5.
Let S1(t) = 0.7X1(t) + 0.4X2(t) and S2(t) = 0.2X1(t) − 0.5X2(t), t =
1, 2, . . . , 500. Using either the FastICA algorithm or by writing a program to
perform ICA, carry out an independent component analysis of the resulting
data.

15.8 Define the measure of kurtosis as κ4(X) = E{X4}−3[E{X2}]2. Show
that for a Gaussian random variable, κ4 = 0.

15.9 Let X1 and X2 be two independent random variables. Show that, if
κ4(X) denotes the kurtosis of the random variable X, then κ4(X1 +X2) =
κ4(X1) + κ4(X2) and, if c is a scalar, κ4(cXj) = c4κ(Xj), j = 1, 2.

15.10 The joint entropy H(X,Y) of two random vectors X and Y is
defined as H(X,Y) = −

∫
p(x,y) log p(x,y)dxdy, and the conditional en-

tropy of Y given X is H(Y|X) = −
∫

p(x,y) log p(y|x)dxdy. Show that
H(X,Y) = H(X) +H(Y|X) = H(Y) +H(X|Y),

15.11 Use the raw data (tests 1–24) to find the MLFA (and varimax)
solution to the 24 psychological tests for the combined 301 students from
both schools. Give interpretations of the factors you obtain. Compare the
solution with the solutions of each school separately.
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15.12 Using the combined MLFA solution derived in Exercise 13.11, com-
pare different factor rotation methods. There are two types of rotation
methods: orthogonal and oblique rotations, and they attempt to transform
the FA solution to simple structure. Read about the orthogonal quartimax
method and compare it with the varimax method by trying it out on these
data. Then, read about the oblique rotation methods, oblimin, promax, and
quartimin, and try them out on these data. Does it make any difference
which rotation method is used?

15.13 Let X and Y be iid random variables with unit variance. Show that
Z = (X + Y )/

√
2 has unit variance.

15.14 Let X and Y be iid random variables with unit variance. Let H(X)
denote the entropy of X. Let Z be the normalized version of X + Y as in
Exercise 15.13. Show that H(Z) = H(X + Y )− 1

2 loge 2.

15.15 For X and Y both iid and having unit variance, show that H(X +
Y ) > max{H(X),H(Y )}. Is this relationship still true if X + Y is nor-
malized as in Exercise 15.13? Generalize your results to the sum of n iid
random variables, each having unit variances.



16
Nonlinear Dimensionality Reduction
and Manifold Learning

16.1 Introduction

We have little visual guidance to help us identify any meaningful low-
dimensional structure hidden in high-dimensional data.The linear projection
methods of Chapter 7 can be extremely useful in discovering low-dimensional
structure when the data actually lie in a linear (or approximately linear)
lower-dimensional subspace (called a manifold) M of input space 
r. But
what can we do if we know or suspect that the data actually lie on a low-
dimensionalnonlinearmanifold,whose structure anddimensionality areboth
assumed unknown? Our goal of dimensionality reduction then becomes one
of identifying the nonlinear manifold in question. The problem of recovering
that manifold is known as nonlinear manifold learning.

If we manually search for visual hints of low-dimensional nonlinear struc-
ture in high-dimensional data by looking at scatterplot matrices or by
spinning three-dimensional scatterplots, we can easily be misled, for such
perceived nonlinearity may actually be due to a small group of multivariate
outliers present in the data. In other cases, whatever visual guidance we do
possess may not help us. Even though we may observe no unusual behavior
in 2D or 3D scatterplots, the data may indeed lie close to a low-dimensional
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curved manifoldM, which would be invisible to linear projection methods
such as PCA. In such a case, the data would satisfy nonlinear constraints,
and it would then be desirable to determine a nonlinear coordinate system
that, when suitably reduced, would best explain the data.

When a linear representation of the data is unsatisfactory, we turn to
specialized methods designed to recover nonlinear structure. Even so, we
may not always be successful in our attempts because extracting nonlinear
structure from data is a difficult problem in general. If the data lie on
some intrinsically weird, nonlinear manifold of input space (e.g., a one-
dimensional helix or a two-dimensional “Swiss roll” embedded in three-
dimensional space; see Figure 16.7), then the manifold learning problem
becomes even harder, especially when the input dimension is very high.

Nonlinear dimensionality reduction and nonlinear manifold learning have
become very active research topics. Some methods were found by gener-
alizing linear multivariate methods. For example, an attractive feature of
linear PCA is that it can be derived using a variety of approaches, such
as variance maximization and least-squares optimality, and that these ap-
proaches yield identical solutions. Unfortunately, these equivalences in the
linear case do not transfer to the nonlinear case. Thus, authors usually
reformulate one of the defining characteristics of linear PCA so that it fits
the nonlinear case. As a result, there can be different nonlinear versions of
PCA, depending upon how one defines a nonlinear analogue of linear PCA.
Furthermore, there may be technical difficulties inherent in the nonlinear
versions of PCA that do not appear in linear PCA.

16.2 Polynomial PCA

How should we generalize PCA to the nonlinear case? One possibility is
to transform the set of input variables using a quadratic, cubic, or higher-
degree polynomial, and then apply linear PCA (Gnanadesikan and Wilk,
1969). The resulting polynomial PCA again boils down to an eigenanaly-
sis, but this time attention is focused on the smallest few eigenvalues for
nonlinear dimensionality reduction.

In the quadratic PCA case, for example, the r-vector X is transformed
into an extended r′-vector X′, where r′ = 2r + r(r − 1)/2. Here, X′ in-
cludes the original r variables plus r quadratic powers and r(r − 1)/2
cross-products of the elements of X. Thus, for the bivariate case (r = 2),
quadratic PCA transforms X = (X1,X2) to X′ = (X1,X2,X

2
1 ,X2

2 ,X1X2),
and a linear PCA is carried out on the five transformed variables of X′.
If the bivariate observations follow an exact quadratic curve, the smallest
eigenvalue of the covariance matrix of the extended vector will be zero, and
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TABLE 16.1. Quadratic PCA for the bivariate data (X1,X2), where X1 =
−1.5(0.01)0.5, X2 = 4X2

1 + 4X1 + 2, and n = 201. Eigenanalysis of the
covariance matrix of the variables (X1,X2,X

2
1 ,X2

2 ,X1X2) for the noiseless
and noisy cases. The noisy case is obtained by replacing X1 by X1 +Z and,
independently, X2 by X2 + Z, where Z ∼ N (0, 1).

Noiseless Case

Eigenvalues 46.722 4.912 0.052 0.050 0.000

Eigenvectors
X1 0.003 –0.253 0.620 0.115 0.696
X2 –0.173 –0.013 0.337 –0.909 –0.174
X2

1 –0.046 0.243 –0.578 –0.342 0.696
X2

2 –0.979 –0.102 –0.063 0.165 0.000
X1X2 0.097 –0.929 –0.333 –0.129 0.000

Noisy Case

Eigenvalues 74.617 10.229 2.073 0.336 0.247

Eigenvectors
X1 0.012 –0.271 –0.081 –0.380 –0.880
X2 –0.165 0.000 0.009 –0.906 0.388
X2

1 –0.019 0.357 –0.934 –0.014 –0.019
X2

2 –0.980 –0.120 –0.027 0.160 –0.043
X1X2 0.121 –0.886 –0.348 0.089 0.268

the scores of the last principal component will be constant with a value of
zero.

Consider, for example, the noiseless case in which n = 201 bivariate
observations, (X1,X2), are generated to lie exactly on the quadratic curve
X2 = 4X2

1 + 4X1 + 2, where X1 = −1.5(0.01)0.5. Suppose we carry out a
linear PCA on the extended vector (X2

1 ,X2
2 ,X1,X2,X1X2) and obtain five

sets of principal component scores. See the upper panel of Table 16.1 for the
eigenanalysis. The scatterplot matrix of the first four pairs of PC scores is
given in Figure 16.1 and shows the pretzel-like shapes of the pairwise PCs.
The last PC is not displayed because all its values are zero. The hyperplane
defined by the zero eigenvalue is 0.696X1 − 0.0174X2 + 0.696X2

1 = 0 or
X2 = 4X2

1 + 4X1, which recovers the original quadratic curve (except for
the constant). By varying the constant a, we can display a family of possible
quadratic curves X2 = 4X2

1 +4X1 +a, and the constant a can be recovered
from that curve that passes through each data point. The last PC (actually,
PC5/0.0174 + X2) is plotted in Figure 16.2 against X1, for a = 0, 1, 2, 3,
where we see that a = 2.

Suppose we now add standard Gaussian noise (mean 0, variance 1) in-
dependently to the X1 and X2-coordinates of each observation and then
repeat the linear PCA on the resulting extended vector. How would the
eigenanalysis and the PCA scatterplot matrix of the noiseless case be
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FIGURE 16.1. Scatterplot matrix of the pairwise scores of the first four
principal components from quadratic PCA using the covariance matrix. The
last principal component has all its values equal to zero and is not displayed.

affected? For this noisy case, see the lower panel of Table 16.1. The eigen-
values are each greater than the respective eigenvalues from the noiseless
case, with the smallest eigenvalue now 0.247. As we would expect, some of
the well-defined patterns in the scatterplot matrix become blurred in the
noisy case. Even if we significantly reduce the variance of the added noise
component, the results of the quadratic PCA will still be strongly affected
by the noisiness of the data.

Some problems inevitably arise when using quadratic PCA. First, the
variables in X′ will not be uniformly scaled, especially for large r, and so a
standardization of all r′ variables may be desirable. Second, the size of the
extended vector X′ for quadratic PCA increases quickly with increasing
r: when r = 10, r′ = 65, and when r = 20, r′ = 230. For higher-degree
polynomials, the size of X′ increases even faster. In practical terms, this
introduces a lower bound on the sample size n, which has to be larger than
r′, the dimensionality of X′.

16.3 Principal Curves and Surfaces

Since the Gnanadesikan and Wilk (1969) article appeared, many at-
tempts have been made to define a more general nonlinear version of PCA.
The first such attempt was principal curves and surfaces.

Suppose X is a continuous random r-vector having density pX, zero
mean, and finite second moments. Suppose further that the data observed
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FIGURE 16.2. Graphs of X2 = 4X2
1 + 4X1 + a, where a = 0, 1, 2, 3.

Superimposed on these graphs are the scores (red points) from the smallest
PC (actually, PC5/0.0174 + X2) derived from a quadratic PCA on the
generated data.

on X lie close to a smooth nonlinear manifold of low dimension. A principal
curve (Hastie, 1984; Hastie and Stuetzle, 1989) is a smooth one-dimensional
parameterized curve f that passes through the “middle” of the data, re-
gardless of whether the “middle” is a straight line or a nonlinear curve.
A principal surface is a generalization of principal curve to a smooth two-
(or higher-) dimensional curve. Here, we use an analogue of least-squares
optimality as the defining characteristic: we determine the principal curve
or surface by minimizing the average of the squared distances between the
data points and their projections onto that curve.

This idea can be interpreted in terms of the relationship between data
points and points on the curve. If every point on the curve is the average
of all those data points that project onto it, then the curve can be said to
pass through the “middle” of the data set. In this way, it is a nonlinear
generalization of the first principal component line.

Before we define principal curves and surfaces, it will be useful, first, to
describe the basic ideas behind one-dimensional curves and the notion of
curvature.

16.3.1 Curves and Curvature

A one-dimensional curve in an r-dimensional space is an analogue of a
straight line in 
r. To formalize this notion, we define a one-dimensional
curve in 
r as a function f : Λ→ 
r, for Λ ⊆ 
, so that

f(λ) = (f1(λ), · · · , fr(λ))τ (16.1)
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is an r-vector parameterized by λ ∈ Λ. For example, the unit circle in 
2,
{(x1, x2) ∈ 
2 : x2

1 + x2
2 = 1}, is a one-dimensional curve that can be

parameterized as

f(λ) = (f1(λ), f2(λ))τ = (cos λ, sin λ)τ , λ ∈ [0.2π). (16.2)

If we take the coordinate functions of λ, {fh(λ)}, to be as smooth as needed
(usually, C∞, functions that have any number of continuous derivatives),
then we say that f is a smooth curve. The curve f is said to be closed if it
is periodic, i.e., if f(λ + α) = f(λ), for all λ, λ + α ∈ Λ. For example, the
unit circle is a closed curve.

We need a notion of how fast something can move along a smooth curve
such as f. Accordingly, we define the velocity (or tangent) vector at the
point λ as the vector of first derivatives, f ′(λ) = (f ′

1(λ), · · · , f ′
r(λ))τ , where

f ′
j(λ) = dfj(λ)/dλ. For the closed unit circle, f ′(λ) = (− sin λ, cos λ)τ . The

length of the velocity vector,

‖f ′(λ)‖ =

⎧⎨
⎩

r∑
j=1

[f ′
j(λ)]2

⎫⎬
⎭

1/2

, (16.3)

is called the speed of the curve f at the point λ. If the speed is never zero,
then f(λ) is called a regular curve, and if ‖f ′(λ)‖ = 1, the curve is said to
have “unit speed.” The acceleration vector of f is defined as the vector of
second derivatives, f ′′(λ) = (f ′′

1 (λ), · · · , f ′′
r (λ))τ , where f ′′

j (λ) = df ′
j(λ)/dλ.

For the unit circle, ‖f ′(λ)‖ = 1 and f ′′(λ) = (− cos λ,− sin λ)τ .
Distance on a smooth curve f is given by arc-length, which is measured

from a fixed point λ0 on that curve. Usually, the fixed point is taken as
the origin, λ0 = 0, defined to be one of the two endpoints of the data. The
arc-length along the curve f from λ0 to λ1 is defined as the integral of the
speed of the curve between those two points,

L(f) =
∫ λ1

λ0

‖f ′(λ)‖dλ. (16.4)

We use arc-length as a natural parameterization of the curve f. If two curves
have the same arc-length, they are said to be isometric. If a curve has unit
speed, then its arc-length equals λ1 − λ0. We can define a one-dimensional
curve uniquely by parameterizing it by arc-length and starting from a given
point λ0 having unit speed. We, henceforth, assume that f has been scaled
to be a unit-speed, (arc-length) parameterized curve.

We next introduce a notion of curvature as a way of distinguishing a
curve from a straight line. For a unit-speed curve, the acceleration vector
f ′′(λ) is always orthogonal to the tangent vector f ′(λ), so that the two
vectors span a plane. The circle of curvature of f at λ is a unique unit-
speed circle in the plane with radius r(λ), which is tangent to the curve f
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at the point λ. An interesting result is that r(λ) is a concave function of λ
(i.e., d2r(λ)/dλ2 ≤ 0).

We say that the curve f has radius of curvature r(λ) at λ and that its
curvature at λ is K(λ) = 1/r(λ) = ‖f ′′(λ)‖; the center of the circle is the
center of curvature of f at λ. Knowing the curvature for all values of arc-
length λ means that the curve is completely known. If the curvature of a
curve is constant and nonzero, it must be a circle (or part of a circle). A
straight line is just a curve with everywhere-zero curvature.

16.3.2 Principal Curves

Consider a data point x ∈ 
r and let f(λ) be a curve. Project x to a
point on f(λ) that is closest (in Euclidean distance) to x. Let

λf (x) = sup
λ

{
λ : ‖x− f(λ)‖ = inf

µ
‖x− f(µ)‖

}
(16.5)

be the projection index, λf : 
r → 
, which produces a value of λ for which
f(λ) is closest to x. In the unlikely event that there are multiple points on
the curve closest to x (called ambiguity points), the projection index will
pick that point with the largest value of the projection index. Note that λf

can be a discontinuous function.
We define the reconstruction error as the expected squared distance be-

tween X (or its associated density) and f,

D2(X, f) = E
{
‖X− f(λf (X))‖2

}
. (16.6)

If f(λ) satisfies

f(λ) = E{X|λf (X) = λ}, for almost every λ ∈ Λ, (16.7)

then f(λ) is said to be self-consistent or a principal curve for X (or its
associated density pX). Thus, for any point on the curve, f(λ) is the average
of all those data values that project to that point.

In trying to show that the principal curve f minimizes the reconstruction
error (16.6), Hastie and Stuetzle (1989) proved the important result that,
in a variational sense, the principal curve f is a stationary (or critical) value
of the reconstruction error. Specifically, if we perturb f slightly so that it
becomes f + εg, where g is a suitably smooth curve, then

∂D2(X, f + εg)
∂ε

|ε=0 = 0. (16.8)

Furthermore, principal curves are the solutions of a second-order ordinary
differential equation,whichmakes themcomputable (DuchampandStuetzle,
1996). However, all principal curves are saddle points and can never be
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local minima of the reconstruction error. Thus, cross-validation cannot be
used for choosing the model complexity when estimating principal curves.

16.3.3 Projection-Expectation Algorithm

The goal is derive an estimate f̂ of a principal curve f using n observa-
tions, {Xi}, on X. To do this, we minimize an estimated reconstruction
error,

D2({Xi}, f̂) = min
f

n∑
i=1

‖Xi − f(λf (Xi))‖2, (16.9)

by using an algorithm that alternates between a projection step (estimating
λ assuming a fixed f) and an expectation step (estimating f assuming a
fixed λ).

We start the algorithm by taking the first principal component line as
the initial curve f (0) Next, the n observations {Xi} are each projected onto
this line, yielding the n points λf (0)(Xi) = λ

(1)
i , i = 1, 2, . . . , n. Then, the

updated curve f (1) is computed by invoking the self-consistency property,

f (1)(λ(1)
i ) = E{X|λf (0)(Xi) = λ

(1)
i }, i = 1, 2, . . . , n. (16.10)

The kth iteration consists of two steps:
Projection step: Given the current iterate, f (k−1), of the principal curve,

we project xi onto that curve to get an updated value of λ:

λf (k−1)(xi) = λ
(k)
i , i = 1, 2, . . . , n. (16.11)

Expectation step: Given the set {λ(k)
i , i = 1, 2, . . . , n} from the pro-

jection step, we compute the next iterate of the principal curve by
averaging all those points that project to nearby points on the curve:

f (k)(λ(k)
i ) = E

{
X|λf (k−1)(X) = λ

(k)
i

}
, i = 1, 2, . . . , n. (16.12)

At the kth iteration, let λ
(k)
(i) denote the ith order statistic of the set of

projected points, {λ(k)
1 , . . . , λ

(k)
n }, and let x(k)

(i) denote the data point whose

projection is λ
(k)
(i) , i = 1, 2, . . . , n. Because the order of the projected points

depends upon the particular iterate, then so do the corresponding data
points. Let Nf (k)(λ) be a neighborhood on the principal curve around λ.
Then, let

N
(k)
(i) =

{
x(k)

(�) : λ
(k)
(�) ∈ Nf (k)(λ(k)

(i) )
}

. (16.13)

The span is the fraction of data points that fall into N
(k)
(i) . The conditional

expectations (16.12) are estimated by

f (k)(λ(k)
(i) ) = Ê

{
X|N (k)

(i)

}
, (16.14)
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where we use a local averaging procedure for Ê in which each coordinate
function fh, h = 1, 2, . . . , r, of f is independently estimated. Local averaging
for estimating fh is accomplished using a scatterplot smoother (e.g., kernel,
cubic spline, or locally weighted running-line smoother).

We can define a measure of goodness-of-fit of f (k) by an estimate of the
reconstruction error,

D2({Xi}, f (k)) = n−1
n∑

i=1

‖Xi − f (k)(λf (k−1)(Xi))‖2, (16.15)

which is the average squared distance of the data values to their projections
on the principal curve. The convergence criterion is the relative change in
the reconstruction error in going from the (k − 1)st iteration to the kth
iteration,

thresh(k) =
|D2({Xi}, f (k−1))−D2({Xi}, f (k))|

D2({Xi}, f (k−1))
. (16.16)

We repeat the alternating projection-expectation process until thresh is
reduced below some specified threshold, such as 0.001.

The “final” iteration yields a discrete set of n tuples, (λ̂i, f̂i), i = 1,

2, . . . , n, the elements of which are ordered by increasing λ̂-values. The
principal curve f̂(λ) is then the polygon produced by joining up these n
tuples. Convergence of this algorithm has not yet been proved; indeed,
empirical evidence suggests that, in certain circumstances, the algorithm
can converge to a poor “local” solution.

As an example, we generated 100 points in two dimensions, where X2 is
a quadratic function of X1 plus Gaussian error with mean 0 and standard
deviation 0.1. The scatterplot and principal curve are given in Figure 16.3;
the left panel shows the first principal component as initial iteration, with
D2 = 1023.3, and the right panel shows the fifth (and final) iteration of
the principal curve, with D2 = 0.54.

16.3.4 Bias Reduction

If segments of f have high curvature, the projection-expectation algo-
rithm yields a biased estimate of the principal curve. Bias also enters into
the estimation procedure because of the smoothing used to estimate the
conditional expectations: the bigger the span, the larger the estimation
bias. A modification of this algorithm (Banfield and Raftery, 1992) allows
principal curves to be estimated in a way which reduces bias.

The Banfield–Raftery enhancement of the original algorithm evolved as a
means of charting the outlines of ice floes above a certain size from satellite
images of the polar regions. In this particular application, ice floe outlines
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FIGURE 16.3. Principal curve fitted to 100 randomly generated obser-
vations in two dimensions, where X2 is a quadratic function of X1 plus
Gaussian noise with mean 0 and standard deviation 0.1. Left panel: ini-
tial iteration, first principal component, D2 = 1023.3. Right panel: final
iteration, principal curve, D2 = 0.54.

are modeled as closed principal curves. The original algorithm could not
do this because of a basic assumption that the curve does not intersect
itself. A further modification was added to ignore the effect of outliers on
the estimation procedure.

16.3.5 Principal Surfaces

The idea of principal curves has been extended to principal surfaces for
two (or higher) dimensions (Hastie, 1984; LeBlanc and Tibshirani, 1994).

A continuous two-dimensional surface in 
r is a function f : Λ → 
r,
where Λ ⊆ 
2, so that

f(λ) = (f1(λ), · · · , fr(λ))τ = (f1(λ1, λ2), · · · , fr(λ1, λ2))τ (16.17)

is an r-vector of smooth continuous coordinate functions parameterized
by λ = (λ1, λ2) ∈ Λ. The projection index for a bivariate surface Γ is
defined as

λf (x) = sup
λ

{
λ : ‖x− f(λ)‖ = inf

µ
‖x− f(µ)‖

}
, (16.18)

which is the value of λ corresponding to the point on the surface closest to
x. Then, a principal surface satisfies the self-consistency property,

f(λ) = E{X|λf (X) = λ}, for almost every λ ∈ Λ. (16.19)
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Given n observations {Xi} on X, we estimate f by minimizing the residual
sum of squares,

RSS(f) =
n∑

i=1

‖Xi − f(λf (Xi))‖2. (16.20)

Defining a suitable analogue of the “unit-speed” property for parame-
terizing principal surfaces is a lot more complicated than its definition for
principal curves, and so an alternative approach is necessary. Toward this
end, LeBlanc and Tibshirani (1994) describe an adaptive formulation and
algorithm for the computation of principal surfaces, and they give some ex-
amples. Malthouse (1998) gives other possible types of parameterizations.

16.4 Multilayer Autoassociative Neural Networks

Another version of nonlinear PCA has been constructed using a special
type of artificial neural network (ANN) architecture: a five-layer autoas-
sociative ANN (Kramer, 1991). An autoassociative (or autoencoder or self-
supervised) network is an ANN that is trained to learn its own inputs. The
network connects r input nodes to r output nodes in such a way that the
output values are trained to approximate the inputs.

16.4.1 Main Features of the Network

The main features of a five-layer autoassociative ANN are

• three hidden layers of nodes (second, third, and fourth layers), where
the mapping (or encoding) layer (second) and the demapping (or
decoding) layer (fourth) both have nonlinear (sigmoidal) activation
functions;

• an internal bottleneck layer (third) with fewer (linear or sigmoidal)
nodes than either the mapping (second) or demapping (fourth) layers;

• feedforward connections trained by backpropagation.

The number of nodes in the mapping and demapping layers will depend
upon how complicated the nonlinearity feature of the network is required to
be. In fact, we should not expect the mapping and demapping layers to have
the same number of nodes. Too few mapping/demapping nodes sacrifice
accuracy whereas too many such nodes encourage overfitting. Furthermore,
it may be better in certain circumstances to have more than one mapping
or demapping layer.

The bottleneck layer is the most important feature of the network be-
cause it reduces the dimensionality of the inputs through data compression.
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FIGURE 16.4. Multilayer autoassociative neural network with r = 3 input
(X) and output (Y ) nodes, and three hidden nodes — a mapping layer of
four nodes, a demapping layer of four nodes, and a bottleneck layer of t = 2
nodes. The outputs are trained to approximate the inputs.

Without the bottleneck layer, the network is only capable of producing ei-
ther linear combinations of the inputs (given linear output nodes) or sig-
moidally compressed outputs (given nonlinear sigmoidal output nodes).

We saw in Chapter 10 that a three-layer ANN with nonlinear activa-
tion functions in the hidden layer can be represented by a function of the
form

∑
j αjσ(βτ

j x), where αj and the vector βj are weights, and σ(·) is a
sigmoidal-shaped function. Recall also that such a network with linear out-
put nodes can approximate any continuous function uniformly on compact
sets provided that the number of nodes in the hidden layer is sufficiently
large (Cybenko, 1989). A five-layer network, such as the one displayed in
Figure 16.4, can then be viewed as the composition of two three-layer sub-
networks (layers 1, 2, and 3; layers 3, 4, and 5). In order for each of these
two subnetworks to represent continuous functions, the second and fourth
layers have to consist of nonlinear activation functions. If we remove the
mapping and demapping layers and if we set the nodes in the bottleneck
layer to be linear, then the resulting network corresponds to linear PCA.

16.4.2 Relationship to Principal Curves

The first part of the autoassociative ANN (layers 1, 2, and 3, with one
bottleneck node) can be used to model a continuous one-dimensional func-
tion λf : 
r → 
, which we call a projection index. The second part of the
ANN (layers 3, 4, and 5) can be used to model the function f : 
 → 
r. The
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first three layers project the original data onto a curve, and the projected
data values are then given by the activation values of the bottleneck node.
The weights in the network are found by solving the least-squares problem,

min
f ,λf

n∑
i=1

‖xi − f(λf (xi))‖2, (16.21)

which reduces to a similar minimization problem as we used to find prin-
cipal curves, but where the same criterion was minimized only over f. For
modeling a t-dimensional principal surface, we set the functions λf : 
r →

t and f : 
t → 
r, where t ≥ 2 nodes are set in the bottleneck layer.

A crucial distinction between principal curves and this type of ANN is
that the projection index λf defined for principal curves is allowed to be
discontinuous. The fact that the ANN version of λf is a continuous function
causes severe problems with its application as a nonlinear PCA technique
(Malthouse, 1998):

1. If f has any ambiguity points for the data point x, then the ANN must
avoid becoming discontinuous at the ambiguity point by projecting
x to the “wrong” point on the curve (i.e., a point that is not closest
to x).

2. The ANN cannot model any curves or surfaces that intersect them-
selves (such as the circle in 
2). Recall that the original version of
principal curves did not allow the curves to intersect themselves, but
modifications by Banfield and Raftery (1992) now allow closed curves
to be modeled.

For these reasons, we should be very cautious in using this type of ANN to
model nonlinear PCA.

16.5 Kernel PCA

An approach that also generalizes polynomial PCA is given by Kernel
PCA (Scholkopf, Smola, and Muller, 1996). This is an application of so-
called kernel methods, which we have already seen in studying SVMs (see
Chapter 11).

Let Xi ∈ 
r, i = 1, 2, . . . , n, be the input data points. We can think of
kernel PCA as a two-step process:

1. Nonlinearly transform the ith input data point Xi ∈ 
r into a point
Φ(Xi) in an NH-dimensional feature space H, where

Φ(Xi) = (φ1(Xi), · · · , φNH(Xi))τ ∈ H, i = 1, 2, . . . , n. (16.22)
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The map Φ : 
r → H is called a feature map, and each of the {φj} is
a nonlinear map.

2. Given Φ(X1), . . . ,Φ(Xn) ∈ H, with
∑n

i=1 Φ(Xi) = 0, solve a linear
PCA problem in feature space H, which will have a higher dimen-
sionality than that of input space (i.e., NH > r).

The argument is that any low-dimensional structure may be more easily
discovered when it becomes embedded in the larger spaceH, which could be
infinite dimensional (i.e., we allow the possibility that NH =∞). Although
we do not need to define Φ explicitly, we have to assume in step 2 that the
data have been centered in feature space. We return to this assumption in
Section 16.5.2. Unless otherwise stated, we also assume that NH < n.

In the following, we take H to be an NH-dimensional Hilbert space with
inner product 〈·, ·〉 and norm ‖·‖H. For example, if ξj = (ξj1, · · · , ξjNH)τ ∈
H, j = 1, 2, then, 〈ξ1, ξ2〉 =

∑NH
i=1 ξ1iξ2i, and if ξ = (ξ1, · · · , ξNH)τ ∈ H,

then ‖ξ‖2H = 〈ξ, ξ〉 =
∑NH

i=1 ξ2
i .

16.5.1 PCA in Feature Space

In order to carry out linear PCA in feature space so that it mimics the
standard treatment of PCA (as carried out in input space), we have to
find eigenvalues λ ≥ 0 and nonzero eigenvectors v ∈ H of the estimated
covariance matrix,

C = n−1
n∑

i=1

Φ(Xi)Φ(Xi)τ , (16.23)

of the centered and nonlinearly transformed input vectors. The eigenequa-
tion Cv = λv, where v is the eigenvector corresponding to the eigenvalue
λ ≥ 0 of C, can be written in an equivalent form as

〈Φ(Xi),Cv〉 = λ〈Φ(Xi),v〉, i = 1, 2, . . . , n. (16.24)

Because

Cv = n−1
n∑

i=1

Φ(Xi)〈Φ(Xi),v〉, (16.25)

all solutions v with nonzero eigenvalue λ are contained in the span of
Φ(X1), . . . ,Φ(Xn). So, there exist coefficients, αi, i = 1, 2, . . . , n, such that

v =
n∑

i=1

αiΦ(Xi). (16.26)
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Substituting (16.26) for v in (16.24), we get that

n−1
n∑

j=1

αj

〈
Φ(Xi),

n∑
k=1

Φ(Xk)

〉
〈Φ(Xk), Φ(Xj)〉 = λ

n∑
k=1

αk〈Φ(Xi), Φ(Xk)〉,

(16.27)
for all i = 1, 2, . . . , n. Define the (n× n)-matrix K = (Kij), where

Kij = 〈Φ(Xi),Φ(Xj)〉. (16.28)

Note that K will generally be a huge matrix. Then, the eigenequation
(16.27) can be written as K2α = nλKα, where α = (α1, · · · , αn)τ , or as

Kα = λ̃α, (16.29)

where λ̃ = nλ. Note that we can express the eigenvalues and vectors, (λ̃,α),
of K in terms of those, (λ,v), for C.

Denote the ordered eigenvalues of K by λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n ≥ 0,
with associated eigenvectors α1, . . . ,αn, where αi = (αi1, · · · , αin)τ . If we
require that 〈vi,vi〉 = 1, i = 1, 2, . . . , n, then, using the expansion (16.26)
for vi and the eigenequation (16.27), we have that

1 =
n∑

j=1

n∑
k=1

αijαik〈Φ(Xj),Φ(Xk)〉

=
n∑

j=1

n∑
k=1

αijαikKjk

= 〈αi,Kαi〉 = λ̃i〈αi,αi〉, (16.30)

which determines the normalization for the vectors α1, . . . ,αn.
If X is a test point, then the nonlinear principal component scores of

X corresponding to Φ are given by the projection of Φ(X) ∈ H onto the
eigenvectors vk ∈ H,

〈vk,Φ(X)〉 = λ
−1/2
k

n∑
i=1

αki〈Φ(Xk).Φ(X)〉, k = 1, 2, . . . , n, (16.31)

where the λ
−1/2
k term is included so that 〈vk,vk〉 = 1.

Using the kernel trick (see Section 11.3.2), the nonlinear principal com-
ponent scores of X can be expressed as

〈vk,Φ(X)〉 = λ
−1/2
k

n∑
i=1

αkiK(Xi,X), k = 1, 2, . . . , n. (16.32)
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If we set X = Xm in (16.32), we get that 〈vk,Φ(Xm)〉 = λ
−1/2
k

∑
i αkiKim =

λ
−1/2
k (Kαk)m = λ

−1/2
k (λkαk)m ∝ αkm, where (A)m stands for the mth row

of A.

16.5.2 Centering in Feature Space

So far, we assumed that the Φ-images in feature space have been centered,
and that, through (16.28), we can work with the matrix K. Although it
may not be possible to do this in feature space, there is a way it can be
accomplished back in the original input space. We do not actually need to
have a centered Φ to work with, but we do need K.

We can apply the following simple adjustment to the non-centered ver-
sion of the matrix K,

K̃ = HKH, (16.33)

where H = In − n−1Jn is the centering matrix, Jn = 1n1τ
n is an (n × n)-

matrix of all ones, and 1n is an n-vector of all ones. The resulting

K̃ = K−K(n−1Jn)− (n−1Jn)K + (n−1Jn)K(n−1Jn) (16.34)

corresponds to starting with a centered Φ as required by the above devel-
opment (Scholkopf, Smola, and Muller, 1998).

16.5.3 Example: Food Nutrition (Continued)

Consider again the example in Section 7.2.1 on the nutritional value of
food. Previously, we had computed the PCA of the data and displayed
the scatterplot of the first two principal component scores. Here, we com-
pute the kernel principal components for the data (n = 961, r = 6) using
a radial basis (Gaussian) function kernel with scale parameter σ. Figure
16.5 displays the scatterplots of the first two kernel PC scores using σ =
0.005, 0.01, 0.1, and 0.5. The eigenvalues are

σ λ1 λ2

0.005 0.0336 0.0033
0.01 0.0602 0.0066
0.1 0.2200 0.0820
0.5 0.2738 0.1139

Notice that both eigenvalues increase in size as σ increases.
We see that as we increase σ, the shape of the kernel PC plot changes

significantly. The scatterplots for σ ≥ 0.01 show an obvious nonlinear con-
figuration of points: for each of these three plots, there is a “head” and a
“tail” to the “curve.” The head contains those points that have the largest
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magnitudes for at least one of the six variables, whereas the tail contains
only data with negligible values for all variables. In the curve for σ = 0.01,
the head is on the left; in the curve for σ = 0.1, the head is at the top left;
and in the plot for σ = 0.5, the head is at the center of the plot. There
are a small number of stray points falling inside each of the σ = 0.01 and
0.1 curves; most of these points correspond to foods that are very high in
cholesterol, and which become the head of the the curve for σ = 0.5.

In the scatterplot corresponding to σ = 0.5 (lower-right panel of Figure
16.5), the points having the largest magnitudes of each of the six variables
are annotated with the dominating variable name. We see an ordering of
the six variables along the nonlinear curve, starting at cholesterol, and
continuing with saturated fat, fat/food energy, carbohydrates, and
protein, in that order. There is very little difference between foods that
are high in fat and those that are high in calories (food energy). This
display provides a “food-nutrition ordering” similar in spirit to the classic
“color wheel.” Similar interpretations can be obtained from the other three
scatterplots.

16.5.4 Kernel PCA and Metric MDS

We note that kernel PCA with an isotropic kernel function is closely
related to metric MDS (Williams, 2001). In feature space, we can compute
the distance (i.e., dissimilarity), δ̃2

ij = ‖Φ(Xi) − Φ(Xj)‖2. Expanding and
using the kernel trick, we have that δ̃2

ij = 2(1 − K(Xi,Xj)). The matrix
A has ijth entry aij = − 1

2 δ̃2
ij = K(Xi,Xj) − 1, whence, A = K − Jn.

Furthermore, HAH = HKH, because HJn = 0.
Thus, carrying out metric MDS on the kernel matrix K produces an

equivalent configuration of points as the distances δ̃ij =
√

2(1−K(Xi,Xj))
computed in feature space. If the kernel K(Xi,Xj) is isotropic, it de-
pends only on the distance, δij = ‖Xi − Xj‖, in input space, so that
K(Xi,Xj) = k(δij). It follows that δ̃ij =

√
2(1− k(δij)), which makes the

feature-space distances δ̃2
ij a nonlinear function of the input-space distances

δij . This shows that this formulation is a special case of metric MDS.

16.6 Nonlinear Manifold Learning

We now discuss some exciting new algorithmic techniques: Isomap, Lo-

cal Linear Embedding, Laplacian Eigenmap, and Hessian Eigen-

map. The goal of each of these algorithms is to recover the full
low-dimensional representation of an unknown nonlinear manifold M
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FIGURE 16.5. The nutritional value of food example. Scatterplots of first
and second kernel principal component scores, computed using a radial basis
(Gaussian) function kernel with scale parameter σ. Upper-left panel: σ =
0.005; upper-right panel: σ = 0.01; lower-left panel: σ = 0.1; lower-right
panel: σ = 0.5.

embedded1 in some high-dimensional space, where it is important to re-
tain the neighborhood structure ofM. Although closely related to nonlin-
ear dimensionality reduction, these algorithms are mainly concerned with
recovering the manifold M. When M is highly nonlinear, such as the S-
shaped manifold in the left panel of Figure 16.6, these algorithms have
outperformed linear techniques. Each algorithm is designed to emphasize
simplicity while avoiding optimization problems that could produce local
minima.

Although the algorithms use different philosophies for recovering non-
linear manifolds, they each consist of a three-step approach. The first
and third steps are common to all algorithms: the first step incorporates

1A space A is said to be embedded in a bigger space B if the properties of B when
restricted to A are identical to the properties of A.
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FIGURE 16.6. Left panel: The S-curve, a two-dimensional S-shaped man-
ifold embedded in three-dimensional space. Right panel: 2,000 data points
randomly generated to lie on the surface of the S-shaped manifold.

neighborhood information from each data point to construct a weighted
graph having the data points as vertices, and the third step is an embed-
ding step that involves an (n× n)-eigenequation computation. The second
step is specific to the algorithm, taking the weighted neighborhood graph
and transforming it into suitable input for the embedding step.

Manifold learning involves concepts from differential geometry. So, before
we describe these algorithms, we first discuss what we mean by a manifold
and what it means for it to be embedded in a higher-dimensional space.

16.6.1 Manifolds

It is not easy to give a simple description of a “manifold” because of the
complex mathematical notions involved in its definition. Even the great
mathematician Élie Cartan wrote that “La notion générale de veriété est
assez difficile à définir avec précision”2 (Cartan, 1946, p. 56). However, we
will try to give some of the flavor of its definition.

Imagine an ant at a picnic, where there are all sorts of items from cups
to doughnuts. The ant crawls all over the picnic items, but because of its
diminutive size, the ant sees everything on a very small scale as flat and
featureless. A manifold (also referred to as a topological manifold) can be
thought of in similar terms, as a topological space that locally looks flat
and featureless and behaves like Euclidean space. To prevent crazy, counter-
intuitive situations, a manifold also satisfies certain topological conditions.
A submanifold is just a manifold lying inside another manifold of higher
dimension.

In 1854, Georg Friedrich Bernhard Riemann (1826–1866) introduced the
idea of a manifold where one could carry out differential and integral calcu-
lus. If a topological manifoldM is continuously differentiable to any order

2“The general notion of manifold is quite difficult to define with precision.”
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(i.e.,M∈ C∞), we call it a smooth (or differentiable) manifold. All smooth
manifolds are topological manifolds, but the reverse is not necessarily true.

If we endow a smooth manifold M with a metric dM, which calculates
distances between points onM, we have a Riemannian manifold, (M, dM).
If M is connected, it is a metric space and dM determines its structure.
More specifically, we take dM to be a manifold metric defined by

dM(y,y′) = inf
c
{L(c)|c is a curve in M which joins y and y′}, (16.35)

where y,y′ ∈ M and L(c) is the arc-length of the curve c; see Section
16.3.1. Thus, dM finds the shortest curve (or geodesic) between any two
points on M, and the arc-length of that curve is the geodesic distance
between the points. By Nash’s embedding theorem (Nash, 1965), we can
embed a smooth manifold M into a high-dimensional Euclidean space X ,
which we take to be input space 
r.

16.6.2 Data on Manifolds

The methods we discuss in this section operate under the assumption
that finitely many data points, {yi}, are randomly sampled from a smooth
t-dimensional manifold M with metric given by geodesic distance dM;
these points are then nonlinearly embedded by a smooth map ψ into high-
dimensional input space X = 
r (t� r) with Euclidean metric ‖ ·‖X . This
embedding yields the input data {xi}; see, for example, the right panel
of Figure 16.7, where 2,000 points in three dimensions are randomly gen-
erated to lie on the surface of a two-dimensional S-shaped curve. Thus,
ψ :M→ X is the embedding map, and a point on the manifold, y ∈ M,
can be expressed as y = φ(x), x ∈ X , where φ = ψ−1. The goal is to
recover M and find an implicit representation of the map ψ (and, hence,
recover the {yi}), given only the input data points {xi} in X .

Each of these algorithms computes estimates {ŷi} ⊂ 
t′ of the manifold
data {yi} ⊂ 
t, for some t′. We consider such a reconstruction to be suc-
cessful if t′ = t, the true dimensionality ofM. Because t′ will most likely be
too large for practical usage and because we require a low-dimensional dis-
play for a visual representation of the solution, we take only the first two or
three of the coordinate vectors and plot the corresponding elements of those
vectors against each other to yield n points in two- or three-dimensional
space.

16.6.3 Isomap

The isometric feature mapping (or Isomap) algorithm (Tenenbaum, de
Silva, and Langford, 2000) assumes that the smooth manifoldM is a convex
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FIGURE 16.7. Left panel: The Swiss Roll: a two-dimensional manifold
embedded in three-dimensional space. Right panel: 20,000 data points lying
on the surface of the swiss-roll manifold.

region of 
t (t � r) and that the embedding ψ :M→ X is an isometry.
This assumption has two key ingredients:

• Isometry: The geodesic distance is invariant under the map ψ. For
any pair of points on the manifold, y,y′ ∈ M, the geodesic distance
between those points equals the Euclidean distance between their
corresponding coordinates, x,x′ ∈ X ; i.e.,

dM(y,y′) = ‖x− x′‖X , (16.36)

where y = φ(x) and y′ = φ(x′).

• Convexity: The manifold M is a convex subset of 
t.

Thus, Isomap regardsM as a convex region that may have been distorted
in any of a number of ways (e.g., by folding or twisting). The so-called
Swiss roll,3 which is a flat two-dimensional rectangular submanifold of 
3,
is one such example; see Figure 16.7. Isomap appears to work best for
intrinsically flat submanifolds of X = 
r that look like rolled-up sheets of
paper. In certain situations, the isometry assumption appears to be reason-
able, while the convexity assumption may be too restrictive (Donoho and
Grimes, 2003).

Isomap uses the isometry and convexity assumptions to form a nonlin-
ear generalization of multidimensional scaling (MDS). As we saw in Section
13.3, MDS searches for a low-dimensional subspace in which to embed input
data while preserving the Euclidean interpoint distances. Isomap extends

3The Swiss roll is generated as follows: for y1 ∈ [3π/2, 9π/2] and y2 ∈ [0, 15], set
x1 = y1 cos y1, x2 = y1 sin y1, x3 = y2.
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the MDS paradigm by attempting to preserve the global geometry proper-
ties of the underlying nonlinear manifold, and it does this by approximating
all geodesic distances (i.e., lengths of the shortest paths) on the manifold.
In this sense, Isomap gives a global approach to manifold learning.

The Isomap algorithm consists of three steps:

1. Neighborhood graph. Fix either an integer K or an ε > 0. Calculate the
distances,

dXij = dX (xi,xj) = ‖xi − xj‖X , (16.37)

between all pairs of data points xi,xj ∈ X , i, j = 1, 2, . . . , n. These are
generally taken to be Euclidean distances but may be a different distance
metric. Determine which data points are “neighbors” on the manifold M
by connecting each point either to its K nearest neighbors or to all points
lying within a ball of radius ε of that point. Choice of K or ε controls
neighborhood size and also the success of Isomap.

This gives us a weighted neighborhood graph G = G(V, E), where the set
of vertices V = {x1. . . . ,xn} are the input data points, and the set of edges
E = {eij} indicate neighborhood relationships between the points. The edge
eij that joins the neighboring points xi and xj has a weight wij associated
with it, and that weight is given by the “distance” dXij between those points.
If there is no edge present between a pair of points, the corresponding
weight is zero.

2. Compute graph distances. Estimate the unknown true geodesic distances,
{dMij }, between pairs of points inM by graph distances, {dGij}, with respect
to the graph G. The graph distances are the shortest path distances between
all pairs of points in the graph G. Points that are not neighbors of each other
are connected by a sequence of neighbor-to-neighbor links, and the length
of this path (sum of the link weights) is taken to approximate the distance
between its endpoints on the manifold.

If the data points are sampled from a probability distribution that is
supported by the entire manifold, then, asymptotically (as n → ∞), it
turns out that the estimate dG converges to dM if the manifold is flat
(Bernstein, de Silva, Langford, and Tenenbaum, 2001).

An efficient algorithm for computing the shortest path between every
pair of vertices in a graph is Floyd’s algorithm (Floyd, 1962), which works
best with dense graphs (graphs with many edges).

3. Embedding via multidimensional scaling. Let DG = (dGij) be the sym-
metric (n × n)-matrix of graph distances. Apply “classical” MDS to DG

to give the reconstructed data points in a t-dimensional feature space Y,
so that the geodesic distances on M between data points is preserved as
much as possible:
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• Form the “doubly centered,” symmetric, (n × n)-matrix of squared
graph distances,

AG
n = −1

2
HSGH, (16.38)

where SG = ([dGij ]
2), H = In − n−1Jn, and Jn = 1n1τ

n is an (n× n)-
matrix of ones. The matrix AG

n will be nonnegative-definite of rank
t < n.

• The embedding vectors {ŷi} are chosen to minimize ‖AG
n − AY

n‖,
where AY

n is (16.38) with SY = ([dYij ]
2) replacing SG , and dYij =

‖yi − yj‖ is the Euclidean distance between yi and yj . The optimal
solution is given by the eigenvectors v1, . . . ,vt corresponding to the
t largest (positive) eigenvalues, λ1 ≥ · · · ≥ λt, of AG

n.

• The graph G is embedded into Y by the (t× n)-matrix

Ŷ = (ŷ1, · · · , ŷn) = (
√

λ1v1, · · · ,
√

λtvt)τ . (16.39)

The ith column of Ŷ yields the embedding coordinates in Y of the
ith data point. The Euclidean distances between the n t-dimensional
columns of Ŷ are collected into the (n× n)-matrix DY

t .

The Isomap algorithm appears to work most efficiently with n ≤ 1,000.
Changes to the Isomap code (see below) enable us to work with much
larger data sets.

As a measure of how closely the Isomap t-dimensional solution matrix
DY

t approximates the matrix DG of graph distances, we plot 1−R2
t against

dimensionality t (i.e., t = 1, 2, . . . , t∗, where t∗ is some integer such as 10),
where R2

t = [corr(DY
t ,DG)]2 is the squared correlation coefficient of all

corresponding pairs of entries in the matrices DY
t and DG . The intrinsic

dimensionality is taken to be that integer t at which an “elbow” appears
in the plot.

Consider, for example, the two-dimensional Swiss roll manifold embedded
in three-dimensional space. Suppose we are given 20,000 points randomly
drawn from the surface of that manifold.4 The 3D scatterplot of the data
is given in the right panel of Figure 16.7. Using all 20,000 points as input
to the Isomap algorithm proves to be computationally too big, and so we
use only the first 1000 points for illustration. Taking n = 1, 000 and K = 7
neighborhood points, Figure 16.8 shows a plot of the values of 1−R2

t against
t for t = 1, 2, . . . , 10, where an elbow correctly shows t = 2; the 2D Isomap

neighborhood-graph solution is given in Figure 16.9.

4These 3D data, stored as a (3 × 20,000)-matrix, are available in the data file
swiss roll data on the Isomap website isomap.stanford.edu.
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FIGURE 16.8. Isomap dimensionality plot for the n = 1,000 Swiss roll
data points. The number of neighborhood points is K = 7. The plotted
points are (t, 1−R2

t ), t = 1, 2, . . . , 10.

The Isomap algorithm has difficulty with manifolds that contain holes,
have too much curvature, or are not convex. In the case of noisy data, it
depends upon how the neighborhood size (either K or ε) is chosen; if K or
ε are chosen neither too large (that it introduces false connections into G)
nor too small (that G becomes too sparse to approximate geodesic paths
accurately), then Isomap should be able to tolerate moderate amounts of
noise in the data.

Landmark Isomap

When a data set is very large, the performance of the Isomap algorithm
is significantly degraded by having to store in memory the complete (n×n)-
matrix DG (step 2) and carry out an eigenanalysis of the (n×n)-matrix An

for the MDS reconstruction (step 3). If the data are truly scattered around a
low-dimensional manifold, then the vast majority of pairwise distances will
be redundant; to speed up the MDS embedding step, we have to eliminate
as many of the redundant distance calculations as we can.

In Landmark Isomap, the researcher tries to eliminate such redun-
dancy by specifying a landmark subset of m of the n data points (de Silva
and Tenenbaum, 2003). For example, if xi is designated as one of the m
landmark points, we calculate only those distances between each of the n
points and xi. Input to the Landmark Isomap algorithm is, therefore,
an (m × n)-matrix of distances. The landmark points may be selected by
random sampling or by a judicious choice of “representative” points. The
number of such landmark points is left to the researcher, but m = 50 works
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FIGURE 16.9. Two-dimensional Isomap embedding, with neighborhood
graph, of the n = 1,000 Swiss roll data points. The number of neighborhood
points is K = 7.

well. In the MDS embedding step, the object is to preserve only those dis-
tances between all points and the subset of landmark points. Step 2 in
Landmark Isomap uses Dijkstra’s algorithm (Dijkstra, 1959), which is
faster than Floyd’s algorithm for computing graph distances and is gen-
erally preferred when the graph is sparse. Dijkstra’s algorithm is also rec-
ommended as a replacement for Floyd’s algorithm in the original Isomap

algorithm.
Applying Landmark Isomap to the n = 1,000 Swiss roll data points

with K = 7 and the first m = 50 points taken to be landmark points results
in an elbow at t = 2 in the dimensionality plot; the 2D Landmark Isomap

neighborhood-graph solution is given in Figure 16.10. This is a much faster
solution than the one we obtained using the original Isomap algorithm.
The main differences between Figures 16.9 and 16.10 are roundoff error
and a rotation due to sign changes.

Because of the significant increase in computational speed, we can apply
Landmark Isomap to all 20,000 points (using K = 7 and m = 50); an
elbow again correctly appears at t = 2 in the dimensionality plot, and the
resulting 2D Landmark Isomap neighborhood-graph solution is given in
Figure 16.11.

16.6.4 Local Linear Embedding

The local linear embedding (LLE) algorithm (Roweis and Saul, 2000;
Saul and Roweis, 2003) for nonlinear dimensionality reduction is similar
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FIGURE 16.10. Two-dimensional Landmark Isomap embedding, with
neighborhood graph, of the n = 1,000 Swiss roll data points. The number
of neighborhood points is K = 7 and the number of landmark points is
m = 50.

in spirit to the Isomap algorithm, but because it attempts to preserve
local neighborhood information on the (Riemannian) manifold (without
estimating the true geodesic distances), we view LLE as a local approach
rather than as the Isomap’s global approach.

Like Isomap, the LLE algorithm also consists of three steps:

1. Nearest neighbor search. Fix K � r and let NK
i denote the “neigh-

borhood” of xi that contains only its K nearest points, as measured by
Euclidean distance (K could be different for each point xi).

The success of LLE depends (as does Isomap) upon the choice of K: it
must be sufficiently large so that the points can be well-reconstructed but
also sufficiently small for the manifold to have little curvature.

The LLE algorithm is best served if the graph formed by linking each
point to its neighbors is connected. If the graph is not connected, the LLE
algorithm can be applied separately to each of the disconnected subgraphs.

2. Constrained least-squares fits. Reconstruct xi by a linear function of its
K nearest neighbors,

x̂i =
n∑

j=1

wijxj , (16.40)

where wij is a scalar weight for xj with unit sum,
∑

j wij = 1, for transla-
tion invariance; if x� �∈ NK

i , then set wi� = 0 in (16.40). Set W = (wij) to
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FIGURE 16.11. Two-dimensional Landmark Isomap embedding, with
neighborhood graph, of the complete set of n = 20,000 Swiss-Roll data
points. The number of neighborhood points is K = 7, and the number of
landmark points is m = 50.

be a sparse (n×n)-matrix of weights (there are only nK nonzero elements).
Find optimal weights {ŵij} by solving

Ŵ = arg min
W

n∑
i=1

‖xi −
n∑

j=1

wijxj‖2, (16.41)

subject to the invariance constraint
∑

j wij = 1, i = 1, 2, . . . , n, and the
sparseness constraint wi� = 0 if x� �∈ NK

i .

The matrix Ŵ can be obtained as follows. For a given point xi, the
summand of (16.41) can be written as

‖
∑

j

wij(xi − xj)‖2 = wτ
i Gwi, (16.42)

where wi = (wi1, · · · , win)τ , only K of which are non-zero, and G = (Gjk),
Gjk = (xi−xj)τ (xi−xk), j, k ∈ NK

i , is a symmetric, nonnegative-definite,
(n× n)-matrix. Using the Lagrangean multiplier µ, we minimize the func-
tion

f(wi) = wτ
i Gwi − µ(1τ

nwi − 1).

Differentiating f(wi) with respect to wi and setting the result equal to
zero yields ŵi = µ

2 G−11n. Premultiplying this last result by 1τ
n gives us

the optimal weights

ŵi =
G−11n

1τ
nG−11n

,
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where it is understood that for x� �∈ NK
i , the corresponding element, ŵi�,

of ŵi is zero. Note that we can also write G( 2
µŵi) = 1n; so, the same result

can be obtained by solving the linear system of n equations Gŵi = 1n,
where any x� �∈ NK

i has weight ŵi� = 0, and then rescaling the weights to
sum to one. Collect the resulting optimal weights for each data point (and
all other zero-weights) into a sparse (n×n)-matrix Ŵ = (ŵij) having only
nK nonzero elements.

3. Eigenproblem. Fix the optimal weight matrix Ŵ found at step 2. Find
the (t×n)-matrix Y = (y1. · · · ,yn), t� r, of embedding coordinates that
solves

Ŷ = arg min
Y

n∑
i=1

‖yi −
n∑

j=1

ŵijyj‖2, (16.43)

subject to the constraints
∑

i yi = Y1n = 0 and n−1
∑

i yiyτ
i = n−1YYτ =

It.
These constraints are imposed to fix the translation, rotation, and scale of

the embedding coordinates so that the objective function will be invariant.
We can show that (10.60) can be written as

Ŷ = arg min
Y

tr{YMYτ} (16.44)

where M is the sparse, symmetric, and nonnegative-definite (n×n)-matrix
M = (In − Ŵ)τ (In − Ŵ).

The objective function tr{YMYτ} in (16.56) has a unique global mini-
mum given by the eigenvectors corresponding to the smallest t + 1 eigen-
values of M. The smallest eigenvalue of M is zero with corresponding
eigenvector vn = n−1/21n. Because the sum of coefficients of each of the
other eigenvectors, which are orthogonal to n−1/21n, is zero, if we ignore the
smallest eigenvalue (and associated eigenvector), this will constrain the em-
beddings to have mean zero. The optimal solution then sets the rows of the
(t× n)-matrix Ŷ to be the t remaining n-dimensional eigenvectors of M,

Ŷ = (ŷ1, . . . , ŷn) = (vn−1, · · · ,vn−t)τ , (16.45)

where vn−j is the eigenvector corresponding to the (j +1)st smallest eigen-
value of M. The sparseness of M enables eigencomputations to be carried
out very efficiently.

Because LLE preserves local (rather than global) properties of the un-
derlying manifold, it is less susceptible to introducing false connections in
G and can successfully embed nonconvex manifolds. However, like Isomap,
it has difficulty with manifolds that contain holes.
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16.6.5 Laplacian Eigenmaps

The Laplacian eigenmap algorithm (Belkin and Niyogi, 2002) also con-
sists of three steps. The first and third steps of the Laplacian eigenmap
algorithm are very similar to the first and third steps, respectively, of the
LLE algorithm.

1. Nearest-neighbor search. Fix an integer K or an ε > 0. The neighborhoods
of each data point are symmetrically defined: for a K-neighborhood NK

i of
the point xi, let xj ∈ NK

i iff xi ∈ NK
j ; similarly, for an ε-neighborhood N ε

i ,
let xj ∈ N ε

i iff ‖xi−xj‖ < ε, where the norm is Euclidean norm. In general,
let Ni denote the neighborhood of xi.

2. Weighted adjacency matrix. Let W = (wij) be a symmetric (n × n)
weighted adjacency matrix defined as follows:

wij =

{
exp

{
−‖xi−xj‖2

2σ2

}
, if xj ∈ Ni;

0, otherwise.
(16.46)

These weights are determined by the isotropic Gaussian kernel (also known
as the heat kernel), with scale parameter σ. A simpler W is given by wij = 1
if xj ∈ Ni, and 0 otherwise. Denote the resulting weighted graph by G. If
G is not connected, apply step 3 to each connected subgraph.

3. Eigenproblem. Embed the graph G into the low-dimensional space 
t

by the (t× n)-matrix Y = (y1, · · · ,yn), where the ith column of Y yields
the embedding coordinates of the ith point. Let D = (dij) be an (n ×
n) diagonal matrix with diagonal elements dii =

∑
j∈Ni

wij = (W1n)i,
i = 1, 2, . . . , n. The (n × n) symmetric matrix L = D −W is known as
the graph Laplacian for the graph G. Let y = (yi) be an n-vector. Then,
yτLy = 1

2

∑n
i=1

∑n
j=1 wij(yi − yj)2, so that L is nonnegative definite. The

graph Laplacian can be regarded as an approximation to the continuous
Laplace–Beltrami operator ∆ defined on the manifold M.

The matrix Y is determined by minimizing the following objective func-
tion: ∑

i

∑
j

wij‖yi − yj‖2 = tr{YLYτ}. (16.47)

In other words, we seek the solution,

Ŷ = arg min
YDYτ=It

tr{YLYτ}, (16.48)

where we restrict Y such that YDYτ = It to prevent a collapse onto
a subspace of fewer than t − 1 dimensions. This problem boils down to
solving the generalized eigenequation, Lv = λDv, or, equivalently, finding
the eigenvalues and eigenvectors of the matrix W̃ = D−1/2WD−1/2. The
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smallest eigenvalue, λn, of W̃ is zero. If we ignore the smallest eigenvalue
(and its corresponding constant eigenvector vn = 1n), then the best em-
bedding in 
t is similar to that given by LLE; that is, the rows of Ŷ are
the eigenvectors,

Ŷ = (ŷ1, · · · , ŷn) = (vn−1, · · · ,vn−t)τ , (16.49)

corresponding to the next t smallest eigenvalues, λn−1 ≤ · · · ≤ λn−t, of Ŵ.

16.6.6 Hessian Eigenmaps

We noted earlier that, in certain situations, the convexity assumption for
Isomap may be too restrictive. It may be more realistic in such situations
to require instead that the manifoldM be locally isometric to an open, con-
nected subset of 
t. Examples include families of “articulated” images (i.e.,
translated or rotated images of the same object, possibly through time) that
are selected from a high-dimensional, digitized-image library (e.g., faces,
pictures, handwritten numbers or letters). If the pixel elements of each
64-pixel-by-64-pixel digitized image are represented as a 4,096-dimensional
vector in “pixel space,” it can be very difficult to show that the images
really live on a low-dimensional manifold, especially if that image manifold
is unknown.

Such images can be modeled using a vector of smoothly varying articu-
lation parameters θ ∈ Θ. For example, digitized images of a person’s face
that are varied by pose and illumination can be parameterized by two pose
parameters (expression [happy, sad, sleepy, surprised, wink] and glasses–no
glasses) and a lighting direction (centerlight, leftlight, rightlight, normal);
similarly, handwritten “2”s appear to be parameterized essentially by two
features, bottom loop and top arch (Tenenbaum, de Silva, and Langford,
2000; Roweis and Saul, 2000). To some extent, learning about an underly-
ing image manifold depends upon data quality: are the images sufficiently
scattered around the manifold to enable us to identify the manifold, and
how good is the quality of digitization of each image?

Hessian eigenmaps have been proposed for recovering manifolds of high-
dimensional libraries of articulated images where the convexity assumption
is often violated (Donoho and Grimes, 2003). Assume the parameter space
is Θ ⊂ 
t and suppose that φ : Θ → 
r, where t < r. Assume M = φ(Θ)
is a smooth manifold of articulated images. The isometry and convexity
requirements of Isomap are replaced by the following weaker requirements:

• Local Isometry: φ is a locally isometric embedding of Θ into 
r. For
any point x′ in a sufficiently small neighborhood around each point
x on the manifold M, the geodesic distance equals the Euclidean
distance between their corresponding parameter points θ,θ′ ∈ Θ;
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i.e.,
dM(x,x′) = ‖θ − θ′‖Θ, (16.50)

where x = φ(θ) and x′ = φ(θ′).

• Connectedness: The parameter space Θ is an open, connected subset
of 
t.

The goal is to recover the parameter vector θ (up to a rigid motion).
First, consider the differentiable manifold M ⊂ 
r. Let Tx(M) be a

tangent space of the point x ∈ M, where Tx(M) has the same number
of dimensions as M itself. We endow Tx(M) with a (non-unique) system
of orthonormal coordinates having the same inner product as 
r. We can
view Tx(M) as an affine subspace of 
r that is spanned by vectors tangent
to M and pass through the point x, with the origin 0 ∈ Tx(M) identified
with x ∈M. Let Nx be a neighborhood of x such that each point x′ ∈ Nx

has a unique closest point ξ′ ∈ Tx(M); a point in Nx has local coordinates,
ξ = ξ(x) = (ξ1(x), . . . , ξt(x))τ , say, and these coordinates are referred to
as tangent coordinates.

Suppose f :M→ 
 is a C2-function (i.e., a function with two continuous
derivatives) near x. If the point x′ ∈ Nx has local coordinates ξ = ξ(x) ∈

t, then the rule g(ξ) = f(x′) defines a C2-function g : U → 
, where U
is a neighborhood of 0 ∈ 
r. The tangent Hessian matrix, which measures
the “curviness” of f at the point x ∈M, is defined as the ordinary (t× t)
Hessian matrix of g,

Htan
f (x) =

(
∂2g(ξ)
∂ξi∂ξj

∣∣∣ξ=0

)
. (16.51)

The average “curviness” of f over M is then the quadratic form,

H(f) =
∫

M
‖ Htan

f (x) ‖2F dx, (16.52)

where ‖ H ‖2F =
∑

i

∑
j H2

ij is the squared Frobenius norm of a square
matrix H = (Hij). Note that even if we define two different orthonormal
coordinate systems for Tx(M), and hence two different tangent Hessian
matrices, Hf and H′

f , at x, they are related by H′
f = UHfUτ , where U

is orthogonal, so that their Frobenius norms are equal and H(f) is well-
defined.

Donoho and Grimes showed thatH(f) has a (t+1)-dimensional nullspace
consisting of the constant function and a t-dimensional space of functions
spanned by the original isometric coordinates, θ1, . . . , θt, which can be re-
covered (up to a rigid motion) from the null space of H(f).

The Hessian Locally Linear Embedding (HLLE) algorithm computes a
discrete approximation to the Hessian H using the data lying onM. There
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are, again, three steps to this algorithm, which essentially substitutes a
quadratic form based upon the Hessian instead of one based upon the
Laplacian.

1. Nearest-Neighbor Search. We begin by identifying a neighborhood of
each point as in Step 1 of the LLE algorithm. Fix an integer K and let
NK

i denote the K nearest neighbors of the data point xi using Euclidean
distance.

2. Estimate Tangent Hessian Matrices. Assuming local linearity of the
manifoldM in the region of the neighborhood NK

i , form the (r×r) covari-
ance matrix Mi of the K neighborhood-centered points xj − x̄i, j ∈ NK

i ,
where x̄i = n−1

∑
j∈NK

i
xj , and compute a PCA of the matrix Mi. As-

suming K ≥ t, the first t eigenvectors of Mi yield the tangent coordinates
of the K points in NK

i and provide the best-fitting t-dimensional linear
subspace corresponding to xi. Next, construct a LS estimate, Ĥi, of the
local Hessian matrix Hi as follows: build a matrix Zi by putting all squares
and cross-products of the columns of Mi up to the tth order in its columns,
including a column of 1s; so, Zi has 1+ t+ t(t+1)/2 columns and K rows.
Then, apply a Gram–Schmidt orthonormalization to Zi. The estimated
(t(t + 1)/2 × K) tangent Hessian matrix Ĥi is given by the transpose of
the last t(t + 1)/2 orthonormal columns of Zi.

3. Eigenanalysis. The estimated local Hessian matrices, Ĥi, i = 1, 2, . . . , n,
are used to construct a sparse, symmetric, (r×r)-matrix Ĥ = (Ĥk�), where

Ĥk� =
∑

i

∑
j

((Ĥi)jk(Ĥi)j�. (16.53)

Ĥ is a discrete approximation to the functional H. We now follow Step 3 of
the LLE algorithm, this time performing an eigenanalysis of Ĥ. To obtain
the low-dimensional representation that will minimize the curviness of the
manifold, find the smallest t + 1 eigenvectors of Ĥ; the smallest eigenvalue
will be zero, and its associated eigenvector will consist of constant functions;
the remaining t eigenvectors provide the embedding coordinates for θ̂.

16.6.7 Other Methods

There are several other methods for nonlinear manifold learning, includ-
ing an algorithm for “charting” manifolds (Brand, 2003), which uses para-
metric density estimation and a Bayesian approach, and a local tangent
space alignment algorithm (Zhang and Zha, 2004).

16.6.8 Relationships to Kernel PCA

The three algorithms of Isomap, LLE, and Laplacian eigenmaps have
close connections with kernel PCA (Ham, Lee, Mika, and Scholkopf, 2003).
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For each algorithm, the individual elements of the kernel matrix depend
upon all the input data, unlike traditional kernel matrices whose entries
each depend only upon a pair of input points.

Isomap For isotropic kernels, it can be shown that kernel PCA is closely
related to metric MDS (Williams, 2001). Thus, Isomap is equivalent to
kernel PCA if

KIsomap = AG
n (16.54)

is used as the appropriate kernel matrix. However, An is not guaranteed
to be nonnegative definite for finite n. It is nonnegative definite only in an
asymptotic sense (i.e., as n→∞).

LLE If the largest eigenvalue of M is λ1, then the (n× n) Gram matrix

KLLE = λ1In −M (16.55)

is nonnegative definite, the eigenvector corresponding to the zero eigenvalue
of KLLE is n−1/21n, and eigenvectors 2 through t + 1 of KLLE give the
LLE embedding. Furthermore, the LLE embedding is equivalent (up to the
scaling factors

√
λk) to the kernel PCA scores (see Section 10.6.2) based

upon KLLE . The form of the kernel function K corresponding to KLLE is
also not explicitly known.

An alternative version of LLE uses a kernel representation of the input
data. Instead of finding the K nearest neighbors of each point in input
space, we can use kernel methods to find the nearest neighbors in feature
space (DeCoste, 2001). The Euclidean distance between two points in fea-
ture space is given by

dij = ‖Φ(xi)− Φ(xj)‖ =
√

Kii − 2Kij + Kjj . (16.56)

Using this definition of distance in feature space, nearest neighbors of Φ(xi)
can be found by using an efficient algorithm that supports such distances
(e.g., Yianilos, 1998). Corresponding to the matrix G in step 2 of the
algorithm, we can define the matrix G̃ = (G̃jk) in feature space, where, for
all xj ,xk ∈ NK

i ,

G̃jk = 〈Φ(xi)− Φ(xj),Φ(xi)− Φ(xk)〉
= Kii −Kij −Kik + Kjk. (16.57)

Replacing G by G̃ in step 2 of the LLE algorithm, we find the matrix of op-
timal weights W̃ (replacing W) and the embedding vectors (corresponding
to step 3).

Laplacian Eigenmaps As we saw in step 3 of the algorithm, the embed-
ding is obtained by finding the eigenvectors corresponding to the smallest
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eigenvalues of the graph Laplacian L. This solution can also be justified in
terms of arguments involving heat flow and diffusion on a graph. Without
going into details (which involve the notion of commute times of diffusion
on a graph), it can be shown that if we take as kernel

KLE = L−, (16.58)

where L− is a generalized-inverse of L, then the embedding solution is
equivalent to performing kernel PCA on the matrix KLE .

16.7 Software Packages

The website www.iro.umontreal.ca/~kegl/research/pcurves gives a
review of the area of principal curves and gives an introduction to algo-
rithms and software. The S-Plus/R computer packages princurve and
pcurve, both based on S-code originally written by Hastie, are available
for fitting a principal curve to multivariate data. Matlab code for principal
curves is available at lear.inrialpes.fr/ verbeek/software.

There are several publicly available computer programs for performing
kernel PCA; see, for example, the kcpa function included in the R package
kernlab, which can be downloaded from CRAN.

Matlab code for implementing Isomap, LLE, and HLLE is publicly
available at the following websites:

Isomap: isomap.stanford.edu
LLE: www.cs.toronto.edu/~roweis/lle/
Laplacian Eigenmaps:
people.cs.uchicago.edu/~misha/ManifoldLearning/index.html

HLLE: basis.stanford.edu/WWW/HLLE/frontdov.htm
See Martinez and Martinez (2005, Section 3.2 and Appendix B). There is
also a Matlab Toolbox for Dimensionality Reduction, which is down-
loadable from the website
www.cs.unimaas.nl/l.vandermaaten/Laurens van der Maaten

and includes all the methods discussed in this chapter and many data
sets. There is, at present, no S-Plus/R code for Isomap, LLE, Laplacian
eigenmaps, or HLLE.

Bibliographical Notes

Much of our discussion of nonlinear dimensionality reduction and man-
ifold learning has its roots in differential geometry. A text that gives an
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excellent panoramic view of the historical development of both Euclidean
and Riemannian aspects of differential geometry is Berger (2003). Another
useful book is Thorpe (1994).

The website www.iro.umontreal.ca/~kegl/research/pcurves gives a
list of references for principal curves. A detailed study of the concept of
self-consistency is given by Tarpey and Flury (1996). Linear PCA can also
be generalized by considering additive functions

∑
i φi(Xi), where the {φi}

satisfy normalization and orthogonality conditions. This nonlinear general-
ization is called additive principal components (Donnell, Buja, and Stuetzle,
1994). Another version of nonlinear PCA is given by Salinelli (1998). Our
treatment of kernel PCA is based upon the work of Scholkopf, Smola, and
Muller (1998). See also Scholkopf and Smola (2002).

Exercises

16.1 Generate n = 150 trivariate (r = 3) observations on (X1,X2,X3) so
that they lie on the surface of the sphere X2

1 +X2
2 +X2

3 = 36. Compute the
2r+r(r−1)/2 = 9 variables (X1,X2,X3,X

2
1 ,X2

2 ,X2
3 ,X1X2,X1X3,X2X3)

and carry out an error-free quadratic PCA of the extended vector. Then,
add an independent Z ∼ N (0, 0.25) variate to the X2 variable and carry
out a noisy quadratic PCA of the extended vector.

16.2 Using the kernels listed in Table 11.1, check whether (or not) they
each have the property that [K(x,y)]2 ≤ K(x,x)K(y,y).

16.3 Using the Food Nutrition data, compute the first two kernel principal
component scores and plot them for different values of σ for the RBF kernel.
In the scatterplot, identify which of the six variables dominates each point.
Add another identification for points that have very low values for each
variable. Replot the kernel PC scores using different colors for the seven
classes. Comment on your findings.

16.4 Using the pendigits data (Section 7.2.10), which consist of 10,992
handwritten digits (0, 1, 2, . . ., 9), compute the kernel PC scores and plot
them for different values of σ for the RBF kernel. Use different colors for
the 10 digits. Comment on your findings and compare your results with
Figure 7.4.

16.5 Generate n = 500 independent data values from the multivariate
Gaussian distribution N4(0,R), where R is the correlation matrix,

R =

⎛
⎜⎜⎝

1.0 0.5 0.7 −0.6
0.5 1.0 0.3 −0.5
0.7 0.3 1.0 −0.7
−0.6 −0.5 −0.7 1.0

⎞
⎟⎟⎠ .
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Run these simulated data through a kernel PCA program and make a
scatterplot of the first two kernel PC scores. Choose a range of values of
σ for the RBF kernel and vary the values of the correlations in the matrix
R. Comment on your findings.

16.6 In kernel PCA and in MDS, we “double-center” a symmetric (n×n)-
matrix A = (aij) by the transformation,

B = (In − n−1Jn)A(In − n−1Jn),

where Jn = 1n1τ
n and 1n is an n-vector of all ones. Show that the ijth

entry of B can be expressed as

bij = aij − ai· − a·j + a··,

where a dot-subscript indicates averaging over that subscript.

16.7 In MDS, the matrix A = (aij) in Ex. 16.7 is a dissimilarity matrix
with aij = − 1

2d2
ij , where dij is the interpoint distance (or dissimilarity).

Note: dij is a dissimilarity if dii = 0, dij ≥ 0, and dij = dji. Show that, for
the MDS case, the matrix B in Ex. 16.7 (AG

n in (16.55)) is nonnegative-
definite.

16.8 Show that (In − n−1Jn)1n = 0 and, hence, that B1n = 0, where B
is given in Ex. 16.7. Let ȳ = n−1Ŷτ1n, where Ŷ is the embedding matrix
given by (16.56). Use the spectral decomposition of B, assuming B has
rank t < n, to show that n2ȳτ ȳ = 0 and, hence, that ȳ = 0. Thus, the
Isomap embeddings have mean zero.

16.9 Download the helix.mat data set from the
Matlab Toolbox for Dimensionality Reduction.

Run PCA, kernel PCA, Isomap, LLE, Lapacian Eigenmaps, and HLLE
algorithms on the helix data, report your results, and compare solutions.

16.10 Download the COIL20 dataset from the
Matlab Toolbox for Dimensionality Reduction.

Run PCA, kernel PCA, Isomap, LLE, Lapacian Eigenmaps, and HLLE
algorithms on the COIL20 data, report your results, and compare solutions.



17
Correspondence Analysis

17.1 Introduction

Correspondence analysis is an exploratory multivariate technique for si-
multaneously displaying scores representing the row categories and column
categories of a two-way contingency table as the coordinates of points in
a low-dimensional (two- or possibly three-dimensional) vector space. The
objective is to clarify the relationship between the row and column vari-
ates of the table and to discover a low-dimensional explanation for possible
deviations from independence of those variates. The methodology has its
own nomenclature, and its approach is decidedly geometric, especially for
interpreting the resulting graphical displays.

For two-way contingency tables, correspondence analysis is known as
simple correspondence analysis. For three-way and higher contingency ta-
bles, it is known as multiple correspondence analysis. Variants of correspon-
dence analysis are dual (or optimal) scaling, reciprocal averaging, perceptual
mapping, and social space analysis. In general, correspondence analysis is
applicable when the variates are discrete with many categories and, hence,
is well-suited for analyzing large contingency tables. It can also be used
for continuous variates, such as age, which can be segmented into a finite

A.J. Izenman, Modern Multivariate Statistical Techniques,

doi: 10.1007/978-0-387-78189-1 17, 633
c© Springer Science+Business Media, LLC 2008
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number of ranges, but discretization of a continuous variate usually entails
some loss of information.

17.1.1 Example: Shoplifting in The Netherlands

These data1 were taken from van der Heijden, de Falguerolles, and de
Leeuw (1989). It is a three-way contingency table of 33,101 individuals,
classified by gender and age, who were suspected of stealing specific goods
in The Netherlands in 1978 and 1979. The data were obtained from a survey
of about 350 Dutch stores and big retail shops. Cases in which shoplifting
consisted of more than a single type of good, or in which more than one
person was suspected, were omitted from the study. Age was divided into
nine nonoverlapping categories, and shoplifted items were classified into 13
types of goods.

For this example, we arranged the original 2× 9× 13 three-way contin-
gency table into a (2× 9)× 13 two-way contingency table in which gender
has been introduced as separate sets of nine male and nine female rows of
ages. The ages were coded by groups: < 12 (1 for boys and 10 for girls),
12–14 (2 and 11), 15–17 (3 and 12), 18–20 (4 and 13), 21–29 (5 and 14),
30–39 (6 and 15), 40–49 (7 and 16), 50–64 (8 and 17), and 65+ (9 and 18).
The graphical display from the resulting correspondence analysis is given
in Figure 17.1.

We can make the following observations from Figure 17.1. First, points
representing males and females are well-separated at each age group, sug-
gesting that their shoplifting profiles are quite different. Second, for both
males and females, the age category points are clearly ordered from younger
than 12 years old on the left-hand side to older than 65 on the right-hand
side, with both sets of points doubling back toward the left after 30 years of
age. Third, while there are larger distances between males at the younger
age groups than those at older age groups, suggesting that shoplifting be-
havior changes substantially more for younger than for older males, the
distances between female age groups are largest at both the younger and
older ages (and, hence, more rapidly changing shoplifting behavior), with
smaller distances appearing in the middle age groups (18–49).

The configuration of points in Figure 17.1 also tempts us to identify col-
umn points (which types of goods are shoplifted more than average) with
nearby row points (age groups), possibly leading to the identification of sig-
nificant age × goods interactions. Although interrow distances and inter-
column distances can be compared, row-to-column distances are undefined
and, therefore, are essentially meaningless (see, e.g., Greenacre and Hastie,

1The contingency table can be downloaded from the book’s website.
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FIGURE 17.1. Correspondence map for the shoplifting example. The red
words are the items shoplifted, the points joined by a solid line represent
the progression in male ages (1–9), and the points joined by a dotted line
represent the progression in female ages (10–18).

1987). In other words, row points should not be associated with neighbor-
ing column points (and vice versa). Using row percentages obtained from
the contingency table, we summarize in Table 17.1 the types of goods most
often shoplifted by males and by females at each of the different age groups.
In the light of the above comments, it is perhaps instructive for the reader
to compare Figure 17.1 with Table 17.1.

17.2 Simple Correspondence Analysis

17.2.1 Two-Way Contingency Tables

Categorical data are count data that are collected in a contingency table
N. A two-way (r×s) contingency table with r rows (labelled A1, A2, . . . , Ar)
and s columns (labelled B1, B2, . . . , Bs) has rs cells. The ijth cell has entry
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TABLE 17.1. Types of goods most often shoplifted by males and by females
at each age group, as derived from the two-way contingency table of the
example. Superscripts show the percentages of that type of good stolen for
that age group and gender. Also listed in parentheses for each age group
and gender are those goods that are stolen more than 20% of the time.

Age Males Females

< 12 Toys 26.2 (writing materials 23.5) Writing materials 23.8

12–14 Writing materials 25.1 Jewelry 26.5

15–17 Writing materials 14.8 Clothing 32.3 (jewelry 20.5)
18–20 Clothing 22.8 Clothing 45.4

21–29 Clothing 27.3 Clothing 55.8

30–39 Clothing 25.9 Clothing 57.2

40–49 Clothing 21.7 Clothing 51.7

50–64 Hobbies, tools 22.6 Clothing 39.4

65+ Provisions, tobacco 27.3 Provisions, tobacco 30.1

(hobbies, tools 20.9) (clothing 24.2)

nij , representing the observed frequency in row category Ai and column
category Bj , i = 1, 2, . . . , r, j = 1, 2, . . . , s. The ith marginal row total
is ni+ =

∑s
j=1 nij , i = 1, 2, . . . , r, and the jth marginal column total is

n+j =
∑r

i=1 nij , j = 1, 2, . . . , s. If n =
∑r

i=1

∑s
j=1 nij individuals are

classified by row and column categories, then Table 17.2, which is also called
a correspondence table, shows the cell frequencies, marginal totals, and total
sample size. For interpretation purposes, it is important to distinguish when
the n individuals are randomly selected from some very large population
or when they actually constitute the entire population of interest.

We denote by πij the probability that an individual has the properties Ai

and Bj , i = 1, 2, . . . , r, j = 1, 2, . . . , s. In the event that the row variable A
is independent of the column variable B, we have that πij = πi+π+j , where
πi+ =

∑
j πij and π+j =

∑
i πij , for all i = 1, 2, . . . , r and j = 1, 2, . . . , s.

We are generally interested in assessing whether A and B are indeed inde-
pendent variables. Such a question can alternatively be posed in terms of
homogeneity of the row or column probability distributions; that is, whether
all the rows have the same probability distributions across columns, or,
equivalently, whether all the columns have the same probability distribu-
tions across rows.

17.2.2 Row and Column Dummy Variables

For a two-way contingency table, we are interested in the relationship
between the row categories and the column categories. We define two sets
of dummy variates, an r-vector Xi = (Xij) to indicate which of the n
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TABLE 17.2. Two-way contingency table, showing observed cell frequen-
cies, row and column marginal totals, and total sample size.

Column Variable
Row Variable B1 B2 · · · Bj · · · Bs Row Total

A1 n11 n12 · · · n1j · · · n1s n1+

A2 n21 n22 · · · n2j · · · n2s n2+

...
...

...
...

...
...

Ai ni1 ni2 · · · nij · · · nis ni+

...
...

...
...

...
...

Ar nr1 nr2 · · · nrj · · · nrs nr+

Column total n+1 n+2 · · · n+j · · · n+s n

observations fall into the ith row, and an s-vector Yj = (Yij) to indicate
which of the n observations fall into the jth column; that is,

Xij =
{

1, if the jth individual belongs to Ai

0, otherwise

Yij =
{

1, if the ith individual belongs to Bj

0, otherwise

i = 1, 2, . . . , r, j = 1, 2, . . . , s. These indicator vectors can be collected
into two matrices, an (r × n)-matrix X and an (s × n)-matrix Y. Note
that even though both X and Y are defined by the specific distribution of
cell frequencies in the contingency table, it turns out that the summary
information will be the same as if we assume, for convenience, that X and
Y are given by

r×n

X =

⎛
⎜⎜⎝

1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎞
⎟⎟⎠ , (17.1)

s×n

Y =

⎛
⎜⎜⎝

1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎞
⎟⎟⎠ , (17.2)

respectively.
Matrices derived from X and Y reproduce the observed cell frequencies

and their marginal totals. The (r×s)-matrix XYτ reproduces the observed
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cell frequencies of the contingency table,

XYτ =

⎛
⎜⎜⎝

n11 n12 . . . n1s

n21 n22 . . . n2s
...

...
. . .

...
nr1 nr2 . . . nrs

⎞
⎟⎟⎠ = N. (17.3)

The (r × r) matrix XX τ and the (s × s) matrix YYτ are both diagonal,
XX τ having as diagonal entries the r marginal row totals and YYτ having
as diagonal entries the s marginal column totals,

XX τ = diag{n1+, · · · , nr+}, (17.4)

YYτ = diag{n+1, · · · , n+s}. (17.5)

Collecting (17.3), (17.4), and (17.5) together, we can form the (r+s)×(r+s)
block matrix, (

X
Y

)(
X
Y

)τ

=
(

nDr N
Nτ nDc

)
, (17.6)

where
Dr = n−1XX = diag{n1+/n, . . . , nr+/n}, (17.7)

Dc = n−1YYτ = diag{n+1/n, . . . , n+s/n}. (17.8)

The matrix (17.6) is known as a Burt matrix (Burt, 1950) for a two-way con-
tingency table. It is nonnegative definite and symmetric and is the analogue
in the discrete case (after dividing through by n) of the sample covariance
matrix of two sets of continuous variates.

17.2.3 Example: Hair Color and Eye Color

This classic two-way contingency table N with r = 4 and s = 5 (see
Table 17.3) was analyzed by R.A. Fisher (1940) and others. It relates to
data on hair color and eye color of a sample of 5,387 schoolchildren from
Caithness, Scotland. It is given as a (4× 5)-matrix by:

N = XYτ =

⎛
⎜⎝

326 38 241 110 3
688 116 584 188 4
343 84 909 412 26
98 48 403 681 85

⎞
⎟⎠ .

The matrices XX τ and YYτ are given by:

XX τ =

⎛
⎜⎝

718 0 0 0
0 1580 0 0
0 0 1774 0
0 0 0 1315

⎞
⎟⎠
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TABLE 17.3. Relationship of Hair Color to Eye Color of Scottish School-
children.

Hair Color
Eye Color Fair Red Medium Dark Black Totals

Blue 326 38 241 110 3 718
Light 688 116 584 188 4 1,580

Medium 343 84 909 412 26 1,774
Dark 98 48 403 681 85 1,315

Totals 1,455 286 2,137 1,391 118 5,387

YYτ =

⎛
⎜⎜⎜⎝

1455 0 0 0 0
0 286 0 0 0
0 0 2137 0 0
0 0 0 1391 0
0 0 0 0 118

⎞
⎟⎟⎟⎠ ,

respectively. The matrices Dr and Dc are obtained by dividing both XX τ

and YYτ by n = 5, 387:

Dr =

⎛
⎜⎝

0.1333 0 0 0
0 0.2933 0 0
0 0 0.3293 0
0 0 0 0.2441

⎞
⎟⎠

Dc =

⎛
⎜⎜⎜⎝

0.2701 0 0 0 0
0 0.0531 0 0 0
0 0 0.3967 0 0
0 0 0 0.2582 0
0 0 0 0 0.0219

⎞
⎟⎟⎟⎠ .

17.2.4 Profiles, Masses, and Centroids

The (r × s)-matrix
P = n−1N (17.9)

converts the contingency table N into a correspondence matrix. See Table
17.4. If the n individuals constitute a random sample, the entry, pij =
nij/n, in the ith row and jth column of P can be characterized as either the
uniformly minimum variance unbiased (UMVU) estimator or the maximum
likelihood (ML) estimator of πij . For the hair-color/eye-color example,

P =

⎛
⎜⎝

0.0605 0.0071 0.0447 0.0204 0.0006
0.1277 0.0215 0.1084 0.0349 0.0007
0.0637 0.0156 0.1687 0.0765 0.0048
0.0182 0.0089 0.0748 0.1264 0.0158

⎞
⎟⎠ .
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TABLE 17.4. Correspondence matrix, showing observed cell relative fre-
quencies P (pij = nij/n), row marginal totals r (pi+ = ni+/n), and column
marginal totals cτ (p+j = n+j/n)

Column Variable
Row Variable B1 B2 · · · Bj · · · Bs Row Total

A1 p11 p12 · · · p1j · · · p1s p1+

A2 p21 p22 · · · p2j · · · p2s p2+

...
...

...
...

...
...

Ai pi1 pi2 · · · pij · · · pis pi+

...
...

...
...

...
...

Ar pr1 pr2 · · · prj · · · prs pr+

Column total p+1 p+2 · · · p+j · · · p+s 1

The row totals and column totals of P are given by the diagonal elements
of Dr and Dc, respectively.

The (r × s)-matrix Pr of row profiles of N (or P) consists of the rows
of N divided by their appropriate row totals (e.g., nij/ni+, which, under
random sampling, can be characterized as either the UMVU or ML estima-
tor of πij/πi+, the conditional probability that an individual has property
Bj given that he or she has property Ai), and can be computed as the
regression coefficient matrix of Y on X ; that is,

Pr = (XX τ )−1XYτ = D−1
r P =

⎛
⎜⎝

aτ
1
...

aτ
r

⎞
⎟⎠ , (17.10)

where

aτ
i =

(
ni1

ni+
, · · · , nis

ni+

)
(17.11)

is the ith row profile, i = 1, 2, . . . , r. For the hair-color/eye-color example,

Pr =

⎛
⎜⎝

0.4540 0.0529 0.3357 0.1532 0.0042
0.4354 0.0734 0.3696 0.1190 0.0025
0.1933 0.0474 0.5124 0.2322 0.0147
0.0745 0.0365 0.3065 0.5179 0.0646

⎞
⎟⎠ .

Similarly, the (s× r)-matrix Pc of column profiles of N (or P) consists of
the columns of N divided by their appropriate column totals (e.g., nij/n+j ,
which, under random sampling, can be characterized as the UMVU or ML
estimator of πij/π+j , the conditional probability that an individual has
property Ai given that he or she has property Bj), and computed as the
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regression coefficient matrix of X on Y; that is,

Pc = (YYτ )−1YX τ = D−1
c Pτ =

⎛
⎝

bτ
1

...
bτ

s

⎞
⎠ , (17.12)

where

bτ
j =

(
n1j

n+j
, · · · , nrj

n+j

)
(17.13)

is the jth column profile, j = 1, 2, . . . , s. For the hair-color/eye-color ex-
ample,

Pc =

⎛
⎜⎜⎜⎝

0.2241 0.4729 0.2357 0.0674
0.1329 0.4056 0.2937 0.1678
0.1128 0.2733 0.4254 0.1886
0.0791 0.1352 0.2962 0.4896
0.0254 0.0339 0.2203 0.7203

⎞
⎟⎟⎟⎠ .

The row means of the contingency table N are the row sums of P,

P1s =

⎛
⎝

X̄1
...

X̄r

⎞
⎠ =

⎛
⎜⎝

n1+/n
...

nr+/n

⎞
⎟⎠ =

⎛
⎜⎝

p1+

...
pr+

⎞
⎟⎠ = r, (17.14)

and the column means of N are the column sums of P (or row sums of
Pτ ),

Pτ1r =

⎛
⎝

Ȳ1
...

Ȳs

⎞
⎠ =

⎛
⎜⎝

n+1/n
...

n+s/n

⎞
⎟⎠ =

⎛
⎜⎝

p+1

...
p+s

⎞
⎟⎠ = c, (17.15)

where 1a denotes an a-vector each of whose entries is 1. The vectors r and c
can be formed from the diagonal elements of Dr and Dc, respectively; that
is, Dr = diag{r} and Dc = diag{c}. For the hair-color/eye-color example,

r =

⎛
⎜⎝

0.1333
0.2933
0.3293
0.2441

⎞
⎟⎠ , c =

⎛
⎜⎜⎜⎝

0.2701
0.0531
0.3967
0.2582
0.0219

⎞
⎟⎟⎟⎠ .

Powers of these diagonal matrices are given by Dα
r = diag{rα} and Dα

c =
diag{cα}, where rα and cα are the column vectors (17.14) and (17.15),
respectively, with each entry raised to the αth power. In this chapter, we
will be interested in situations where α = − 1

2 or −1.
The ith element, pi+ = ni+/n, of the r-vector r is called the ith row

mass and, under random sampling, is an estimate of the unconditional
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probability, πi+, of belonging to Ai. Similarly, the jth element, p+j =
n+j/n, of the s-vector c is called the jth column mass and is an estimate
of the unconditional probability, π+j , of belonging to Bj . In correspon-
dence analysis, r is called the average column profile and c is called the
average row profile of the contingency table. The vector c is also referred
to as the row centroid because it can be expressed as the weighted average
of the row profiles, namely,

c =
r∑

i=1

pi+ai, (17.16)

where the weights are the row masses. Similarly, the vector r is referred to
as the column centroid because it can be expressed as the weighted average
of the column profiles, namely,

r =
s∑

j=1

p+jbj , (17.17)

where the weights are the column masses. It is not difficult to show that the
relationship between r and c is given by r = PτD−1

c c and c = PτD−1
r r.

17.2.5 Chi-squared Distances

In correspondence analysis, it is important to be able to visualize dis-
tances between different row profiles (i.e., rows of Pr) or between different
column profiles (i.e., rows of Pc). To do this, we use the chi-squared metric
as a measure of distance.

Row Distances

Consider the ith and i′th row profiles, ai and ai′ , respectively. We will
need the fact that ai − ai′ is an s-vector whose jth entry is nij/ni+ −
ni′j/ni′+. The squared χ2-distance between ai and ai′ is defined as the
quadratic form,

d2(ai,ai′) ≡ (ai − ai′)τD−1
c (ai − ai′) (17.18)

=
s∑

j=1

n

n+j

(
nij

ni+
− ni′j

ni′+

)2

. (17.19)

We see from (17.19) that the jth column mass, n+j/n, enters the squared
distance between row profiles ai and ai′ as an inverse element of the jth
term in the sum. It follows that those categories having fewer observations
contribute more to the inter-row profile distances.

Recall that c is the row centroid. The (r × s)-matrix of centered row
profiles Pr − 1rcτ , where Pr = D−1

r P, has ith row (ai − c)τ , with jth
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entry n−1
i+ (nij − ni+n+j/n), i = 1, 2, . . . , r, j = 1, 2, . . . , s. The squared

χ2-distance between ai and c is, therefore,

d2(ai, c) = (ai − c)τD−1
c (ai − c)

=
1

ni+

s∑
j=1

n

ni+n+j

(
nij −

ni+n+j

n

)2

. (17.20)

Summing (17.20) over all row profiles yields

n
r∑

i=1

pi+d2(ai, c) =
r∑

i=1

s∑
j=1

(
nij −

ni+n+j

n

)2

/
(ni+n+j

n

)
, (17.21)

which is the Pearson’s chi-squared statistic,

X2 =
∑

i

∑
j

(Oij − Eij)2

Eij
, (17.22)

where the observed cell frequency Oij and the expected cell frequency Eij

(assuming independence of row and column variates) are given by

Oij = nij , Eij =
ni+n+j

n
, (17.23)

respectively, i = 1, 2, . . . , r, j = 1, 2, . . . , s. Under random sampling, X2

has approximately (large n) the χ2 distribution with (r− 1)(s− 1) degrees
of freedom (see, e.g., Rao, 1965, Section 6d.2).

Column Distances

In a similar manner, we define the squared χ2-distance between the jth
and j′th column profiles, bj and bj′ , respectively, as the quadratic form,

d2(bj ,bj′) ≡ (bj − bj′)τD−1
r (bj − bj′) (17.24)

=
r∑

i=1

n

ni+

(
nij

n+j
− nij′

n+j′

)2

. (17.25)

The squared χ2-distance between the jth column profile and the column
centroid is, therefore, given by

d2(bj , r) = (bj − r)τD−1
r (bj − r)

=
1

n+j

r∑
i=1

n

ni+n+j

(
nij −

ni+n+j

n

)2

. (17.26)

Summing (17.26) over all column profiles yields

n

s∑
j=1

p+jd
2(bj , r) = X2, (17.27)
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where X2 is given by (17.22).

Thus, the weighted average of the squared χ2-distances of all row profiles
to the row centroid (or of all column profiles to the column centroid), where
the weights are the row masses (column masses), is the quantity X2/n. If
the row and column variates are independent, then X2/n will be small,
in which case every component of X2/n — either the {pi+d2(ai, c)} or
the {p+jd

2(bj , r)} — will be small. On the other hand, if X2/n is large,
that means that at least one of the {pi+d2(ai, c)} or at least one of the
{p+jd

2(bj , r)} will be large. This type of information will be important in
determining where independence in the table fails.

For the hair-color/eye-color example, the matrix E = (Eij) of expected
cell frequencies is given by:

E =

⎛
⎜⎝

193.93 38.12 284.83 185.40 15.73
426.75 83.88 626.78 407.98 34.61
479.15 94.18 703.74 458.07 38.86
355.17 69.81 521.65 339.55 28.80

⎞
⎟⎠ .

Compare this matrix with N = (Oij) above. The matrix of values of (Oij−
Eij)2/Eij is given by:

⎛
⎜⎝

89.95 0.00 6.74 30.66 10.30
159.93 12.30 2.92 118.61 27.07
38.69 1.10 59.87 4.63 4.26

186.22 6.82 26.99 343.36 109.63

⎞
⎟⎠ .

The sum of all these values is X2 = 1240.05, which should be compared
with 21.03, the tabulated 95th-percentile of the χ2

12 distribution. Clearly,
independence of row and column variates fails for these data.

17.2.6 Total Inertia and Its Decomposition

We see that using dummy variables for representing a two-way contin-
gency table enables us to view the problem as a special case of canonical
variate analysis. The situation is, however, different in that instead of ex-
tracting the correlation structure between two sets of stochastic data vec-
tors, we are dealing with the correlation structure of two sets of dummy
variables.

Let x = (xij), where xij = Xij − X̄i is either 1 − (ni+/n) or −ni+/n.
Similarly, let y = (yij), where yij = Yij − Ȳj is either 1 − (n+j/n) or
−n+j/n. Then, the covariance matrices are

n−1xxτ = n−1X (In − n−1Jn)X τ = Dr − rrτ , (17.28)

n−1yyτ = n−1Y(In − n−1Jn)Yτ = Dc − ccτ , (17.29)
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where Ja = 1a1τ
a is an (a×a)-matrix of 1s. The matrices xxτ (of rank r−1)

and yyτ (of rank s− 1) are both singular and, hence, their inverses do not
exist. We could sidestep this problem by deleting one of the row dummy
variables and one of the column dummy variables (see Exercise 17.2), but
this would reduce the dimensionality and we would not be able to recover
the points from the missing dimensions.

The standard assumption of contingency table analysis is that the row
and column totals are considered fixed and the cell frequencies in N are al-
lowed to vary within those constraints. Accordingly, we center the elements
of N at the values we expect them to have under independence (instead
of centering the data N at the mean). Thus, (17.9) becomes the relative
frequency matrix,

n−1X (In − n−1Jn)Yτ = P− rcτ = P̃. (17.30)

For the hair-color/eye-color example,

P̃ =

⎛
⎜⎝

0.0245 −0.0000 −0.0081 −0.0140 −0.0024
0.0485 0.0060 −0.0079 −0.0408 −0.0057

−0.0253 −0.0019 0.0381 −0.0086 −0.0024
−0.0477 −0.0040 −0.0220 0.0634 0.0104

⎞
⎟⎠ .

The matrix Ñ = nP̃ is often called the matrix of residuals because its
ijth entry, ñij = Oij − Eij , shows the difference between the observed
cell frequency (Oij) and its expected cell frequency (Eij), assuming inde-
pendence between row and column variates, i = 1, 2, . . . , r, j = 1, 2, . . . , s
(see (17.23)). Note that because Ñ1s = (N− nrcτ )1s = N1s − nrcτ1s =
nr− nr = 0, the rank of Ñ (and, hence, of P̃) is at most s− 1.

The (s × s)-matrix R in (8.76) plays a central role in canonical variate
analysis, and it has an obvious analogue in this development. The corre-
spondences between (8.76) and (17.6) are given by

ΣXX ↔ Dr, ΣY Y ↔ Dc, ΣXY ↔ P̃. (17.31)

Accordingly, we use (17.7), (17.8), and (17.30) to compute the (s × s)-
matrix,

R0 = D−1/2
c P̃τD−1

r P̃D−1/2
c , (17.32)

where D−1
r = diag{r−1} and D−1/2

c = diag{c−1/2}. The entry in the jth
row and j′th column of R0 is given by

(n+jn+j′)−1/2
r∑

i=1

1
ni+

(
nij −

ni+n+j

n

)(
nij′ − ni+n+j′

n

)
(17.33)

and the jth diagonal entry of R0 is obtained by setting j = j′,

1
n+j

r∑
i=1

1
ni+

(
nij −

ni+n+j

n

)2

. (17.34)
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For the hair-color/eye-color example,

R0 =

⎛
⎜⎜⎜⎝

0.0881 0.0160 −0.0044 −0.0798 −0.0420
0.0160 0.0038 −0.0001 −0.0156 −0.0080

−0.0044 −0.0001 0.0179 −0.0148 −0.0099
−0.0798 −0.0156 −0.0148 0.0923 0.0507
−0.0420 −0.0080 −0.0099 0.0507 0.0281

⎞
⎟⎟⎟⎠ .

The trace of R0, which is also the sum of the eigenvalues of R0, is
s∑

j=1

λ2
j = tr{R0} =

r∑
i=1

s∑
j=1

1
ni+n+j

(
nij −

ni+n+j

n

)2

=
X2

n
, (17.35)

where X2 is given by (17.22).
If the value of X2 is very large, as it is in the shoplifting example where

X2 = 19, 949.97 on 17 × 12 = 204 degrees of freedom, the hypothesis of
independence of the row and column variates in the contingency table has
to be rejected. It then becomes of interest to determine where the deviations
from independence occur. Understanding which characteristics of the data
are important may be useful for further study.

The quantity X2/n is referred to as the amount of total inertia in the
contingency table. The eigenvalues (or principal inertias) of R0 form a
decomposition of the total inertia. The accumulated contribution of the
first t principal inertias is given by

λ2
1 + · · ·+ λ2

t∑s
j=1 λ2

j

, (17.36)

which is an analogue of the percentage of total variance explained by the
first t principal components, where we usually take t to be 2 or 3.

For the hair-color/eye-color example, the eigenvalues of R0 (and their
individual percentages of the total, tr(R0) = 0.2302) are 0.1992 (86.6%),
0.0301 (13.1%), 0.0009 (0.4%), 0, and 0. Clearly, the first two eigenvalues
account for almost all of the total inertia.

Table 17.5 lists the 12 principal inertias (eigenvalues of R0) for the
shoplifting example. The total inertia is X2/n = 19, 949.97/33, 101 =
0.6027. We see that the first three eigenvalues account for about 90% of the
total inertia, which suggests that almost all of the deviations from indepen-
dence can be attributed to the first three dimensions. The two-dimensional
plot (see Figure 17.1) accounts for about 78% of the total inertia.

17.2.7 Principal Coordinates for Row and Column Profiles

The matrix R0 in (17.32) can be expressed as

R0 = MτM, (17.37)
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TABLE 17.5. Shoplifting example: Principal inertias (eigenvalues λ2
j),

total inertia, the proportions of total inertia explained by each eigenvalue,
and the cumulative proportions.

Axis Inertia Percentage Cumulative

1 0.3504 58.13 58.13
2 0.1192 19.78 77.91
3 0.0700 11.61 89.52
4 0.0382 6.35 95.86
5 0.0112 1.86 97.72
6 0.0086 1.43 99.14
7 0.0031 0.51 99.66
8 0.0009 0.15 99.81
9 0.0006 0.10 99.91

10 0.0003 0.06 99.97
11 0.0001 0.02 99.99
12 0.0001 0.01 100.00

Total 0.6027

where the (r × s)-matrix

M = D−1/2
r P̃D−1/2

c (17.38)

has ijth entry given by the Pearson residual,

mij = (ni+n+j)−1/2
(
nij −

ni+n+j

n

)
, (17.39)

i = 1, 2, . . . , r, j = 1, 2, . . . , s. For the hair-color/eye-color example,

M =

⎛
⎜⎝

0.1292 −0.0003 −0.0354 −0.0754 −0.0437
0.1723 0.0478 −0.0233 −0.1484 −0.0709

−0.0847 −0.0143 0.1054 −0.0293 −0.02811
−0.1859 −0.0356 −0.0708 0.2525 0.1427

⎞
⎟⎠ .

Thus, from (17.35), the sum of squares of all rs Pearson residuals in the
contingency table is the total inertia. Note that because rank(P̃) ≤ s− 1,
it follows that M in (17.38) also has rank at most s−1. The singular value
decomposition of M is, therefore, given by

M = UDλVτ , (17.40)

where U is an (r× s)-matrix, UτU = Is, whose columns are the eigenvec-
tors, {uj}, corresponding to the s − 1 nonzero eigenvalues of the (r × r)-
matrix

MMτ = D−1/2
r P̃D−1

c P̃τD−1/2
r = R1, (17.41)
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V is an (s × s)-matrix, VτV = Is, whose columns are the eigenvectors,
{vj}, corresponding to the eigenvalues of the (s × s)-matrix MτM = R0,
and Dλ = diag{λ1, · · · , λs} is an (s× s) diagonal matrix with its principal
diagonal having entries the singular values (the positive square-roots of the
nonzero eigenvalues of either R0 or R1).

Combining (17.38) and (17.40), we can write

P̃ = (D1/2
r U)Dλ(VτD1/2

c ) = ADλBτ , (17.42)

where
A = D1/2

r U, B = D1/2
c V. (17.43)

For the hair-color/eye-color example,

A =

⎛
⎜⎝

−0.1195 0.1271 −0.2917 −0.1333 0
−0.2896 0.1496 0.3179 −0.2933 0

0.0248 −0.4651 −0.0624 −0.3293 0
0.3843 0.1885 0.0362 −0.2441 0

⎞
⎟⎠ .

B =

⎛
⎜⎜⎜⎝

−0.3292 0.2707 −0.1154 0.2741 0
−0.0277 0.0148 0.2138 0.0421 −0.0680
−0.0373 −0.4764 −0.0438 0.4071 0.0259

0.3406 0.1547 −0.0891 0.2186 −0.2501
0.0537 0.0362 0.0345 0.0433 0.1210

⎞
⎟⎟⎟⎠ .

Note that
AτD−1

r A = Is, BτD−1
c B = Is. (17.44)

The expression (17.42) (and (17.44)) is the generalized singular value de-
composition of P̃ in the metrics D−1

r and D−1
c . The columns of A and B

are called the principal axes of the row and column profiles.
The squared χ2-distance (in the metric D−1

c ) between the (r×s)-matrices
of centered row profiles Pr − 1rcτ and B is given by

Gτ
P = (Pr − 1rcτ )D−1

c B

= (D−1
r P̃D−1

c )B
= D−1

r (ADλBτ )D−1
c B

= D−1
r ADλ, (17.45)

where we have used (17.10), 1r = D−1
r r, (17.41), and (17.43). Similarly, we

can show that the squared χ2-distance (in the metric D−1
r ) between the

(s× r)-matrices of centered column profiles Pc − 1crτ and A is given by

Hτ
P = (Pc − 1crτ )D−1

r B

= D−1
c BDλ. (17.46)
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Substituting (17.42) for the A and B in (17.44) and (17.45), respectively,
we have that

Gτ
P = D−1/2

r UDλ, Hτ
P = D−1/2

c VDλ. (17.47)

For the hair-color/eye-color example,

Gτ
P =

⎛
⎜⎝

−0.4003 0.1654 −0.0642 0
−0.4407 0.0885 0.0318 0

0.0336 −0.2450 −0.0056 0
0.7027 0.1339 0.0043 0

⎞
⎟⎠ ,

Hτ
P =

⎛
⎜⎜⎜⎝

−0.5440 0.1738 −0.0125 0
−0.0233 0.0483 0.1181 0
−0.0420 −0.2083 −0.0032 0

0.5887 0.1040 −0.0101 0
1.0944 0.2864 0.0461 0

⎞
⎟⎟⎟⎠ .

The columns of Gτ
P and Hτ

P are called the principal coordinates of the row
and column profiles, respectively (hence the subscript P ). The matrices
Gτ

P and Hτ
P are related to each other. It can be shown (see Exercise 17.5)

that
Gτ

P = D−1
r PHτ

P D−1
λ , Hτ

P = D−1
c PτGτ

P D−1
λ . (17.48)

Similar results can also be obtained directly from the canonical variate
analysis developed in Chapter 8 and the correspondences given in (17.31).
From (8.46) and (8.47), we compute the (s× r)-matrix GS and the (s× s)-
matrix HS , where

GS = UτD−1/2
r , HS = VτD−1/2

c . (17.49)

Note that GSDrGτ
S = Ir and HSDcHτ

S = Is. The columns of Gτ
S and Hτ

S

in (17.49) are known as the standard coordinates of the row and column
profiles, respectively (hence the subscript S). Instead of defining the row
and column coordinates as (17.49), however, they are generally scaled as
in (17.47).

17.2.8 Graphical Displays

In correspondence analysis, one has the choice between analyzing only
the row profiles, or analyzing only the column profiles, or analyzing both
the row and column profiles together. The graphical displays formed from
plotting the row and column coordinates in Table 17.6 are scatterplots that
can be of two types:
Symmetric map: Both row and column coordinates are expressed as

principal coordinates.
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TABLE 17.6. The t-dimensional formulas for row and column coordinates
are the columns of the first t rows of the following matrices, where t is two
or three.

Problem Row Coordinates Column Coordinates

Row Profiles GP = DλUτD
−1/2
r HS = VτD

−1/2
c

Column Profiles GS = UτD
−1/2
r HP = DλVτD

−1/2
c

Both Profiles GP = DλUτD
−1/2
r HP = DλVτD

−1/2
c

Asymmetric map: The row (or column) coordinates are expressed as
principal coordinates while the other is expressed as standard coor-
dinates.

Most users of correspondence analysis prefer to view a symmetric map of
both the row and column principal coordinates (17.47) in a two- (or three-)
dimensional scatterplot. First, we make a scatterplot of each of the r rows
of the first two (or three) columns of Gτ

P . Then, on the same scatterplot, we
overlay a plot of each of the s rows of the first two (or three) columns of Hτ

P .
In Figure 17.2, we have drawn the symmetric correspondence map for the
eye-color/hair-color example. If the three-dimensional points are plotted
on a dynamic scatterplot, then the display can be rotated in all three
dimensions for better viewing. These merged displays provide interpretable
views of different features in the data.

There will be r + s points in these scatterplots, which are called cor-
respondence maps. For clearer interpretation, different symbols should be
used for the row points and column points. It is also useful (unless the
plot would look overly cluttered) to identify each point in the plot by a
tag showing its corresponding category name. If the row (or column) cat-
egories are ordered in some way, such as time-order by year or successive
age ranges (as in the shoplifting example), then it is visually helpful to
connect those category points in the plot with each other to indicate such
order-dependence.

In general, points in the scatterplot that appear “close” to each other
tend to correspond to categories that are closely related. More specifically,

• if row points are close, then those rows have similar conditional dis-
tributions across columns;

• if column points are close, then those columns have similar conditional
distributions across rows;
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FIGURE 17.2. Correspondence map for the hair-color/eye-color
example. The points exhibit a U -shaped plot with the first principal co-
ordinate (horizontal axis) displaying gradations along the fair-red-medium-
dark-black hair scale and the light-blue-medium-dark eyes scale, and the
second principal coordinate (vertical axis) displaying a difference between
medium-color hair and eyes and the other hair and eye colors.

• if a row point is close to a column point, then that configuration
suggests a particular deviation from independence.

In general, we should not try to compare the positions of row points with
the positions of column points and say, for example, that if a particular row
point is very close to a particular column point then the corresponding row
and column categories are related to each other. (A dissenting view that
supports identifying row points with neighboring column points is given by
van der Heijden et al, 1989.)

17.3 Square Asymmetric Contingency Tables

An important special case of two-way contingency tables consists of
square tables, where r = s and the rows have the same categories as the
columns. Examples of square tables include:

• Individuals who are naturally paired, such as husbands and wives or
fathers and sons, are classified by occupational or social status.
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• Experiments conducted on naturally paired items, such as vision
grades of left eye and right eye.

• Two investigators or event judges independently rate each subject in
a study using the same Likert-type scale.

• Individuals in a sample are categorized by region of residence at two
distinct points in time.

• To study accuracy of a classification rule, the rows give the classes
to which the data were assigned by the rule, the columns define the
true classes (possibly determined from reference data), the cell entries
show how much the classified data and the reference data agree, and
the diagonal cells show the numbers of correct classifications.

If a square table N is symmetric with respect to the r2 cell frequen-
cies (i.e., Nτ = N), then the correspondence map will display coincident
pairs of row and column points. In each of the examples listed above, how-
ever, the square tables are asymmetric in the sense that Nτ �= N. Unlike
rectangular contingency tables, analyzing asymmetric square tables using
correspondence analysis has not been very successful. The reason is similar
to that for models that try to analyze square tables for symmetry: the data
along the principal diagonal tend to have too great an influence on the
results.

An innovative way of analyzing square asymmetric tables was proposed
by Gower (1977) and Constantine and Gower (1978). Consider a square
asymmetric contingency table N that yields the correspondence table P,
also square and asymmetric. Gower showed that P can be decomposed,
prior to analysis, into two orthogonal component tables,

P = M + Q, (17.50)

where
M =

1
2
(P + Pτ ), Q =

1
2
(P−Pτ ). (17.51)

In (17.51), M is a symmetric table (Mτ = M) and Q is a skew-symmetric
table (Qτ = −Q). Because of the orthogonality of the decomposition (see
Exercise 17.4), separate analyses of M and Q can be carried out. See van
der Heijden et al. (1989). If r is even, the singular vectors of Q occur in
pairs corresponding to pairs of equal singular values (principal inertias). If
r is odd, the last singular value of Q equals zero.

Greenacre (2000) used the decomposition (17.50) to obtain separate cor-
respondence maps of M and Q. Greenacre showed that these maps could
be obtained from a single application of simple correspondence analysis to
the (2r × 2r) block matrix,

N∗ =
(

N Nτ

Nτ N

)
, (17.52)
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with correspondence matrix,

P∗ =
1
4

(
P Pτ

Pτ P

)
, (17.53)

and row and column totals,

w∗ =
1
2

(
w
w

)
, (17.54)

where w = (r + c)/2. Whereas the usual correspondence analysis is to
analyze P̃ = P− rcτ in the metrics D−1

r and D−1
c , in this case, we analyze

P−wwτ in the metrics D−1
w and D−1

w . Thus, (17.50) becomes P−wwτ =
M−wwτ + Q. We should expect the total inertia attributed to P−wwτ

to be larger than the usual total inertia (e.g., (17.35)) because wwτ is not
the rank-1 matrix closest to P. The extent of the difference will depend
upon how different are r and c from each other.

The dimensionality of N∗ is 2r− 1, of which r− 1 dimensions belong to
M and the remaining r dimensions to Q. The correspondence map of M
displays pairs of coincident row and column points (so that it suffices to
plot only one set of points). We can, therefore, detect deviations of N from
symmetry by concentrating on the correspondence map of Q.

Thus, there will be two separate correspondence maps for N, one map for
the symmetric component M and the other map for the skew-symmetric
component Q. Each map consists of a single set of points. Greenacre rec-
ommends that both correspondence maps be scaled equally for comparing
the relative sizes of the principal inertias.

17.3.1 Example: Occupational Mobility in England

This 14 × 14 contingency table (see Table 17.7) of the occupations of a
sample of 775 males and their fathers in England was originally studied
by Pearson (1904). Figure 17.3 shows the two-dimensional correspondence
map of Table 17.7. The total inertia of the contingency table is 1.2974, of
which 50.97% is accounted for by the map.

The above decomposition of P into a symmetric component M and a
skew-symmetric component Q is accomplished by using (17.52). The re-
sulting total inertia increases by 0.3016 to 1.5990 due to the different type
of centering involved. The total symmetric inertia is 1.1484, and the total
skew-symmetric inertia is 0.4506. In Table 17.8, we list the 27 principal
inertias, of which 13 correspond to the symmetric correspondence analysis
and 14 (= 7 pairs) to the skew-symmetric correspondence analysis. Also
listed in Table 17.8 are the percentages of the two sets of principal inertias
relative to the total symmetric and skew-symmetric inertias. The first pair
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TABLE 17.7. Occupations of fathers and their sons in England (Pearson,
1904). The occupational categories are A army; B art; C teaching, clerical
work, civil service; D crafts; E divinity; F agriculture; G landownership;
H law; I literature; J commerce; K medicine; L navy; M politics and
court; N scholarship and science. Uppercase letters represent occupations
of the father and lowercase letters represent occupations of the son. The
Pearson chi-squared test for independence gives X2 = 874.9 on 169 degrees
of freedom, so that an hypothesis of independence is rejected.

Sons
Fathers a b c d e f g h i j k l m n Totals

A 28 0 4 0 0 0 1 3 3 0 3 1 5 2 50
B 2 51 1 1 2 0 0 1 2 0 0 0 1 1 62
C 6 5 7 0 9 1 3 6 4 2 1 1 2 7 54
D 0 12 0 6 5 0 0 1 7 1 2 0 0 10 44
E 5 5 2 1 54 0 0 6 9 4 12 3 1 13 115
F 0 2 3 0 3 0 0 1 4 1 4 2 1 5 26
G 17 1 4 0 14 0 6 11 4 1 3 3 17 7 88
H 3 5 6 0 6 0 2 18 13 1 1 1 8 5 69
I 0 1 1 0 4 0 0 1 4 0 2 1 1 4 19
J 12 16 4 1 15 0 0 5 13 11 6 1 7 15 106
K 0 4 2 0 1 0 0 0 3 0 20 0 5 6 41
L 1 3 1 0 0 0 1 0 1 1 1 6 2 1 18
M 5 0 2 0 3 0 1 8 1 2 2 3 23 1 51
N 5 3 0 2 6 0 1 3 1 0 0 1 1 9 32

Totals 84 108 37 11 122 1 15 64 69 24 57 23 74 86 775

of symmetric principal inertias (1 and 2) accounts for 33.85% + 20.20% =
54.05% of the total symmetric inertia, suggesting that higher dimensions
contain additional significant information. The first pair of skew-symmetric
principal inertias (3 and 4) accounts for 35.15% + 35.15% = 70.30% of the
total skew-symmetric inertia (compared with only 9.90% + 9.90% = 19.80%
of the total inertia). The symmetric dimensions are, therefore, 1, 2, 5–9,
12, 13, 16, 21, 24, and 27, and the remainder, which occur in pairs, are the
skew-symmetric dimensions.

Figure 17.4 shows the correspondence maps of dimensions 1 and 2, and
3 and 4, respectively. The top panel of Figure 17.4 shows the symmetric
portion of the table. The points representing the arts (B) and crafts (D)
occupations are clearly separated from the other points, but these two
points are also not close to each other. One can also argue that these two
points account for much of the difference in inertias between the symmetric
and skew-symmetric analyses because the variation in points is not that
different without points B and D. Points that are close together in this
map reflect the fact that there is a lot of movement from father to son



17.3 Square Asymmetric Contingency Tables 655

-0.6 -0.1 0.4 0.9 1.4 1.9
-1.0

-0.5

0.0

0.5

B

D

A

M

L
G

H

C

JN

F

I

K

E

b

d

k

e

n

ij

f
cl

h

a

m g

FIGURE 17.3. Correspondence map for the occupational mobility exam-
ple. The horizontal axis represents the first principal coordinate and the
vertical axis the second principal coordinate. On the left of the map, there
is a steady progression in occupations from A to E (and from a to k).
The two occupations of B and D (and b and d), representing arts and
crafts, stand out from the rest.

between those occupations, whereas points that are far apart from each
other indicate relatively little movement. If we ignore points B and D,
there appears to be a progression in the occupations, from the topmost
points down through several clusters of points, such as

• army (A), and politics and court (M)

• teaching, clerical work, civil service (C), landownership (G), law (H),
and navy (L)

• agriculture (F ), literature (I), commerce (J), and scholarship and
science (N)

• divinity (E) and medicine (K)

These clusters suggest that occupational mobility from father to son is
typically confined to movements within the various clusters only and not
between clusters.
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TABLE 17.8. Occupational mobility example: Principal inertias (eigen-
values λ2

j), total inertia, the percentages and cumulative percentages of total
inertia explained by each eigenvalue, and the percentages corresponding to
the symmetric (S) and skew-symmetric (SS) correspondence analyses. The
total symmetric inertia is 1.1484, and the total skew-symmetric inertia is
0.4506.

Principal Principal %
Axis Inertia Inertia Cumulative %-S %-SS

1 0.3887 24.31 24.31 33.85
2 0.2320 14.51 38.82 20.20
3 0.1584 9.90 48.72 35.15
4 0.1584 9.90 58.62 35.15
5 0.1439 9.00 67.62 12.53
6 0.1238 7.74 75.36 10.78
7 0.0818 5.12 80.48 7.12
8 0.0707 4.42 84.91 6.16
9 0.0498 3.12 88.02 4.34

10 0.0418 2.62 90.64 9.28
11 0.0418 2.62 93.25 9.28
12 0.0229 1.43 94.68 1.99
13 0.0220 1.38 96.06 1.92
14 0.0129 0.81 96.87 2.86
15 0.0129 0.81 97.67 2.86
16 0.0104 0.65 98.32 0.91
17 0.0076 0.47 98.80 1.69
18 0.0076 0.47 99.27 1.69
19 0.0031 0.19 99.46 0.69
20 0.0031 0.19 99.66 0.69
21 0.0017 0.10 99.76 0.15
22 0.0011 0.07 99.83 0.24
23 0.0011 0.07 99.90 0.24
24 0.0006 0.04 99.94 0.00
25 0.0004 0.02 99.97 0.00
26 0.0004 0.02 99.99 0.00
27 0.0001 0.01 100.00 0.00

Total 1.5990
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FIGURE 17.4. Correspondence analysis of the symmetric component (top
panel) and skew-symmetric component (bottom panel) for the occupational
mobility example.
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The bottom panel of Figure 17.4 shows the deviations from symme-
try. Asymmetry between any two points can be envisioned by a triangle
constructed with vertices at those two points and the origin; the greater
the area of that triangle, the greater the degree of asymmetry between the
points. Points that yield triangles with no area (i.e., points on a line through
the origin) have no asymmetric relationship. Points that are close to the ori-
gin indicate small asymmetries. In this map, there are no points clustered
around the origin, suggesting some asymmetry between all occupations.
Indeed, all the points in this map lie on one side of a line drawn through
the origin, indicating that circular triads are absent in the data. The more
drastic asymmetries are those points furthest from the origin, literature (I)
and scholarship and science (N) at one extreme and agriculture (F ) at the
other. The greatest deviation from symmetry is from a father’s occupation
of literature (I) to a son’s occupation in agriculture (F ).

17.4 Multiple Correspondence Analysis

Multiple correspondence analysis is intended to be a generalization of
simple correspondence analysis, in the sense that it is designed to deal with
the graphical representation of contingency tables that have more than two
categorical variables. The fact that as currently conceived it is not a true
generalization (in the sense that simple correspondence analysis is not a
special case) has not, however, detracted from its usefulness. Accordingly,
there is much research currently taking place on this topic.

17.4.1 The Multivariate Indicator Matrix

As we did in Section 17.2.2, we can define a dummy (or indicator) variable
for each of the Q categorical variables that make up the table. Suppose that
the qth variable has Jq categories and that J =

∑Q
q=1 Jq is the total number

of categories over all variables. Suppose further that there are n individuals
in the study (who may be some part — a sample — or all of a population).
Let Z = (Zij) be a (J × n)-matrix, where

Zij =
{

1, if the jth individual belongs to the ith category
0, otherwise, (17.55)

i = 1, 2, . . . , J , j = 1, 2, . . . , n. We assume that there is no row of Z that
contains all 0s. Each column of Z sums to Q and all Jn entries sum to
nQ. The matrix Z is often called a multivariate indicator matrix. One
interpretation of the concept of multiple correspondence analysis is that of
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carrying out a simple correspondence analysis of the multivariate indicator
matrix Z.

We can partition the J rows of Z into blocks by variable so that

Z =

⎛
⎝

Z1
...

ZQ

⎞
⎠ , (17.56)

where Zq is a (Jq×n)-matrix corresponding to the qth categorical variable
having Jq categories, q = 1, 2, . . . , Q. The following properties of Z are
given in Greenacre (1984). In Zq, there are 1τ

Jq
Zq1n = n 1s, q = 1, 2, . . . , Q.

Following (17.15), the row masses of Zq are defined by the Jq-vector,

cZ
q ≡ (nQ)−1Zq1n. (17.57)

Because the row masses of Zq sum to 1τ
Jq

cZ
q = (nQ)−1n = Q−1, each of the

Q categorical variables has the same total mass. As a result, the row masses
over all Q variables sum to 1. The row centroid is a weighted average of
the Jq rows of Zq, where the weights are the row masses,

(cZ
q )τZq

(cZ
q )τ1Jq

=
(nQ)−11τ

nZτ
qZq

Q−1
= n−11τ

n, (17.58)

because Zτ
qZq = In. Thus, the qth block of Jq row profiles has a row centroid

(17.58) that does not depend upon q. Those Jq row profiles are dispersed
within a subspace having at most Jq−1 dimensions. All J row profiles are,
therefore, dispersed within a subspace having at most

∑
q(Jq − 1) = J −Q

dimensions.

17.4.2 The Burt Matrix

A second interpretation of the idea of multiple correspondence analysis
is based upon analyzing the (J × J)-matrix

B = ZZτ =

⎛
⎜⎜⎜⎝

Z1Zτ
1 Z1Zτ

2 · · · Z1ZQ

Z2Zτ
1 Z2Zτ

2 · · · Z2Zτ
Q

...
...

...
ZQZτ

1 ZQZτ
2 · · · ZQZτ

Q

⎞
⎟⎟⎟⎠ , (17.59)

which is called a Burt matrix. See (17.6) for a Burt matrix with Q = 2.
B is a symmetric matrix with block structure. The qth diagonal block
submatrix, ZqZτ

q = nDq, say, is a diagonal matrix of the row totals of Zq

(q = 1, 2, . . . , Q), where Dq is the diagonal matrix of row or column masses
for the qth variable. The off-diagonal (u, v)-block submatrix, ZuZτ

v = Nuv,
say, (u �= v), is a two-way contingency table between the uth variable and
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the vth variable (u, v = 1, 2, . . . , Q). Because the total of all entries in each
submatrix ZiZτ

j in B is n, the total of all entries of B is b = nQ2. The
Burt matrix (17.59) is the analogue in the discrete case of the covariance
matrix of Q continuous variables.

17.4.3 Equivalence and an Implication

The two primary approaches to multiple correspondence analysis turn
out to be equivalent to one another (Greenacre, 1984). From the symmetry
of B, a simple correspondence analysis of B produces the same sets of
row and column coordinates, so that one of the two sets can be ignored.
Furthermore, the standard coordinates of the rows of B are identical to
the standard coordinates of the rows of Z, and the principal coordinates
obtained by analyzing B are directly related to those obtained by analyzing
Z because the principal inertias of B are the squares of those of Z.

This equivalence between the two approaches has the following implica-
tion. Although the multivariate indicator matrix Z incorporates informa-
tion from all Q categorical variables, its multiple correspondence analysis
provides no more information than an analysis of all pairs of categorical
variables. In other words, multiple correspondence analysis of either Z or B
offers no insight into three- or higher-way interactions that may be present
in the contingency table.

17.4.4 Example: Satisfaction with Housing Conditions

This data set was studied by Madsen (1976) in a study of housing condi-
tions in selected areas of Copenhagen, Denmark. A total of n = 1, 681 res-
idents living in rented homes built during 1960–1968 were surveyed about
their satisfaction (categorized as low (ls), medium (ms), high (hs)), the
amount of contact with other residents (low (lc), high (hc)), and their
feeling of influence on apartment management (low (li), medium (mi),
high (hi)). The rental units were categorized as tower blocks (tb), apart-
ments (ap), atrium houses (ah), and terraced houses (th). The purpose of
the study was to assess whether there was any association between degrees
of contact, influence, and satisfaction and the type of housing.

The Burt table is given in Table 17.9. The χ2-statistics for the off-
diagonal two-way contingency tables are X2

12 = 16.660, X2
13 = 39.121,

X2
14 = 60.286, X2

23 = 17.586, X2
24 = 106.175, and X2

34 = 5.140, where
“1” = Housing, “2” = Influence, “3” = Contact, and “4” = Satisfaction.
Assuming these two-way tables are independent of each other, we conclude
that both housing and influence appear not to be related to either contact
or satisfaction. The sum of these χ2-values is X2 = 244.968.
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TABLE 17.9. Burt table of data on satisfaction with housing condi-
tions in Copenhagen, Denmark (Madsen, 1976). The variables are type
of housing (tower blocks: tb; apartments: ap; atrium houses: ah; terraced
houses: th), influence on apartment management (low: li; medium: mi;
high: hi), contact with other residents (low: lc; high: hc), and satisfaction
(low: ls; medium: ms; high: hs). For this table, Q=4, J1 = 4, J2 = 3,
J3 = 2, J4 = 3, J = 12, and n = 1681.

Housing Influence Contact Satisfaction
tb ap ah th li mi hi lc hc ls ms hs

tb 400 0 0 0 140 172 88 219 181 99 101 200
ap 0 765 0 0 268 297 200 317 448 271 192 302
ah 0 0 239 0 95 84 60 82 157 64 79 96
th 0 0 0 227 124 106 47 95 182 133 74 70
li 140 268 95 124 627 0 0 234 393 282 170 175
mi 172 297 84 106 0 659 0 279 380 206 189 264
hi 88 200 60 47 0 0 395 200 195 79 87 229
lc 219 317 82 95 234 279 200 713 0 262 178 273
hc 181 448 157 182 393 380 195 0 968 305 268 395
ls 99 271 64 133 282 206 79 262 305 567 0 0
ms 101 192 79 74 170 189 87 178 268 0 446 0
hs 200 302 96 70 175 264 229 273 395 0 0 668

The two-dimensional multiple correspondence map is given in Figure
17.5. The first axis orders from right to left the low, medium, and high
categories of the influence and satisfaction variables, whereas the reverse
ordering occurs for the contact variable. The second axis separates the high
levels from the low levels of influence, contact, and satisfaction, and also
separates th and tb from ah, and ap is positioned at the center of the map.

Certain points are close to each other and indicate associations. Thus,
high influence on management is related to residents being highly satisfied,
whereas high contact with other residents produces medium satisfaction.
Residents of atrium houses tend to have high contact with other residents
and enjoy medium satisfaction, apartment residents have medium influence
on management, residents of tower blocks tend to have low contact with
other residents, and residents of terraced housing appear to have both low
influence and low satisfaction.

17.4.5 A Weighted Least-Squares Approach

There are Q(Q − 1)/2 distinct two-way contingency tables above the
diagonal of B; the tables below the diagonal are transposes of those above.
Although we could carry out a simple correspondence analysis for every
one of those Q(Q − 1)/2 tables, such extensive and exhaustive analyses
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FIGURE 17.5. Correspondence map for the housing conditions example.
The factors in the study were: type of housing (tower blocks, tb; apartments,
ap; atrium houses, ah; terraced houses, th), influence on apartment man-
agement (low, li; medium, mi; high, hi), contact with other residents (low,
lc; high, hc), and satisfaction (low, ls; medium, ms; high, hs).

would violate the principles of parsimony, efficiency, and dimensionality
reduction.

With this in mind, we mention an alternative approach by Greenacre
(1988), who proposed a matrix approximation method that (a) simultane-
ously fits all the Q(Q − 1)/2 tables in the upper-triangle of B, and (b)
reduces to simple correspondence analysis of N = N12 when Q = 2. The
idea is to approximate B by another matrix B̂, say, having reduced rank
that minimized the weighted least-squares criterion

n−1tr{D−1/2(B− B̂)D−1(B− B̂)τD−1/2}, (17.60)

where D = QDr is Q times the diagonal matrix, Dr, of row (or column)
masses of B and is defined so that all its elements sum to 1 (cf. Exercise
17.3). Greenacre suggested the use of an alternating least-squares algorithm
as a means of obtaining B̂ but could not guarantee that the minimum of
(17.60) would be achieved by that procedure.
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17.5 Software Packages

Manyof the popular statistical software packages contain simple andmulti-
ple correspondence analysis routines.Rhas thecapackage; seeCharnomordic
and Holmes (2001) and the details in Greenacre (2007, Appendix C).
Minitab has a correspondence analysis routine that appears to be matched
to the output in Greenacre (1984). There is also a program CodonW, written
by John Peden and available at codonw.sourceforge.net, which provides
correspondence analysis of codon and amino acid usage.

Bibliographical Notes

Correspondence analysis was developed by many individuals. Initial work
showing the correlation structure of a two-way contingency table appeared
during the mid-1930s by H.O. Hirschfield (later Hartley), P. Horst, and oth-
ers. At the start of the 1940s, R.A. Fisher and L. Guttman constructed scal-
ing theories for contingency tables for biometric and psychometric contexts,
respectively. The methodology found its champion, J.-P. Benzecri, in the
early 1960s when Benzecri and a group of French statisticians constructed
a theory of associations between rows and columns of a two-way contin-
gency table. This was called analyse des correspondances in French, which
was later loosely translated as “correspondence analysis.” Others who have
had major impacts on the subject include M.O. Hill, M.J. Greenacre, and
L.A. Goodman.

Much of this chapter has benefitted from the treatment of the topic in
books and articles by Greenacre; specifically, Greenacre (1981, 1984, 1988,
2000, 2007) and Greenacre and Hastie (1987). An interesting collection
of articles on applications of correspondence analysis (and other related
topics) is the book edited by Blasius and Greenacre (1998). See also the
articles by Gower and Digby (1981) (who provide a general tour of tech-
niques for graphically representing multivariate data), van der Heijden, de
Falguerolles, and de Leeuw (1989) (who studied the correspondence analy-
sis of residuals from fitting a log-linear model to a contingency table), and
Pack and Jolliffe (1992) (who proposed measures for detecting influential
observations in correspondence analysis).

Exercises

17.1 The 4 × 4 contingency table in Table 17.10 was originally analyzed
by Stuart (1953) and has since been studied by many statisticians. It con-
tains frequency data on eye tests, specifically, the right-eye grade and the
corresponding left-eye grade in unaided distance vision for 7,477 women,
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TABLE 17.10. Right-eye grade and left-eye grade of 7,477 women with
respect to unaided distance vision (Stuart, 1953). The Pearson chi-squared
test for independence gives X2 = 8, 096.877 on 9 degrees of freedom, so
that an hypothesis of independence is rejected.

Left-Eye Grade
Right-Eye Grade Best Second Third Worst Totals

Best 1,520 266 124 66 1,976
Second 234 1,512 432 78 2,256
Third 117 362 1,772 205 2,456
Worst 36 82 179 492 789

Totals 1,907 2,222 2,507 841 7,477

aged 30–39, employed in Royal Ordinance factories in Britain, where each
eye was graded in one of four categories from best to worst. Carry out a
correspondence analysis for this square contingency table and interpret the
results.

17.2 Suppose we omit the last row of X and last row of Y, so that X has
r − 1 rows and n columns and Y has s − 1 rows and n columns. Suppose
we center X and Y at their means.
(a) Show that

(XcX τ
c )−1 = diag

[
n−1

1+, n−1
2+, . . . , n−1

r−1,+

]
+ n−1

r+Jr−1,

(YcYτ
c )−1 = diag

[
n−1

+1, n
−1
+2, . . . , n

−1
+,s−1

]
+ n−1

+sJs−1.

(b) Show that the entry in the jth row and ith column of the full-rank
regression coefficient matrix, Θ̂ = YcX τ

c (XcX τ
c )−1, is

θji =
nij

ni+
− nrj

nr+
, i = 1, 2, . . . , r − 1, j = 1, 2, . . . , s− 1,

which is just the difference between the ith and rth row proportions
for the jth column of the contingency table. Similarly, show that the
entry in the ith row and jth column of XcYτ

c (YcYτ
c )−1 is

nij

n+j
− nis

n+s
, i = 1, 2, . . . , r − 1, j = 1, 2, . . . , s− 1.

(c) From these two matrices, show that the trace of R̂ is given by
r∑

i=1

s∑
j=1

1
ni+n+j

(
nij −

ni+nrj

nr+

)(
nij −

nisn+j

n+s

)
,

and, under independence of A and B, that tr{R̂} reduces to X2 in
(17.22).
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TABLE 17.11. Number of children in a family versus yearly income (in
units of 1,000 Kroner) for n = 25263 Swedish families (Cramér, 1946).
The Pearson chi-squared test for independence gives X2 = 568.57 on 12
degrees of freedom, so that an independence hypothesis is rejected.

Number of Yearly Income (1000s Kroner)
Children 0–1 1–2 2–3 3+ Total

0 2,161 3,577 2,184 1,636 9,558
1 2,755 5,081 2,222 1,052 11,110
2 936 1,753 640 306 3,635
3 225 419 96 38 778

≥ 4 39 98 31 14 182

Total 6,116 10,928 5,173 3,046 25,263

(d) Show that the s − 1 eigenvalues of R̂ are identical to the nonzero
eigenvalues of R0 (or R1).

17.3 (Greenacre, 2000). Another way of deriving the results of simple
correspondence analysis is to find an (r×s)-matrix P̂ having reduced-rank
t < min(r, s) that approximates P by minimizing the weighted least-squares
criterion,

tr{D−1/2
r (P− P̂)D−1

c (P− P̂)τD−1/2
r }.

Using the Eckart–Young Theorem, find the matrix P̂ that yields the best
reduced-rank approximation of P in the above sense. Show that the best
“rank-1” approximation to P is the trivial solution P̂ = rcτ .

17.4 Let M = [mij ] and Q = [qij ] be defined as in (17.51) and let N =
M + Q. Consider tr{(vec N)(vec N)τ}. Show that the cross-product term
tr{(vec M)(vec Q)τ} = 0, whence, we have the identity,

∑
i

∑
j

n2
ij =

∑
i

∑
j

m2
ij +

∑
i

∑
j

q2
ij .

17.5 Show that Gτ
P and Hτ

P are related to each other by proving that
Gτ

P = D−1
r PHτ

P D−1
λ and Hτ

P = D−1
c PτGτ

P D−1
λ .

17.6 The 5× 4 contingency table in Table 17.11 is due to Cramér (1946,
p. 444); see also Diaconis and Efron (1985). It contains a sample of fre-
quency data from a Swedish census of March 1936 in which 25,263 married
couples residing in country districts, who had been married for at most five
years, each listed the number of children in their family and their yearly
income (in units of 1,000 Kroner). Carry out a correspondence analysis for
this table and interpret the results.
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17.7 Construct four different contingency tables, each with five rows and
three columns, with the restriction that each of the column totals in each
table equals 50. Compute the weights in the chi-squared statistic for each
table. Compute the inertia for each table and arrange the four tables by in-
creasing inertia. Plot the row profiles for each table as points in a triangular
scatterplot. What is the relationship between inertia and these plots?
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natural-language text, 27–29
DBMS — see database manage-

ment systems, 29
de Nó, Lorente, 321
decision support system, 35
decision tree, 281
decomposition

singular value, 647
spectral, 131

deconvolution problem, 559
dendrogram, 411
directed acyclic graph, 322
discriminant coordinates, 271
disparities, 493
dissimilarity, 471

1-correlation, 413
Euclidean, 413
Manhattan city-block, 413
Minkowski, 413

distance
chi-squared metric, 642
edit, 476
Euclidean, 479
Hellinger, 79
Levenshtein, 476
Mahalanobis, 60
Manhattan city-block, 479
Minkowski, 479

distance scaling, 486
metric, 487
metric least-squares, 488
nonmetric, 492

distribution
bivariate Gaussian, 61
chi-squared, 74
Gaussian, 59
inverse-gamma, 491
multivariate Gaussian, 59–62
Normal, 59
Student’s t, 165
sub-Gaussian, 564
super-Gaussian, 564
Wishart, 63, 74, 165, 585

divisive hierarchical clustering,
420
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DSS — see decision support sys-
tem, 35

dual
functional, 374, 377, 396
variables, 373

dynamic graphics, 232
correlation tour, 233
grand tour, 232
PRIM-9, 232, 234
XGobi/GGobi, 232, 234

Edgeworth, Francis Ysidro, 107
effective degrees of freedom, 142
effective dimensionality, 178, 185
eigenfaces, 22, 210
elastic net, 150
EM algorithm

convergence properties, 456
general, 40, 453–456
mixture models, 103, 457–459

empirical orthogonal functions, 196
entropy function, 288
error covariance matrix, 161, 165,

175
error sum of squares, 111
error-complexity measure, 306
exploratory data analysis (EDA),

3
exploratory factor analysis, 180,

582–588
expression level, 18

factor indeterminancy, 584
factor loadings, 582
feasible region, 378
feature extraction, 195
feature map, 379
feature space, 379
feedforward network, 323, 325
finite mixture of Gaussians, 591
Fisher, Ronald Aylmer, 180
Floyd’s algorithm, 618
forwards stagewise, 152, 525
frequency polygon, 104
full-rank regression, 177

full-rank regression coefficient
matrix, 179, 181

functional CVA, 578
functional data, 212
functional PCA, 212, 214

Galton, Francis, 107
gap statistic, 442
garotte, 151, 152
gene clustering, 440–443
gene shaving, 440–443
generalization, 11
generalization error, 13, 117, 505,

508, 515, 537, 538
generalized additive models, 348,

351, 364
generalized inverse, 50, 131, 164

Moore–Penrose, 51, 131, 222,
583

reflexive, 51
generalized least-squares, 157,

162, 255
generalized-inverse

regression, 156
generalized-inverse regression, 131
Gini index, 288, 289, 543
goodness of split, 289
gradient boosting, 530
gradient-descent algorithm, 326

hat matrix, 113, 164
heatmap, 19, 20
Hebbian learning theory, 320
hemoglobin

alpha chain, 475
beta chain, 475

Hessian eigenmaps, 626, 627
high-leverage points, 113
Hilbert space, 379, 380
histogram, 80–86

origins, 104
Hotelling’s T 2 statistic, 248
Hotelling, Harold, 180, 222, 223
Human Genome Project, 18

ICA model
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noiseless, 560
noisy, 582

ill-conditioned data, 128, 129
image analysis, 196
impurity function, 284, 288
imputation

multiple, 40
single, 40

IMSE — see integrated
mean-squared error, 78

inadmissible, 68
independent component analysis

(ICA), 553–569, 571–573,
575–581

independent factor analysis, 590–
594

independent test set, 299, 306
inequality

Cauchy–Schwarz, 327, 380
Chebychev, 539
Jensen, 565

Inmon, W.H., 33
instability, 505
integrated absolute error, 79
integrated mean-squared error, 78
intensity log-ratio, 19
interquartile range, 84
isomap, 616–621
isotonic (monotonic) regression, 493
istribution

multivariate Gaussian, 59

Jacobi family of orthogonal poly-
nomials, 227

Jacobian, 227
James–Stein estimator, 69–72

Kaiser’s rule, 132, 208, 209, 430
Karhunen–Loève

expansion, 214
transform, 196, 201

Karush–Kuhn–Tucker conditions,
373, 378, 384, 396, 400,
405

kernel

Bartlett–Epanechnikov, 90
biweight, 90
cosine, 90
Dirichlet, 405
Gaussian, 90
Gaussian radial basis

function, 381
Laplacian, 381
Mercer, 380
polynomial, 90, 380, 381
product, 91
rectangular, 90
sigmoid, 381
string, 382
thin-plate spline, 381
triangular, 90
triweight, 90

kernel CVA, 576, 578–580
kernel density estimates, 240, 241,

261
kernel density estimation, 88–100
kernel function, 89, 379
kernel generalized variance, 581
kernel ICA, 575, 577, 578, 580,

581
kernel methods, 370, 609
kernel PCA, 609–613
kernel trick, 379, 611, 613
knowledge discovery, 8
Kronecker product, 47, 162
Kryder’s Law, 26
Kullback–Leibler

deviance, 336
divergence, 564
relative entropy, 79

kurtosis, 595

Laplace’s method, 353, 355, 365
Laplace, Pierre Simon, 107
Laplace–Beltrami operator, 625
LARS-forwards stagewise, 154
LARS-lasso, 153
lasso, 150, 152
latent variable models, 551–596
latent variables, 133, 551
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learning set, 11
learning-rate parameter, 326
least-angle regression, 152
least-squares

origins, 107
leave-one-out rule, 122
Legendre, Adrien Marie, 107
leverage, 113
likelihood function, 65
likelihood-ratio test, 192
linear activation function, 323
linear constraints, 168
linear discriminant analysis, 180,

238, 251
Gaussian, 243

linear discriminant function, 240,
241, 243, 247, 261

linear regression model, 108
LLE — see locally-linear embed-

ding, 621
locally-linear embedding, 621, 622,

624
logistic discrimination, 256, 265
logistic regression, 250, 525
logistic sigmoid activation func-

tion, 250, 266
loss function, 109

absolute-error, 533
binomial, 533
exponential, 516
hinge, 388
Huber, 533
linear epsilon-insensitive, 398,

399
logistic, 532
quadratic epsilon-insensitive,

398, 399
squared-error, 68, 532

lossy data compression, 196

machine learning, 9
Macsyma, 330
majority-vote rule, 508
Mallows CP , 147
manifold

differentiable, 616
Riemannian, 616
S-shaped, 614, 615
Swiss Roll, 617
topological, 615

MANOVA
between-class covariance ma-

trix, 264
general linear hypothesis, 174
Hotelling–Lawley trace stati-

stic, 174
identity, 264
pooled within-class covaria-

nce matrix, 264
Roy’s largest root statistic,

174
Wilk’s lambda, 174

MANOVA — see multivariate
analysis of variance, 173

MANOVA table, 174
MAP estimation, 352, 353
MAR — see missing at random,

40
margin, 372
margin function, 538
Markov chain Monte Carlo meth-

ods, 353, 361, 365, 491
MARS — see multivariate adap-

tive regression splines,
311

matrix
commutation, 64
Gram, 380, 384, 581
Hessian, 55, 254
ill-conditioned, 52
Jacobian, 54
permuted-identity, 64

matrix decomposition
Cholesky, 46, 66
LR, 46
QR, 46
singular-value (SVD), 50

maximal margin classifier, 371
maximal margin solution, 373
maximum likelihood, 81
maximum likelihood (ML), 65
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maximum penalized likelihood, 87,
88

maximum-likelihood factor analy-
sis, 584–588

MCAR — see missing completely
at random, 40

McCulloch–Pitts neuron, 318, 319,
322, 366

MDS — see multidimensional scal-
ing, 463

mean integrated absolute error, 79
mean integrated squared error, 78
metaparameter, 132
metric stress function, 488
MIAE — see mean integrated ab-

solute error, 79
microarray

cDNA, 18
oligonucleotide, 18

microarray experiments, 541
minimizing subtree, 295, 296
misclassification rate, 294, 300, 508
MISE — see mean integrated squared

error, 78
missing at random, 40
missing completely at random, 40
missing data, 39, 40, 312
mixing function, 558
mixing matrix, 558
mixing proportions, 592
model error, 119, 120
monotone spline, 493, 495–497
Moore’s Law, 27
Moore, Gordon E., 27
multiclass classification

one-versus-one, 390
one-versus-rest, 390

multidimensional scaling, 463–465,
467–482, 484–489, 491–
501

multimodality, 103
multiple correspondence analysis,

658–662
multiple logistic discrimination, 266
multiple logistic model, 266

multiple regression, 247
multivariate adaptive regression

splines, 311
multivariate analysis of variance,

173
multivariate inverse

calibration, 21
multivariate kernel density esti-

mator, 89
multivariate linear regression

model, 177
multivariate outliers, 230, 545,

547
multivariate reduced-rank regres-

sion, 160, 176–178, 180,
184, 188–190, 192, 195,
200, 222, 228, 233, 335,
583

multivariate regression, 159, 161
multivariate ridge regression, 168
mutual information, 565

network complexity, 334, 341
network pruning, 343
neural network

Bayesian learning, 352
fully connected, 332
multilayer

autoassociative, 607–609
partially connected, 332
skip-level connection, 333

NIPALS algorithm, 136
node impurity function, 287
noisy class labels, 535
nonlinear dimensionality

reduction, 597–613
nonlinear manifold learning, 613,

615–631
nonparametric density estimate,

246
nonparametric density estima-

tion, 75–103
norm

matrix, 51
spectral, 52
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objective function, 561
Ockham’s razor, 13, 343
OLAP — see on-line analytical

processing, 36
OLTP — see on-line transaction

processing, 32
on-line analytical processing, 35,

36
on-line learning, 326
on-line transaction processing, 32
one-SE rule, 301
optimal brain surgery, 343
optimal separating hyperplane, 371,

372, 375
optimal sequence alignment, 472
optimism, bootstrap estimator, 125
out-of-bag (OOB), 507, 509
out-of-bootstrap, 125
outliers, 38, 39, 219, 230, 256
outliers in PCA, 215
overfitting, 13, 143, 343

PAC — see probably approximately
correct
learning, 511

partial least-squares regression, 133
pattern recognition, 196
Pearson residual, 647
Pearson’s chi-squared, 643
Pearson, Karl, 108
penalized least-squares, 148
penalty coefficient, 146
penalty function, 148–150, 344

lasso, 149, 150
ridge regression, 149

perceptron
convergence theorem, 326–328
learning rule, 326
limitations, 328
multilayer, 330, 331
single layer, 322, 324

phylogenetic tree, 477
PLSR — see partial least-squares

regression, 133
plug-in classifier, 265

plurality rule, 292
polyaromatic hydrocarbon (PAH)

compounds, 21
polynomial PCA, 598–600
posterior probability, 242, 262
prediction, 117
prediction error, 10, 12, 15, 117,

119–121, 228
0.632 bootstrap

estimator, 125
apparent error rate, 121, 123,

147, 285
leave-one-out bootstrap esti-

mator, 125
resubstitution error rate,

121, 147, 285
simple bootstrap estimator,

123
predictive sample-reuse method,

154
predictor

base, 506
combined, 506

primal
functional, 376, 395
variables, 373, 374

primal functional, 373
principal component analysis,

180, 195–215
principal components, 132, 431
principal components regression,

131
principal coordinates, 482, 649
principal curves and surfaces,

600–610
principal inertias, 646
principal-factor method, 584
prior probabilities, 241, 262
probably approximately correct

learning, 511
profile analysis, 169, 172
projection index, 102, 229, 561

Friedman–Tukey, 102
moment-based, 230
polynomial-based, 230
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Shannon negentropy, 229, 231
third and fourth moments, 102,

229
two-dimensional, 231
variance, 229

projection pursuit (PP), 228
density estimation, 100–102
exploratory, 556, 557
origins, 233
regression, 348–350, 364

protein sequences, 472
proximity, 412, 463, 471, 545, 546
proximity matrix, 413, 424, 425,

471, 477, 478, 480, 491,
504

pruning, 295

quadratic discriminant
analysis, 257, 265

quadratic discriminant function,
257

Quarter-Circle Law, 205

Raman near-infrared spectroscopy,
130

Raman NIR spectra, 130
random forests, 536–548
random input selection, 536
random matrix theory, 205
random split selection, 536
rank trace, 186–190, 207, 235

CV, 228
PC, 208

recursive partitioning, 281–283, 291
reduced-rank regression coefficient

matrix, 179, 181, 200, 204,
223

regression coefficient matrix, 175,
186

regression function, 109, 111, 119,
152

regression tree, 304
regularization, 87, 344, 533, 578
regularization parameter, 148, 151,

360, 376

relational DBMS, 29
reproducing kernel, 380
reproducing kernel Hilbert

space, 380, 387, 392, 576,
577

reproducing property, 380, 389
resampling method

bootstrap, 121, 122
bootstrap,unconditional,122
cross-validation, 121, 122

residual covariance matrix, 165,
186

residual matrix, 164
residual sum of squares, 113
residual sum-of-squares

matrix, 165
residual variance, 114
residuals, 114
resubstitution error rate, 294, 302
ridge regression, 149, 152, 167

estimator, 136, 154
ridge matrix, 168
ridge parameter, 129, 138,

142, 168
ridge trace, 141, 144

Riemann, Georg Friedrich Bern-
hard, 615

rotation matrix, 584
roughness, 83
roughness penalty functional, 87
RRR — see multivariate reduced-

rank regression, 176
rule-based expert system, 329

Dendral, 329
Emycin, 329
Mycin, 329
Rex, 330

Sammon mapping, 488
sample covariance matrix, 67
sampling, 245
scalability, 5
scatterplot smoothers, 350
Scott’s rule, 84
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scree plot, 205, 206, 208, 235, 501,
573

self-organizing map (SOM), 431–
439

separate ridge regression, 167
separating function, 370
separating hyperplane, 371, 372
sequence alignment

alignment score, 473
gap score, 474
global, 473
local, 473
substitution score, 474

Shannon, Claude E., 231
Shepard diagram, 493, 495
shrinkage estimator, 134, 138, 139

lasso, 150
shrinkage factor, 71, 129
sigmoidal functions, 324
silhouette plot, 426–428, 430
similarity, 471
simple correspondence

analysis, 635–658
SIMPLS algorithm, 136
single-layer network, 323
slack variable, 376
smallest minimizing subtree, 297,

298
softcomputing, 366
softmax, 266
softmax function, 336
specific factors, 582
spherical Gaussian density, 60
SQL — see Structured Query Lan-

guage, 32
square asymmetric contingency ta-

bles, 651–658
squared correlation coefficient, 223
squared multiple correlation coef-

ficient, 115, 128, 223
Star Trek, 345
Stein effect, 71
Stein’s Lemma, 70, 74
Stein’s paradox, 71
Stein, Charles, 68

stress function, 497, 498
string matching, 476
Structural Classification System

of Proteins (SCOP), 472
Structured Query Language, 30–

32
supervised learning, 10, 237
support vector machines, 369–406

linear, 370–378
multiclass, 390–397
nonlinear, 378–390

support vector machines, linear
linearly nonseparable

case, 376–378
linearly separable case, 371–

375
supportvectorregression,398–401
supportvectors,371,372,374,375,

397, 401
surrogate splits, 312
survival trees, 310
SVM — see support vector ma-

chines, 369
Swiss-Protein database, 475

test set, 11
text categorization, 260, 382
theorem

Courant–Fischer
Min-Max, 52, 202

Eckart–Young, 52, 178, 665
Fubini, 78
Gauss–Markov, 112, 156, 162
generalized mean value, 82
Hoffman–Wielandt, 53, 72
Poincaré Separation, 53, 179,

220
representer, 389
spectral, 49
spectral decomposition, 199
universalapproximation,333,

334, 365
threshold activation function, 324
threshold logic unit, 319
total inertia, 646
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total misclassification probability,
244

Tukey, John, W., 232
two-way clustering

biclustering, 447
plaid models, 449

two-way contingency tables, 635–
658

unified-distance matrix, 435
uniqueness, 582
unmixing matrix, 560
unsupervised learning, 10, 407

validation set, 11
Vandermonde determinant, 205,

227

variable selection
all possible subsets, 146
backwards elimination, 144,

255
criticisms, 146, 147
forwards selection, 145
hybrid stepwise, 145

variable-importance plots, 544
variance inflation factor, 128
varimax rotation, 584
VC dimension, 519

weight-decay regularizer, 360
window width, 89
Wishart matrix, 206, 236
witchcraft, 154
World Wildlife Fund–UK, 19

Yule, George Udny, 108
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