Springer Texts in Statistics

Series Editors:
G. Casella
S. Fienberg
I. Olkin
Modern Multivariate Statistical Techniques

Regression, Classification, and Manifold Learning
This book is dedicated
to the memory of my parents,
Kitty and Larry,

and to my family,
Betty-Ann and Kayla
Not so long ago, multivariate analysis consisted solely of linear methods illustrated on small to medium-sized data sets. Moreover, statistical computing meant primarily batch processing (often using boxes of punched cards) carried out on a mainframe computer at a remote computer facility. During the 1970s, interactive computing was just beginning to raise its head, and exploratory data analysis was a new idea. In the decades since then, we have witnessed a number of remarkable developments in local computing power and data storage. Huge quantities of data are being collected, stored, and efficiently managed, and interactive statistical software packages enable sophisticated data analyses to be carried out effortlessly. These advances enabled new disciplines called data mining and machine learning to be created and developed by researchers in computer science and statistics.

As enormous data sets become the norm rather than the exception, statistics as a scientific discipline is changing to keep up with this development. Instead of the traditional heavy reliance on hypothesis testing, attention is now being focused on information or knowledge discovery. Accordingly, some of the recent advances in multivariate analysis include techniques from computer science, artificial intelligence, and machine learning theory. Many of these new techniques are still in their infancy, waiting for statistical theory to catch up.

The origins of some of these techniques are purely algorithmic, whereas the more traditional techniques were derived through modeling, optimiza-
tion, or probabilistic reasoning. As such algorithmic techniques mature, it becomes necessary to build a solid statistical framework within which to embed them. In some instances, it may not be at all obvious why a particular technique (such as a complex algorithm) works as well as it does:

When new ideas are being developed, the most fruitful approach is often to let rigor rest for a while, and let intuition reign — at least in the beginning. New methods may require new concepts and new approaches, in extreme cases even a new language, and it may then be impossible to describe such ideas precisely in the old language.

— Inge S. Helland, 2000

It is hoped that this book will be enjoyed by those who wish to understand the current state of multivariate statistical analysis in an age of high-speed computation and large data sets. This book mixes new algorithmic techniques for analyzing large multivariate data sets with some of the more classical multivariate techniques. Yet, even the classical methods are not given only standard treatments here; many of them are also derived as special cases of a common theoretical framework (multivariate reduced-rank regression) rather than separately through different approaches. Another major feature of this book is the novel data sets that are used as examples to illustrate the techniques.

I have included as much statistical theory as I believed is necessary to understand the development of ideas, plus details of certain computational algorithms; historical notes on the various topics have also been added wherever possible (usually in the Bibliographical Notes at the end of each chapter) to help the reader gain some perspective on the subject matter. References at the end of the book should be considered as extensive without being exhaustive.

Some common abbreviations used in this book should be noted: “iid” means independently and identically distributed; “wrt” means with respect to; and “lhs” and “rhs” mean left- and right-hand side, respectively.

Audience

This book is directed toward advanced undergraduate students, graduate students, and researchers in statistics, computer science, artificial intelligence, psychology, neural and cognitive sciences, business, medicine, bioinformatics, and engineering. As prerequisites, readers are expected to have had previous knowledge of probability, statistical theory and methods, multivariable calculus, and linear/matrix algebra. Because vectors and matrices play such a major role in multivariate analysis, Chapter 3 gives the matrix notation used in the book and many important advanced concepts in matrix theory. Along with a background in classical statistical theory
and methods, it would also be helpful if the reader had some exposure to Bayesian ideas in statistics.

There are various types of courses for which this book can be used, including data mining, machine learning, computational statistics, and for a traditional course in multivariate analysis. Sections of this book have been used at Temple University as the basis of lectures in a one-semester course in applied multivariate analysis to statistics and graduate business students (where technical derivations are skipped and emphasis is placed on the examples and computational algorithms) and a two-semester course in advanced topics in statistics given to graduate students from statistics, computer science, and engineering. I am grateful for their feedback (including spotting typos and inconsistencies).

Although there is enough material in this book for a two-semester course, a one-semester course in traditional multivariate analysis can be drawn from the material in Sections 1.1–1.3, 2.1–2.3, 2.5, 2.6, 3.1–3.5, 5.1–5.7, 6.1–6.3, 7.1–7.3, 8.1–8.7, 12.1–12.4, 13.1–13.9, 15.4, and 17.1–17.4; additional parts of the book can be used as appropriate.

Software

Software for computing the techniques described in this book is publicly available either through routines in major computer packages or through download from Internet websites. I have used primarily the R, S-PLUS, and MATLAB packages in writing this book. In the *Software Packages* section at the ends of certain chapters, I have listed the relevant R/S-PLUS routines for the respective chapter as well as the appropriate toolboxes in MATLAB. I have also tried to indicate other major packages wherever relevant.

Data Sets

The many data sets that illustrate the multivariate techniques presented in this book were obtained from a wide variety of sources and disciplines and will be made available through the book’s website. Disciplines from which the data were obtained include astronomy, bioinformatics, botany, chemometrics, criminology, food science, forensic science, genetics, geoscience, medicine, philately, physical anthropology, psychology, soil science, sports, and steganography. Part of the learning process for the reader is to become familiar with the classic data sets that are associated with each technique. In particular, data sets from popular data repositories are used to compare and contrast methodologies. Examples in the book involve small data sets (if a particular point or computation needs clarifying) and large data sets (to see the power of the techniques in question).

Exercises

At the end of every chapter (except Chapter 1), there is a number of exercises designed to make the reader (a) relate the problem to the text and fill in the technical details omitted in the development of certain techniques,
(b) illustrate the techniques described in the chapter with real data sets that can be downloaded from Internet websites, and (c) write software to carry out an algorithm described in the chapter. These exercises are an integral part of the learning experience. The exercises are not uniform in level of difficulty; some are much easier than others, and some are taken from research publications.

Book Website
The book’s website is located at:

http://astro.ocis.temple.edu/~alan/MMST

where additional materials and the latest information will be available, including data sets and R and S-PLUS code for many of the examples in the book.

Acknowledgments
I would like to thank David R. Brillinger, who instilled in me a deep appreciation of the interplay between theory, data analysis, computation, and graphical techniques long before attention to their connections became fashionable.

There are a number of people who have helped in the various draft stages of this book, either through editorial suggestions, technical discussions, or computational help. They include Bruce Conrad, Adele Cutler, Gene Fiorini, Burt S. Holland, Anath Iyer, Vishwanath Iyer, Joseph Jupin, Chuck Miller, Donald Richards, Cynthia Rudin, Yan Shen, John Ulicny, Allison Watts, and Myra Wise. Special thanks go to Richard M. Heiberger for his invaluable advice and willingness to share his expertise in all matters computational. Thanks also go to Abraham “Adi” Wyner, whose conversations at Border’s Bookstore kept me fueled literally and figuratively. Thanks also go to the reviewers and to all the students who read through various drafts of this book. Individuals who were kind enough to allow me to use their data or with whom I had e-mail discussions to clarify the nature of the data are acknowledged in footnotes at the place the data are first used. I would also like to thank the Springer editor John Kimmel, who provided help and support during the writing of this book, and the Springer \LaTeX{} expert Frank Ganz for his help.

Finally, I thank my wife Betty-Ann and daughter Kayla whose patience and love these many years enabled this book to see the light of day.

Alan Julian Izenman
Philadelphia, Pennsylvania
April 2008
Contents

Preface

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>vii</td>
</tr>
</tbody>
</table>

1 Introduction and Preview

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Multivariate Analysis</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1</td>
<td>From EDA to Data Mining</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2</td>
<td>What Is Data Mining?</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Knowledge Discovery</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Machine Learning</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1</td>
<td>How Does a Machine Learn?</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Prediction Accuracy</td>
<td>10</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Generalization</td>
<td>11</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Generalization Error</td>
<td>12</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Overfitting</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>Overview of Chapters</td>
<td>14</td>
</tr>
</tbody>
</table>

Bibliographical Notes

16

2 Data and Databases

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>17</td>
</tr>
</tbody>
</table>
2.2 Examples .. 18
 2.2.1 Example: DNA Microarray Data 18
 2.2.2 Example: Mixtures of Polyaromatic Hydrocarbons 19
 2.2.3 Example: Face Recognition 22
2.3 Databases ... 24
 2.3.1 Data Types .. 25
 2.3.2 Trends in Data Storage 26
 2.3.3 Databases on the Internet 27
2.4 Database Management 29
 2.4.1 Elements of Database Systems 29
 2.4.2 Structured Query Language (SQL) 30
 2.4.3 OLTP Databases 32
 2.4.4 Integrating Distributed Databases 32
 2.4.5 Data Warehousing 33
 2.4.6 Decision Support Systems and OLAP 35
 2.4.7 Statistical Packages and DBMSs 36
2.5 Data Quality Problems 36
 2.5.1 Data Inconsistencies 37
 2.5.2 Outliers .. 38
 2.5.3 Missing Data 39
 2.5.4 More Variables than Observations 40
2.6 The Curse of Dimensionality 41
Bibliographical Notes 42
Exercises ... 43

3 Random Vectors and Matrices 45
 3.1 Introduction .. 45
 3.2 Vectors and Matrices 45
 3.2.1 Notation .. 45
 3.2.2 Basic Matrix Operations 46
 3.2.3 Vectoring and Kronecker Products 47
 3.2.4 Eigenanalysis for Square Matrices 48
 3.2.5 Functions of Matrices 49
 3.2.6 Singular-Value Decomposition 50
 3.2.7 Generalized Inverses 50
 3.2.8 Matrix Norms 51
3.2.9 Condition Numbers for Matrices 52
3.2.10 Eigenvalue Inequalities 52
3.2.11 Matrix Calculus 53
3.3 Random Vectors .. 56
 3.3.1 Multivariate Moments 57
 3.3.2 Multivariate Gaussian Distribution 59
 3.3.3 Conditional Gaussian Distributions 61
3.4 Random Matrices .. 62
 3.4.1 Wishart Distribution 63
3.5 Maximum Likelihood Estimation for the Gaussian 65
 3.5.1 Joint Distribution of Sample Mean and Sample Covariance Matrix 67
 3.5.2 Admissibility .. 68
 3.5.3 James–Stein Estimator of the Mean Vector 69
Bibliographical Notes .. 72
Exercises .. 72

4 Nonparametric Density Estimation 75
 4.1 Introduction ... 75
 4.1.1 Example: Coronary Heart Disease 76
 4.2 Statistical Properties of Density Estimators 77
 4.2.1 Unbiasedness 77
 4.2.2 Consistency 78
 4.2.3 Bona Fide Density Estimators 79
 4.3 The Histogram .. 80
 4.3.1 The Histogram as an ML Estimator 81
 4.3.2 Asymptotics 82
 4.3.3 Estimating Bin Width 84
 4.3.4 Multivariate Histograms 85
 4.4 Maximum Penalized Likelihood 87
 4.5 Kernel Density Estimation 88
 4.5.1 Choice of Kernel 89
 4.5.2 Asymptotics 91
 4.5.3 Example: 1872 Hidalgo Postage Stamps of Mexico 93
 4.5.4 Estimating the Window Width 95
 4.6 Projection Pursuit Density Estimation 100
5 Model Assessment and Selection in Multiple Regression

5.1 Introduction ... 107
5.2 The Regression Function and Least Squares 108
 5.2.1 Random-\(X\) Case 109
 5.2.2 Fixed-\(X\) Case 111
 5.2.3 Example: Bodyfat Data 116
5.3 Prediction Accuracy and Model Assessment 117
 5.3.1 Random-\(X\) Case 119
 5.3.2 Fixed-\(X\) Case 119
5.4 Estimating Prediction Error 120
 5.4.1 Apparent Error Rate 120
 5.4.2 Cross-Validation 121
 5.4.3 Bootstrap 122
5.5 Instability of LS Estimates 127
5.6 Biased Regression Methods 129
 5.6.1 Example: PET Yarns and NIR Spectra 129
 5.6.2 Principal Components Regression 131
 5.6.3 Partial Least-Squares Regression 133
 5.6.4 Ridge Regression 136
5.7 Variable Selection 142
 5.7.1 Stepwise Methods 144
 5.7.2 All Possible Subsets 146
 5.7.3 Criticisms of Variable Selection Methods 147
5.8 Regularized Regression 148
5.9 Least-Angle Regression 152
 5.9.1 The Forwards-Stagewise Algorithm 152
 5.9.2 The LARS Algorithm 153
Bibliographical Notes 154
Exercises ... 155
6 Multivariate Regression

6.1 Introduction ... 159

6.2 The Fixed-\(X\) Case 160
 6.2.1 Classical Multivariate Regression Model 161
 6.2.2 Example: Norwegian Paper Quality 166
 6.2.3 Separate and Multivariate Ridge Regressions ... 167
 6.2.4 Linear Constraints on the Regression Coefficients . 168

6.3 The Random-\(X\) Case 175
 6.3.1 Classical Multivariate Regression Model 175
 6.3.2 Multivariate Reduced-Rank Regression 176
 6.3.3 Example: Chemical Composition of Tobacco 183
 6.3.4 Assessing the Effective Dimensionality 185
 6.3.5 Example: Mixtures of Polyaromatic Hydrocarbons 188

6.4 Software Packages 189

Bibliographical Notes 189

Exercises .. 191

7 Linear Dimensionality Reduction

7.1 Introduction .. 195

7.2 Principal Component Analysis 196
 7.2.1 Example: The Nutritional Value of Food 196
 7.2.2 Population Principal Components 199
 7.2.3 Least-Squares Optimality of PCA 199
 7.2.4 PCA as a Variance-Maximization Technique 202
 7.2.5 Sample Principal Components 203
 7.2.6 How Many Principal Components to Retain? 205
 7.2.7 Graphical Displays 209
 7.2.8 Example: Face Recognition Using Eigenfaces 209
 7.2.9 Invariance and Scaling 210
 7.2.10 Example: Pen-Based Handwritten Digit Recognition 211
 7.2.11 Functional PCA 212
 7.2.12 What Can Be Gained from Using PCA? 215

7.3 Canonical Variate and Correlation Analysis 215
 7.3.1 Canonical Variates and Canonical Correlations .. 215
 7.3.2 Example: COMBO-17 Galaxy Photometric Catalogue 216
Contents

7.3.3 Least-Squares Optimality of CVA 219
7.3.4 Relationship of CVA to RRR 222
7.3.5 CVA as a Correlation-Maximization Technique 223
7.3.6 Sample Estimates 226
7.3.7 Invariance 227
7.3.8 How Many Pairs of Canonical Variates to Retain? . 228
7.4 Projection Pursuit 228
 7.4.1 Projection Indexes 229
 7.4.2 Optimizing the Projection Index 232
7.5 Visualizing Projections Using Dynamic Graphics 232
7.6 Software Packages 233
Bibliographical Notes 233
Exercises ... 234

8 Linear Discriminant Analysis 237
 8.1 Introduction 237
 8.1.1 Example: Wisconsin Diagnostic Breast Cancer Data 238
 8.2 Classes and Features 240
 8.3 Binary Classification 241
 8.3.1 Bayes’s Rule Classifier 241
 8.3.2 Gaussian Linear Discriminant Analysis 242
 8.3.3 LDA via Multiple Regression 247
 8.3.4 Variable Selection 249
 8.3.5 Logistic Discrimination 250
 8.3.6 Gaussian LDA or Logistic Discrimination? 256
 8.3.7 Quadratic Discriminant Analysis 257
 8.4 Examples of Binary Misclassification Rates 258
 8.5 Multiclass LDA 260
 8.5.1 Bayes’s Rule Classifier 261
 8.5.2 Multiclass Logistic Discrimination 265
 8.5.3 LDA via Reduced-Rank Regression 266
 8.6 Example: Gilgaied Soil 271
 8.7 Examples of Multiclass Misclassification Rates 272
 8.8 Software Packages 277
Bibliographical Notes 277
Exercises ... 278
9 Recursive Partitioning and Tree-Based Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>281</td>
</tr>
<tr>
<td>9.2 Classification Trees</td>
<td>282</td>
</tr>
<tr>
<td>9.2.1 Example: Cleveland Heart-Disease Data</td>
<td>284</td>
</tr>
<tr>
<td>9.2.2 Tree-Growing Procedure</td>
<td>285</td>
</tr>
<tr>
<td>9.2.3 Splitting Strategies</td>
<td>285</td>
</tr>
<tr>
<td>9.2.4 Example: Pima Indians Diabetes Study</td>
<td>292</td>
</tr>
<tr>
<td>9.2.5 Estimating the Misclassification Rate</td>
<td>294</td>
</tr>
<tr>
<td>9.2.6 Pruning the Tree</td>
<td>295</td>
</tr>
<tr>
<td>9.2.7 Choosing the Best Pruned Subtree</td>
<td>298</td>
</tr>
<tr>
<td>9.2.8 Example: Vehicle Silhouettes</td>
<td>302</td>
</tr>
<tr>
<td>9.3 Regression Trees</td>
<td>303</td>
</tr>
<tr>
<td>9.3.1 The Terminal-Node Value</td>
<td>305</td>
</tr>
<tr>
<td>9.3.2 Splitting Strategy</td>
<td>305</td>
</tr>
<tr>
<td>9.3.3 Pruning the Tree</td>
<td>306</td>
</tr>
<tr>
<td>9.3.4 Selecting the Best Pruned Subtree</td>
<td>306</td>
</tr>
<tr>
<td>9.3.5 Example: 1992 Major League Baseball Salaries</td>
<td>307</td>
</tr>
<tr>
<td>9.4 Extensions and Adjustments</td>
<td>309</td>
</tr>
<tr>
<td>9.4.1 Multivariate Responses</td>
<td>309</td>
</tr>
<tr>
<td>9.4.2 Survival Trees</td>
<td>310</td>
</tr>
<tr>
<td>9.4.3 MARS</td>
<td>311</td>
</tr>
<tr>
<td>9.4.4 Missing Data</td>
<td>312</td>
</tr>
<tr>
<td>9.5 Software Packages</td>
<td>313</td>
</tr>
<tr>
<td>Bibliographical Notes</td>
<td>313</td>
</tr>
<tr>
<td>Exercises</td>
<td>313</td>
</tr>
</tbody>
</table>

10 Artificial Neural Networks

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>315</td>
</tr>
<tr>
<td>10.2 The Brain as a Neural Network</td>
<td>316</td>
</tr>
<tr>
<td>10.3 The McCulloch–Pitts Neuron</td>
<td>318</td>
</tr>
<tr>
<td>10.4 Hebbian Learning Theory</td>
<td>320</td>
</tr>
<tr>
<td>10.5 Single-Layer Perceptrons</td>
<td>321</td>
</tr>
<tr>
<td>10.5.1 Feedforward Single-Layer Networks</td>
<td>322</td>
</tr>
<tr>
<td>10.5.2 Activation Functions</td>
<td>323</td>
</tr>
<tr>
<td>10.5.3 Rosenblatt’s Single-Unit Perceptron</td>
<td>325</td>
</tr>
</tbody>
</table>
Contents

10.5.4 The Perceptron Learning Rule 326
10.5.5 Perceptron Convergence Theorem 326
10.5.6 Limitations of the Perceptron 328
10.6 Artificial Intelligence and Expert Systems 329
10.7 Multilayer Perceptrons 330
 10.7.1 Network Architecture 331
 10.7.2 A Single Hidden Layer 332
 10.7.3 ANNs Can Approximate Continuous Functions 333
 10.7.4 More than One Hidden Layer 334
 10.7.5 Optimality Criteria 335
 10.7.6 The Backpropagation of Errors Algorithm 336
 10.7.7 Convergence and Stopping 340
10.8 Network Design Considerations 341
 10.8.1 Learning Modes 341
 10.8.2 Input Scaling ... 342
 10.8.3 How Many Hidden Nodes and Layers? 343
 10.8.4 Initializing the Weights 343
 10.8.5 Overfitting and Network Pruning 343
10.9 Example: Detecting Hidden Messages in Digital Images ... 344
10.10 Examples of Fitting Neural Networks 347
10.11 Related Statistical Methods 348
 10.11.1 Projection Pursuit Regression 349
 10.11.2 Generalized Additive Models 350
10.12 Bayesian Learning for ANN Models 352
 10.12.1 Laplace’s Method 353
 10.12.2 Markov Chain Monte Carlo Methods 361
10.13 Software Packages .. 364
Bibliographical Notes .. 364
Exercises ... 366

11 Support Vector Machines 369
 11.1 Introduction .. 369
 11.2 Linear Support Vector Machines 370
 11.2.1 The Linearly Separable Case 371
 11.2.2 The Linearly Nonseparable Case 376
 11.3 Nonlinear Support Vector Machines 378
11.3.1 Nonlinear Transformations	379
11.3.2 The “Kernel Trick”	379
11.3.3 Kernels and Their Properties	380
11.3.4 Examples of Kernels	380
11.3.5 Optimizing in Feature Space	384
11.3.6 Grid Search for Parameters	385
11.3.7 Example: E-mail or Spam?	385
11.3.8 Binary Classification Examples	387
11.3.9 SVM as a Regularization Method	387
11.4 Multiclass Support Vector Machines	390
11.4.1 Multiclass SVM as a Series of Binary Problems	390
11.4.2 A True Multiclass SVM	391
11.5 Support Vector Regression	397
11.5.1 ϵ-Insensitive Loss Functions	398
11.5.2 Optimization for Linear ϵ-Insensitive Loss	398
11.5.3 Extensions	401
11.6 Optimization Algorithms for SVMs	401
11.7 Software Packages	403
Bibliographical Notes	404
Exercises	404

12 Cluster Analysis

12.1 Introduction	407
12.1.1 What Is a Cluster?	408
12.1.2 Example: Old Faithful Geyser Eruptions	409
12.2 Clustering Tasks	409
12.3 Hierarchical Clustering	411
12.3.1 Dendrogram	412
12.3.2 Dissimilarity	412
12.3.3 Agglomerative Nesting (*agnes*)	414
12.3.4 A Worked Example	414
12.3.5 Divisive Analysis (*diana*)	420
12.3.6 Example: Primate Scapular Shapes	420
12.4 Nonhierarchical or Partitioning Methods	422
12.4.1 K-Means Clustering (*kmeans*)	423
12.4.2 Partitioning Around Medoids (*pam*)	424
Contents

13.5 String Matching .. 476
 13.5.1 Edit Distance 476
 13.5.2 Example: Employee Careers at Lloyds Bank 477
13.6 Classical Scaling and Distance Geometry 478
 13.6.1 From Dissimilarities to Principal Coordinates ... 479
 13.6.2 Assessing Dimensionality 480
 13.6.3 Example: Airline Distances (Continued) 481
 13.6.4 Example: Mapping the Protein Universe 484
13.7 Distance Scaling 486
13.8 Metric Distance Scaling 487
 13.8.1 Metric Least-Squares Scaling 488
 13.8.2 Sammon Mapping 488
 13.8.3 Example: Lloyds Bank Employees 489
 13.8.4 Bayesian MDS 489
13.9 Nonmetric Distance Scaling 492
 13.9.1 Disparities 492
 13.9.2 The Stress Function 497
 13.9.3 Fitting Nonmetric Distance-Scaling Models 499
 13.9.4 How Good Is an MDS Solution? 500
 13.9.5 How Many Dimensions? 501
13.10 Software Packages 501
Bibliographical Notes 502
Exercises ... 503

14 Committee Machines 505
 14.1 Introduction 505
 14.2 Bagging .. 506
 14.2.1 Bagging Tree-Based Classifiers 507
 14.2.2 Bagging Regression-Tree Predictors 509
 14.3 Boosting .. 511
 14.3.1 ADABOOST: Boosting by Reweighting 512
 14.3.2 Example: Aqueous Solubility in Drug Discovery . 514
 14.3.3 Convergence Issues and Overfitting 515
 14.3.4 Classification Margins 518
 14.3.5 ADABOOST and Maximal Margins 519
 14.3.6 A Statistical Interpretation of ADABOOST 523
14.3.7 Some Questions About ADABoost
14.3.8 Gradient Boosting for Regression
14.3.9 Other Loss Functions
14.3.10 Regularization
14.3.11 Noisy Class Labels
14.4 Random Forests
14.4.1 Randomizing Tree Construction
14.4.2 Generalization Error
14.4.3 An Upper Bound on Generalization Error
14.4.4 Example: Diagnostic Classification of Four Childhood Tumors
14.4.5 Assessing Variable Importance
14.4.6 Proximities for Classical Scaling
14.4.7 Identifying Multivariate Outliers
14.4.8 Treating Unbalanced Classes
14.5 Software Packages
Bibliographical Notes
Exercises

15 Latent Variable Models for Blind Source Separation

15.1 Introduction
15.2 Blind Source Separation and the Cocktail-Party Problem
15.3 Independent Component Analysis
15.3.1 Applications of ICA
15.3.2 Example: Cutaneous Potential Recordings of a Pregnant Woman
15.3.3 Connection to Projection Pursuit
15.3.4 Centering and Sphering
15.3.5 The General ICA Problem
15.3.6 Linear Mixing: Noiseless ICA
15.3.7 Identifiability Aspects
15.3.8 Objective Functions
15.3.9 Nonpolynomial-Based Approximations
15.3.10 Mutual Information
15.3.11 The FastICA Algorithm
16 Nonlinear Dimensionality Reduction and Manifold Learning

16.1 Introduction

16.2 Polynomial PCA

16.3 Principal Curves and Surfaces
 16.3.1 Curves and Curvature
 16.3.2 Principal Curves
 16.3.3 Projection-Expectation Algorithm
 16.3.4 Bias Reduction
 16.3.5 Principal Surfaces

16.4 Multilayer Autoassociative Neural Networks
 16.4.1 Main Features of the Network
 16.4.2 Relationship to Principal Curves

16.5 Kernel PCA
 16.5.1 PCA in Feature Space
 16.5.2 Centering in Feature Space
 16.5.3 Example: Food Nutrition (Continued)
 16.5.4 Kernel PCA and Metric MDS

16.6 Nonlinear Manifold Learning
 16.6.1 Manifolds
17 Correspondence Analysis

17.1 Introduction .. 633
 17.1.1 Example: Shoplifting in The Netherlands 634
17.2 Simple Correspondence Analysis 635
 17.2.1 Two-Way Contingency Tables 635
 17.2.2 Row and Column Dummy Variables 636
 17.2.3 Example: Hair Color and Eye Color 638
 17.2.4 Profiles, Masses, and Centroids 639
 17.2.5 Chi-squared Distances 642
 17.2.6 Total Inertia and Its Decomposition 644
 17.2.7 Principal Coordinates for Row and Column Profiles 646
 17.2.8 Graphical Displays 649
17.3 Square Asymmetric Contingency Tables 651
 17.3.1 Example: Occupational Mobility in England 653
17.4 Multiple Correspondence Analysis 658
 17.4.1 The Multivariate Indicator Matrix 658
 17.4.2 The Burt Matrix 659
 17.4.3 Equivalence and an Implication 660
 17.4.4 Example: Satisfaction with Housing Conditions .. 660
 17.4.5 A Weighted Least-Squares Approach 661
17.5 Software Packages 663
Bibliographical Notes 663
Exercises .. 663

References .. 667
Contents xxv

Index of Examples 708

Author Index 710

Subject Index 721
1

Introduction and Preview

1.1 Multivariate Analysis

This book invites the reader to learn about multivariate analysis, its modern ideas, innovative statistical techniques, and novel computational tools, as well as exciting new applications.

The need for a fresh approach to multivariate analysis derives from three recent developments. First, many of our classical methods of multivariate analysis have been found to yield poor results when faced with the types of huge, complex data sets that private companies, government agencies, and scientists are collecting today; second, the questions now being asked of such data are very different from those asked of the much-smaller data sets that statisticians were traditionally trained to analyze; and, third, the computational costs of storing and processing data have crashed over the past decade, just as we see the enormous improvements in computational power and equipment. All these rapid developments have now made the efficient analysis of more complicated data a lot more feasible than ever before.

Multivariate statistical analysis is the simultaneous statistical analysis of a collection of random variables. It is partly a straightforward extension
of the analysis of a single variable, where we would calculate, for example, measures of location and variation, check violations of a particular distributional assumption, and detect possible outliers in the data. Multivariate analysis improves upon separate univariate analyses of each variable in a study because it incorporates information into the statistical analysis about the relationships between all the variables.

Much of the early developmental work in multivariate analysis was motivated by problems from the social and behavioral sciences, especially education and psychology. Thus, factor analysis was devised to provide a statistical model for explaining psychological theories of human ability and behavior, including the development of a notion of general intelligence; principal component analysis was invented to analyze student scores on a battery of different tests; canonical variate and correlation analysis had a similar origin, but in this case the relationship of interest was between student scores on two separate batteries of tests; and multidimensional scaling originated in psychometrics, where it was used to understand people's judgments of the similarity of items in a set.

Some multivariate methods were motivated by problems in other scientific areas. Thus, linear discriminant analysis was derived to solve a taxonomic (i.e., classification) problem using multiple botanical measurements; analysis of variance and its big brother, multivariate analysis of variance, derived from a need to analyze data from agricultural experiments; and the origins of regression and correlation go back to problems involving heredity and the orbits of planets.

Each of these multivariate statistical techniques was created in an era when small or medium-sized data sets were common and, judged by today's standards, computing was carried out on less-than-adequate computational platforms (desk calculators, followed by mainframe batch computing with punched cards). Even as computational facilities improved dramatically (with the introduction of the minicomputer, the hand calculator, and the personal computer), it was only recently that the floodgates opened and the amounts of data recorded and stored began to surpass anything previously available. As a result, the focus of multivariate data analysis is changing rapidly, driven by a recognition that fast and efficient computation is of paramount importance to its future.

Statisticians have always been considered as partners for joint research in all the scientific disciplines. They are now beginning to participate with researchers from some of the subdisciplines within computer science, such as pattern recognition, neural networks, symbolic machine learning, computational learning theory, and artificial intelligence, and also with those working in the new field of bioinformatics; together, new tools are being devised for handling the massive quantities of data that are routinely collected in business transactions, governmental studies, science and medical research, and for making law and public policy decisions.
We are now seeing many innovative multivariate techniques being devised to solve large-scale data problems. These techniques include nonparametric density estimation, projection pursuit, neural networks, reduced-rank regression, nonlinear manifold learning, independent component analysis, kernel methods and support vector machines, decision trees, and random forests. Some of these techniques are new, but many of them are not so new (having been introduced several decades ago but virtually ignored by the statistical community). It is because of the current focus on large data sets that these techniques are now regarded as serious alternatives to (and, in some cases, improvements over) classical multivariate techniques.

This book focuses on the areas of regression, classification, and manifold learning, topics now regarded as the core components of data mining and machine learning, which we briefly describe in this chapter. It is important to note here that these areas overlap a great deal in content and methodology: what is one person’s data-mining problem may be another’s machine-learning problem.

1.2 Data Mining

1.2.1 From EDA to Data Mining

Although the revolutionary concept of exploratory data analysis (EDA) (Tukey, 1977) changed the way many statisticians viewed their discipline, emphasis in EDA centered on quick and dirty methods (using pencil and paper) for the visualization and examination of small data sets. Enthusiasts soon introduced EDA topics into university (and high school) courses in statistics. To complete the widespread acceptance and utility of John Tukey’s exploratory procedures and his idiosyncratic nomenclature, EDA techniques were included in standard statistical software packages. Nevertheless, despite the available computational power, EDA was still perceived as a collection of small-sample, data-analytic tools.

Today, measurements on a variety of related variables often produce a data set so large as to be considered unwieldy for practical purposes. Such data now often range in size from moderate (say 10^3 to 10^4 cases) to large (10^6 cases or more). For example, billions of transactions each year are carried out by international finance companies; Internet traffic data are described as “ferocious” (Cleveland and Sun, 2000); the Human Genome Project has to deal with gigabytes ($2^{30} \sim 10^9$ bytes) of genetic information; astronomy, the space sciences, and the earth sciences have terabytes ($2^{40} \sim 10^{12}$ bytes) and soon, petabytes ($2^{50} \sim 10^{15}$ bytes), of data for processing; and remote-sensing satellite systems, in general, record many gigabytes of data each hour. Each of these data sets is incredibly large and
complex, with millions of observations being recorded on huge numbers of variables.

Furthermore, governmental statistical agencies (e.g., the Federal Statistical Service in the United States, the National Statistical Service in the United Kingdom, and similar agencies in other countries) are accumulating greater amounts of detailed economic, labor, demographic, and census information than at any time in the past. The U.S. census file based solely on administrative records, for example, has been estimated to be of size at least 10^{12} bytes (Kirkendall, 1997). Other massive data sets (e.g., crime data, health-care data) are maintained by other governmental agencies.

The availability of massive quantities of data coupled with enormous increases in computational power for relatively low cost has led to the creation of a whole new activity called data mining. With massive data sets, the process of data mining is not unlike a gigantic effort at EDA for “infinite” data sets. For many companies, their data sets of interest are so large that only the simplest of statistical computations can be carried out. In such situations, data mining means little more than computing means and standard deviations of each variable; drawing some bivariate scatterplots and carrying out simple linear regressions of pairs of variables; and doing some cross-tabulations. The level of sophistication of a data mining study depends not just on the statistical software but also on the computer hardware (RAM, hard disk, etc.) and database management system for storing the data and processing the results.

Even if we are faced with a huge amount of data, if the problem is simple enough, we can sample and use standard exploratory and confirmatory methods. In some instances, especially when dealing with government-collected data, sampling may be carried out by the agency itself. Census data, for example, is too big to be useful for most users; so, the U.S. Census Bureau creates manageable public-use files by drawing a random sample of individuals from the full data set and either removes or masks identifying information (Kirkendall, 1997).

In most applications of data mining, there is no a priori reason to sample. The entire population of data values (at least, those with which we would be interested) is readily available, and the questions asked of that data set are usually exploratory in nature and do not involve inference. Because a data pattern (e.g., outliers, data errors, hidden trends, credit-card fraud) is a local phenomenon, possibly affecting only a few observations, sampling, which typically reduces the size of the data set in drastic fashion, may completely miss the specifics of whatever pattern would be of special interest.

Data mining differs from classical statistical analysis in that statistical inference in its hypothesis-testing sense may not be appropriate. Furthermore, most of the questions asked of large data sets are different from the
classical inference questions asked of much smaller samples of data. This is not to say that sampling and subsequent modeling and inference have no role to play when dealing with massive data sets. Sampling, in fact, may be appropriate in certain circumstances as an accompaniment to any detailed data exploration activities.

1.2.2 What Is Data Mining?

It is usual to categorize data mining activities as either *descriptive* or *predictive*, depending upon the primary objective:

Descriptive data mining: Search massive data sets and discover the locations of unexpected structures or relationships, patterns, trends, clusters, and outliers in the data.

Predictive data mining: Build models and procedures for regression, classification, pattern recognition, or machine learning tasks, and assess the predictive accuracy of those models and procedures when applied to fresh data.

The mechanism used to search for patterns or structure in high-dimensional data might be manual or automated; searching might require interactively querying a database management system, or it might entail using visualization software to spot anomalies in the data. In machine-learning terms, descriptive data mining is known as *unsupervised learning*, whereas predictive data mining is known as *supervised learning*.

Most of the methods used in data mining are related to methods developed in statistics and machine learning. Foremost among those methods are the general topics of regression, classification, clustering, and visualization. Because of the enormous sizes of the data sets, many applications of data mining focus on dimensionality-reduction techniques (e.g., variable selection) and situations in which high-dimensional data are suspected of lying on lower-dimensional hyperplanes. Recent attention has been directed to methods of identifying high-dimensional data lying on nonlinear surfaces or manifolds.

Table 1.1 lists some of the application areas of data mining and examples of major research themes within those areas. Using the massive data sets that are routinely collected by each of these disciplines, advances in dealing with the topics depend crucially upon the availability of effective data mining techniques and software.

One of the most important issues in data mining is the computational problem of *scalability*. Algorithms developed for computing standard exploratory and confirmatory statistical methods were designed to be fast and computationally efficient when applied to small and medium-sized data sets; yet, it has been shown that most of these algorithms are not up to
the challenge of handling huge data sets. As data sets grow, many existing algorithms demonstrate a tendency to slow down dramatically (or even grind to a halt).

In data mining, regardless of size or complexity of the problem (essentially, the numbers of variables and observations), we require algorithms to have good performance characteristics; that is, they have to be scalable. There is no globally accepted definition of scalability, but a general idea of what this property means is the following:

Scalability: The capability of an algorithm to remain efficient and accurate as we increase the complexity of the problem.

The best scenario is that scalability should be linear. So, one goal of data mining is to create a library of scalable algorithms for the statistical analysis of large data sets.

Another issue that has to be considered by those working in data mining is the thorny problem of *statistical inference*. The twentieth century saw Fisher, Neyman, Pearson, Wald, Savage, de Finetti, and others provide a variety of competing — yet related — mathematical frameworks (frequentist, Bayesian, fiducial, decision theoretic, etc.) from which inferential theories of statistics were built. Extrapolating to a future point in time, can we expect researchers to provide a version of statistical inference for analyzing massive data sets?

There are situations in data mining when statistical inference — in its classical sense — either has no meaning or is of dubious validity: the former occurs when we have the entire population to search for answers (e.g., gene or protein sequences, astronomical recordings), and the latter occurs when a data set is a “convenience” sample rather than being a random sample drawn from some large population. When data are collected through time (e.g., retail transactions, stock-market transactions, patient records, weather records), sampling also may not make sense; the time-ordering of the observations is crucial to understanding the phenomenon generating the data, and to treat the observations as independent when they may be highly correlated will provide biased results.

Those who now work in data mining recognize that the central components of data mining are — in addition to statistical theory and methods — computing and computational efficiency, automatic data processing, dynamic and interactive data visualization techniques, and algorithm development. There are a number of software packages whose primary purpose is to help users carry out various techniques in data mining. The leading data-mining products include the packages listed (in alphabetical order) in Table 1.2.
Application areas of data mining

Marketing: Predict new purchasing trends. Identify “loyal” customers. Predict what types of customers will respond to direct mailings, telemarketing calls, advertising campaigns, or promotions. Given customers who have purchased product A, B, or C, identify those who are likely to purchase product D and, in general, which products sell together (popularly called *market basket analysis*).

Banking: Predict which customers will likely switch from one credit card company to another. Evaluate loan policies using customer characteristics. Predict behavioral use of automated teller machines (ATMs).

Financial Markets: Identify relationships between financial indicators. Track changes in an investment portfolio and predict price turning points. Analyze volatility patterns in high-frequency stock transactions using volume, price, and time of each transaction.

Insurance: Identify characteristics of buyers of new policies. Find unusual claim patterns. Identify “risky” customers.

Healthcare: Identify successful medical treatments and procedures by examining insurance claims and billing data. Identify people “at risk” for certain illnesses so that treatment can be started before the condition becomes serious. Predict doctor visits from patient characteristics. Use healthcare data to help employers choose between HMOs.

Molecular Biology: Collect, organize, and integrate the enormous quantities of data on bioinformatics, functional genomics, proteomics, gene expression monitoring, and microarrays. Analyze amino acid sequences and deoxyribonucleic acid (DNA) microarrays. Use gene expression to characterize biological function. Predict protein structure and identify related proteins.

Astronomy: Catalogue (as stars, galaxies, etc.) hundreds of millions of objects in the sky using hundreds of attributes, such as position, size, shape, age, brightness, and color. Identify patterns and relationships of objects in the sky.

Forensic Accounting: Identify fraudulent behavior in credit card usage by looking for transactions that do not fit a particular cardholder’s buying habits. Identify fraud in insurance and medical claims. Identify instances of tax evasion. Detect illegal activities that can lead to suspected money laundering operations. Identify stock market behaviors that indicate possible insider-trading operations.

Sports: Identify in realtime which players and which designed plays are most effective at specific points in the game and in relation to combinations of opposing players. Identify the exact moment when intriguing play patterns occurred. Discover game patterns hidden behind summary statistics.
1.2.3 Knowledge Discovery

Data mining has been described (Fayyad, Piatetsky-Shapiro, and Smyth, 1996) as a step in a more general process known as knowledge discovery in databases (KDD). The “knowledge” acquired by KDD has to be interesting, non-trivial, non-obvious, previously unknown, and potentially useful.

KDD is a multistep process designed to assist those who need to search huge data sets for “nuggets of useful information.” In KDD, assistance is expected to be intelligent and automated, and the process itself is interactive and iterative.

KDD is composed of six primary activities:

1. selecting the target data set (which data set or which variables and cases are to be used for data mining);

2. data cleaning (removal of noise, identification of potential outliers, imputing missing data);

3. preprocessing the data (deciding upon data transformations, tracking time-dependent information);

4. deciding which data-mining tasks are appropriate (regression, classification, clustering, etc.);

5. analyzing the cleaned data using data-mining software (algorithms for data reduction, dimensionality reduction, fitting models, prediction, extracting patterns);

6. interpreting and assessing the knowledge derived from data-mining results.

In KDD, and hence in data mining, the descriptive aspect is more important than the predictive aspect, which forms the main goal of machine learning.
1.3 Machine Learning

Machine learning evolved out of the subfield of computer science known as artificial intelligence (AI). Whereas the focus of AI is to make machines intelligent, able to think rationally like humans and solve problems, machine learning is concerned with creating computer systems and algorithms so that machines can “learn” from previous experience. Because intelligence cannot be attained without the ability to learn, machine learning now plays a dominant role in AI.

1.3.1 How Does a Machine Learn?

A machine learns when it is able to accumulate experience (through data, programs, etc.) and develop new knowledge so that its performance on specific tasks improves over time. This idea of learning from experience is central to the various types of problems encountered in machine learning, especially problems involving classification (e.g., handwritten digit recognition, speech recognition, face recognition, text classification). The general goal of each of these problems is to find a systematic way of classifying a future example (e.g., a handwriting sample, a spoken word, a face image, a text fragment). Classification is based upon measurements on that future example together with knowledge obtained from a learning (or training) sample of similar examples (where the class of each example is completely determined and known, and the number of classes is finite and known).

The need to create new methods and terminology for analyzing large and complex data sets has led to researchers from several disciplines — statistics, pattern recognition, neural networks, symbolic machine learning, computational learning theory, and, of course, AI — to work together to influence the development of machine learning.

Among the techniques that have been used to solve machine-learning problems, the topics that are of most interest to statisticians — density estimation, regression, and pattern recognition (including neural networks, discriminant analysis, tree-based classifiers, random forests, bagging and boosting, support vector machines, clustering, and dimensionality-reduction methods) — are now collectively referred to as statistical learning and constitute many of the topics discussed in this book. Vladimir N. Vapnik, one of the founders of statistical learning theory, relates statistics to learning theory in the following way (Vapnik, 2000, p. x):

The problem of learning is so general that almost any question that has been discussed in statistical science has its analog in learning theory. Furthermore, some very important general results were first found in the framework of learning theory and then formulated in the terms of statistics.
The machine-learning community divides learning problems into various categories: the two most relevant to statistics are those of *supervised learning* and *unsupervised learning*.

Supervised learning: Problems in which the learning algorithm receives a set of continuous or categorical input variables and a correct output variable (which is observed or provided by an explicit “teacher”) and tries to find a function of the input variables to approximate the known output variable: a continuous output variable yields a regression problem, whereas a categorical output variable yields a classification problem.

Unsupervised learning: Problems in which there is no information available (i.e., no explicit “teacher”) to define an appropriate output variable; often referred to as “scientific discovery.”

The goal in unsupervised learning differs from that of supervised learning. In supervised learning, we study relationships between the input and output variables; in unsupervised learning, we explore particular characteristics of the input variables only, such as estimating the joint probability density, searching out clusters, drawing proximity maps, locating outliers, or imputing missing data.

Sometimes there might not be a “bright-line” distinction between supervised and unsupervised learning. For example, the dimensionality-reduction technique of principal component analysis (PCA) has no explicit output variable and, thus, appears to be an unsupervised-learning method; however, as we will see, PCA can be formulated in terms of a multivariate regression model where the input variables are also used as output variables, and so PCA can also be regarded as a supervised-learning method.

1.3.2 Prediction Accuracy

One of the most important tasks in statistics is to assess the accuracy of a predictor (e.g., regression estimator or classifier). The measure of prediction accuracy typically used is that of *prediction error*, defined generically as

Prediction error: In a regression problem, the mean of the squared errors of prediction, where error is the difference between a true output value and its corresponding predicted output value; in a classification problem, the probability of misclassifying a case.

The simplest estimate of *prediction error* is the *resubstitution error*, which is computed as follows. In a regression problem, the fitted model is used to predict each of the (known) output values from the entire data set, and the resubstitution estimate is then the mean of the squared residuals,
also known as the residual mean square. In a classification problem, the classifier predicts the (known) class of each case in the entire data set, a correct prediction is scored as a 0 and a misclassification is scored as a 1, and the resubstitution estimate is the proportion of misclassified cases.

Because the resubstitution estimate uses the same data as was used to derive the predictor, the result is an overly optimistic view of prediction accuracy. Clearly, it is important to do better.

1.3.3 Generalization

The need to improve upon the resubstitution estimator of prediction accuracy led naturally to the concept of generalization: we want an estimation procedure to generalize well; that is, to make good predictions when applied to a data set independent of that used to fit the model. Although this is not a new idea — it has existed in statistics for a long time (see, e.g., Mosteller and Tukey, 1977, pp. 37–38) — the machine-learning community embraced this particular concept (adopting the name from psychology) and made it a central issue in the theory and applications of machine learning.

Where do we find such an independent data set? One way is to gather fresh data. However, “when fresh gathering is not feasible, good results can come from going to a body of data that has been kept in a locked safe where it has rested untouched and unscanned during all the choices and optimizations” (Mosteller and Tukey, 1977, p. 38). The data in the “locked safe” can be viewed as holding back a portion of the current data from the model-fitting phase and using it instead for assessment purposes. If an independent set of data is not used, then we will overestimate the model’s predictive accuracy.

In fact, it is now common practice — assuming the data set is large enough — to use a random mechanism to separate the data into three nonoverlapping and independent data sets:

- a learning (or training) set \(\mathcal{L} \), a data set where “anything goes ... including hunches, preliminary testing, looking for patterns, trying large numbers of different models, and eliminating outliers” (Efron, 1982, p. 49);

- a validation set \(\mathcal{V} \), a data set to be used for model selection and assessment of competing models (usually on the basis of predictive ability);

- a test set \(\mathcal{T} \), a data set to be used for assessing the performance of a completely specified final model.

The key assumption here is that the three subsets of the data are each generated by the same underlying distribution. In some instances, learning data may be taken from historical records.
As a simple guideline, the learning set should consist of about 50% of the data, whereas the validation and test sets may each consist of 25% (although these percentages are not written in stone). In some instances, we may find it convenient to merge the validation set with the test set, thus forming a larger test set. For example, we often see publicly available data sets in Internet databases divided into a learning set and a test set.

1.3.4 Generalization Error

In supervised learning problems, it is important to assess how closely a particular model (function of the inputs) fits the data (the outputs). As before, we use prediction error as our measure of prediction accuracy.

In regression problems, there are two different types of prediction error. For both types, we first fit a model to the learning set L. Then, we use that fitted model to predict the output values of either L (given input values from L) or the test set T (given input values from T). Prediction error is the mean (computed only over the appropriate data set) of the squared-errors of prediction (where error = true output value – predicted output value). If we average over L, the prediction error is called the regression learning error (equivalent to the resubstitution estimate computed only over L), whereas if we average over T, the prediction error is called the regression test error.

A similar strategy is used in classification problems; only the definition of prediction error is different. We first build a classifier from L. Next, we use that classifier to predict the class of each data vector in either L or T. For each prediction, we assign the value of 0 to a correct classification and 1 to a classification error. The prediction error is then defined as the average of all the 0s and 1s over the appropriate data set (i.e., the proportion of misclassified observations). If we average over L, then prediction error is referred to as the classification learning error (equivalent to the resubstitution estimate computed only over L), whereas averaging over T yields the classification test error.

If the learning set L is moderately sized, we may feel that using only a portion of the entire data set to fit the model is a waste of good data. Alternative data-splitting methods for estimating test error are based upon cross-validation (Stone, 1974) and the bootstrap (Efron, 1979):

V-fold cross-validation: Randomly divide the entire data set into, say, V nonoverlapping groups of roughly equal size; remove one of the groups and fit the model using the combined data from the other $V-1$ groups (which forms the learning set); use the omitted group as the test set, predict its output values using the fitted model, and compute the prediction error for the omitted group; repeat this procedure V times, each time removing a different group; then, average the resulting V
prediction errors to estimate the test error. The number of groups V can be any number from 2 to the sample size.

Bootstrap: Select a “bootstrap sample” from the entire data set by drawing a random sample *with replacement* having the same size as the parent data set, so that the sample may contain repeated observations; fit a model using this bootstrap sample and compute its prediction error; repeat this sampling procedure, say, 1000 times, each time computing a prediction error; then, average all the prediction errors to estimate the test error.

These are generic descriptions of the two procedures; specific descriptions are given in various sections of this book. In particular, the definition of the bootstrap is actually more complicated than that given by this description because it depends on what is assumed about the stochastic model generating the data. Although both cross-validation and the bootstrap are computationally intensive techniques, cross-validation uses the entire data set in a more efficient manner than the division into a learning set and an independent test set. We also caution that, in some applications, it may not make sense to use one of these procedures.

The expected prediction error over an independent test set is called *infinite test error* or *generalization error*. We estimate generalization error by the test error. One goal of *generalization theory* is to choose that regression model or classifier that gives the smallest generalization error.

1.3.5 Overfitting

To minimize generalization error, it is tempting to find a model that will fit the data in the learning set as accurately as possible. This is not usually advisable because it may make the selected model too complicated. The resulting learning error will be very small (because the fitted model has been optimized for that data set), whereas the test error will be large (a consequence of *overfitting*).

Overfitting: Occurs when the model is too large or complicated, or contains too many parameters relative to the size of the learning set. It usually results in a very small learning error and a large generalization (test) error.

One can control such temptation by following the principle known as *Ockham’s razor*, which encourages us to choose simple models while not losing track of the need for accuracy. Simple models are generally preferred if either the learning set is too small to derive a useful estimate of the model or fitting a more complex model would necessitate using huge amounts of computational resources.
We illustrate the idea of overfitting with a simple regression example. Using 10 equally spaced x values as the learning set, we generate corresponding y values from the function $y = 0.5 + 0.25\cos(2\pi x) + e$, where the Gaussian noise component e has mean zero and standard deviation 0.06. We try to approximate the underlying unknown function (the cosinusoid) by a polynomial in x, where the problem is to decide on the degree of the polynomial. In the top-left panel of Figure 1.1, we give the cosinusoid and the 10 generated points; in the top-right panel, a linear regression function gives a poor fit to the points and shows the result of underfitting by using too few parameters; in the bottom-left panel, a cubic polynomial is fitted to the data, showing an improved approximation to the cosinusoid; and in the bottom-right panel, by increasing the fit to a 9th-degree polynomial, we ensure that the fitted curve passes through each point exactly. However, the 9th-degree polynomial actually makes the fit much worse by introducing unwanted fluctuations and shows the result of overfitting by using too many parameters.

How would such polynomial fits affect a test set obtained by using the same x values but different noise values (hence, different y values) in the above cosinusoid model? In Figure 1.2, we plot the prediction errors for both the learning set and the test set. The learning error, as expected, decreases monotonically to zero when we fit a 9th-degree polynomial. This behavior for the learning error is typical whenever the fitted model ranges from the very simple to the most complex. The test error decreases to a 4th degree polynomial and then increases, indicating that models with too many parameters will have poor generalization properties.

Researchers have suggested several methods for reducing the effects of overfitting. These include methods that employ some form of averaging of predictions made by a number of different models fit to the learning set (e.g., the “bagging” and “boosting” algorithms of Chapter 14) and regularization (where complex models are penalized in favor of simpler models). Bayesian arguments in favor of a related idea of “model averaging” have also been proposed (see Hoeting, Madigan, Raftery, and Volinsky, 1999, for an excellent review of the topic).

1.4 Overview of Chapters

This book is divided into 17 chapters. Chapter 2 describes multivariate data, database management systems, and data problems. Chapter 3 reviews basic vector and matrix notation, introduces random vectors and matrices and their distributions, and derives maximum likelihood estimates for the multivariate Gaussian mean, including the James–Stein shrinkage estimator. Chapter 4 provides the elements of nonparametric density estimation. Chapters 5 reviews topics in multiple linear regression, including
FIGURE 1.1. Ten y-values corresponding to equally spaced x-values were generated from the cosinusoid $y = 0.5 + 0.25\cos(2\pi x) + e$, where the noise component $e \sim \mathcal{N}(0, (0.06)^2)$. Top-left panel: the true cosinusoid is shown in black with the 10 points in blue; top-right: the red line is the ordinary least-squares (OLS) linear regression fit to the points; bottom-left: the red curve is an OLS cubic polynomial fit to the points; bottom-right: the red curve is a 9th-degree polynomial that passes through every point.

FIGURE 1.2. Prediction error from the learning set (blue curve) and test set (red curve) based upon polynomial fits to data generated from a cosinusoid curve with noise.
model assessment (through cross-validation and the bootstrap), biased regression, shrinkage, and model selection, concepts that will be needed in later chapters.

In Chapter 6, we discuss multivariate regression for both the fixed-X and random-X cases. We discuss multivariate analysis of variance and multivariate reduced-rank regression (RRR). RRR provides the foundation for a unified theory of multivariate analysis, which includes as special cases the classical techniques of principal component analysis, canonical variate analysis, linear discriminant analysis, factor analysis, and correspondence analysis. In Chapter 7, we introduce the idea of (linear) dimensionality reduction, which includes principal component analysis, canonical variate and correlation analysis, and projection pursuit. Chapter 8 discusses Fisher’s linear discriminant analysis. Chapter 9 introduces recursive partitioning and classification and regression trees. Chapter 10 discusses artificial neural networks via analogies to neural networks in the brain, artificial intelligence, and expert systems, as well as the related statistical techniques of projection pursuit regression and generalized additive models. Chapter 11 deals with classification using support vector machines. Chapter 12 describes the many algorithms for cluster analysis and unsupervised learning.

In Chapter 13, we discuss multidimensional scaling and distance geometry, and Chapter 14 introduces committee machines and ensemble methods, such as bagging, boosting, and random forests. Chapter 15 discusses independent component analysis. Chapter 16 looks at nonlinear methods for dimensionality reduction, especially the various flavors of nonlinear principal component analysis, and nonlinear manifold learning. Chapter 17 describes correspondence analysis.

Bibliographical Notes

2
Data and Databases

2.1 Introduction

Multivariate data consist of multiple measurements, observations, or responses obtained on a collection of selected variables. The types of variables usually encountered often depend upon those who collect the data (the domain experts), possibly together with some statistical colleagues; for it is these people who actively decide which variables are of interest in studying a particular phenomenon. In other circumstances, data are collected automatically and routinely without a research direction in mind, using software that records every observation or transaction made regardless of whether it may be important or not.

Data are raw facts, which can be numerical values (e.g., age, height, weight), text strings (e.g., a name), curves (e.g., a longitudinal record regarded as a single functional entity), or two-dimensional images (e.g., photograph, map). When data sets are “small” in size, we find it convenient to store them in spreadsheets or as flat files (large rectangular arrays). We can then use any statistical software package to import such data for subsequent data analysis, graphics, and inference. As mentioned in Chapter 1, massive data sets are now sprouting up everywhere. Data of such size need to be stored and manipulated in special database systems.

2.2 Examples

We first describe some examples of the data sets to be encountered in this book.

2.2.1 Example: DNA Microarray Data

The DNA (deoxyribonucleic acid) microarray has been described as “one of the great unintended consequences of the Human Genome Project” (Baker, 2003). The main impact of this enormous scientific achievement is to provide us with large and highly structured microarray data sets from which we can extract valuable genetic information. In particular, we would like to know whether “gene expression” (the process by which genetic information encoded in DNA is converted, first, into mRNA (messenger ribonucleic acid), and then into protein or any of several types of RNA) is any different for cancerous tissue as opposed to healthy tissue.

Microarray technology has enabled the expression levels of a huge number of genes within a specific cell culture or tissue to be monitored simultaneously and efficiently. This is important because differences in gene expression determine differences in protein abundance, which, in turn, determine different cell functions. Although protein abundance is difficult to determine, molecular biologists have discovered that gene expression can be measured indirectly through microarray experiments.

Popular types of microarray technologies include cDNA microarrays (developed at Stanford University) and high-density, synthetic, oligonucleotide microarrays (developed by Affymetrix, Inc., under the GENECHIP® trademark). Both technologies use the idea of hybridizing a “target” (which is usually either a single-stranded DNA or RNA sequence, extracted from biological tissue of interest) to a DNA “probe” (all or part of a single-stranded DNA sequence printed as “spots” onto a two-way grid of dimples in a glass or plastic microarray slide, where each spot corresponds to a specific gene).

The microarray slide is then exposed to a set of targets. Two biological mRNA samples, one obtained from cancerous tissue (the experimental sample), the other from healthy tissue (the reference sample), are reverse-transcribed into cDNA (complementary DNA); then, the reference cDNA is labeled with a green fluorescent dye (e.g., Cy3) and the experimental cDNA is labeled with a red fluorescent dye (e.g., Cy5). Fluorescence measurements are taken of each dye separately at each spot on the array. High gene expression in the tissue sample yields large quantities of hybridized cDNA, which means a high intensity value. Low intensity values derive from low gene expression.

The primary goal is to compare the intensity values, R and G, of the red and green channels, respectively, at each spot on the array. The most
popular statistic is the intensity log-ratio, $M = \log(R/G) = \log(R) - \log(G)$. Other such functions include the probe value, $PV = \log(R - G)$, and the average log-intensity, $A = \frac{1}{2}(\log R + \log G)$. The logarithm in each case is taken to base 2 because intensity values are usually integers ranging from 0 to $2^{16} - 1$.

Microarray data is a matrix whose rows are genes and whose columns are samples, although this row-column arrangement may be reversed. The genes play the role of variables, and the samples are the observations studied under different conditions. Such “conditions” include different experimental conditions (treatment vs. control samples), different tissue samples (healthy vs. cancerous tumors), and different time points (which may incorporate environmental changes).

For example, Figure 2.1 displays the heatmap for the expression levels of 92 genes obtained from a microarray study on 62 colon tissue samples, where the entries range from negative values (green) to positive values (red). The tissue samples were derived from 40 different patients: 22 patients each provided both a normal tissue sample and a tumor tissue sample, whereas 18 patients each provided only a colon tumor sample. As a result, we have tumor samples from 40 patients (T_1, \ldots, T_{40}) and normal samples from 22 patients ($\text{Normal}_1, \ldots, \text{Normal}_{21}$), and this is the way the samples are labeled.

From the heatmap, we wish to identify expression patterns of interest in microarray data, focusing in on which genes contribute to those patterns across the various conditions. Multivariate statistical techniques applied to microarray data include supervised learning methods for classification and the unsupervised methods of cluster analysis.

2.2.2 Example: Mixtures of Polyaromatic Hydrocarbons

This example illustrates a very common problem in chemometrics. The data (Brereton, 2003, Section 5.1.2) come from a study of polyaromatic hydrocarbons (PAHs), which are described as follows:

Polyaromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants, which have been linked with tumors and effects on reproduction. PAHs are formed during the burning of coal, oil, gas, wood, tobacco, rubbish, and other organic

1. The data can be found in the file `alontop.txt` on the book’s website. The 92 genes are a subset of a larger set of more than 6500 genes whose expression levels were measured on these 62 tissue samples (Alon et al., 1999).
FIGURE 2.1. Gene expression heatmap of 92 genes (columns) and 62 tissue samples (rows) for the colon cancer data. The tissue samples are divided into 40 colon cancer samples (T1–T40) and 22 normal samples (Normal1–Normal22).

substances. They are also present in coal tars, crude oil, and petroleum products such as creosote and asphalt. There are some natural sources, such as forest fires and volcanoes, but PAHs mainly arise from combustion-related or oil-related man-made sources. A few PAHs are used by industry in medicines and to make dyes, plastics, and pesticides.

Table 2.1 gives a list of the 10 PAHs that are used in this example.

The data were collected in the following way. From the 10 PAHs listed in Table 2.1, 50 complex mixtures of certain concentrations (in mg L) of those PAHs were formed. From each such mixture, an electronic absorption

\footnote{The data, which can be found in the file PAH.txt on the book’s website, can also be downloaded from the website statmaster.sdu.dk/courses/ST02/data/index.html. The fifty sample observations were originally divided into two independent sets, each of 25 observations, but were combined here so that we would have more observations than either set of data for the example.}
TABLE 2.1. Ten polyaromatic hydrocarbon (PAH) compounds.

pyrene (Py), acenaphthene (Ace), anthracene (Anth), acenaphthylene (Acy), chrysene (Chry), benzantracene (Benz), fluoranthene (Fluora), fluorene (Fluore), naphthalene (Nap), phenanthracene (Phen)

spectrum (EAS) was computed. The spectra were then digitized at 5 nm intervals into \(r = 27 \) wavelength channels from 220 nm to 350 nm. The 50 spectra are displayed in Figure 2.2. The scatterplot matrix of the 10 PAHs is displayed in Figure 2.3. Notice that most of these scatterplots appear as \(5 \times 5 \) arrays of 50 points, where only half the points are visible because of a replication feature in the experimental design.

Using the resulting digitized values of the spectra, we wish to predict the individual concentrations of PAHs in the mixture. In chemometrics, this type of regression problem is referred to as multivariate inverse calibration: although the concentrations are actually the input variables and the spectrum values are the output variables in the chemical process, the real

FIGURE 2.2. Electronic absorption spectroscopy (EAS) spectra of 50 samples of polyaromatic hydrocarbons (PAH), where the spectra are measured at 25 wavelengths within the range 220–350 nm.
FIGURE 2.3. Scatterplot matrix of the mixture concentrations of the 10 chemicals in Table 2.1. In each scatterplot, there are 50 points; in most scatterplots, 25 of the points appear in a 5 × 5 array, and the other 25 are replications. In the remaining four scatterplots, there are eight distinguishable points with different numbers of replications.

The goal is to predict the mixture concentrations (which are difficult to determine) from the spectra (easy to compute), and not vice versa.

2.2.3 Example: Face Recognition

Until recently, human face recognition was primarily based upon identifying individual facial features such as eyes, nose, mouth, ears, chin, head outline, glasses, and facial hair, and then putting them together computationally to construct a face. The most used approach today (and the one we describe here) is an innovative computerized system called *eigenfaces*, which operates directly on an image-based representation of faces (Turk and Pentland, 1991). Applications of such work include homeland security, video surveillance, human-computer interaction for entertainment purposes, robotics, and “smart” cards (e.g., passports, drivers’ licences, voter registration).

Each face, as a picture image, might be represented by a \((c \times d)\)-matrix of intensity values, which are usually quantized to 8-bit gray scale (0–255, with
0 as black and 255 as white). These values are then scaled and converted to double precision, with values in [0, 1]. The values of \(c \) and \(d \) depend upon the degree of resolution needed. The matrix is then “vec’ed” by stacking the columns of the matrix under one another to form a \(\mathbf{c}d \)-vector in image space. For example, if an image is digitized into a \((256 \times 256)\)-array of pixels, that face is now a point in a 65,536-dimensional space. We can view all possible images of one particular face as a lower-dimensional manifold (face space) embedded within the high-dimensional image space.

There are a number of repositories of face images. The data for this example were taken from the Yale Face Database (Belhumeur, Hespanha, and Kriegman, 1997).\(^4\) which contains 165 frontal-face grayscale images covering 15 individuals taken under 11 different conditions of different illumination (centerlight, leftlight, rightlight, normal), expression (happy, sad, sleepy, surprised, wink), and glasses (with and without). Each image has

\(^4\)A list of the many face databases that can be accessed on the Internet, including the Yale Face Database, can be found at the website www.face-rec.org/databases.
size 320×243, which then gets stacked into an r-vector, where $r = 77,760$. Figure 2.4 shows the images of a single individual taken under 9 of those 11 conditions. The problem is one of dimensionality reduction: what is the fewest number of variables necessary to identify these types of facial images?

2.3 Databases

A *database* is a collection of persistent data, where by “persistent” we mean data that can be removed from the database only by an explicit request and not through an application’s side effect. The most popular format for organizing data in a database is in the form of *tables* (also called *data arrays* or *data matrices*), each table having the form of a rectangular array arranged into rows and columns, where a row represents the values of all variables on a single multivariate observation (*response*, *case*, or *record*), and a column represents the values of a single *variable* for each observation.

In this book, a typical database table having n multivariate observations taken on r variables will be represented by an $(r \times n)$-matrix,

$$
\mathbf{X} = \begin{pmatrix}
 x_{11} & x_{12} & \cdots & x_{1n} \\
 x_{21} & x_{22} & \cdots & x_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{r1} & x_{r2} & \cdots & x_{rn}
\end{pmatrix},
$$

say, having r rows and n columns. In (2.1), x_{ij} represents the value in the ith row ($i = 1, 2, \ldots, r$) and jth column ($j = 1, 2, \ldots, n$) of \mathbf{X}. Although database tables are set up to have the form of \mathbf{X}^τ, with variables as columns and observations as rows, we will find it convenient in this book to set \mathbf{X} to be the transpose of the database table.

Databases exist for storing information. They are used for any of a number of different reasons, including statistical analysis, retrieving information from text-based documents (e.g., libraries, legislative records, case dockets in litigation proceedings), or obtaining administrative information (e.g., personnel, sales, financial, and customer records) needed for managing an organization. Databases can be of any size. Even small databases can be very useful if accessed often. Setting up a large and complex database typically involves a major financial commitment on the part of an organization, and so the database has to remain useful over a long time period. Thus, we should be able to extend a database as additional records become available and to correct, delete, and update records as necessary.
2.3.1 Data Types

Databases usually consist of mixtures of different types of variables:

Indexing: These are usually names, tags, case numbers, or serial numbers that identify a respondent or group of respondents. Their values may indicate the location where a particular measurement was taken, or the month or day of the year that an observation was made.

There are two special types of indexing variables:

1. A *primary key* is an indexing variable (or set of indexing variables) that uniquely identifies each observation in a database (e.g., patient numbers, account numbers).
2. A *foreign key* is an indexing variable in a database where that indexing variable is a primary key of a related database.

Binary: This is the simplest type of variable, having only two possible responses, such as YES or NO, SUCCESS or FAILURE, MALE or FEMALE, WHITE or NON-WHITE, FOR or AGAINST, SMOKER or NON-SMOKER, and so on. It is usually coded 0 or 1 for the two possible responses and is often referred to as a dummy or indicator variable.

Boolean: A *Boolean* variable has the two responses TRUE or FALSE but may also have the value UNKNOWN.

Nominal: This *character-string* data type is a more general version of a binary variable and has a fixed number of possible responses that cannot be usefully ordered. These responses are typically coded alphanumerically, and they usually represent disjoint classifications or categories set up by the investigator. Examples include the geographical location where data on other variables are collected, brand preference in a consumer survey, political party affiliation, and ethnic-racial identification of respondent.

Ordinal: The possible responses for this character-string data type are linearly ordered. An example is “excellent, good, fair, poor, bad, awful” (or “strongly disagree” to “strongly agree”). Another example is bond ratings for debt issues, recorded as AA+, AA, AA-, A+, A, A-, B+, B, and B-. Such responses may be assigned scores or rankings. They are often coded on a “ranking scale” of 1–5 (or 1–10). The main problem with these ranking scales is the implicit assumption of equidistance of the assigned scores. Brand preferences can sometimes be regarded as ordered.
Integer: The response is usually a nonnegative whole number and is often a count.

Continuous: This is a measured variable in which the continuity assumption depends upon a sufficient number of digits (and decimal places) being recorded. Continuous variables are specified as *numeric* or *decimal* in database systems, depending upon the precision required.

We note an important distinction between variables that are fixed and those that are stochastic:

Fixed: The values of a fixed variable have deliberately been set in advance, as in a designed experiment, or are considered “causal” to the phenomenon in question; as a result, interest centers only on a specific group of responses. This category usually refers to indexing variables but can also include some of the above types.

Stochastic: The values of a stochastic variable can be considered as having been chosen at random from a potential list (possibly, the real line or a portion of it) in some stochastic manner. In this sense, the values obtained are representative of the entire range of possible values of the variable in question.

We also need to distinguish between input and output variables:

Input variable: Also called a *predictor* or *independent variable*, typically denoted by X, and may be considered to be fixed (or preset or controlled) through a statistically designed experiment, or stochastic if it can take on values that are observed but not controlled.

Output variable: Also called a *response* or *dependent variable*, typically denoted by Y, and which is stochastic and dependent upon the input variables.

Most of the methods described in this book are designed to elicit information concerning the extent to which the outputs depend upon the inputs.

2.3.2 Trends in Data Storage

As data collections become larger and larger, and areas of research that were once “data-poor” now become “data-rich,” it is how we store those data that is of great importance.

For the individual researcher working with a relatively simple database, data are stored locally on hard disks. We know that hard-disk storage capacity is doubling annually (*Kryder’s Law*), and the trend toward tiny,
2.3 Databases

Table 2.2. Internet websites containing many different databases.

<table>
<thead>
<tr>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.ics.uci.edu/pub/machine-learning-databases</td>
</tr>
<tr>
<td>lib.stat.cmu.edu/datasets</td>
</tr>
<tr>
<td>www.statsci.org/datasets.html</td>
</tr>
<tr>
<td>www.amstat.org/publications/jse/jse_data_archive.html</td>
</tr>
<tr>
<td>www.physionet.org/physiobank/database</td>
</tr>
<tr>
<td>biostat.mc.vanderbilt.edu/twiki/bin/view/Main/DataSets</td>
</tr>
</tbody>
</table>

High-capacity hard drives has outpaced even the rate of increase in number of transistors that can be placed on an integrated circuit (Moore’s Law). Gordon E. Moore, Intel co-founder, predicted in 1965 that the number of transistors that can be placed on an integrated circuit would continue to increase at a constant rate for at least 10 years. In 1975, Moore predicted that the rate would double every two years. So far, this assessment has proved to be accurate, although Moore stated in 2005 that his law, which may hold for another two decades, cannot be sustained indefinitely.

Because chip speeds are doubling even faster than Moore had anticipated, we are seeing rapid progress toward the manufacturing of very small, high-performance storage devices. New types of data storage devices include three-dimensional holographic storage, where huge quantities (e.g., a terabyte) of data can be stored into a space the size of a sugar cube.

For large institutions, such as health maintenance organizations, educational establishments, national libraries, and industrial plants, data storage is a more complicated issue, and the primary storage facility is usually a remote “data warehouse.” We describe such storage facilities in Section 2.4.5.

2.3.3 Databases on the Internet

In Table 2.2, we list a few Internet websites from which databases of various sizes can be downloaded. Many of the data sets used as examples in this book were obtained through these websites.

There are also many databases available on the Internet that specialize in bioinformatics information, such as biological databases and published articles. These databases contain an amazingly rich variety of biological data, including DNA, RNA, and protein sequences, gene expression profiles, protein structures, transcription factors, and biochemical pathways. See Table 2.3 for examples of such websites.

A recent development in data-mining applications is the processing and categorization of natural-language text documents (e.g., news items, scientific publications, spam detection). With the rapid growth of the Internet and e-mail, academics, scientists, and librarians have shown enormous interest in mining the structured or unstructured knowledge present in large
collections of text documents. To help those whose research interests lie in analyzing text information, large databases (having more than 10,000 features) of text documents are now available.

For example, Table 2.4 lists a number of text databases. Two of the most popular collections of documents come from Reuters, Ltd., which is the world’s largest text and television news agency; the English-language collections Reuters-21578 containing 21,578 news items and RCV1 (Reuters Corpus Volume 1) (Lewis, Yang, Rose, and Li, 2004) containing 806,791 news items are drawn from online databases. The 20 Newsgroups database (donated by Tom Mitchell) contains 20,000 messages taken from 20 Usenet newsgroups. The OHSUMED text database (Hersh, Buckley, Leone, and Hickam, 1994) from Ohio State University contains 348,566 references and abstracts derived from Medline, an on-line medical information database, for the period 1987–1991.

Computerized databases of scientific articles (e.g., ArXiv, see Table 2.4) are assembled to (Shiffrin and Börner, 2004):

\[
\text{I}dentify \text{ and organize research areas according to experts, institutions, grants, publications, journals, citations, text, and figures; discover interconnections among these; establish the import of research; reveal the export of research among fields; examine dynamic changes such as speed of growth and diversification; highlight economic factors in information production and dissemination; find and map scientific and social networks; and identify the impact of strategic and applied research funding by government and other agencies.}
\]

A common element of text databases is the dimensionality of the data, which can run well into the thousands. This makes visualization especially difficult. Furthermore, because text documents are typically noisy, possibly even having differing formats, some automated preprocessing may be necessary in order to arrive at high-quality, clean data. The availability of text databases in which preprocessing has already been undertaken is proving to be an important development in database research.

TABLE 2.3. Internet websites containing microarray databases.

<table>
<thead>
<tr>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.broad.mit.edu/tools/data.html</td>
</tr>
<tr>
<td>sdmc.lit.org.sg/GEDatasets/Datasets.html</td>
</tr>
<tr>
<td>genome-ww5.stanford.edu</td>
</tr>
<tr>
<td>www.bioconductor.org/packages/1.8/AnnotationData.html</td>
</tr>
<tr>
<td>www.ncbi.nlm.nih.gov/geo</td>
</tr>
</tbody>
</table>
2.4 Database Management

After data have been recorded and physically stored in a database, they need to be accessed by an authorized user who wishes to use the information. To access the database, the user has to interact with a database management system, which provides centralized control of all basic storage, access, and retrieval activities related to the database, while also minimizing duplications, redundancies, and inconsistencies in the database.

2.4.1 Elements of Database Systems

A database management system (DBMS) is a software system that manages data and provides controlled access to the database through a personal computer, an on-line workstation, or a terminal to a mainframe computer or network of computers. Database systems (consisting of databases, DBMS, and application programs) are typically used for managing large quantities of data. If we are working with a small data set with a simple structure, if the particular application is not complicated, and if multiple concurrent users (those who wish to access the same data at the same time) are not an issue, then there is no need to employ a DBMS.

A database system can be regarded as two entities: a server (or backend), which holds the DBMS, and a set of clients (or frontend), each of which consists of a hardware and a software component, including application programs that operate on the DBMS. Application programs typically include a query language processor, report writers, spreadsheets, natural language processors, and statistical software packages. If the server and clients communicate with each other from different machines through a distributed processing network (such as the Internet), we refer to the system as having a “client/server” architecture.

The major breakthrough in database systems was the introduction by 1970 of the relational model. We call a DBMS relational if the data are perceived by users only as tables, and if users can generate new tables from old ones. Tables in a relational DBMS (RDBMS) are rectangular arrays defined by their rows of observations (usually called records or tuples) and columns of variables (usually called attributes or fields); the number

| TABLE 2.4. Internet websites containing natural-language text databases. |
|-----------------|-----------------|
| arXiv.org | medir.ohsu.edu/pub/ohsumed |
| kdd.ics.uci.edu/databases/reuters21578/reuters21578.html | kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html |
of tuples is called the *cardinality*, and the number of attributes is called the *degree* of the table. A RDBMS contains operators that enable users to extract specified rows (*restrict*) or specified columns (*project*) from a table and match up (*join*) information stored in different tables by checking for common entries in common columns. Also part of a DBMS is a *data dictionary*, which is a system database that stores information (*metadata*) about the database itself.

2.4.2 Structured Query Language (SQL)

Users communicate with a RDBMS through a declarative *query language* (or general interactive enquiry facility), which is typically one of the many versions of SQL (*Structured Query Language*), usually pronounced “sequel” or “ess-cue-ell.” Created by IBM in the early 1970s and adopted as the industry standard in 1986, there are now many different implementations of SQL; no two are exactly the same, and each one is regarded as a *dialect*. In SQL, we can make a declarative statement that says, “From a given database, extract data that satisfy certain conditions,” and the DBMS has to determine how to do it.

SQL has two main sublanguages:

- a *data definition language* (DDL) is used primarily by database administrators to define data structures by creating a database object (such as a table) and altering or destroying a database object. It does not operate on data.

- a *data manipulation language* (DML) is an interactive system that allows users to retrieve, delete, and update existing data from and add new data to the database.

There is also a *data control language* (DCL), a security system used by the database administrator, which controls the privileges granted to database users.

Before creating a database consisting of multiple tables, it is advisable to do the following: give a unique name to each table; specify which columns each table should contain and identify their data types; to each table, assign a primary key that uniquely identifies each row of the table; and have at least one common column in each table in the database.

We can then build a working data set through the DDL by using SQL *create table* statements of the following form:

```
create table <table name> (<table elements>);
```

where `<table name>` specifies a name for the table and `<table elements>` is a list separated by commas that specifies column names, their data
types, and any column constraints. The set of data types depends upon the SQL dialect; they include: \texttt{char}(c) (a column of characters where \(c\) gives the maximum number of characters permitted in the column), \texttt{integer}, \texttt{decimal}(a, b) (where \(a\) is the total number of digits and \(b\) is the number of decimal places), \texttt{date} (in DBMS-approved format), and \texttt{logical} (True or False). The column constraints include \texttt{null} (that column may have empty row values) or \texttt{not null} (empty row values are not permitted in that column), primary keys, and any foreign keys. A semicolon ends the statement.

The DML includes such commands as \texttt{select} (allows users to retrieve specific database information), \texttt{insert} (adds new rows into an existing table), \texttt{update} (modifies information contained within a table), and \texttt{delete} (removes rows from a table). DML commands can be quite complicated and may include multiple expressions, clauses, predicates, or subqueries.

For example, the \texttt{select} statement (which supports \texttt{restrict}, \texttt{project}, and \texttt{join} operations, and is the most commonly used, but also most complicated SQL command) has the basic form

\begin{verbatim}
select <columns> from <table name> where <condition>;
\end{verbatim}

where \(<\texttt{columns}>\) is a list of columns separated by commas. The \texttt{select} command is used to gather certain attributes from a particular RDBMS table, but where the tuples (rows) that are to be retrieved from those columns are limited to those that satisfy a given conditional Boolean search expression (i.e., True or False). One or more conditions may be joined by \texttt{and} or \texttt{or} operators as in set theory (the \texttt{and} always precedes the \texttt{or} operation). An asterisk may be used in place of the list of columns if all columns in the database are to be selected.

A primitive form of data analysis is included within the \texttt{select} statement through the use of five \texttt{aggregate operators}, \texttt{sum}, \texttt{avg}, \texttt{max}, \texttt{min}, and \texttt{count}, which provide the obvious \texttt{column statistics} over all rows that satisfy any stated conditions. For example, we can apply the command

\begin{verbatim}
select max(<column>) as max, min(<column>) as min from <table name> where <condition>;
\end{verbatim}

to find the maximum (saved as “max”) and minimum (saved as “min”) of specified columns. Column statistics that are not aggregates (e.g., medians) are not available in SQL.

The smaller RDBMSs that are available include \texttt{ACCESS} (from Microsoft Corp.), \texttt{MySQL} (open source), and \texttt{mSQL} (Hughes Technologies). These “lightweight” RDBMSs can support a few hundred simultaneous users and up to a gigabyte of data. All of the major statistical software packages that operate in a Windows environment can import data stored in certain of these smaller RDBMSs, especially Microsoft \texttt{ACCESS}.

We note that purists strongly object to SQL being thought of as a relational query language because, they argue, it sacrifices many of the fundamental principles of the relational model in order to satisfy demands of practicality and performance. RDBMSs are slow in general and, because the dialects of SQL are different enough and are often incompatible with each other, changing RDBMSs can be a nightmarish experience. Even so, SQL remains the most popular RDBMS query language.

2.4.3 OLTP Databases

A large organization is likely to maintain a DBMS that manages a domain-specific database for the automatic capture and storage of real-time business transactions. This type of database is essential for handling an organization’s day-to-day operations. An on-line transaction processing (OLTP) system is a DBMS application that is specially designed for very fast tracking of millions of small, simple transactions each day by a large number of concurrent users (tellers, cashiers, and clerks, who add, update, or delete a few records at a time in the database). Examples of OLTP databases include Internet-based travel reservations and airline seat bookings, automated teller machines (ATM) network transactions and point-of-sale terminals, transfers of electronic funds, stock trading records, credit card transactions and authorizations, and records of driving license holders.

These OLTP databases are dynamic in nature, changing almost continuously as transactions are automatically recorded by the system minute-by-minute. It is not unusual for an organization to employ several different OLTP systems to carry out its various business functions (e.g., point-of-sale, inventory control, customer invoicing). Although OLTP systems are optimized for processing huge numbers of short transactions, they are not configured for carrying out complex ad hoc and data analytic queries.

2.4.4 Integrating Distributed Databases

In certain situations, data may be distributed over many geographically dispersed sites (nodes) connected by a communications network (usually some sort of local-area network or wide-area network, depending upon distances involved). This is especially true for the healthcare industry. A huge amount of information, for example, on hospital management practices may be recorded from a number of different hospitals and consist of overlapping sets of variables and cases, all of which have to be combined (or integrated) into a single database for analysis.

Distributed databases also commonly occur in multicenter clinical trials in the pharmaceutical industry, where centers include institutions, hospitals, and clinics, sometimes located in several countries. The number of
total patients participating in such clinical trials rarely exceeds a few thou-
sand, but there have been large-scale multicenter trials such as the Prostate
Cancer Prevention Trial (Baker, 2001), which is a chemoprevention trial in
which 18,000 men aged 55 years and older were randomized to either daily
finasteride or placebo tablets for 7 years and involved 222 sites in the United
States.

Data integration is the process of merging data that originate from mul-
tiple locations. When data are to be merged from different sources, several
problems may arise:

- The data may be physically resident in computer files each of which
 was created using database software from different vendors.

- Different media formats may be used to store the information (e.g.,
 audio or video tapes or DVDs, CDs or hard disks, hardcopy question-
 naires, data downloaded over the Internet, medical images, scanned
 documents).

- The network of computer platforms that contain the data may be
 organized using different operating systems.

- The geographical locations of those platforms may be local or remote.

- Parts of the data may be duplicated when collected from different
 sources.

- Permission may need to be obtained from each source when deal-
 ing with sensitive data or security issues that will involve accessing
 personal, medical, business, or government records.

Faced with such potential inconsistencies, the information has to be inte-
grated to become a consistent set of records for analysis.

2.4.5 Data Warehousing

An organization that needs to integrate multiple large OLTP databases
will normally establish a single data warehouse for just that purpose. The
term data warehouse was coined by W.H. Inmon to refer to a read-only,
RDBMS running on a high-performance computer. The warehouse stores
historical, detailed, and “scrubbed” data designed to be retrieved and
queried efficiently and interactively by users through a dialect of SQL.
Although data are not updated in realtime, fresh data can be added as
supplements at regular intervals.

The components of a data warehouse are
DBMS: The publicly available RDBMSs that are almost mandatory for data warehousing usage include **Oracle** (from Oracle Corp.), **SQL Server** (from Microsoft Corp.), **Sybase** (from Sybase Inc.), **PostgreSQL** (freeware), **Informix** (from Informix Software, Inc.), and **DB2** (from IBM Corp.). These “heavyweight” DBMSs can handle thousands of simultaneous users and can access up to several terabytes of data.

Hardware: It is generally accepted that large-scale data warehouse applications require either massively parallel-processing (MPP) or symmetric multiprocessing (SMP) supercomputers. Which type of hardware is installed depends upon many factors, including the complexity of the data and queries and the number of users that need to access the system.

- **SMP architectures** are often called “shared everything” because they share memory and resources to service more than a single CPU, they run a single copy of the operating system, and they share a single copy of each application. SMP is reputed to be better for those data warehouses whose capacity ranges between 50GB and 100GB.

- **MPP architectures**, on the other hand, are called “shared nothing”; they may have hundreds of CPUs in a single computer, each node of which is a self-contained computer with its own CPU, disk, and memory, and nodes are connected by a high-speed bus or switch. The larger the data warehouse (with capacity at least 200GB) and the more complex the queries, the more likely the organization will install an MPP server.

Such centralized data depositories typically contain huge quantities of information taking up hundreds of gigabytes or terabytes of disk space. Small data warehouses, which store subsets of the central warehouse for use by specialized groups or departments, are referred to as **data marts**.

More and more organizations that require a central data storage facility are setting up their own data warehouses and data marts. For example, according to Monk (2000), the Foreign Trade Division of the U.S. Census Bureau processes 5 million records each month from the U.S. Customs Service on 18,000 import commodities and 9,000 export commodities that travel between 250 countries and 50 regions within the United States. The raw import-export data are extracted, “scrubbed,” and loaded into a data warehouse having one terabyte of storage. Subsets of the data that focus on specific countries and commodities, together with two years of historical data, are then sent to a number of data marts for faster and more specific querying.
It has been reported that 90 percent of all Fortune 500 companies are currently (or soon will be) engaged in some form of data warehousing activity. Corporations such as Federal Express, UPS, JC Penney, Office Depot, 3M, Ace Hardware, and Sears, Roebuck and Co. have installed data warehouses that contain multi-terabytes of disk storage, and Wal-Mart and Kmart are already at the 100 terabyte range. These retailers use their data warehouses to access comprehensive sales records (extracted from the scanners of cash registers) and inventory records from thousands of stores worldwide.

Institutions of higher education now have data warehouses for information on their personnel, students, payroll, course enrollments and revenues, libraries, finance and purchasing, financial aid, alumni development, and campus data. Healthcare facilities have data warehouses for storing uniform billing data on hospital admissions and discharges, outpatient care, long-term care, individual patient records, physician licensing, certification, background, and specialties, operating and surgical profiles, financial data, CMS (Centers for Medicare and Medicaid Services) regulations, and nursing homes, and that might soon include image data.

2.4.6 Decision Support Systems and OLAP

The failure of OLTP systems to deliver analytical support (e.g., statistical querying and data analysis) of RDBMSs caused a major crisis in the database market until the concept of data warehouses each with its own decision support system (DSS) emerged. In a client/server computing environment, decision support is carried out using on-line analytical processing (OLAP) software tools.

There are two primary architectures for OLAP systems, ROLAP (relational OLAP) and MOLAP (multidimensional OLAP); in both, multivariate data are set up using a multidimensional model rather than the standard model, which emphasizes data-as-tables. The two systems store data differently, which in turn affects their performance characteristics and the amounts of data that can be handled.

ROLAP operates on data stored in a RDBMS. Complex multipass SQL commands can create various ad hoc multidimensional views of a two-dimensional data table (which slows down response times). ROLAP users can access all types of transactional data, which are stored in 100GB to multiple-terabyte data warehouses.

MOLAP operates on data stored in a specialized multidimensional DBMS. Variables are scaled categorically to allow transactional data to be pre-aggregated by all category combinations (which speeds up response times) and the results stored in the form of a “data cube” (a large, but sparse, multidimensional contingency table). MOLAP tools can handle up to 50GB of data stored in a data mart.
OLAP users typically access multivariate databases without being aware exactly which system has been implemented. There are other OLAP systems, including a hybrid version HOLAP.

The data analysis tools provided by a multidimensional OLAP system include operators that can roll-up (aggregate further, producing marginals), drill-down (de-aggregate to search for possible irregularities in the aggregates), slice (condition on a single variable), and dice (condition on a particular category) aggregated data in a multidimensional contingency table. Summary statistics that cannot be represented as aggregates (e.g., medians, modes) and graphics that need raw data for display (e.g., scatterplots, time series plots) are generally omitted from MOLAP menus (Wilkinson, 2005).

2.4.7 Statistical Packages and DBMSs

Some statistical analysis packages (e.g., SAS, SPSS) and MATLAB can run their complete libraries of statistical routines against their OLAP database servers.

A major effort is currently under way to provide a common interface for the S language (i.e., S-Plus and particularly R) to access the really big DBMSs so that sophisticated data analysis can be carried out in a transparent manner (i.e., DBMS and platform independent). Although a table in a RDBMS is very similar to the concept of data frame in R and S-Plus, there are many difficulties in building such interfaces.

The R package RODBC (written by Michael Lapsley and Brian Ripley, and available from CRAN) provides an R interface to DBMSs based upon the Microsoft ODBC (Open Database Connectivity) standard. RODBC, which runs on both MS Windows and Unix/Linux, is able to copy an R data frame to a table in a database (command: sqlSave), read a table from a DBMS into an R data frame (sqlFetch), submit an SQL query to an ODBC database (sqlQuery), retrieve the results (sqlGetResults), and update the table where the rows already exist (sqlUpdate). RODBC works with ORACLE, MS Access, SYBASE, DB2, MySQL, POSTGRESQL, and SQL Server on MS Windows platforms and with MySQL, POSTGRESQL, and ORACLE under Unix/Linux.

2.5 Data Quality Problems

Errors exist in all kinds of databases. Those that are easy to detect will most likely be found at the data “cleaning” stage, whereas those errors that can be quite resistant to detection might only be discovered during data analysis. Data cleaning usually takes place as the data are received
and before they are stored in read-only format in a data warehouse. A consistent and cleaned-up version of the data can then be made available.

2.5.1 Data Inconsistencies

Errors in compiling and editing the resulting database are common and actually occur with alarming frequency, especially in cases where the data set is very large. When data from different sources are being connected, inconsistencies as to a person’s name (especially in cases where a name can be spelled in several different ways) occur frequently, and matching (or “disambiguation”) has to take place before such records can be merged. One popular solution is to employ Soundex (sound-indexing) techniques for name matching.

To get an idea of how poor data quality can become, consider the problem of estimating the extent of the undercount from census data collected for the 1990 U.S. census. Breiman (1994) identified a number of sources of error, including the following: Matching errors (incorrectly matching records from two different files of people with differing names, ages, missing gender or race identifiers, and different addresses), fabrications (the creation of fictitious people by dishonest interviewers), census day address errors (incorrectly recording the location of a person’s residence on census day), unreliable interviews (many of the interviews were rejected as being unreliable), and incomplete data (a lack of specific information on certain members in the household). Most of the problems involving data fabrication, incomplete data, and unreliable interviews apparently occurred in areas that also had the highest estimated undercounts, such as the central cities and minority areas.

Massive data sets are prone to mistakes, errors, distortions, and, in general, poor data quality, just as is any data set, but such defects occur here on a far grander scale because of the size of the data set itself. When invalid product codes are entered for a product, they may easily be detected; when valid product codes, however, are entered for the wrong product, detection becomes more difficult. Customer codes may be entered inconsistently, especially those for gender identification (M and F, as opposed to 1 and 2). Duplication of records entered into the database from multiple sources can also be a problem. In these days of takeovers and buyouts, and mergers and acquisitions, what was once a code for a customer may now be a problem if the entity has since changed its description (e.g., Jenn-Air, Hoover, Norge, Magic Chef, etc., are all now part of Maytag Corp.). Any inconsistencies in historical data may also be difficult to correct if those who knew the answer are no longer with the company.
2. Data and Databases

2.5.2 Outliers

Outliers are values in the data that, for one reason or another, do not appear to fit the pattern of the other data values; visually, they are located far away from the rest of the data. It is not unusual for outliers to be present in a data set.

Outliers can occur for many different reasons but should not be confused with gross errors. Gross errors are cases where “something went wrong” (Hampel, 2002); they include human errors (e.g., a numerical value recorded incorrectly) and mechanical errors (e.g., malfunctioning of a measuring instrument or a laboratory instrument during analysis). The density of gross errors depends upon the context and the quality of the data. In medical studies, gross error rates in excess of 10% have been quoted.

Univariate outliers are easy to detect when they indicate impossible (or “out of bounds”) values. More often, an outlier will be a value that is extreme, either too large or too small. For multivariate data, outlier detection is more difficult. Low-dimensional visual displays of the data (such as histograms, boxplots, scatterplots) can encourage insight into the data and provide at the same time a method for manually detecting some of the more obvious univariate or bivariate outliers.

When we have a large data set, outliers may not be all that rare. Unlike a data set of 100 or so observations, where we may find two or three outliers, in a data set of 100,000, we should not be surprised to discover a large number (in some cases, hundreds, and maybe even thousands) of outliers. For example, Figure 2.5 shows a scatterplot of the size (in bytes) of each of 50,000 packets containing roughly two minutes worth of TCP (transfer control protocol) packet traffic between Digital Equipment Corporation servers and the rest of the world on 8th March 1995 plotted against time. We see clear structure within the scatterplot: the vast majority of points occur within the 0–512 bytes range, and a number of dense horizontal bands occur inside this range; these bands show that the vast majority of packets sent consist of either 0 bytes (37% of the total packets), which are used only to acknowledge data sent by the other side, or 512 bytes (29% of the total packets). There are 952 packets each having more than 512 bytes, of which 137 points are identified as outliers (with values greater than 1.5 times IQR), including 61 points equal to the largest value, 1460 bytes.

To detect true multidimensional outliers, however, becomes a test of statistical ingenuity. A multivariate observation whose every component value may appear indistinguishable from the rest may yet be regarded as an outlier when all components are treated simultaneously. In large

multivariate data sets, some combination of visual display of the data, manual outlier detection scheme, and automatic outlier detection program may be necessary: potential outliers could be “flagged” by an automatic screening device, and then an analyst would manually decide on the fate of that flagged outlier.

2.5.3 Missing Data

In the vast majority of data sets, there will be missing data values. For example, human subjects may refuse to answer certain items in a battery of questions because personal information is requested; some observations may be accidentally lost; some responses may be regarded as implausible and rejected; and in a study of financial records of a company, some records may not be available because of changes in reporting requirements and data from merged or reorganized organizations.

In R/S-PLUS, missing values are denoted by `NA`. In large databases, SQL incorporates the `null` as a flag or mark to indicate the absence of a data value, which might mean that the value is missing, unknown, nonexistent (no observation could be made for that entry), or that no value has yet
been assigned. A null is not equivalent to a zero value or to a text string filled with spaces. Sometimes, missing values are replaced by zeroes, other times by estimates of what they should be based on the rest of the data.

One popular method deletes those observations that contain missing data and analyzes only those cases that are observed in their entirety (often called complete-case analysis or listwise-deletion method). Such a complete-case analysis may be satisfactory if the proportion of deleted observations is small relative to the size of the entire data set and if the mechanism that leads to the missing data is independent of the variables in question — an assumption referred to by Donald Rubin as missing at random (MAR) or missing completely at random (MCAR) depending upon the exact nature of the missing-data mechanism (Little and Rubin, 1987). Any deleted observations may be used to help justify the MCAR assumption.

If the missing data constitute a sizeable proportion of the entire data set, then complete-case methods will not work. Single imputation has been used to impute (or “fill in”) an estimated value for each missing observation and then analyze the amended data set as if there had been no missing values in the first place. Such procedures include hot-deck imputation, where a missing value is imputed by substituting a value from a similar but complete record in the same data set; mean imputation, where the singly imputed value is just the mean of all the completely recorded values for that variable; and regression imputation, which uses the value predicted by a regression on the completely recorded data. Because sampling variability due to single imputation cannot be incorporated into the analysis as an additional source of variation, the standard errors of model estimates tend to be underestimated.

Since the late 1970s, Rubin and his colleagues have introduced a number of sophisticated algorithmic methods for dealing with incomplete data situations. One approach, the EM algorithm (Dempster, Laird, and Rubin, 1977; Little and Rubin, 1987), which alternates between an expectation (E) step and a maximization (M) step, is used to compute maximum-likelihood estimates of model parameters, where missing data are modeled as unobserved latent variables. We shall describe applications of the EM algorithm in more detail in later chapters of this book. A different approach, multiple imputation (Rubin, 1987), fills in the missing values \(m > 1 \) times, where the imputed values are generated each time from a distribution that may be different for each missing value; this creates \(m \) different data sets, which are analyzed separately, and then the \(m \) results are combined to estimate model parameters, standard errors, and confidence intervals.

2.5.4 More Variables than Observations

Many statistical computer packages do not allow the number of input variables, \(r \), to exceed the number of observations, \(n \), because, then, certain
matrices, such as the \((r \times r)\) covariance matrix, would have less than full rank, would be singular, and, hence, uninvertible. Yet, we should not be surprised when \(r > n\). In fact, this situation occurs quite routinely in certain applications, and in such instances, \(r\) can be much greater than \(n\). Typical examples include:

Satellite images When producing maps, remotely sensed image data are gathered from many sources, including satellite and aircraft scanners, where a few observations (usually fewer than 10 spectral bands) are measured at more than 100,000 wavelengths over a grid of pixels.

Chemometrics For determining concentrations in certain chemical compounds, calibration studies often need to analyze intensity measurements on a very large number (500–1,000 or more) of different spectral wavelengths using a small number of standard chemical samples.

Gene expression data Current microarray methods for studying human malignancies, such as tumors, simultaneously monitor expression levels of very large numbers of genes (5,000–10,000 or more) on relatively small numbers (fewer than 100) of tumor samples.

When \(r > n\), one way of dealing with this problem is to analyze the data on each variable separately. However, this suggestion does not take account of correlations between the variables. Researchers have recently provided new statistical techniques that are not sensitive to the \(r > n\) issue. We will address this situation in various sections of this book.

2.6 The Curse of Dimensionality

The term “curse of dimensionality” (Bellman, 1961) originally described how difficult it was to perform high-dimensional numerical integration. This led to the more general use of the term to describe the difficulty of dealing with statistical problems in high dimensions. Some implications include:

1. **We can never have enough data to cover every part of high-dimensional input space to learn which part of the space is important to a relationship and which is not.**

To see this, divide the axis of each of \(r\) input variables into \(K\) uniform intervals (or “bins”), so that the value of an input variable is approximated by the bin into which it falls. Such a partition divides the entire \(r\)-dimensional input space into \(K^r\) “hypercubes,” where \(K\) is chosen so that each hypercube contains at least one point in the input space. Given a specific hypercube in input space, an output value \(y_0\) corresponding to a new input point in the hypercube can be approximated by computing some function
The average value of the y values that correspond to all the input points falling in that hypercube. Increasing K reduces the sizes of the hypercubes while increasing the precision of the approximation. However, at the same time, the number of hypercubes increases exponentially. If there has to be at least one input point in each hypercube, then the number of such points needed to cover all of r-space must also increase exponentially as r increases. In practice, we have a limited number of observations, with the result that the data are very sparsely spread around high-dimensional space.

2. As the number of dimensions grows larger, almost all the volume inside a hypercubic region of input space lies closer to the boundary or surface of the hypercube rather than near the center.

An r-dimensional hypercube $[-A, A]^r$ with each edge of length $2A$ has volume $(2A)^r$. Consider a slightly smaller hypercube with each edge of length $2(A - \epsilon)$, where $\epsilon > 0$ is small. The difference in volume between these two hypercubes is $(2A)^r - 2^r(A - \epsilon)^r$, and, hence, the proportion of the volume that is contained between the two hypercubes is

$$\frac{(2A)^r - 2^r(A - \epsilon)^r}{(2A)^r} = 1 - \left(1 - \frac{\epsilon}{A}\right)^r \to 1 \text{ as } r \to \infty.$$

In Figure 2.6, we see a graphical display of this result for $A = 1$ and number of dimensions $r = 1, 2, 10, 20, 50$. The same phenomenon also occurs with spherical regions in high-dimensional input space (see Exercise 2.4).

Bibliographical Notes

There are many different kinds of data sets and every application field measures items in its own way. The following issues of *Statistical Science* address the problems inherent with certain types of data: consumer transaction data and e-commerce data (May 2006), Internet data (August 2004), and microarray data (February 2003).

The Human Genome Project and Celera, a private company, simultaneously published draft accounts of the human genome in *Nature* and *Science* on 15th and 16th February 2001, respectively. An excellent article on gene expression is Sebastiani, Gussoni, Kohane, and Ramoni (2003). Books on the design and analysis of DNA microarray experiments and analyzing gene expression data are Drăghici (2003), Simon, Korn, McShane, Radmacher, Wright, and Zhao (2004), and the books edited by Parmigiani, Garrett, Irizarry, and Zeger (2003), Speed (2003), and Lander and Waterman (1995).

There are a huge number of books on database management systems. We found the books by Date (2000) and Connolly and Begg (2002) most useful. The concept of a “relational” database system originates with Codd (1970),
FIGURE 2.6. Graphs of the proportion of the total volume contained between two hypercubes, one of edge length 2 and the other of edge length $2 - e$ for different numbers of dimensions r. As the number of dimensions increases, almost all the volume becomes closer to the surface of the hypercube.

who received the 1981 ACM Turing Award for his work in the area. An excellent survey of the development and maintenance of biological databases and microarray repositories is given by Valdivia-Granda and Dwan (2006).

Exercises

2.1 In a statistical application of your choice, what does a missing value mean? What are the traditional methods of imputing missing values in such an application?

2.2 In sample surveys, such as opinion polls, telephone surveys, and questionnaire surveys, nonresponse is a common occurrence. How would you design such a survey so as to minimize nonresponse?

2.3 Discuss the differences between single and multiple imputation for imputing missing data.
2.4 The volume of an r-dimensional sphere with radius A is given by $\text{vol}_r(A) = S_r A^r / r$, where $S_r = 2\pi^{r/2} / \Gamma(r/2)$ is the surface area of the unit sphere in r dimensions, $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt = (x - 1)!$, $1x > 0$, is the gamma function, $\Gamma(x + 1) = x\Gamma(x)$, and $\Gamma(1/2) = \pi^{1/2}$. Find the appropriate spherical volumes for two and three dimensions. Using a similar limiting argument as in (2) of Section 2.6, show that as the dimensionality increases, almost all the volume inside the sphere tends to be concentrated along a “thin shell” closer to the surface of the sphere than to the center.

2.5 Consider a hypercube of dimension r and sides of length $2A$ and inscribe in it an r-dimensional sphere of radius A. Find the proportion of the volume of the hypercube that is inside the hypersphere, and show that the proportion tends to 0 as the dimensionality r increases. In other words, show that all the density sits in the corners of the hypercube.

2.6 What are the advantages and disadvantages of database systems, and when would you find such a system useful for data analysis?

2.7 Find a commercial SQL product and discuss the various options that are available for the `create table` statement of that product.

2.8 Find a DBMS and investigate whether that system keeps track of database statistics. Which statistics does it maintain, how does it do that, and how does it update those statistics?

2.9 What are the advantages and disadvantages of distributed database systems?

2.10 (Fairley, Izenman, and Crunk, 2001) You are hired to carry out a survey of damage to the bricks of the walls of a residential complex consisting of five buildings, each having 5, 6, or 7 stories. The type of damage of interest is called spalling and refers to deterioration of the surface of the brick, usually caused by freeze-thaw weather conditions. Spalling appears to be high at the top stories and low at the ground. The walls consist of three-quarter million bricks. You take a photographic survey of all the walls of the complex and count the number of bricks in the photographs that are spalled. However, the photographs show that some portions of the walls are obscured by bushes, trees, pipes, vehicles, etc. So, the photographs are not a complete record of brick damage in the complex. Discuss how would you estimate the spall rate (spalls per 1,000 bricks) for the entire complex. What would you do about the missing data in your estimation procedure?

2.11 Read about MAR (missing at random) and MCAR (missing completely at random) and discuss their differences and implications for imputing missing data.
3
Random Vectors and Matrices

3.1 Introduction

This chapter builds the foundation for the statistical analysis of multivariate data. We first give the notation we use in this book, followed by a quick review of the rules for manipulating vectors and matrices. Then, we learn about random vectors and matrices, which are the fundamental building blocks for multivariate analysis. We then describe the properties of a variety of estimators of an unknown mean vector and unknown covariance matrix of a multivariate Gaussian distribution.

3.2 Vectors and Matrices

In this section, we briefly review the notation, terminology, and basic operations and results for vectors and matrices.

3.2.1 Notation

Vectors having \(J \) elements will be represented as column vectors (i.e., as \((J \times 1) \)-matrices, which we will refer to as \(J \)-vectors for convenience) and will
be represented by boldface letters, either uppercase (e.g., \mathbf{X}) or lowercase (e.g., $\mathbf{x, \alpha}$) depending upon the context. Two J-vectors, $\mathbf{x} = (x_1, \cdots, x_J)^\tau$ and $\mathbf{y} = (y_1, \cdots, y_J)^\tau$, are orthogonal if $\mathbf{x}^\tau \mathbf{y} = \sum_{j=1}^{J} x_j y_j = 0$.

We denote matrices by uppercase boldface letters (e.g., $\mathbf{A, \Sigma}$) or by capital script letters (e.g., $\mathcal{X, Y, Z}$). Thus, the $(J \times K)$ matrix $\mathbf{A} = (A_{jk})$ has J rows and K columns and jkth entry A_{jk}. If $J = K$, then \mathbf{A} is said to be square. The $(J \times J)$ identity matrix \mathbf{I}_J has $I_{jj} = 1$ and $I_{jk} = 0, j \neq k$. The null matrix $\mathbf{0}$ has all entries equal to zero.

3.2.2 Basic Matrix Operations

If $\mathbf{A} = (A_{jk})$ is a $(J \times K)$-matrix, then the transpose of \mathbf{A} is the $(K \times J)$-matrix denoted by $\mathbf{A}^\tau = (A_{kj})$. If $\mathbf{A} = \mathbf{A}^\tau$, then \mathbf{A} is said to be symmetric.

The sum of two $(J \times K)$ matrices \mathbf{A} and \mathbf{B} is $\mathbf{A} + \mathbf{B} = (A_{jk} + B_{jk})$, and its transpose is $(\mathbf{A} + \mathbf{B})^\tau = \mathbf{A}^\tau + \mathbf{B}^\tau = (A_{kj} + B_{kj})$. The inequality $\mathbf{A} + \mathbf{B} \geq \mathbf{A}$ holds if $\mathbf{B} \geq \mathbf{0}$ (i.e., $B_{jk} \geq 0$, all j and k).

The product of a $(J \times K)$-matrix \mathbf{A} and a $(K \times L)$-matrix \mathbf{B} is the $(J \times L)$-matrix $(C_{jl}) = \mathbf{C} = \mathbf{AB} = (\sum_{k=1}^{K} A_{jk} B_{kl})$. Note that $(\mathbf{AB})^\tau = \mathbf{B}^\tau \mathbf{A}^\tau$.

Multiplication of a $(J \times K)$-matrix \mathbf{A} by a scalar a is the $(J \times K)$-matrix $a \mathbf{A} = (aA_{jk})$.

A $(J \times J)$-matrix \mathbf{A} is orthogonal if $\mathbf{AA}^\tau = \mathbf{A}^\tau \mathbf{A} = \mathbf{I}_J$ and is idempotent if $\mathbf{A}^2 = \mathbf{A}$. A square matrix \mathbf{P} is a projection matrix (or a projector) iff \mathbf{P} is idempotent. If \mathbf{P} is both idempotent and orthogonal, then \mathbf{P} is called an orthogonal projector. If \mathbf{P} is idempotent, then so is $\mathbf{Q} = \mathbf{I} - \mathbf{P}$; \mathbf{Q} is called the complementary projector to \mathbf{P}.

The trace of a square $(J \times J)$ matrix \mathbf{A} is denoted by $\operatorname{tr}(\mathbf{A}) = \sum_{j=1}^{J} A_{jj}$. Note that for square matrices \mathbf{A} and \mathbf{B}, $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B})$, and $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{BA})$.

The determinant of a $(J \times J)$-matrix $\mathbf{A} = (A_{ij})$ is denoted by either $|\mathbf{A}|$ or $\det(\mathbf{A})$. The minor M_{ij} of element A_{ij} is the $(J - 1 \times J - 1)$-matrix formed by removing the ith row and jth column from \mathbf{A}. The cofactor of A_{ij} is $C_{ij} = (-1)^{i+j}|M_{ij}|$. One way of defining the determinant of \mathbf{A} is by using Laplace’s formula: $|\mathbf{A}| = \sum_{j=1}^{J} A_{ij} C_{ij}$, where we expand along the ith row. Note that $|\mathbf{A}^\tau| = |\mathbf{A}|$. If a is a scalar and \mathbf{A} is $(J \times J)$, then $|a \mathbf{A}| = a^J |\mathbf{A}|$. \mathbf{A} is singular if $|\mathbf{A}| = 0$, and nonsingular otherwise.

Matrix decompositions include the LR decomposition ($\mathbf{A} = \mathbf{LR}$, where \mathbf{L} is lower-triangular and \mathbf{R} is upper-triangular), the Cholesky decomposition ($\mathbf{A} = \mathbf{LL}^\tau$, where \mathbf{L} is lower-triangular and \mathbf{A} is symmetric positive-definite), and the QR decomposition ($\mathbf{A} = \mathbf{QR}$, where \mathbf{Q} is orthogonal and \mathbf{R} is upper-triangular). These matrix decompositions are used as efficient methods of computing $|\mathbf{A}|$ by applying the following results: $|\mathbf{AB}| = |\mathbf{A}| \cdot |\mathbf{B}|$ if both \mathbf{A} and \mathbf{B} are $(J \times J)$; the determinant of a triangular
matrix is the product of its diagonal entries; and for orthogonal Q, $|\det(Q)| = 1$.

Let

$$\Sigma = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

be a partitioned matrix, where A and D are both square and nonsingular. Then, the determinant of Σ can be expressed in two ways:

$$|\Sigma| = |A| \cdot |D - CA^{-1}B| = |D| \cdot |A - BD^{-1}C|.$$ \hspace{1cm} (3.2)

The rank of A, denoted $r(A)$, is the size of the largest submatrix of A that has a nonzero determinant; it is also the number of linearly independent rows or columns of A. Note that $r(AB) = r(A)$ if $|B| \neq 0$, and, in general, $r(AB) \leq \min(r(A), r(B))$.

If A is square, $(J \times J)$, and nonsingular, then a unique $(J \times J)$ inverse matrix A^{-1} exists such that $AA^{-1} = I_J$. If A is orthogonal, then $A^{-1} = A^\tau$. Note that $(AB)^{-1} = B^{-1}A^{-1}$, and $|A^{-1}| = |A|^{-1}$. A useful result involving inverses is

$$(A + BD^{-1}C)^{-1} = A^{-1} - A^{-1}B(D + CA^{-1}B)^{-1}CA^{-1},$$ \hspace{1cm} (3.3)

where A and D are $(J \times J)$ and $(K \times K)$ nonsingular matrices, respectively. If A is $(J \times J)$ and u and v are J-vectors, then, a special case of this result is

$$(A + uv^\tau)^{-1} = A^{-1} - \frac{(A^{-1}u)(v^\tau A^{-1})}{1 + v^\tau A^{-1}u},$$ \hspace{1cm} (3.4)

which reduces the problem of inverting $A + uv^\tau$ to one of just inverting A. If A and D are symmetric matrices and A is nonsingular, then,

$$\begin{pmatrix} A & B \\ B^\tau & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + FE^{-1}F^\tau \\ -EF^\tau & E^{-1} \end{pmatrix},$$

where $E = D - B^\tau A^{-1}B$ is nonsingular and $F = A^{-1}B$.

If A is a $(J \times J)$-matrix and x is a J-vector, then a quadratic form is $x^\tau Ax = \sum_{j=1}^{J} \sum_{k=1}^{J} A_{jk}x_jx_k$. A $(J \times J)$-matrix A is positive-definite if, for any J-vector $x \neq 0$, the quadratic form $x^\tau Ax > 0$, and is nonnegative-definite (or positive-semidefinite) if the same quadratic form is nonnegative.

3.2.3 Vectoring and Kronecker Products

The vectoring operation $\text{vec}(A)$ denotes the $(JK \times 1)$-column vector formed by placing the columns of a $(J \times K)$-matrix A under one another successively.

If a $(J \times K)$-matrix A is such that the jkth element A_{jk} is itself a submatrix, then A is termed a block matrix. The Kronecker product of a
(J × K)-matrix A and an (L × M)-matrix B is the (JL × KM) block matrix
\[
A \otimes B = (AB_{jk}) = \begin{pmatrix}
AB_{11} & \cdots & AB_{1M} \\
\vdots & & \vdots \\
AB_{L1} & \cdots & AB_{LM}
\end{pmatrix}.
\]

(3.6)

Strictly speaking, the definition (3.6) is commonly known as the left Kronecker product. There is also the right Kronecker product in the literature, \(A \otimes B = (A_{ij}B) \), which, in our notation, is given by \(B \otimes A \).

The following operations hold for Kronecker products as defined by (3.6):
\[
\begin{align*}
(A \otimes B) \otimes C &= A \otimes (B \otimes C) \quad (3.7) \\
(A \otimes B)(C \otimes D) &= (AC) \otimes (BD) \quad (3.8) \\
(A + B) \otimes C &= (A \otimes C) + (B \otimes C) \quad (3.9)
\end{align*}
\]
\[
(A \otimes B)^T = A^T \otimes B^T \quad (3.10)
\]
\[
\text{tr}(A \otimes B) = (\text{tr}(A))(\text{tr}(B)) \quad (3.11)
\]
\[
r(A \otimes B) = r(A) \cdot r(B) \quad (3.12)
\]

If A is \((J \times J)\) and B is \((K \times K)\), then,
\[
|A \otimes B| = |A|^K|B|^J \quad (3.13)
\]

If A is \((J \times K)\) and B is \((L \times M)\), then,
\[
A \otimes B = (A \otimes I_L)(I_K \otimes B) \quad (3.14)
\]

If A and B are square and nonsingular, then,
\[
(A \otimes B)^{-1} = A^{-1} \otimes B^{-1} \quad (3.15)
\]

One of the most useful results that combines vectoring with Kronecker products is that
\[
\text{vec}(ABC) = (A \otimes C^T)\text{vec}(B). \quad (3.16)
\]

3.2.4 Eigenanalysis for Square Matrices

If A is a \((J \times J)\)-matrix, then \(|A - \lambda I_J|\) is a polynomial of order J in \(\lambda \). The equation
\[
|A - \lambda I_J| = 0
\]
will have J (possibly complex-valued) roots denoted by \(\lambda_j = \lambda_j(A) \), \(j = 1, 2, \ldots, J \). The root \(\lambda_j \) is called the eigenvalue (characteristic root, latent root) of A, and the set \(\{\lambda_j\} \) is called the spectrum of A. Associated with \(\lambda_j \), there is a J-vector \(v_j = v_j(A) \) (not all of whose entries of zero) such that
\[
(A - \lambda_j I_J)v_j = 0.
\]
The vector v_j is called the eigenvector (characteristic vector, latent vector) associated with λ_j. Eigenvalues of positive-definite matrices are all positive, and eigenvalues of nonnegative-definite matrices are all nonnegative.

The following results for a real and symmetric ($J \times J$)-matrix A are not difficult to prove. All the eigenvalues of A are real and the eigenvectors can be chosen to be real. Eigenvectors v_j and v_k associated with distinct eigenvalues ($\lambda_j \neq \lambda_k$) are orthogonal. If $V = (v_1, v_2, \ldots, v_J)$, then

$$AV = VA,$$

where $\Lambda = \text{diag}\{\lambda_1, \lambda_2, \ldots, \lambda_J\}$ is a matrix with the eigenvalues along the diagonal and zeroes elsewhere, and $V^\tau V = I_J$.

The “outer product” of a J-vector v with itself is the ($J \times J$)-matrix vv^τ, which has rank 1. The spectral theorem expresses the ($J \times J$)-matrix A as a weighted average of rank-1 matrices,

$$A = V \Lambda V^\tau = \sum_{j=1}^{J} \lambda_j v_j v_j^\tau,$$

where $I_J = \sum_{j=1}^{J} v_j v_j^\tau$, and where the weights, $\lambda_1, \ldots, \lambda_J$, are the eigenvalues of A. The rank of A is the number of nonzero eigenvalues, the trace is

$$\text{tr}(A) = \sum_{j=1}^{J} \lambda_j(A),$$

and the determinant is

$$|A| = \prod_{j=1}^{J} \lambda_j(A).$$

3.2.5 Functions of Matrices

If A is a symmetric ($J \times J$)-matrix and $\phi : \mathbb{R}^J \rightarrow \mathbb{R}^J$ is a function, then

$$\phi(A) = \sum_{j=1}^{J} \phi(\lambda_j) v_j v_j^\tau,$$

where λ_j and v_j are the jth eigenvalue and corresponding eigenvector, respectively, of A. Examples include the following:

$$A^{-1} = V \Lambda^{-1} V^\tau = \sum_{j=1}^{J} \lambda_j^{-1} v_j v_j^\tau, \text{ if } A \text{ is nonsingular}$$

$$A^{1/2} = V \Lambda^{1/2} V^\tau = \sum_{j=1}^{J} \lambda_j^{1/2} v_j v_j^\tau$$
\[
\log(A) = \sum_{j=1}^{J} (\log(\lambda_j)) v_j v_j^\tau, \quad \text{if } \lambda_j \neq 0, \text{ all } j \quad (3.24)
\]

Hence, \(\lambda_j(\phi(A)) = \phi(\lambda_j(A)) \) and \(v_j(\phi(A)) = v_j(A) \). Note that \(A^{1/2} \) is called the \textit{square-root} of \(A \).

3.2.6 Singular-Value Decomposition

If \(A \) is a \((J \times K) \)-matrix with \(J \leq K \), then
\[
\lambda_j(A^\tau A) = \lambda_j(AA^\tau), \quad j = 1, 2, \ldots, J, \quad (3.25)
\]
and zero for \(j > J \). Furthermore, for \(\lambda_j(AA^\tau) \neq 0 \),
\[
\begin{align*}
\text{if } \lambda_j(AA^\tau) &\neq 0, \\
v_j(A^\tau) &= (\lambda_j(AA^\tau))^{1/2} A^\tau v_j(AA^\tau) \quad (3.26) \\
v_j(AA^\tau) &= (\lambda_j(AA^\tau))^{-1/2} A v_j(A^\tau A) \quad (3.27)
\end{align*}
\]
The \textit{singular-value decomposition} (SVD) of \(A \) is given by
\[
A = U\Psi V^\tau = \sum_{j=1}^{J} \lambda_j^{1/2} u_j v_j^\tau, \quad (3.28)
\]
where \(U = (u_1, \ldots, u_J) \) is a \((J \times J) \)-matrix, \(u_j = v_j(AA^\tau), \) \(j = 1, 2, \ldots, J, \)
\(V = (v_1, \ldots, v_K) \) is a \((K \times K) \)-matrix, \(v_k = v_k(A^\tau A), \) \(k = 1, 2, \ldots, K, \)
\(\lambda_j = \lambda_j(AA^\tau), \) \(j = 1, 2, \ldots, J, \)
\[
\Psi = \begin{pmatrix} \Psi_\sigma & \vdots & 0 \end{pmatrix} \quad (3.29)
\]
is a \((J \times K) \)-matrix, and \(\Psi_\sigma \) is an \((J \times J) \) diagonal matrix with the non-negative \textit{singular values}, \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_J \geq 0, \) of \(A \) along the diagonal, where \(\sigma_j = \lambda_j^{1/2} \) is the square-root of the \(j \)th largest eigenvalue of the \((J \times J) \)-matrix \(AA^\tau, \) \(j = 1, 2, \ldots, J. \)

A corollary of the SVD is that if \(r(A) = t \), then there exists a \((J \times t) \)-matrix \(B \) and a \((t \times K) \)-matrix \(C, \) both of rank \(t, \) such that \(A = BC. \) To see this, take \(B = (\lambda_1^{1/2} u_1, \ldots, \lambda_t^{1/2} u_t) \) and \(C = (v_1^\tau, \ldots, v_t^\tau) \).

3.2.7 Generalized Inverses

If \(A \) is either singular or nonsymmetric (or even not square), we can define a \textit{generalized inverse} of \(A. \) First, we need the following definition: a \textit{g-inverse} of a \((J \times K) \)-matrix \(A \) is any \((K \times J) \)-matrix \(A^{-} \) such that, for any \(J \)-vector \(y \) for which \(Ax = y \) is a consistent equation, \(x = A^{-} y \) is a solution. It can be shown that \(A^{-} \) exists iff
\[
AA^{-} A = A; \quad (3.30)
\]
we call such an A^- a reflexive g-inverse. Note that although A^- is not necessarily unique, it has some interesting properties. For example, a general solution of the consistent equation $Ax = y$ is given by
\[
x = A^- y + (A^- A - I_K)z,
\]
where z is an arbitrary K-vector. Furthermore, setting $z=0$ shows that the x with minimum norm (i.e., $\|x\|^2 = x^\tau x$) that solves $Ax = y$ is given by $x = A^- y$.

A unique g-inverse can be defined for the $(J \times K)$-matrix A. From the SVD, $A = U\Psi V^\tau$, we set
\[
A^+ = V\Psi^+ U^\tau,
\]
where Ψ^+ is a diagonal matrix whose diagonal elements are the reciprocals of the nonzero elements of $\Psi = \Lambda^{1/2}$, and zeroes otherwise. The $(K \times J)$-matrix A^+ is the unique Moore–Penrose generalized inverse of A. It satisfies the following four conditions:
\[
AA^+ A = A, \quad A^+ A A^+ = A^+, \quad (A A^+)^\tau = AA^+, \quad (A^+ A)^\tau = A^+ A.
\]
(3.33)

There are less restrictive (nonunique) types of generalized inverses than A^+, such as the reflexive g-inverse above, involving one or two of the above four conditions.

3.2.8 Matrix Norms

Let $A = (A_{jk})$ be a $(J \times K)$-matrix. It would be useful to have a measure of the size of A, especially for comparing different matrices. The usual measure of size of a matrix A is the norm, $\|A\|$, of that matrix. There are many definitions of a matrix norm, all of which satisfy the following conditions:

1. $\|A\| \geq 0$
2. $\|A\| = 0$ iff $A=0$.
3. $\|A + B\| \leq \|A\| + \|B\|$
4. $\|\alpha A\| = |\alpha| \cdot \|A\|$

where B is a $(J \times K)$-matrix and α is a scalar. Examples of matrix norms include:

1. $\left(\sum_{j=1}^{J} \sum_{k=1}^{K} |A_{jk}|^p\right)^{1/p}$ (p-norm)
2. $\sqrt{\text{tr}(AA^\tau)} = \left(\sum_{j=1}^{J} \sum_{k=1}^{K} A^2_{jk}\right)^{1/2} = \left(\sum_{j=1}^{J} \lambda_j(AA^\tau)\right)^{1/2}$ (Frobenius norm)
3. Random Vectors and Matrices

3. \(\sqrt{\lambda_1(AA^\tau)} \) (spectral norm, \(J = K \))

4. \(\left(\sum_{j=1}^{J_0} \lambda_j(AA^\tau) \right)^{1/2} \), for some \(J_0 < J \).

3.2.9 Condition Numbers for Matrices

The condition number of a square \((K \times K)\)-matrix \(A \) is given by

\[
\kappa(A) = \|A\| \cdot \|A^{-1}\| = \frac{\sigma_1}{\sigma_K},
\]

(3.34)

which is the ratio of the largest to the smallest nonzero singular value. In (3.34), \(\| \cdot \| \) is the spectral norm and \(\sigma_i \) is the square-root of the \(i \)th largest eigenvalue of the \((K \times K)\)-matrix \(A^\tau A \), \(i = 1, 2, \ldots, K \). Thus, \(\kappa \geq 1 \). If \(A \) is an orthogonal matrix, all singular values are unity, and so \(\kappa = 1 \). \(A \) is said to be ill-conditioned if its singular values are widely spread out, so that \(\kappa(A) \) is large, whereas \(A \) is said to be well-conditioned if \(\kappa(A) \) is small.

3.2.10 Eigenvalue Inequalities

We shall find it useful to have the following eigenvalue inequalities.

The Eckart–Young Theorem If \(A \) and \(B \) are both \((J \times K)\)-matrices, and we plan on using \(B \) with reduced rank \(r(B) = b \) to approximate \(A \) with full rank \(r(A) = \min(J, K) \), then the Eckart–Young (1936) Theorem states that

\[
\lambda_j((A - B)(A - B)^\tau) \geq \lambda_{j+b}(AA^\tau),
\]

(3.35)

with equality if

\[
B = \sum_{i=1}^{b} \lambda_i^{1/2} u_i v_i^\tau,
\]

(3.36)

where \(\lambda_i = \lambda_i(AA^\tau) \), \(u_i = v_i(AA^\tau) \), and \(v_i = v_i(A^\tau A) \). Because the above choice of \(B \) provides a simultaneous minimization for all eigenvalues \(\lambda_j \), it follows that the minimum is achieved for different functions of those eigenvalues, say, the trace or the determinant of \((A - B)(A - B)^\tau\).

The Courant–Fischer Min-Max Theorem A very useful result is the following expression for the \(j \)th largest eigenvalue of a \((J \times J)\) symmetric matrix \(A \):

\[
\lambda_j(A) = \inf_{L} \sup_{x : Lx = 0} \frac{x^\tau Ax}{x^\tau x}, \quad x \neq 0,
\]

(3.37)

where inf is an infimum over a \(((j - 1) \times J)\)-matrix \(L \) with rank at most \(j - 1 \), and sup is a supremum over a nonzero \(J \)-vector \(x \) that satisfies \(Lx = 0 \).
Equality in (3.37) is reached if \(L = (v_1, \ldots, v_{j-1})^\tau \) and \(x = v_j = v_j(A) \), the eigenvector associated with the \(j \)th largest eigenvalue of \(A \). A corollary of this result is that the \(j \)th smallest eigenvalue of \(A \) can be written as

\[
\lambda_{j-j+1}(A) = \sup_L \inf_{Lx=0} \frac{x^\tau Ax}{x^\tau x}, \quad x \neq 0.
\]

(3.38)

For a proof, see, e.g., Bellman (1970, pp. 115–117). These two results enable us to write

\[
\lambda_j(A) \leq \frac{x^\tau Ax}{x^\tau x} \leq \lambda_1(A), \quad x \neq 0,
\]

(3.39)

where \(\lambda_1(A) \) is the largest eigenvalue and \(\lambda_j(A) \) is the smallest eigenvalue of \(A \).

The Hoffman–Wielandt Theorem Suppose \(A \) and \(B \) are \((J \times J)\)-matrices with \(A - B \) symmetric. Suppose \(A \) and \(B \) have eigenvalues \(\{\lambda_j(A)\} \) and \(\{\lambda_j(B)\} \), respectively. Hoffman and Wielandt (1953) showed that

\[
\sum_{j=1}^J (\lambda_j(A) - \lambda_j(B))^2 \leq \text{tr}\{(A - B)(A - B)^\tau\}.
\]

(3.40)

This result is useful for studying the bias in sample eigenvalues. For a simple proof, see Exercise 3.3.

Poincaré Separation Theorem Let \(A \) be a \((J \times J)\)-matrix and let \(U \) be a \((J \times k)\)-matrix, \(k \leq J \), such that \(U^\tau U = I_k \). Then,

\[
\lambda_j(U^\tau AU) \leq \lambda_j(A),
\]

(3.41)

with equality if the columns of \(U \) are the first \(k \) eigenvectors of \(A \). This inequality can be proved using (3.37) from the Courant–Fischer Min-Max Theorem; see Exercise 3.4.

3.2.11 Matrix Calculus

Let \(x = (x_1, \ldots, x_K)^\tau \) be a \(K \)-vector and let

\[
y = (y_1, \ldots, y_J)^\tau = (f_1(x), \ldots, f_J(x))^\tau = f(x)
\]

(3.42)

be a \(J \)-vector, where \(f : \mathbb{R}^K \rightarrow \mathbb{R}^J \). Then, the partial derivative of \(y \) wrt \(x \) is the \(JK \)-vector,

\[
\frac{\partial y}{\partial x} = \left(\frac{\partial y_1}{\partial x_1}, \ldots, \frac{\partial y_J}{\partial x_1}, \ldots, \frac{\partial y_1}{\partial x_K}, \ldots, \frac{\partial y_J}{\partial x_K} \right)^\tau.
\]

(3.43)
A more convenient form is the partial derivative of y wrt x^τ, which yields the $(J \times K)$ Jacobian matrix,

$$
J_{x^\tau y} = \frac{\partial y}{\partial x^\tau} = \left(\begin{array}{cccc}
\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_K} \\
\frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_K} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_J}{\partial x_1} & \frac{\partial y_J}{\partial x_2} & \cdots & \frac{\partial y_J}{\partial x_K}
\end{array} \right). \tag{3.44}
$$

The Jacobian matrix can be interpreted as the first derivative of $f(x)$ wrt x. It, therefore, provides a method for linearly approximating a multivariate vector-valued function: $f(x) \approx f(c) + [J_{x^\tau y}(c)](x - c)$, where $c \in \mathbb{R}^K$. The Jacobian of the transformation $y = f(x)$ is

$$
J = |J_{x^\tau y}|. \tag{3.45}
$$

If $y = f(x)$ is a scalar, then the gradient vector is

$$
\nabla_{x^\tau y} = \frac{\partial y}{\partial x} = \left(\frac{\partial y}{\partial x_1}, \frac{\partial y}{\partial x_2}, \ldots, \frac{\partial y}{\partial x_K} \right)^\tau = \left(\frac{\partial y}{\partial x^\tau} \right)^\tau = (J_{x^\tau y})^\tau, \tag{3.46}
$$

while if x is a scalar, then,

$$
\frac{\partial y}{\partial x} = \left(\frac{\partial y_1}{\partial x}, \frac{\partial y_2}{\partial x}, \ldots, \frac{\partial y_J}{\partial x} \right)^\tau. \tag{3.47}
$$

For example, if A is a $(J \times K)$-matrix, then:

$$
\frac{\partial (Ax)}{\partial x^\tau} = A, \tag{3.48}
$$

$$
\frac{\partial (x^\tau x)}{\partial x^\tau} = 2x, \tag{3.49}
$$

$$
\frac{\partial (x^\tau Ax)}{\partial x^\tau} = x^\tau(A + A^\tau) \quad (J = K). \tag{3.50}
$$

The derivative of a $(J \times K)$-matrix A wrt an r-vector x is the $(Jr \times K)$-matrix of derivatives of A wrt each element of x:

$$
\frac{\partial A}{\partial x} = \left(\frac{\partial A^\tau}{\partial x_1}, \cdots, \frac{\partial A^\tau}{\partial x_r} \right)^\tau. \tag{3.51}
$$

It follows that:

$$
\frac{\partial (\alpha A)}{\partial x} = \alpha \frac{\partial A}{\partial x} \quad (\alpha \text{ a constant}) \tag{3.52}
$$

$$
\frac{\partial (A + B)}{\partial x} = \frac{\partial A}{\partial x} + \frac{\partial B}{\partial x} \tag{3.53}
$$
\[
\frac{\partial(AB)}{\partial x} = \left(\frac{\partial A}{\partial x} \right) B + A \left(\frac{\partial B}{\partial x} \right) \tag{3.54}
\]
\[
\frac{\partial(A \otimes B)}{\partial x} = \left(\frac{\partial A}{\partial x} \otimes B \right) + \left(A \otimes \frac{\partial B}{\partial x} \right) \tag{3.55}
\]
\[
\frac{\partial(A^{-1})}{\partial x} = -A^{-1} \left(\frac{\partial A}{\partial x} \right) A^{-1}, \tag{3.56}
\]
where \(A\) and \(B\) are conformable matrices.

If \(y = f(A)\) is a scalar function of the \((J \times K)\)-matrix \(A = (A_{ij})\), define the following gradient matrix:

\[
\frac{\partial y}{\partial A} = \begin{pmatrix}
\frac{\partial y}{\partial A_{11}} & \frac{\partial y}{\partial A_{12}} & \cdots & \frac{\partial y}{\partial A_{1K}} \\
\frac{\partial y}{\partial A_{21}} & \frac{\partial y}{\partial A_{22}} & \cdots & \frac{\partial y}{\partial A_{2K}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y}{\partial A_{J1}} & \frac{\partial y}{\partial A_{J2}} & \cdots & \frac{\partial y}{\partial A_{JK}}
\end{pmatrix}. \tag{3.57}
\]

For example, if \(A\) is a \((J \times J)\)-matrix, then,

\[
\frac{\partial (\text{tr}(A))}{\partial A} = I_J \tag{3.58}
\]
\[
\frac{\partial (|A|)}{\partial A} = |A| \cdot (A^T)^{-1}. \tag{3.59}
\]

Next, we define the Hessian matrix as a square matrix whose elements are the second-order partial derivatives of a function. Let \(y = f(x)\) be a scalar function of \(x \in \mathbb{R}^K\). The \((K \times K)\)-matrix,

\[
H_{xy} = \frac{\partial}{\partial x} \left(\frac{\partial y}{\partial x} \right)^T = \frac{\partial^2 y}{\partial x \partial x^T} = \begin{pmatrix}
\frac{\partial^2 y}{\partial x_1 \partial x_1} & \frac{\partial^2 y}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 y}{\partial x_1 \partial x_K} \\
\frac{\partial^2 y}{\partial x_2 \partial x_1} & \frac{\partial^2 y}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 y}{\partial x_2 \partial x_K} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 y}{\partial x_K \partial x_1} & \frac{\partial^2 y}{\partial x_K \partial x_2} & \cdots & \frac{\partial^2 y}{\partial x_K \partial x_K}
\end{pmatrix}, \tag{3.60}
\]
is called the Hessian of \(y\) wrt \(x\). Note that \(H_{xy} = \nabla^2_y = \nabla_x \nabla_y\), so that the Hessian is the Jacobian of the gradient of \(f\). If the second-order partial derivatives are continuous, the Hessian is a symmetric matrix. The Hessian enables a quadratic term to be included in the Taylor-series approximation to a real-valued function:

\[
f(x) \approx f(c) + [Jf(c)](x - c) + \frac{1}{2}(x - c)^T [Hf(c)](x - c), \quad c \in \mathbb{R}^K. \tag{3.61}
\]
3.3 Random Vectors

If we have \(r \) random variables, \(X_1, X_2, \ldots, X_r \), each defined on the real line, we can write them as the \(r \)-dimensional column vector,

\[
X = (X_1, \ldots, X_r)\tau.
\]

(3.62)

which we, henceforth, call a “random \(r \)-vector.” The joint distribution function \(F_X \) of the random vector \(X \) is given by

\[
F_X(x) = F_X(x_1, \ldots, x_r) = P\{X_1 \leq x_1, \ldots, X_r \leq x_r\}
\]

(3.63)

(3.64)

for any vector \(x = (x_1, x_2, \ldots, x_r)\tau \) of real numbers, where \(P(A) \) represents the probability that the event \(A \) will occur. If \(F_X \) is absolutely continuous, then the joint density function \(f_X \) of \(X \), where

\[
f_X(x) = f_X(x_1, \ldots, x_r) = \frac{\partial^r F_X(x_1, \ldots, x_r)}{\partial x_1 \cdots \partial x_r},
\]

(3.66)

will exist almost everywhere. The distribution function \(F_X \) can be recovered from \(f_X \) using the relationship

\[
F_X(x) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_r} f_X(u_1, \ldots, u_r) \, du_1 \cdots du_r.
\]

(3.67)

Consider a subset, \(X_1, X_2, \ldots, X_k \) (\(k < r \)), say, of the components of \(X \). The marginal distribution function of that component subset is given by

\[
F_X(x_1, \ldots, x_k) = F_X(x_1, \ldots, x_k, \infty, \ldots, \infty)
\]

(3.68)

\[
= P\{X_1 \leq x_1, \ldots, X_k \leq x_k, X_{k+1} \leq \infty, \ldots, X_r \leq \infty\},
\]

and the marginal density of that subset is

\[
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_X(u_1, \ldots, u_r) \, du_{k+1} \cdots du_r.
\]

(3.69)

For example, if \(r = 2 \), the bivariate joint density of \(X_1 \) and \(X_2 \) is given by \(f_{X_1,X_2}(x_1, x_2) \), and its marginal densities are

\[
f_{X_1}(x_1) = \int_{\mathbb{R}} f_{X_1,X_2}(x_1, x_2) \, dx_2, \quad f_{X_2}(x_2) = \int_{\mathbb{R}} f_{X_1,X_2}(x_1, x_2) \, dx_1.
\]

(3.70)
The components of a random r-vector \mathbf{X} are said to be *mutually statistically independent* if the joint distribution can be factored into the product of its r marginals,

$$ F_X(\mathbf{x}) = \prod_{i=1}^{r} F_i(x_i), \quad (3.71) $$

where $F_i(x_i)$ is the marginal distribution of X_i, $i = 1, 2, \ldots, r$. This implies that a similar factorization of the joint density function holds under independence,

$$ f_X(\mathbf{x}) = \prod_{i=1}^{r} f_i(x_i), \quad (3.72) $$

for any set of r real numbers x_1, \ldots, x_r.

3.3.1 Multivariate Moments

Let X be a continuous real-valued random variable with *probability density function* f_X; that is, $f_X(x) \geq 0$, for all $x \in \mathbb{R}$, and $\int_{\mathbb{R}} f_X(x) dx = 1$. The *expected value* of X is defined as

$$ \mu_X = E(X) = \int x f_X(x) dx, \quad (3.73) $$

and its *variance* is

$$ \sigma^2_X = \text{var}(X) = E\{(X - \mu_X)^2\}. \quad (3.74) $$

If \mathbf{X} is a random r-vector with values in \mathbb{R}^r, then its expected value is the r-vector

$$ \mu_X = E(\mathbf{X}) = (E(X_1), \cdots, E(X_r))^\tau = (\mu_1, \cdots, \mu_r)^\tau, \quad (3.75) $$

and the $(r \times r)$ *covariance matrix* of \mathbf{X} is given by

$$ \Sigma_{XX} = \text{cov}(\mathbf{X}, \mathbf{X}) \quad (3.76) $$

$$ = E\{(\mathbf{X} - \mu_X)(\mathbf{X} - \mu_X)^\tau\} \quad (3.77) $$

$$ = E\{ (X_1 - \mu_1, \cdots, X_r - \mu_r)(X_1 - \mu_1, \cdots, X_r - \mu_r)^\tau \} \quad (3.78) $$

$$ = \begin{pmatrix} \sigma^2_1 & \sigma_{12} & \cdots & \sigma_{1r} \\ \sigma_{21} & \sigma^2_2 & \cdots & \sigma_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{r1} & \sigma_{r2} & \cdots & \sigma^2_r \end{pmatrix}, \quad (3.79) $$

where

$$ \sigma^2_i = \text{var}(X_i) = E\{(X_i - \mu_i)^2\} \quad (3.80) $$

is the *variance* of X_i, $i = 1, 2, \ldots, r$, and

$$ \sigma_{ij} = \text{cov}(X_i, X_j) = E\{(X_i - \mu_i)(X_j - \mu_j)\} \quad (3.81) $$
is the covariance between \(X_i \) and \(X_j \), \(i, j = 1, 2, \ldots, r \) (\(i \neq j \)). It is not difficult to show that

\[
\Sigma_{XX} = \mathbb{E}(XX^\top) - \mu_X \mu_X^\top.
\] (3.82)

The correlation matrix of \(\mathbf{X} \) is obtained from the covariance matrix \(\Sigma_{XX} \) by dividing the \(i \)th row by \(\sigma_i \) and dividing the \(j \)th column by \(\sigma_j \). It is given by the \((r \times r)\)-matrix,

\[
\mathbf{P}_{XX} = \begin{pmatrix}
1 & \rho_{12} & \cdots & \rho_{1r} \\
\rho_{21} & 1 & \cdots & \rho_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{r1} & \rho_{r2} & \cdots & 1
\end{pmatrix},
\] (3.83)

where

\[
\rho_{ij} = \rho_{ji} = \left\{ \begin{array}{ll}
\frac{\sigma_{ij}}{\sigma_i \sigma_j} & \text{if } i \neq j \\
1 & \text{otherwise}
\end{array} \right.
\] (3.84)

is the (pairwise) correlation coefficient of \(X_i \) with \(X_j \), \(i, j = 1, 2, \ldots, r \). The correlation coefficient \(\rho_{ij} \) lies between \(-1\) and \(+1\) and is a measure of association between \(X_i \) and \(X_j \). When \(\rho_{ij} = 0 \), we say that \(X_i \) and \(X_j \) are uncorrelated; when \(\rho_{ij} > 0 \), we say that \(X_i \) and \(X_j \) are positively correlated; and when \(\rho_{ij} < 0 \), we say that \(X_i \) and \(X_j \) are negatively correlated.

Now, suppose we have two random vectors, \(\mathbf{X} \) and \(\mathbf{Y} \), where \(\mathbf{X} \) has \(r \) components and \(\mathbf{Y} \) has \(s \) components. Let \(\mathbf{Z} \) be the random \((r + s)\)-vector,

\[
\mathbf{Z} = \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}.
\] (3.85)

Then, the expected value of \(\mathbf{Z} \) is the \((r + s)\)-vector,

\[
\mu_Z = \mathbb{E}(\mathbf{Z}) = \begin{pmatrix} \mathbb{E}(\mathbf{X}) \\ \mathbb{E}(\mathbf{Y}) \end{pmatrix} = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix},
\] (3.86)

and the covariance matrix of \(\mathbf{Z} \) is the partitioned \((r + s) \times (r + s)\)-matrix,

\[
\Sigma_{ZZ} = \mathbb{E}\{(\mathbf{Z} - \mu_Z)(\mathbf{Z} - \mu_Z)^\top\}
\] (3.87)

\[
= \begin{pmatrix}
\text{cov}(\mathbf{X}, \mathbf{X}) & \text{cov}(\mathbf{X}, \mathbf{Y}) \\
\text{cov}(\mathbf{Y}, \mathbf{X}) & \text{cov}(\mathbf{Y}, \mathbf{Y})
\end{pmatrix}
\] (3.88)

\[
= \begin{pmatrix}
\Sigma_{XX} & \Sigma_{XY} \\
\Sigma_{YX} & \Sigma_{YY}
\end{pmatrix},
\] (3.89)

where

\[
\Sigma_{XY} = \text{cov}(\mathbf{X}, \mathbf{Y}) = \mathbb{E}\{(\mathbf{X} - \mu_X)(\mathbf{Y} - \mu_Y)^\top\} = \Sigma_{YX}^\top
\] (3.90)

is an \((r \times s)\)-matrix.
If \(Y \) is linearly related to \(X \) in the sense that
\[
Y = AX + b,
\]
where \(A \) is a fixed \((s \times r)\)-matrix and \(b \) is a fixed \(s \)-vector, then the mean vector and covariance matrix of \(Y \) are given by
\[
\mu_Y = A\mu_X + b, \quad (3.92)
\]
\[
\Sigma_{YY} = A\Sigma_{XX}A^\top, \quad (3.93)
\]
respectively.

3.3.2 Multivariate Gaussian Distribution

The multivariate Gaussian distribution is a generalization to two or more dimensions of the univariate Gaussian (or Normal) distribution, which is often characterized by its resemblance to the shape of a bell. In fact, in either of its univariate or multivariate incarnations, it is popularly referred to as the “bell curve.”

The Gaussian distribution is used extensively in both theoretical and applied statistics research. The Gaussian distribution often represents the stochastic part of the mechanism that generates observed data. This assumption is helpful in simplifying the mathematics that allows researchers to prove asymptotic results. Although it is well-known that real data rarely obey the dictates of the Gaussian distribution, this deception does provide us with a useful approximation to reality.

If the real-valued univariate random variable \(X \) is said to have the Gaussian (or Normal) distribution with mean \(\mu \) and variance \(\sigma^2 \) (written as \(X \sim \mathcal{N}(\mu, \sigma^2) \)), then its density function is given by the curve
\[
f(x|\mu, \sigma) = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \quad x \in \mathbb{R}, \quad (3.94)
\]
where \(-\infty < \mu < \infty\) and \(\sigma > 0 \). The constant multiplier term \(c = (2\pi\sigma^2)^{-1/2} \) is there to ensure that the exponential function in the formula integrates to unity over the whole real line.

The random \(r \)-vector \(X \) is said to have the \(r \)-variate Gaussian (or Normal) distribution with mean \(r \)-vector \(\mu \) and positive-definite, symmetric \((r \times r)\) covariance matrix \(\Sigma \) if its density function is given by the curve
\[
f(x|\mu, \Sigma) = (2\pi)^{-r/2}|\Sigma|^{-1/2} e^{-\frac{1}{2}(x-\mu)^\top \Sigma^{-1}(x-\mu)}, \quad x \in \mathbb{R}^r. \quad (3.95)
\]
The square-root, \(\Delta \), of the quadratic form,
\[
\Delta^2 = (x - \mu)^\top \Sigma^{-1}(x - \mu), \quad (3.96)
\]
is referred to as the *Mahalanobis distance* from \(x \) to \(\mu \). The multivariate Gaussian density is unimodal, always positive, and integrates to unity. We, henceforth, write

\[
X \sim \mathcal{N}_r(\mu, \Sigma),
\]

(3.97)

when we mean that \(X \) has the above \(r \)-variate Gaussian (or Normal) distribution. If \(\Sigma \) is singular, then, almost surely, \(X \) lives on some reduced-dimensionality hyperplane so that its density function does not exist; in that case, we say that \(X \) has a singular Gaussian (or singular Normal) distribution.

An important result, due to Cramer and Wold, states that the distribution of a random \(r \)-vector \(X \) is completely determined by its one-dimensional linear projections, \(\alpha^\tau X \), for any given \(r \)-vector \(\alpha \). This result allows us to make a more useful definition of the multivariate Gaussian distribution: *The random \(r \)-vector \(X \) has the multivariate Gaussian distribution iff every linear function of \(X \) has the univariate Gaussian distribution.*

Special Cases

If \(\Sigma = \sigma^2 I_r \), then the multivariate Gaussian density function reduces to

\[
f(x|\mu, \sigma) = (2\pi)^{-r/2} \sigma^{-1} e^{-\frac{1}{2\sigma^2} (x-\mu)^\tau (x-\mu)},
\]

(3.98)

and this is termed a spherical Gaussian density because \((x-\mu)^\tau (x-\mu) = a^2\) is the equation of an \(r \)-dimensional sphere centered at \(\mu \). In general, the equation \((x - \mu)^\tau \Sigma^{-1} (x - \mu) = a^2\) is an ellipsoid centered at \(\mu \), with \(\Sigma \) determining its orientation and shape, and the multivariate Gaussian density function is constant along these ellipsoids.

When \(r = 2 \), the multivariate Gaussian density can be written out explicitly. Suppose

\[
X = (X_1, X_2)^\tau \sim \mathcal{N}_2(\mu, \Sigma),
\]

(3.99)

where

\[
\mu = (\mu_1, \mu_2)^\tau, \quad \Sigma = \begin{pmatrix}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{pmatrix} = \begin{pmatrix}
\sigma_1^2 & \rho \sigma_1 \sigma_2 \\
\rho \sigma_1 \sigma_2 & \sigma_2^2
\end{pmatrix},
\]

(3.100)

\(\sigma_1^2 \) is the variance of \(X_1 \), \(\sigma_2^2 \) is the variance of \(X_2 \), and

\[
\rho = \frac{\text{cov}(X_1, X_2)}{\sqrt{\text{var}(X_1) \cdot \text{var}(X_2)}} = \frac{\sigma_{12}}{\sigma_1 \sigma_2}
\]

(3.101)

is the correlation between \(X_1 \) and \(X_2 \). It follows that

\[
|\Sigma| = (1 - \rho^2) \sigma_1^2 \sigma_2^2,
\]

(3.102)
and

\[\Sigma^{-1} = \frac{1}{1-\rho^2} \begin{pmatrix} \frac{1}{\sigma_1^2} & -\frac{\rho}{\sigma_1 \sigma_2} \\ -\frac{\rho}{\sigma_1 \sigma_2} & \frac{1}{\sigma_2^2} \end{pmatrix}. \]

The bivariate Gaussian density function of \(\mathbf{X} \) is, therefore, given by

\[f(\mathbf{x}|\mathbf{\mu}, \Sigma) = \frac{1}{2\pi\sigma_1 \sigma_2 \sqrt{1-\rho^2}} e^{-\frac{1}{2}Q}, \]

where

\[Q = \frac{1}{1-\rho^2} \left\{ \left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 \right\}. \]

If \(X_1 \) and \(X_2 \) are uncorrelated, \(\rho = 0 \), and the middle term in the exponent (3.106) drops out. In that case, the bivariate Gaussian density function reduces to the product of two univariate Gaussian densities,

\[f(\mathbf{x}|\mu_1, \mu_2) = f(x_1|\mu_1, \sigma_1^2) f(x_2|\mu_2, \sigma_2^2), \]

implying that \(X_1 \) and \(X_2 \) are independent. (see (3.72)).

3.3.3 Conditional Gaussian Distributions

Consider the random \((r + s)\)-vector \(\mathbf{Z} \) in (3.85) with mean vector \(\mathbf{\mu}_Z \) in (3.86) and partitioned covariance matrix \(\Sigma_{ZZ} \) in (3.89). Assume that \(\mathbf{Z} \) has the multivariate Gaussian distribution. Then, the exponent in (3.95) is the quadratic form,

\[-\frac{1}{2} (\mathbf{z} - \mathbf{\mu}_Z)^T \Sigma_{ZZ}^{-1} (\mathbf{z} - \mathbf{\mu}_Z). \]

From (3.5),

\[\Sigma_{ZZ}^{-1} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}, \]

where

\[\mathbf{A}_{11} = \Sigma_{XX}^{-1} + \Sigma_{XX}^{-1} \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{YY}^{-1} \Sigma_{XX}^{-1} \]

\[\mathbf{A}_{12} = -\Sigma_{XX}^{-1} \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{YY}^{-1} = \mathbf{A}_{21}^T \]

\[\mathbf{A}_{22} = \Sigma_{YY}^{-1} \Sigma_{XX}^{-1}, \]

and \(\Sigma_{YY}^{-1} = \Sigma_{YY} - \Sigma_{YY} \Sigma_{XX}^{-1} \Sigma_{XY} \). As a result, we can write \(\Sigma_{ZZ}^{-1} \) as follows:

\[\begin{pmatrix} \mathbf{I} & -\Sigma_{XX}^{-1} \Sigma_{XY} \\ 0 & \mathbf{I} \end{pmatrix} \begin{pmatrix} \Sigma_{XX}^{-1} & 0 \\ 0 & \Sigma_{YY}^{-1} \end{pmatrix} \begin{pmatrix} \mathbf{I} & -\Sigma_{YY}^{-1} \Sigma_{XX} \\ 0 & \mathbf{I} \end{pmatrix}. \]
Consider the following nonsingular transformation of the random r-vector Z:

$$
U = \begin{pmatrix}
U_1 \\
U_2
\end{pmatrix} = \begin{pmatrix}
I & 0 \\
-\Sigma_{YX} \Sigma_{XX}^{-1} & I
\end{pmatrix} \begin{pmatrix}
X \\
Y
\end{pmatrix}
$$

(3.110)

The random vector U has a multivariate Gaussian distribution with mean,

$$
\mu_U = \begin{pmatrix}
I & 0 \\
-\Sigma_{XY} \Sigma_{XX}^{-1} & I
\end{pmatrix} \begin{pmatrix}
\mu_X \\
\mu_Y
\end{pmatrix}
$$

(3.111)

and covariance matrix,

$$
\Sigma_{UU} = \begin{pmatrix}
\Sigma_{XX} & 0 \\
0 & \Sigma_{YY} \cdot X
\end{pmatrix}.
$$

(3.112)

Hence, the marginal distribution of $U_1 = X$ is $N_s(\mu_X, \Sigma_{XX})$, the marginal distribution of $U_2 = Y - \Sigma_{YX} \Sigma_{XX}^{-1} X$ is $N_s(\mu_Y - \Sigma_{YX} \Sigma_{XX}^{-1} \mu_X, \Sigma_{YY} \cdot X)$, and U_1 and U_2 are independent.

Now, given $X = x, \mu_Y + \Sigma_{XY} \Sigma_{XX}^{-1} (x - \mu_X)$ is a constant. So, because of independence, the conditional distribution of $(Y - \mu_Y) - \Sigma_{XY} \Sigma_{XX}^{-1} (x - \mu_X)$ is identical to the unconditional distribution of $(Y - \mu_Y) - \Sigma_{XY} \Sigma_{XX}^{-1} (x - \mu_X)$, which is $N_s(0, \Sigma_{YY} \cdot X)$. Hence, $(Y - \mu_Y) - \Sigma_{XY} \Sigma_{XX}^{-1} (x - \mu_X) \sim N_s(0, \Sigma_{YY} \cdot X)$.

The resulting conditional distribution of Y given $X = x$ is an s-variate Gaussian with mean vector and covariance matrix given by

$$
\mu_{Y|X} = \mu_Y + \Sigma_{XY} \Sigma_{XX}^{-1} (x - \mu_X)
$$

(3.113)

$$
\Sigma_{Y|X} = \Sigma_{YY} - \Sigma_{XY} \Sigma_{XX}^{-1} \Sigma_{XY},
$$

(3.114)

respectively. Note that the mean vector is a linear function of x, whereas the covariance matrix does not depend upon x at all.

3.4 Random Matrices

The $(r \times s)$-matrix

$$
Z = \begin{pmatrix}
Z_{11} & \cdots & Z_{1s} \\
\vdots & \ddots & \vdots \\
Z_{r1} & \cdots & Z_{rs}
\end{pmatrix}
$$

(3.115)

with r rows and s columns is a matrix-valued random variable (henceforth “random $(r \times s)$-matrix”) if each component Z_{ij} is a random variable, $i = 1, 2, \ldots, r, j = 1, 2, \ldots, s$. That is, if the joint distribution,

$$
F_Z(z) = F_Z(z_{ij}, i = 1, 2, \ldots, r, j = 1, 2, \ldots, s)
$$

(3.116)

$$
= P\{Z_{ij} \leq z_{ij}, i = 1, 2, \ldots, r, j = 1, 2, \ldots, s\}
$$

(3.117)

$$
= P\{Z \leq z\},
$$

(3.118)
is defined for all $z = (z_{ij})$.

The expected value of the random $(r \times s)$-matrix Z is given by

$$
\mu_Z = E(Z) = \begin{pmatrix}
E(Z_{11}) & \cdots & E(Z_{1s}) \\
\vdots & \ddots & \vdots \\
E(Z_{r1}) & \cdots & E(Z_{rs})
\end{pmatrix} = \begin{pmatrix}
\mu_{11} & \cdots & \mu_{1s} \\
\vdots & \ddots & \vdots \\
\mu_{r1} & \cdots & \mu_{rs}
\end{pmatrix}.
$$

The covariance matrix of Z is the matrix of all covariances of pairs of elements of Z and has rs rows and rs columns. It is, therefore, the covariance matrix of vec(Z),

$$
\Sigma_{ZZ} = \text{cov}\{\text{vec}(Z)\} = E\{(\text{vec}(Z - \mu_Z)(\text{vec}(Z - \mu_Z))^\tau\}.
$$

If we form a new matrix-valued random variable W by setting

$$
W = AZB^\tau + C,
$$

where A, B, and C are matrices of constants, then the mean matrix of W is

$$
\mu_W = A\mu_ZB^\tau + C,
$$

and, because

$$
\text{vec}(W - \mu_W) = \text{vec}(A(Z - \mu_Z)B^\tau) = (A \otimes B)\text{vec}(Z - \mu_Z),
$$

the covariance matrix of vec(W) is

$$
\Sigma_{WW} = E\{(\text{vec}(W - \mu_W))(\text{vec}(W - \mu_W))^\tau\} = (A \otimes B)\Sigma_{ZZ}(A \otimes B)^\tau.
$$

3.4.1 Wishart Distribution

Given n independently distributed random r-vectors,

$$
X_i \sim \mathcal{N}_r(\mu_i, \Sigma), \quad i = 1, 2, \ldots, n \quad (n \geq r),
$$

we say that the random positive-definite and symmetric $(r \times r)$-matrix,

$$
W = \sum_{i=1}^n X_iX_i^\tau,
$$

has the Wishart distribution with n degrees of freedom and associated matrix Σ. If $\mu_i = 0$ for all i, the Wishart distribution of W is termed central; otherwise, it is noncentral.
It can be shown that the joint density function of the \(r(r+1)/2 \) distinct elements of \(\mathbf{W} \) is given by

\[
w_r(\mathbf{W}|\mathbf{n}, \mathbf{\Sigma}) = c_{r,n}|\mathbf{\Sigma}|^{-1/2}\mathbf{|W|^{1/2(n-r-1)}e^{-1/2\text{tr}(\mathbf{W\Sigma^{-1}})}}, \tag{3.127}\]

where

\[
\frac{1}{c_{r,n}} = 2^{nr/2}\pi^{r(r-1)/4}\prod_{i=1}^{r} \Gamma \left(\frac{n+1-i}{2} \right). \tag{3.128}\]

If \(\mathbf{W} \) is singular, the density is 0, in which case \(\mathbf{W} \) is said to have the singular Wishart distribution. If \(\mathbf{W} \) has a Wishart density, we find it convenient to write

\[
\mathbf{W} \sim \mathcal{W}_r(n, \mathbf{\Sigma}). \tag{3.129}\]

Many derivations of (3.127) have appeared in the statistical literature. See Anderson (1984) for references. When \(r = 1 \), \(\mathcal{W}_1(n, \sigma^2) \) is identical to the \(\sigma^2\chi_n^2 \) distribution.

The first two moments of \(\mathbf{W} \) are given by

\[
\mathbb{E}(\mathbf{W}) = n\mathbf{\Sigma}. \tag{3.130}\]

\[
\text{cov}\{\text{vec}(\mathbf{W})\} = \mathbb{E}\{(\text{vec}(\mathbf{W} - n\mathbf{\Sigma}))(\text{vec}(\mathbf{W} - n\mathbf{\Sigma}))^\tau\} \tag{3.131}\]

\[
= n(\mathbf{I}_{r^2} + \mathbf{I}_{(r,r)})(\mathbf{\Sigma} \otimes \mathbf{\Sigma}), \tag{3.132}\]

where \(\mathbf{I}_{(p,q)} \) is a permuted-identity matrix (Macrae, 1974), which is a \((pq \times pq)\)-matrix partitioned into \((p \times q)\)-submatrices such that the \(ij\)th submatrix has a 1 in its \(ji\)th position and zeroes elsewhere. For example, when \(p = q = 2 \), the permuted-identity matrix is given by

\[
\mathbf{I}_{(2,2)} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}. \tag{3.133}\]

The permuted identity matrix \(\mathbf{I}_{(r,r)} \) can be expressed as the sum of \(r^2 \) Kronecker products,

\[
\mathbf{I}_{(r,r)} = \sum_{i=1}^{r} \sum_{j=1}^{r} \mathbf{H}_{ij} \otimes \mathbf{H}_{ij}^\tau, \tag{3.134}\]

where \(\mathbf{H}_{ij} \) is an \((r \times r)\)-matrix with \(ij\)th element equal to 1 and zero otherwise. Another property of the permuted identity matrix is that

\[
\mathbf{I}_{(r,r)}\text{vec}(\mathbf{A}) = \text{vec}(\mathbf{A}^\tau), \tag{3.135}\]

which led to it also being called a commutation matrix.
3.5 Maximum Likelihood Estimation for the Gaussian

Assume that we have \(n \) random \(r \)-vectors \(X_1, X_2, \ldots, X_n \), iid as multivariate Gaussian vectors,

\[
X_j \sim \mathcal{N}_r(\mu, \Sigma), \quad j = 1, 2, \ldots, n,
\]

where the parameters, \(\mu \) and \(\Sigma \), of this distribution are both unknown. To estimate \(\mu \) and \(\Sigma \), we use the method of maximum likelihood (ML).

By independence, the joint density of the data \(\{X_i, i = 1, 2, \ldots, n\} \) is the product of the individual densities; that is, \(\prod_{i=1}^{n} f_{X_i}(x_i | \mu, \Sigma) \). If we now consider this joint density as a function of the parameters, \(\mu \) and \(\Sigma \), then we have the likelihood function of the parameters given the data,

\[
\mathcal{L}(\mu, \Sigma | \{X_i\}) = (2\pi)^{-nr/2} |\Sigma|^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^\tau \Sigma^{-1} (x_i - \mu) \right\}.
\]

Taking logarithms of this expression, we have that the log-likelihood function is

\[
\ell(\mu, \Sigma) = \log \mathcal{L}(\mu, \Sigma | \{X_i\})
\]
66 3. Random Vectors and Matrices

\[
\ell(\mu, \Sigma) = -\frac{nr}{2} \log(2\pi) - \frac{n}{2} \log |\Sigma| - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^\top \Sigma^{-1} (x_i - \mu).
\]

(3.138)

It will be convenient to reexpress the summation term in (3.138) as follows:

\[
\sum_{i=1}^{n} (x_i - \mu)^\top \Sigma^{-1} (x_i - \mu)
\]

(3.139)

\[
= \text{tr} \left\{ \Sigma^{-1} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^\top \right\} + n(\bar{x} - \mu)^\top \Sigma^{-1} (\bar{x} - \mu),
\]

(3.140)

where \(\bar{x} = n^{-1} \sum_{i=1}^{n} x_i\) is the sample mean.

The ML method estimates the parameters \(\mu\) and \(\Sigma\) by maximizing the log-likelihood with respect to (wrt) those parameters, given the data values, \(\{x_i, i = 1, 2, \ldots, n\}\). First, we maximize \(\ell\) wrt \(\mu\):

\[
\frac{\partial \ell(\mu, \Sigma)}{\partial \mu} = \Sigma^{-1}(\bar{x} - \mu).
\]

(3.141)

Setting this derivative equal to zero, the ML estimator of \(\mu\) is the random \(r\)-vector \(\hat{\mu} = \bar{X}\),

(3.142)

which we call the sample mean vector. For a given data set, the ML estimate is \(\hat{\mu} = \bar{x}\).

Deriving the ML estimate for \(\Sigma\) needs a little more work. If we define \(A = \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^\top\), then (3.138) can be written as

\[
\ell(\mu, \Sigma) = -\frac{nr}{2} \log(2\pi) - \frac{n}{2} \log |\Sigma| - \frac{1}{2} \text{tr}(\Sigma^{-1} A) + n(\bar{x} - \mu)^\top \Sigma^{-1} (\bar{x} - \mu).
\]

(3.143)

The first term on the rhs of (3.143) is a constant and, at the maximum of \(\ell\), the last term is zero. So, we need to find \(\Sigma\) to maximize \(-n \log |\Sigma| - \text{tr}(\Sigma^{-1} A)\).

Set \(A = EE^\top\) and \(E^\top \Sigma^{-1} E = H\). Then, \(\Sigma = EH^{-1}E^\top\) and \(|\Sigma| = |A|/|H|\), whence, \(\log |\Sigma| = \log |A| - \log |H|\). Also, using properties of the trace, \(\text{tr}(\Sigma^{-1} A) = \text{tr}(\Sigma^{-1} EE^\top) = \text{tr}(E^\top \Sigma^{-1} E) = \text{tr}(H)\). Putting these results together, we now need to find \(H\) to maximize \(-n \log |A| + n \log |H| - \text{tr}(H)\).

By the Cholesky decomposition of \(H\), there is a unique lower-triangular matrix \(T = (t_{ij})\) with positive diagonal elements such that \(H = TT^\top\).
Hence, we need to find a lower-triangular T to maximize $-n \log |A| + \sum_{i=1}^{r}(n \log t_{ii}^2 - t_{ii}) - \sum_{i>j} t_{ij}^2$, where we used the facts that $|T|^2 = \prod_{i=1}^{r} t_{ii}^2$ and $\text{tr}(TT^\tau) = \sum_{i=1}^{r} t_{ii}^2$. The solution is to take $t_{ii}^2 = n$ and $t_{ij} = 0$ for $i \neq j$; that is, take $T = \sqrt{n}I_r$. Thus, we take $H = nI_r$, whence, $\Sigma = n^{-1}EE^\tau = n^{-1}A$. So, the ML estimator of Σ is given by the random $(r \times r)$-matrix

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^\tau = n^{-1}S,$$

(3.144)

which we call the sample covariance matrix. For a given data set, the ML estimate is $\hat{\Sigma} = n^{-1}A$.

3.5.1 Joint Distribution of Sample Mean and Sample Covariance Matrix

The ML estimator \bar{X} is an unbiased estimator of the population mean vector μ; that is,

$$E\{\bar{X}\} = \mu.$$

(3.145)

On the other hand, because

$$E\{\hat{\Sigma}\} = \frac{n-1}{n} \Sigma,$$

(3.146)

the ML estimator $\hat{\Sigma}$ in (3.144) is a biased estimator of the population covariance matrix Σ. To remove the bias from the covariance estimator (3.144), it suffices to divide S by $n - 1$ instead of by n.

Because \bar{X} is a linear combination of the X_1, \ldots, X_n, each of which are i.i.d. as $\mathcal{N}_r(\mu, \Sigma)$, then, the ML estimator, \bar{X} of μ has the distribution

$$\bar{X} \sim \mathcal{N}_r(\mu, n^{-1}\Sigma).$$

(3.147)

To derive the distribution of $\hat{\Sigma}$, we suppose for the moment that $\mu = 0$. Let a be a fixed r-vector and consider $y_i = a^\tau X_i$, $i = 1, 2, \ldots, n$. Then, $y_i \sim \mathcal{N}_1(0, \sigma^2_a)$, where $\sigma^2_a = a^\tau \Sigma a$, and $y = (y_1, \ldots, y_n)^\tau \sim \mathcal{N}_n(0, \sigma^2_a I_n)$. Let $b = n^{-1}1_n$, whence, $b^\tau b = n^{-1}$, and let $A = I_n - n^{-1}J_n$, where $J_n = 1_n 1_n^\tau$ is a matrix every element of which is unity. Note that A is idempotent with rank n. From univariate theory, $b^\tau y = \bar{y} \sim \mathcal{N}_1(0, \sigma^2_a / n)$ and, $y^\tau Ay = \sum_i (y_i - \bar{y})^2 \sim \sigma^2_a \chi^2_{n-1}$ are independently distributed for any a.

Now, let $\mathcal{X} = (X_1, \cdots, X_n)^\tau$. Then, $b^\tau \mathcal{X} \sim \mathcal{N}_r(0, n^{-1}\Sigma)$ and, from Property 4 of the Wishart distribution,

$$\mathcal{X}^\tau A \mathcal{X} \sim \mathcal{W}_r(n, \Sigma).$$

(3.148)
Because \(y \sim N_n(0, \sigma_a^2 I_n) \), it follows that \(b^\top y \sim N_1(0, \sigma_a^2 b^\top b) \) and
\[
y^\top b b^\top y / b^\top b \sim \sigma_a^2 \chi_1^2. \tag{3.149}
\]
Furthermore, \(Abb^\top = 0 \); postmultiplying by \(b \) yields \(Ab = 0 \), so that the columns of \(A = (a_1, \ldots, a_n) \) and \(b \) are mutually orthogonal. Thus, \(X^\top a_i = X_i - \bar{X}, i = 1, 2, \ldots, n \), and \(b^\top X \) are statistically independent of each other. Thus, \(y^\top b^\top y / b^\top b \sim \sigma_a^2 \chi_1^2 \).

The case of \(\mu \neq 0 \) is dealt with by replacing \(X_i \) by \(X_i - \mu, i = 1, 2, \ldots, n \). This does not change \(S \), and \(\bar{X} \) is replaced by \(\bar{X} - \mu \). Thus, \(S \) is independent of \(\bar{X} - \mu \) (and, hence, of \(\bar{X} \)), and
\[
\hat{\Sigma} \sim n^{-1} W_r(n - 1, \Sigma). \tag{3.150}
\]

3.5.2 Admissibility

In 1955, Charles Stein rocked the statistical world by showing that the ML estimator, \(\bar{X} \), of the unknown mean vector, \(\mu \), of a multivariate Gaussian distribution was “admissible” in one or two dimensions but was “inadmissible” in three or higher dimensions (Stein, 1955).

The idea of inadmissibility of an estimator \(\hat{\theta} \) of an unknown vector-valued parameter \(\theta \in \Theta \) is part of the framework of statistical decision theory and relates to the quality of that estimator in terms of a given loss function \(L(\theta, \hat{\theta}) \). A loss function gives a quantitative description of the loss incurred if \(\theta \) is estimated by \(\hat{\theta} \). For example, the most popular type of loss function for assessing an estimator, \(\hat{\theta} = (\hat{\theta}_1, \ldots, \hat{\theta}_r)^\top \), of the unknown parameter vector \(\theta = (\theta_1, \ldots, \theta_r)^\top \) is the “squared-error” loss function,
\[
L(\theta, \hat{\theta}) = (\hat{\theta} - \theta)^\top (\hat{\theta} - \theta) = \sum_{j=1}^r (\hat{\theta}_j - \theta_j)^2. \tag{3.151}
\]

Different types of loss functions have been proposed in different situations, and we will meet several of these throughout this book.

It is usual to compare estimators through their risk functions, which are the expected values of the respective loss functions; that is,
\[
R(\theta, \hat{\theta}) = \mathbb{E}_{\hat{\theta}}\{L(\theta, \hat{\theta})\}. \tag{3.152}
\]

Two different estimators, \(\hat{\theta}_a \) and \(\hat{\theta}_b \), of \(\theta \) can be compared by viewing the graphs of \(R(\theta, \hat{\theta}_a) \) and \(R(\theta, \hat{\theta}_b) \) over a suitable range of values of some function of \(\theta \), say, \(\| \theta \| \). An estimator \(\hat{\theta}_a \) is inadmissible if there exists another estimator \(\hat{\theta}_b \) for which
\[
R(\theta, \hat{\theta}_b) \leq R(\theta, \hat{\theta}_a) \text{ for all } \theta \in \Theta \tag{3.153}
\]
and
\[R(\theta, \hat{\theta}_b) < R(\theta, \hat{\theta}_a) \text{ for some } \theta \in \Theta; \quad (3.154) \]
the estimator \(\hat{\theta}_a \) is admissible if no such estimator \(\hat{\theta}_b \) exists. In other words, an estimator is inadmissible if we can find a better estimator that has a smaller risk function, whereas an estimator that cannot be improved upon in this way is called admissible.

3.5.3 James–Stein Estimator of the Mean Vector

Suppose \(X_i, i = 1, 2, \ldots, n \), are independently drawn from an \(r \)-variate Gaussian distribution with unknown mean vector \(\mu = (\mu_1, \cdots, \mu_r)^\tau \), such that the ML estimator \(Y = \bar{X} = n^{-1}\sum_i X_i \) has the \(N_r(\mu, I_r) \) distribution. Thus, the components of the unknown mean vector, \(\mu \), are different, and the components of \(Y \) are mutually independent with unit variances. The following development can be easily modified if the covariance matrix of \(Y \) were \(\sigma^2 I_r \), where \(\sigma^2 > 0 \) is known (Exercise 3.17), or a more general known covariance matrix \(V \) (Exercise 3.18).

The risk function of the estimator \(Y = (Y_1, \cdots, Y_r)^\tau \) is given by
\[R(\mu, Y) = E\mu\{(Y - \mu)^\tau(Y - \mu)\} = \text{tr}\{I_r\} = r. \quad (3.155) \]
Stein’s result that the sample mean vector is inadmissible for \(r \geq 3 \) in the case of squared-error loss was later supplemented by James and Stein (1961), who exhibited a “better” estimator of the multivariate Gaussian mean vector \(\mu \) than the sample mean \(\bar{X} \). Let \(\theta = (\theta_1, \cdots, \theta_r)^\tau \) be an arbitrary fixed vector, which is chosen before we look at the data. Typically, \(\theta \) is thought to be near \(\mu \).

The James–Stein estimator, \(\delta(Y) = (\delta_1(Y), \cdots, \delta_r(Y))^\tau \), is given by
\[\delta(Y) = \theta + \left(1 - \frac{r - 2}{S}\right)(Y - \theta), \quad (3.156) \]
where
\[S = \|Y - \theta\|^2 = \sum_{j=1}^r (Y_j - \theta_j)^2 \quad (3.157) \]
is the sum of the squared deviations of each individual mean \(Y_j \) from the constant \(\theta_j \), and \(r \geq 3 \). Thus, the James–Stein estimator shrinks \(Y \) toward \(\theta \) by a factor \(c = 1 - (r - 2)/S \). Note that for fixed \(\theta \), the shrinkage factor \(c \) is the same for all components of \(Y \).

The estimator \(\delta(Y) \) has a smaller risk than that of \(Y \) for every \(\mu \), independent of whichever vector \(\theta \) is chosen. To see this, consider the risk of \(\delta(Y) \):
\[R(\mu, \delta(Y)) = E\mu\left\{\sum_{j=1}^r (\delta_j(Y) - \mu_j)^2\right\} = E\mu\{\|\delta(Y) - \mu\|^2\}. \quad (3.158) \]
Now,
\[
\| \delta(Y) - \mu \|^2 = \| \theta + \left(1 - \frac{r-2}{S}\right)(Y - \theta) - \mu \|^2
\]
\[
= \sum_{j=1}^{r} \left\{ (Y_j - \mu_j) - \frac{r-2}{S}(Y_j - \theta_j) \right\}^2. \tag{3.159}
\]
Expand the summand to get
\[
(Y_j - \mu_j)^2 - \frac{2(r-2)}{S}(Y_j - \mu_j)(Y_j - \theta_j) + \frac{(r-2)^2}{S^2}(Y_j - \theta_j)^2. \tag{3.160}
\]
Substituting this expression back into (3.159), rearranging terms, and then taking expectations, the risk of \(\delta(Y)\) is
\[
R(\mu, \delta(Y)) =
\]
\[
r - E_\mu \left\{ 2(r-2) \sum_{j=1}^{r} \left(\frac{Y_j - \theta_j}{S} \right)(Y_j - \mu_j) - \frac{(r-2)^2}{S} \right\}. \tag{3.161}
\]
The first term inside the expectation is evaluated using Stein’s Lemma, which says that if \(Y \sim \mathcal{N}(\theta, 1)\) and \(g\) is a differentiable function such that \(E_\theta \{|g'(Y)|\} < \infty\), then,
\[
E_\theta \{g(Y)(Y - \theta)\} = E_\theta \{g'(Y)\}. \tag{3.162}
\]
Let
\[
g(Y_j) = \frac{Y_j - \theta_j}{S}, \tag{3.163}
\]
whence,
\[
g'(Y_j) = \frac{1}{S} - \frac{2(Y_j - \theta_j)^2}{S^2}. \tag{3.164}
\]
Substituting the last result into (3.162) yields
\[
R(\mu, \delta(Y)) =
\]
\[
r - E_\mu \left\{ 2(r-2) \sum_{j=1}^{r} \left\{ \frac{1}{S} - \frac{2(Y_j - \theta_j)^2}{S^2} \right\} - \frac{(r-2)^2}{S} \right\}; \tag{3.165}
\]
that is,
\[
R(\mu, \delta(Y)) = r - E_\mu \left\{ \frac{1}{S} \right\} < r = R(\mu, Y). \tag{3.166}
\]
This result holds as long as the expectation exists. For \(r = 1\) and \(r = 2\), the expectation is infinite. For \(r \geq 3\), the expectation is finite. The expectation
in (3.166), which represents the difference between the two risk functions, \(R(\mu, Y) - R(\mu, \delta(Y)) \), is sometimes called the Stein effect.

Thus, instead of using just the \(j \)th component, \(Y_j \), of \(Y \) to estimate the \(j \)th component, \(\mu_j \), of \(\mu \), the James–Stein estimator, \(\delta(Y) \), combines all the mutually independent components of \(Y \) in estimating \(\mu_j \). This estimator appears to be intuitively unappealing: why should the estimator of \(\mu_j \) depend upon the estimators of \(\mu_k, k \neq j \)? The reason why the James–Stein estimator dominates the usual mean estimator is because we used the squared-error loss function. This surprising result is commonly referred to as Stein’s paradox (Efron and Morris, 1977).

The James–Stein estimator (3.156) also happens to be inadmissible for \(\mu \). This follows because, for small values of \(S \), the shrinkage factor \(c \) becomes negative, which, in turn, drags the estimator away from \(\theta \). We can avoid such anomalies by replacing the shrinkage factor \(c \) by zero if it is negative (Efron and Morris, 1973):

\[
\delta_+(Y) = \theta + \left(1 - \frac{r - 2}{S}\right)_+ (Y - \theta), \quad (3.167)
\]

where \((x)_+ = \max\{x, 0\}\). Unfortunately, this so-called positive-part James–Stein estimator is still not admissible (Brown, 1971).

The James–Stein estimator of \(\mu \) shrinks \(Y \) toward some chosen point \(\theta \). Shrinking to different points will produce different estimates of \(\mu \). Deciding which one is best then becomes a subjective decision. If one has no information about the location of \(\mu \), then what should we take for \(\theta \)? One possibility is to use \(\theta = 0 \), so that the James–Stein estimator shrinks \(Y \) toward the origin. Another possibility is to shrink each component of \(Y \) toward the overall mean \(\bar{Y} = r^{-1} \sum_{j=1}^r Y_j \). Let \(\bar{Y} = (\bar{Y}, \ldots, \bar{Y})^r \) be an \(r \)-vector whose every entry is \(\bar{Y} \). The resulting James–Stein estimator is

\[
\delta'(Y) = \bar{Y} + \left(1 - \frac{r - 3}{S'}\right) (Y - \bar{Y}), \quad (3.168)
\]

where

\[
S' = \|Y - \bar{Y}\|^2 = \sum_{k=1}^r (Y_k - \bar{Y})^2 \quad (3.169)
\]

is the sum of the squared deviations of each individual mean \(Y_k \) from the overall mean \(\bar{Y} \). Note that the constant \(r - 2 \) is replaced by \(r - 3 \) because the parameter \(\theta \) is estimated by \(\bar{Y} \). This estimator dominates \(Y \) if \(r \geq 4 \). Thus, \(\mu_j \) is estimated by \(\bar{Y} + c(Y_j - \bar{Y}), j = 1, 2, \ldots, r \), where the shrinkage factor is

\[
c = 1 - \frac{r - 3}{\sum_{k=1}^r (Y_k - \bar{Y})^2} \quad (3.170)
\]
which can be motivated using an empirical Bayes approach (Efron and Morris, 1975).

Bibliographical Notes

There are many books and chapters and sections of books on matrix theory. All textbooks on multivariate analysis (e.g., Anderson, 1984; Johnson and Wichern, 1998; Mardia, Kent, and Bibby, 1980; Rao, 1965; Seber, 1984) have chapters or sections on the multivariate normal distribution and the Wishart distribution and their properties.

The chi-squared distribution (the distribution of the sample variance \(s^2 \) in the univariate case) was extended to the bivariate case by Fisher (1915) and then generalized further to the multivariate case by Wishart (1928).

Excellent discussions of decision theory, including admissibility, can be found in Lehmann (1983), Casella and Berger (1990), Berger (1985), and Anderson (1984).

Exercises

3.1 Let \(x = (x_1, \cdots, x_p)^T \) and \(y = (y_1, \cdots, y_p)^T \) be any two \(p \)-vectors on \(\mathbb{R}^p \). Show that

\[
\langle x, y \rangle \leq \left(\langle x, x \rangle \right)^{1/2} \left(\langle y, y \rangle \right)^{1/2},
\]

where the equality is achieved only if \(ax + by = 0 \) for \(a, b \in \mathbb{R} \). (Hint: Consider \(\langle ax + by \rangle^2 (ax + by) \), which is nonnegative.)

3.2 Let \(f \) and \(g \) be any real functions defined in some set \(A \), and suppose \(f^2 \) and \(g^2 \) are integrable (wrt some measure). Show that

\[
\left(\int_A f(x)g(x)dx \right)^2 \leq \left(\int_A [f(x)]^2 dx \right) \left(\int_A [g(x)]^2 dx \right).
\]

Hence, or otherwise, show that if \(X \) and \(Y \) are random variables, then, \([\text{cov}(X,Y)]^2 \leq (\text{var}(X))(\text{var}(Y)) \). (Hint: Consider the nonnegative integral of \((af + bg)^2 \).)

3.3 Prove the Hoffman–Wielandt Theorem. (Hint: Use the spectral decomposition theorem on \(A \) and on \(B \); express \(\text{tr}\{(A - B)(A - B)^T\} \) in terms of the decomposition matrices of \(A \) and \(B \), and simplify; then, show that the result is minimized by \(\sum_j (\lambda_j - \mu_j)^2 \).)

3.4 If \(X \sim \mathcal{N}_r(\mu, \Sigma) \), show that the marginal distribution of any subset of \(r^* \) elements of \(X \) is \(r^* \)-variate Gaussian.

3.5 Show that \(X \sim \mathcal{N}_r(\mu, \Sigma) \) if and only if \(\alpha^T X \sim \mathcal{N}(\alpha^T \mu, \alpha^T \Sigma \alpha) \), where \(\alpha \) is a given \(r \)-vector.
3.6 If \(\mathbf{X} \sim \mathcal{N}_r(\mathbf{\mu}, \Sigma) \), and if \(\mathbf{A} \) is a fixed \((s \times r)\)-matrix and \(\mathbf{b} \) is a fixed \(s\)-vector, show that the random \(s\)-vector \(\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b} \sim \mathcal{N}_s(A\mathbf{\mu} + \mathbf{b}, A^\tau \Sigma A) \).

3.7 Suppose \(\mathbf{X} \sim \mathcal{N}_s(\mathbf{\mu}, \Sigma) \), where \(\Sigma = \text{diag}\{\sigma_i^2\} \) is a diagonal matrix. Show that the elements, \(X_1, X_2, \ldots, X_r \), of \(\mathbf{X} \) are independent and each \(X_j \) follows a univariate Gaussian distribution, \(j = 1, 2, \ldots, r \).

3.8 If \(\mathbf{Z} \) in (3.85) is distributed as an \((r + s)\)-variate Gaussian with mean (3.86) and partitioned covariance matrix (3.89), show that \(\mathbf{X} \) and \(\mathbf{Y} \) are independently distributed if and only if \(\Sigma_{XX} = \mathbf{0} \).

3.9 If \(\mathbf{Z} \) in (3.85) is distributed as an \((r + s)\)-variate Gaussian with mean (3.86) and partitioned covariance matrix (3.89), and if \(\Sigma_{XX} \) is nonsingular, show that \(\mathbf{Y} - \Sigma_{YX} \Sigma_{XX}^{-1} \mathbf{X} \sim \mathcal{N}_s(\mathbf{\mu}_Y - \Sigma_{YX} \Sigma_{XX}^{-1} \mathbf{\mu}_X, \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}) \), where \(\Sigma_{YY} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} \). The conditional distribution of \(\mathbf{Y} \) given \(\mathbf{X} \) is \(\mathcal{N}_s(\mathbf{\mu}_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (\mathbf{X} - \mathbf{\mu}_X), \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}) \). If \(\Sigma_{XX} \) is singular, show that the above results hold, but with \(\Sigma_{XX}^{-1} \) replaced by the reflexive g-inverse \(\Sigma_{XX}^{-} \).

3.10 The conditional distribution of \(\mathbf{Y} \) given \(\mathbf{X} = \mathbf{x} \) can be expressed as the ratio of the joint distribution of \((\mathbf{X}, \mathbf{Y})\) to the marginal distribution of \(\mathbf{X} \): \(f(y|x) = f_{X,Y}(x,y)/f_X(x) \). Using the definition of the multivariate Gaussian distribution, find the joint and marginal distributions and compute their ratio to find the conditional distribution of \(\mathbf{Y} \) given \(\mathbf{X} = \mathbf{x} \). Find the conditional distribution for the special case of the bivariate Gaussian distribution. (Hint: The joint distribution of \((\mathbf{U}_1, \mathbf{U}_2)\) is given by the product of their marginals; transform the variables to \(\mathbf{X} \) and \(\mathbf{Y} \) by substituting \(\mathbf{x} \) for \(\mathbf{u}_1 \) and \(\mathbf{y} - \Sigma_{YX} \Sigma_{XX}^{-1} \mathbf{x} \) for \(\mathbf{u}_2 \) in that joint distribution.)

3.11 If \(X_j \sim \mathcal{N}(\mu_j, \Sigma_j) \), \(j = 1, 2, \ldots, n \), are mutually independent and \(c_1, c_2, \ldots, c_n \) are real numbers, show that
\[
\sum_{j=1}^{n} c_j X_j \sim \mathcal{N}_r \left(\sum_{j=1}^{n} c_j \mu_j, \sum_{j=1}^{n} c_j^2 \Sigma_j \right).
\]

3.12 If the \(s \) columns of the random matrix \(\mathbf{Z} \) in (3.115) are independent random \(r \)-vectors with common covariance matrix \(\Sigma \), show that \(\Sigma_{ZZ} = \mathbf{I}_s \otimes \Sigma \).

3.13 Let \(\mathbf{W}_j \sim \mathcal{W}_r(n_j, \Sigma) \), \(j = 1, 2, \ldots, m \), be independently distributed. Show that \(\sum_{j=1}^{m} n_j \mathbf{W}_j \sim \mathcal{W}_r(\sum_{j=1}^{m} n_j, \Sigma) \). Show that this result holds regardless of whether the distributions are central or noncentral.

3.14 If \(\mathbf{W} \sim \mathcal{W}_r(n, \Sigma) \) and \(\mathbf{A} \) is a \((p \times r)\)-matrix of fixed constants with rank \(p \), show that \(\mathbf{A} \Sigma \mathbf{A}^\tau \sim \mathcal{W}_p(n, \mathbf{A} \Sigma \mathbf{A}^\tau) \).
3.15 Let $W \sim \mathcal{W}_r(n, \Sigma)$ and let \mathbf{a} be a fixed r-vector. Show that $\mathbf{a}^\top W \mathbf{a} \sim \sigma_a^2 \chi_n^2$, where $\sigma_a^2 = \mathbf{a}^\top \Sigma \mathbf{a}$. The chi-squared distribution is central if the Wishart distribution is central.

3.16 (Stein’s Lemma) Let $X \sim \mathcal{N}(\theta, \sigma^2)$ and let g be a differentiable function such that $\mathbb{E}\{|g'(X)|\} < \infty$. Show that $\mathbb{E}\{g(X) (X - \theta)\} = \mathbb{E}\{g'(X)\}$. (Hint: Use integration by parts with $u = g(X)$ and $dv = (X - \theta)^2 \exp\{-\frac{(X - \theta)^2}{2\sigma^2}\}$.)

3.17 Show that if $Y = \bar{X} \sim \mathcal{N}_r(\mu, \sigma^2 \mathbf{I}_r)$, $r \geq 3$, then Y is inadmissible for the loss function $L(\theta, Y) = \|\theta - Y\| / \sigma^2$, where $\sigma^2 > 0$ is known.

3.18 Show that if $Y = \bar{X} \sim \mathcal{N}_r(\mu, \mathbf{V})$, where \mathbf{V} is a known $(r \times r)$ covariance matrix, $r \geq 3$, then Y is inadmissible for the loss function $L(\theta, Y) = (Y - \theta)^\top \mathbf{V}^{-1} (Y - \theta)$, where $p \geq 3$. (Hint: set $S = (Y - \theta)^\top \mathbf{V}^{-1} (Y - \theta)$.)

3.19 Assume that X is a random r-vector with mean μ and covariance matrix Σ. Let \mathbf{A} be an $(r \times r)$-matrix of constants. Show that (a) $\mathbb{E}\{X^\top A X\} = \text{tr}(A \Sigma) + \mu^\top A \mu$. Assume now that \mathbf{A} is symmetric, and let $X \sim \mathcal{N}_r(\mu, \Sigma)$. Show that (b) $\text{var}\{X^\top A X\} = 2\text{tr}(A \Sigma A \Sigma) + 4\mu^\top A \Sigma A \mu$. If B is also a symmetric $(r \times r)$-matrix, show that (c) $\text{cov}\{X^\top A X, X^\top B X\} = 2\text{tr}(A \Sigma B \Sigma) + 4\mu^\top A \Sigma B \mu$.

3.20 By expressing a correlation matrix \mathbf{R} with equal correlations ρ as $\mathbf{R} = (1 - \rho)\mathbf{I} + \rho \mathbf{J}$, where \mathbf{J} is a matrix of ones, find the determinant and inverse of \mathbf{R}.

Nonparametric techniques consist of sophisticated alternatives to traditional parametric models for studying multivariate data. What makes these alternative techniques so appealing to the data analyst is that they make no specific distributional assumptions and, thus, can be employed as an initial exploratory look at the data. In this chapter, we discuss methods for nonparametric estimation of a probability density function.

Suppose we wish to estimate a continuous probability density function p of a random r-vector variate X, where

$$p(x) \geq 0, \quad \int_{\mathbb{R}^r} p(x) dx = 1.$$ \hspace{1cm}(4.1)

Any p that satisfies (4.1) is called a *bona fide* density. The nonparametric density estimation (NPDE) problem is to estimate p without specifying a formal parametric structure. In other words, p is taken to belong to a large enough family of densities so that it cannot be represented through a finite number of parameters. It is usual to assume instead that p (and its derivatives) satisfy some appropriate “smoothness” conditions. However, there are applications (e.g., X-ray transition tomography) in which...
discontinuities in p (in that case, tissue density) are natural (Johnstone and Silverman, 1990)

Perhaps the earliest nonparametric estimator of a univariate density p was the histogram. Further breakthroughs — initially, with the kernel, orthogonal series, and nearest neighbor methods — came from researchers working in nonparametric discrimination and time series analysis. Indeed, Parzen (1962), in his seminal work on kernel density estimators, noted the resemblance between probability density estimation and spectral density estimation for stationary time series and then went on to say that “the methods employed here are inspired by the methods used in the treatment of the latter problem.”

Nonparametric density estimates can be effective in the following situations. Descriptive features of the density estimate, such as multimodality, tail behavior, and skewness, are of special interest, and a nonparametric approach may be more flexible than the traditional parametric methods; NPDE is used in decision making, such as nonparametric discrimination and classification analysis, testing for modes, and random variate testing; and statistical peculiarities of the data often can be readily explained in presentations to clients through simple graphical displays of estimated density curves.

4.1.1 Example: Coronary Heart Disease

A popular application of nonparametric density estimation is that of comparing data from two independent samples. In this example, data on a large number of variables were used to compare 117 coronary heart disease patients (the “coronary group”) with 117 age-matched healthy men (the “control group”) (Kasser and Bruce, 1969). These variables included heart rates recorded at rest and at their maximum after a series of exercises on a treadmill.

Figure 4.1 shows kernel density estimates of resting heart rate and maximum heart rate for both groups. The maximum heart rate density estimate (see right panel) for the coronary group appears to be bimodal, possibly a mixture of the unimodal control-group density and a contaminating density having a smaller mean. The opposite conclusions appear to be the case for resting heart rate (left panel). For each density estimate, we used a smoothing parameter (window width), which reflected sample variation. Both graphs show a considerable amount of overlap in their density estimates, making it difficult to distinguish between the groups on the basis of either of these two variables.

A statistic used to monitor activity of the heart is the change in heart rate from a resting state to that after exercise; that is, maximum heart rate minus resting heart rate. As can be seen from Figure 4.1, many of the
coronary group will have very small values of this difference (one patient has a difference of 3), whereas the bulk of the control group’s values will tend to be larger. Indeed, 20% of the coronary group had differences strictly smaller than the smallest of the differences of the control group, and 14% of the control group had differences lying strictly between the two largest differences of the coronary group.

4.2 Statistical Properties of Density Estimators

Like any statistical procedure, nonparametric density estimators are recommended only if they possess desirable properties. In general, research emphasis has centered upon developing large-sample properties of nonparametric density estimators.

4.2.1 Unbiasedness

An estimator \(\hat{p} \) of a probability density function \(p \) is unbiased for \(p \) if, for all \(x \in \mathbb{R}^r \), \(E_p \{ \hat{p}(x) \} = p(x) \). Although unbiased estimators of parametric densities, such as the Gaussian, Poisson, exponential, and geometric, do exist, no bona fide density estimator (i.e., satisfying (4.1)) based upon a finite data set can exist that is unbiased for all continuous densities (Rosenblatt, 1956). Hence, attention has focused on sequences \(\{ \hat{p}_n \} \) of nonparametric
density estimators that are *asymptotically unbiased* for \(p \); that is, for all \(x \in \mathbb{R}^r \), \(E_p \{ \hat{p}_n(x) \} \to p(x) \), as the sample size \(n \to \infty \).

4.2.2 Consistency

A more important property is consistency. The simplest notion of consistency of a density estimator is where \(\hat{p} \) is *weakly-pointwise consistent for* \(p \) if \(\hat{p}(x) \to p(x) \) in probability for every \(x \in \mathbb{R}^r \), and is *strongly-pointwise consistent for* \(p \) if convergence holds almost surely. Other types of consistency depend upon the error criterion.

The \(L_2 \) Approach. This has always been the most popular approach to nonparametric density estimation. If \(p \) is assumed to be square integrable, then the performance of \(\hat{p} \) at \(x \in \mathbb{R}^r \) is measured by the mean-squared error (MSE),

\[
\text{MSE}(x) = E_p \{ \hat{p}(x) - p(x) \}^2 = \text{var} \{ \hat{p}(x) \} + |\text{bias} \{ \hat{p}(x) \}|^2 ,
\]

(4.2)

where

\[
\text{var} \{ \hat{p}(x) \} = E_p \{ [\hat{p}(x) - E_p \{ \hat{p}(x) \}]^2 \} \quad (4.3)
\]

\[
\text{bias} \{ \hat{p}(x) \} = E_p \{ \hat{p}(x) \} - p(x) .
\]

(4.4)

If MSE\((x) \to 0 \) for all \(x \in \mathbb{R}^r \) as \(n \to \infty \), then \(\hat{p} \) is said to be a *pointwise consistent estimator of* \(p \) in quadratic mean.

A more important performance criterion relates to how well the entire curve \(\hat{p} \) estimates \(p \). One such measure of goodness of fit is found by integrating (4.2) over all values of \(x \), which yields the integrated mean-squared error (IMSE),

\[
\text{IMSE} = \int_{\mathbb{R}^r} E_p \{ \hat{p}(x) - p(x) \}^2 dx \quad (4.5)
\]

\[
= E_p \left\{ \int [\hat{p}(x)]^2 dx \right\} - 2 E_p \{ \hat{p}(x) \} + \int [p(x)]^2 dx . \quad (4.6)
\]

If we let \(R(g) = \int [g(x)]^2 dx \), then the last term, \(R(p) \), on the rhs of (4.6) is a constant and, hence, can be removed:

\[
\text{IMSE} - R(p) = E_p \{ R(\hat{p}) - 2\hat{p} \} . \quad (4.7)
\]

Thus, \(R(\hat{p}) - 2\hat{p} \) is an unbiased estimator for IMSE \(- R(p) \).

Another popular measure is *integrated squared error* (ISE, or \(L_2 \)-norm),

\[
\text{ISE} = \int_{\mathbb{R}^r} [\hat{p}(x) - p(x)]^2 dx . \quad (4.8)
\]

Taking expectations over \(p \) in (4.8) gives the mean-integrated squared error; that is, \(E_p(\text{ISE}) = \text{MISE} = \text{IMSE} \) (Fubini’s theorem). ISE is often preferred...
as a performance criterion (rather than its expected value IMSE) because ISE determines how closely \(\hat{p} \) approximates \(p \) for a given data set, whereas MISE is concerned with the average over all possible data sets. For bona fide density estimates, the best possible asymptotic rate of convergence for MISE is \(O(n^{-4/5}) \); by dropping the restriction that \(p \) be a bona fide density, a density estimate can be constructed with MISE better than \(O(n^{-1}) \).

The \(L_1 \) Approach. One problem with the \(L_2 \) approach to NPDE is that the criterion pays less attention to the tail behavior of a density, possibly resulting in peculiarities in the tails of the density estimate. An alternative \(L_1 \)-theory of NPDE is also available (Devroye and Gyorfi, 1985). The integrated absolute error (IAE, or total variation or \(L_1 \)-norm) is given by

\[
\text{IAE} = \int_{\mathbb{R}} |\hat{p}(x) - p(x)| \, dx.
\]

(4.9)

IAE is always well-defined as a norm on the \(L_1 \)-space, is invariant under monotone transformations of scale, and lies between 0 and 2.

If IAE \(\to 0 \) in probability as \(n \to \infty \), then \(\hat{p} \) is said to be a consistent estimator of \(p \); strong consistency of \(\hat{p} \) occurs when convergence holds almost surely. The IAE distance is related to Kullback–Leibler relative entropy (KL),

\[
\text{KL} = \int \hat{p}(x) \log \left\{ \frac{\hat{p}(x)}{p(x)} \right\} \, dx,
\]

(4.10)

and Hellinger distance (HD),

\[
\text{HD}(m) = \left\{ \int \left([\hat{p}(x)]^{1/m} - [p(x)]^{1/m} \right)^m \right\}^{1/m}
\]

(4.11)

(Devroye and Gyorfi, 1985, Chapter 8). The expectation of (4.9) over all densities \(p \) yields the mean integrated absolute error, MIAE = \(E_p \{\text{IAE}\} \). Some quite remarkable results can be proved concerning the asymptotic behavior of IAE and MIAE under little or no assumptions on \(p \). One thing, however, is clear: The technical labor needed to get \(L_1 \) results is substantially more difficult than that needed to obtain analogous \(L_2 \) results.

4.2.3 Bona Fide Density Estimators

Some density estimation methods always yield bona fide density estimates, and others generally yield density estimates that contain negative ordinates (especially in the tails) or have an infinite integral. Negativity can occur naturally as a result of data sparseness in certain regions or it can be caused by relaxing the nonnegativity constraint in (4.1) in order to improve the rate of convergence of an estimator of \(p \). Negativity in a density estimate can lead to an especially undesirable interpretation if a
function of that estimate is needed in a practical situation. For example, Terrell and Scott (1980) remarked that “a negative hazard rate implies the spontaneous reviving of the dead.” Moreover, in the quest for faster rates of convergence for density estimators, some researchers have chosen to relax the integral constraint in (4.1) rather than the nonnegativity constraint.

There are several ways of alleviating such problems. The density estimate may be truncated to its positive part and renormalized, or a transformed version of \(p \) (e.g., \(\log p \) or \(p^{1/2} \)) may be estimated and then backtransformed to get a nonnegative estimate of \(p \).

4.3 The Histogram

The histogram has long been used to provide a visual clue to the general shape of \(p \). We begin with the univariate case, where \(x \in \mathbb{R} \). Suppose \(p \) has support \(\Omega = [a, b] \), where \(a \) and \(b \) are usually taken to contain the entire collection of observed data. Create a fixed partition of \(\Omega \) by using a grid (or mesh) of \(L \) nonoverlapping bins (or cells), \(T_\ell = [t_{n,\ell}, t_{n,\ell+1}) \), \(\ell = 0, 1, 2, \ldots, L - 1 \), where \(a = t_{n,0} < t_{n,1} < t_{n,2} < \cdots < t_{n,L} = b \), and the bin edges \(\{t_{n,\ell}\} \) are shown depending upon the sample size \(n \). Let \(I_{T_\ell} \) denote the indicator function of the \(\ell \)th bin and let \(N_\ell = \sum_{i=1}^{n} I_{T_\ell}(x_i) \) be the number of sample values that fall into \(T_\ell, \ell = 0, 1, 2, \ldots, L - 1 \), where \(\sum_{\ell=0}^{L-1} N_\ell = n \).

Then, the histogram, defined by

\[
\hat{p}(x) = \sum_{\ell=0}^{L-1} \frac{N_\ell/n}{t_{n,\ell+1} - t_{n,\ell}} I_{T_\ell}(x),
\]

satisfies (4.1). If we fix \(h_n = t_{n,\ell+1} - t_{n,\ell}, \ell = 0, 1, 2, \ldots, L - 1 \), to be a common bin width, and if we take \(t_{n,0} = 0 \), then the bins will be \(T_0 = [0, h_n), T_1 = [h_n, 2h_n), \ldots, T_{L-1} = [(L - 1)h_n, Lh_n) \). Then, (4.12) reduces to

\[
\hat{p}(x) = \frac{1}{nh_n} \sum_{\ell=0}^{L-1} N_\ell I_{T_\ell}(x).
\]

So, if \(x \in T_\ell \), then,

\[
\hat{p}(x) = \frac{N_\ell}{nh_n}.
\]

As a density estimator, the histogram leaves much to be desired, with defects that include “the fixed nature of the cell structure, the discontinuities at cell boundaries, and the fact that it is zero outside a certain range” (Hand, 1982, p. 15).

A much more serious defect relates to the sensitivity of histogram shapes to the choice of origin. Figure 4.2 displays histograms for the data set
4.3 The Histogram

The Histogram

![Histograms of the radial velocities of 323 locations in the area of the spiral galaxy NGC7531 in the Southern Hemisphere (Buta, 1987). In both panels, the bin width is $h = 20$. In the left panel, the origin is 1,400; in the right panel, it is 1,409, the minimum data value.](image)

FIGURE 4.2. Histograms of the radial velocities of 323 locations in the area of the spiral galaxy NGC7531 in the Southern Hemisphere (Buta, 1987). In both panels, the bin width is $h = 20$. In the left panel, the origin is 1,400; in the right panel, it is 1,409, the minimum data value.

The galaxy, which consists of the radial velocities of 323 locations in the area of the spiral galaxy NGC7531 in the Southern Hemisphere (Buta, 1987). The bin width is $h = 20$ and the origins are 1,400 (left panel) and 1,409 (right panel). We see how different the histograms look when the origin is changed.

In general, histograms tend not to have symmetric, unimodal, or Gaussian shapes. Indeed, in many large data sets, we often see histograms that are highly skewed with short left-hand tails, very long right-hand tails, several modes (some more prominent than others), and multiple outliers. In many cases, the modes can be modeled parametrically as components of a mixture of distributions.

4.3.1 The Histogram as an ML Estimator

Let $H(\Omega)$ be a specified class of real-valued functions defined on Ω. Given a random sample of observations, X_1, X_2, \ldots, X_n, the maximum-likelihood (ML) problem is to find a $p \in H(\Omega)$ that maximizes the likelihood function

$$L(p) = \prod_{i=1}^{n} p(X_i),$$

or its logarithm, subject to

$$\int_{\Omega} p(t) dt = 1, \quad p(t) \geq 0 \text{ for all } t \in \Omega.$$

(4.16)

If $H(\Omega)$ is finite dimensional, then a (not necessarily unique) solution to this problem exists and is called an *ML estimator of p*. The uniqueness of the solution depends upon the specification of $H(\Omega)$. If we restrict H to contain only functions of the form $p(x) = \sum_{\ell=0}^{L-1} y_{\ell} I_{R_{\ell}}(x)$, where $h \sum_{\ell=0}^{L-1} y_{\ell} = 1$,

[The rest of the content is not included as it is not relevant to the task.]
then the histogram (4.13) is the unique ML estimator of \(p \) based on the random sample \(X_1, X_2, \ldots, X_n \); see Exercise 4.1.

4.3.2 Asymptotics

If \(n \) observations are randomly drawn from the probability density \(p \), then the bin count \(N_\ell \) in interval \(T_\ell \) can be viewed as a binomial random variable; that is, \(N_\ell \sim \text{Bin}(n, p_\ell) \), where \(p_\ell = \int_{T_\ell} p(x) dx \). Thus, the probability that \(N_\ell \) out of the \(n \) observations will fall into bin \(T_\ell \) is given by

\[
\Pr\{N_\ell \in T_\ell\} = \binom{n}{N_\ell} p_\ell^{N_\ell} (1 - p_\ell)^{n - N_\ell}.
\]

Hence, \(\mathbb{E}\{N_\ell\} = np_\ell \) and \(\text{var}\{N_\ell\} = np_\ell(1 - p_\ell) \). Under suitable continuity conditions for \(p(x) \) and assuming that \(p(x) \) does not vary much for \(x \in T_\ell \), there exists \(\xi_\ell \in T_\ell \) such that, by the mean-value theorem,

\[
p_\ell = \int_{T_\ell} p(x) dx = h_n p(\xi_\ell),
\]

where \(h_n \) is the width of \(T_\ell \). Then, from (4.14), we have that, for \(x \in T_\ell \),

\[
\mathbb{E}\{\hat{p}(x)\} = \frac{p_\ell}{h_n} = p(\xi_\ell)
\]

and

\[
\text{var}\{\hat{p}(x)\} = \frac{\text{var}\{N_\ell\}}{n^2 h_n^2} = \frac{np_\ell(1 - p_\ell)}{n^2 h_n^2} \leq \frac{p_\ell}{nh_n^2} = \frac{p(\xi_\ell)}{nh_n},
\]

because \(p_\ell(1 - p_\ell) \leq p_\ell \).

Now, consider the bin \(T_0 = [0, h_n) \). By expanding \(p(y) \) around \(p(x) \) using a Taylor series, we have that

\[
p_0 = \int_{T_0} p(y) dy = h_n p(x) + h_n \left(\frac{h_n}{2} - x \right) p'(x) + O(h_n^3).
\]

The bias of \(\hat{p}(x) \) is \(\mathbb{E}_p\{\hat{p}(x)\} - p(x) \), where, from (4.19), \(\mathbb{E}_p\{\hat{p}(x)\} = p_0 / h_n \).

By the generalized mean value theorem, there exists \(\xi_0 \in T_0 \) such that the leading term of the integrated squared bias for bin \(T_0 \) is

\[
\int_{T_0} [\text{bias}\{\hat{p}(x)\}]^2 dx \sim p'(\xi_0) \int_{T_0} \left(\frac{h}{2} - x \right)^2 dx \approx \frac{h_n^3}{12} [p'(\xi_0)]^2.
\]

A similar result holds for bin \(T_\ell \). The total integrated squared bias (ISB) is obtained by multiplying this result by \(h_n \), summing over all bins, and arguing that the sum converges to an integral. The asymptotic integrated
squared bias (AISB), which is defined as the leading term in ISB, is given by

$$\text{AISB} = \frac{1}{12} h_n^2 R(p'),$$

(4.23)

where \(R(g) = \int_R \{g(u)\}^2 du \). Next, define the integrated variance (IV) as

$$\text{IV} = \int_R \text{var}\{\hat{p}(x)\} dx = \sum_\ell \int_{T_\ell} \text{var}\{\hat{p}(x)\} dx.$$ \hspace{1cm} (4.24)

Substituting from (4.20), summing over all bins, and setting \(\sum_\ell p_\ell = \int p(x) dx = 1 \), we have that

$$\text{IV} = \frac{1}{n h_n} - \frac{1}{n h_n} \sum_\ell p_\ell^2.$$ \hspace{1cm} (4.25)

Now, from (4.18), we have that \(\sum_\ell p_\ell^2 = h_n \sum_\ell [p(\xi_\ell)]^2 h_n \). The summation on the rhs approximates \(h_n \int [p(x)]^2 dx \). The asymptotic integrated variance (AIV) is defined as the leading terms in IV and is given by

$$\text{AIV} = \frac{1}{n h_n} - \frac{1}{n h_n} \frac{R(p)}{n}.$$

(4.26)

Combining AIV with AISB yields the asymptotic MISE (AMISE),

$$\text{AMISE} = \frac{1}{n h_n} + \frac{1}{12} h_n^2 R(p').$$

(4.27)

If \(h_n \to 0 \) and \(n h_n \to \infty \) as \(n \to \infty \), then IMSE \(\to \). Differentiating (4.27) wrt \(h_n \), setting the result equal to zero, and solving, we have that AIMSE is minimized wrt \(h_n \) by the optimal bin width,

$$h_n^* = \left\{ \frac{6}{R(p') n} \right\}^{1/3}.$$ \hspace{1cm} (4.28)

where \(p' = p'(x) = dp(x)/dx \) is the first derivative of \(p \) wrt \(x \), and \(R(p') \) is a measure of roughness of the density function \(p \) (see Exercise 4.2). If \(X \sim \mathcal{N}(0, \sigma^2) \), then (4.28) reduces to

$$h_n^* \approx 3.4908 \sigma n^{-1/3}.$$ \hspace{1cm} (4.29)

In Figure 4.3, we graph the histogram of 5,000 observations randomly drawn from \(\mathcal{N}(0, 1) \) using bin widths 0.1, 0.2 (optimal using (4.29)), 0.3, and 0.4.

The asymptotic IMSE corresponding to the optimal choice (4.29) of bin width is given by

$$\text{AIMSE}^* = (3/4)^{2/3} [R(p')]^{1/3} n^{-2/3},$$

(4.30)
which reduces to $\text{AIMSE}^* \approx 0.43n^{-2/3}$ in the $N(0,1)$ case. This convergence rate of $O(n^{-2/3})$ is substantially slower than most other types of density estimators, which gives a more technical reason why histograms do not make good density estimators.

4.3.3 Estimating Bin Width

An important aspect of drawing histograms is choice of bin width, which operates as a smoothing parameter. The two most popular methods for choosing the most appropriate histogram bin-width for a given data set are the “plug-in” method and cross-validation.

The obvious estimate of h^*_n in the Gaussian case is given by substituting the sample standard deviation s in (4.29) in place of the unknown σ; that is, $\hat{h}^*_n = 3.5sn^{-1/3}$ (“Scott’s rule”). This “plug-in” estimator generally works well, but for non-Gaussian data, it can lead to overly smoothed histograms (via too-wide bin widths or, equivalently, too-few bins). Slightly narrower bin widths can be obtained using the more robust rule $\hat{h}^*_n = 2(IQR)n^{-1/3}$, where IQR is the interquartile range of the data. The robust rule will yield
a narrower bin width than the Gaussian rule if \(s/IQR > 0.57 \). Although this robust rule can sometimes yield wider bin widths than the Gaussian rule, we should not see much difference between the two choices in practice.

The second method uses leave-one-out cross-validation, \(CV/n \), to estimate \(h_n^* \). From (4.8), ISE can be expanded into three terms:

\[
ISE = \int [\hat{p}(x)]^2 dx - 2 \int \hat{p}(x)p(x) dx + \int [p(x)]^2 dx. \tag{4.31}
\]

The last term, which depends only upon the unknown \(p \), is not affected by changes in bin-widths \(h \), and so can be ignored. The first term only depends upon the density estimate \(\hat{p} \) and can be easily computed. Because the middle integral is the expected height of the histogram, \(E_p\{\hat{p}(X)\} \), \(CV/n \) can be used to estimate this integral. Accordingly, the unbiased cross-validation (UCV) criterion for a histogram is

\[
UCV(h) = R(\hat{p}) - \frac{2}{n} \sum_{i=1}^{n} \hat{p}_{-i}(x_i)
= \frac{2}{(n-1)h} - \frac{n+1}{n^2(n-1)h} \sum_{\ell=1}^{L} N_{\ell}^2. \tag{4.32}
\]

See Exercise 4.8. The \(CV/n \) estimate, \(\hat{h}_{UCV} \), of \(h \) is that value of \(h \) that minimizes \(UCV(h) \). A biased cross-validation (BCV) criterion for choosing the bin width of a histogram has also been proposed and studied; for details, see Scott and Terrell (1987). The BCV bin width, \(\hat{h}_{BCV} \), is the value of \(h \) that minimizes \(BCV(h) \), a similar-looking criterion to (4.32). Both UCV and BCV criteria yield consistent estimates of \(h \), but convergence is slow in either case, the relative error being \(O(n^{-1/6}) \).

4.3.4 Multivariate Histograms

The univariate results on optimal bin width and asymptotically optimal IMSE can be extended to the multivariate case.

In this case, we are given a random sample, \(X_1, X_2, \ldots, X_n \), where \(X_i = (X_{1i}, X_{2i}, \ldots, X_{ri})^T \), from the multivariate density \(p(x) \), \(x \in \mathbb{R}^r \). Each axis is partitioned in the form of a grid of uniformly spaced bins. If the \(j \)-th axis is partitioned by bins of width \(h_{jn}, j = 1, 2, \ldots, r \), the space \(\mathbb{R}^r \) is partitioned into hyperrectangles, each having volume \(h_{1n}h_{2n}\cdots h_{rn} \).

Now, suppose \(N_\ell \) multivariate observations fall into the \(\ell \)-th hyperrectangle \(B_\ell \), where \(\sum_\ell N_\ell = n \). Then, our histogram estimate of \(p(x) \) is

\[
\hat{p}(x) = \frac{1}{nh_{1n}h_{2n}\cdots h_{rn}} \sum_\ell N_\ell I_{B_\ell}(x). \tag{4.33}
\]
It can be shown (Scott, 1992, Theorem 3.5) that the asymptotically optimal bin width, \(h_{\ell,n}^* \), for the \(\ell \)th variable is given by

\[
h_{\ell,n}^* = \left(R(p_\ell) \right)^{-1/2} \left(6 \prod_{j=1}^{r} \left(R(p_j) \right)^{1/2} \right)^{1/(2+r)} n^{-1/(2+r)}
\] (4.34)

and the asymptotically optimal IMSE is

\[
\text{AIMSE}^* = \frac{1}{4} 6^{2/(2+r)} \left(\prod_{j=1}^{r} R(p_j) \right)^{1/(2+r)} n^{-2/(2+r)},
\] (4.35)

where \(p_j = \partial p(x)/\partial x_j \).

In the multivariate Gaussian case, \(N_r(0, \Sigma) \), where \(\Sigma = \text{diag}\{\sigma_1^2, \ldots, \sigma_r^2\} \), (4.35) reduces to

\[
h_{\ell,n}^* = 2 \cdot 3^{1/(2+r)} \pi^{r/(4+2r)} \sigma_{\ell n}^{-1/(2+r)}
\] (4.36)

For \(r = 1 \), the constant in (4.36) reduces to \(2 \cdot 3^{1/3} \pi^{1/6} = 3.4908 \), and as \(r \to \infty \), the constant becomes \(2\pi^{1/2} = 3.5449 \). So, for all \(r \), the constant lies between 3.4908 and 3.5449. A rule-of-thumb, therefore, for this particular case is to use \(h_{\ell,n}^* \approx 3.5 \sigma_{\ell n}^{-1/(2+r)} \).

Figure 4.4 displays bivariate histograms of both the control group (left panel) and coronary group (right panel) for the coronary heart disease study (see Section 4.1.1). In particular, the control-group histogram has a unimodal and sharply skewed shape, whereas the coronary-group histogram has a bimodal and more blocky shape. Problems in visualizing important characteristics of a bivariate histogram, due to its “blocky” and discontinuous nature, often make such density estimators difficult to work with in practice.

Figure 4.4. Bivariate histograms for the coronary heart disease study. Variables plotted are resting heart rate and maximum heart rate. Left panel: control group. Right panel: coronary group.
4.4 Maximum Penalized Likelihood

The ML method of Section 4.3.3 fails miserably when the class H of densities over which the likelihood L is to be maximized is unrestricted. For that case, the likelihood is maximized by a linear combination of Dirac delta functions (or “spikes”) at the n sample values, resulting in a value of $+\infty$ for the likelihood. There have been several approaches to ML density estimation in which restrictions are placed on H; these include order-restricted methods and sieve methods (see, e.g., Izenman, 1991). Here, we restrict the likelihood L by penalizing L for producing density estimates that are “too rough.”

Let Φ be a given nonnegative (roughness) penalty functional defined on H. The Φ-penalized likelihood of p is defined to be

\[
\tilde{L}(p) = \prod_{i=1}^{n} p(X_i) e^{-\Phi(p)}.
\]

(4.37)

The optimization problem calls for $\tilde{L}(p)$, or its logarithm,

\[
\mathcal{L}(p) = \log_e \tilde{L}(p) = \sum_{i=1}^{n} \log_e p(X_i) - \Phi(p),
\]

(4.38)

to be maximized subject to

\[
p \in H(\Omega), \quad \int_{\Omega} p(u) du = 1, \quad p(u) \geq 0 \text{ for all } u \in \Omega.
\]

(4.39)

If it exists, a solution, \hat{p}, of that problem is called a maximum penalized likelihood (MPL) estimate of p corresponding to the penalty function Φ and class of functions H. For example, $\Phi(p) = \alpha \int_{-\infty}^{\infty} [p''(x)]^2 dx$ is used in the IMSL Fortran routine DESPL, where $\alpha > 0$ is a smoothing parameter. IMSL recommends $\alpha = 10$ for $\mathcal{N}(0, 1)$ data and using a grid of $\alpha = 1(10)100$ for other situations.

Good and Gaskins (1971) observed that the MPL method could, for certain types of problems, be interpreted as “quasi-Bayesian” because $\tilde{L}(p)$ in (4.37) resembles a posterior density for a parametric estimation problem. Furthermore, the MPL method is closely related to Tikhonov’s method of regularization used for solving ill-posed inverse problems (O’Sullivan, 1986).

The existence and uniqueness of MPL density estimates have been established, and it has been shown that such estimates are intimately related to spline methods (de Montricher, Tapia, and Thompson, 1975). For example, if p has finite support Ω and if $H(\Omega)$ is a suitable class of smooth functions
on Ω, then the MPL estimate \hat{p} exists, is unique, and is a polynomial spline with join points (or “knots”) only at the sample values.

The case when p has infinite support is more complicated. Good and Gaskins (1971) proposed penalty functionals designed to estimate the “root-density,” so that $\hat{p} = \hat{\gamma}^2$ would be a nonnegative (and bona fide) estimator of p. The penalty functionals were

$$\Phi_1(p) = 4\alpha R(\gamma'), \quad \alpha > 0, \tag{4.40}$$

$$\Phi_2(p) = 4\alpha R(\gamma') + \beta R(\gamma''), \quad \alpha \geq 0, \beta \geq 0, \tag{4.41}$$

where, as before, $R(g) = \int |g(x)|^2 dx$, for any square-integrable function g, and the hyperparameters α and β, with $\alpha + \beta > 0$ in (4.41), control the amount of smoothing. The choice of Φ_1 or Φ_2 depends upon how best to represent the “roughness” of p. Good and Gaskins preferred Φ_2 to Φ_1, arguing that curvature as well as slope of the density estimate should be penalized.

If the optimization problem is set up correctly, and we use the penalty function Φ_1 and a given value of α, then the resulting estimator, $\hat{\gamma}_\alpha$, say, exists, is unique, and is a positive exponential spline with knots only at the sample values (de Montricher, Tapia, and Thompson, 1975). An exponential spline rather than a polynomial spline is the price to be paid for requiring nonnegativity of the density estimator. The MPL estimator is then given by $\hat{p}_\alpha = \hat{\gamma}_\alpha^2$. This density estimator is consistent over a number of norms, including L_1 and L_2. Similar statements can be made about the optimization problem where Φ_2 is the penalty function and α and β are given.

Implementation of the MPL method depends upon the quality of the numerical solutions to the restricted optimization problems. Scott, Tapia, and Thompson (1980) studied a discrete approximation to the spline solutions of the MPL problems and proved that the resulting discrete MPL estimator exists, is unique, converges to the spline MPL estimator, and is a strongly pointwise consistent estimator of p. Fortunately, solutions to the MPL density-estimation problem can be expressed in terms of kernel density estimates, where the kernels are weighted according to the other observations in the sample rather than with a uniform n^{-1} weight as in (4.42) below.

4.5 Kernel Density Estimation

The most popular density estimation method is the kernel density estimator. Given iid univariate observations, $X_1, X_2, \ldots, X_n \sim p$, the kernel

$$K(h) = \frac{1}{h} \phi \left(\frac{x}{h} \right)$$

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h} \right)$$

where K is a kernel function, ϕ is a probability density function, and h is the bandwidth. The choice of kernel and bandwidth is crucial for the performance of the estimator.
of $p(x)$, $x \in \mathbb{R}$, is used to obtain a smoother density estimate than the histogram. In (4.42), K is a kernel function, and the window width h determines the smoothness of the density estimate. Choice of h is an important statistical problem: too small a value of h yields a density estimate too dependent upon the sample values, whereas too large a value of h produces the opposite effect and oversmooths the density estimate by removing interesting peculiarities. Given a kernel K and window width h, the resulting kernel density estimate is unique for a specific data set; hence, kernel density estimates do not depend upon a choice of origin as do histograms.

There are several ways to define a multivariate version of (4.42). In the following, we use the formulation provided by Scott (1992, Section 6.3.2). Given the r-vectors X_1, X_2, \ldots, X_n, the multivariate kernel density estimator of p is defined to have the general form,

$$
\hat{p}_H(x) = \frac{1}{n|H|} \sum_{i=1}^{n} K(H^{-1}(x - X_i)), \quad x \in \mathbb{R}^r,
$$

where H is an $(r \times r)$ nonsingular matrix that generalizes the window width h, and K is a multivariate function with mean 0 and integrates to 1. If, for example, we take $H = hA$, where $h > 0$ and $|A| = 1$, the size and elliptical shape of the kernel will be determined completely by h and the matrix AA^T, respectively. If $A = I_r$, then (4.43) reduces to

$$
\hat{p}_h(x) = \frac{1}{nh^r} \sum_{i=1}^{n} K \left(\frac{x - X_i}{h} \right), \quad x \in \mathbb{R}^r.
$$

In (4.44), the choice of kernel function K and window width h control the performance of \hat{p}_h as an estimator of p. Because \hat{p}_h inherits whatever properties the kernel K possesses, it is important that K has desirable statistical properties.

4.5.1 Choice of Kernel

The simplest class of kernels consists of multivariate probability density functions that satisfy

$$
K(x) \geq 0, \quad \int_{\mathbb{R}^r} K(x)dx = 1.
$$

If a kernel K from this class is used in (4.44), then \hat{p}_h will always be a bona fide probability density.
TABLE 4.1. Examples of univariate kernel functions with compact support.

<table>
<thead>
<tr>
<th>Kernel Function</th>
<th>$K(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular</td>
<td>$\frac{1}{2}I_{</td>
</tr>
<tr>
<td>Triangular</td>
<td>$(1 -</td>
</tr>
<tr>
<td>Bartlett–Epanechnikov</td>
<td>$\frac{3}{4}(1 - x^2)I_{</td>
</tr>
<tr>
<td>Biweight</td>
<td>$\frac{15}{16}(1 - x^2)^2I_{</td>
</tr>
<tr>
<td>Triweight</td>
<td>$\frac{35}{32}(1 - x^2)^3I_{</td>
</tr>
<tr>
<td>Cosine</td>
<td>$\frac{\pi}{4} \cos(\frac{\pi}{2}x)I_{</td>
</tr>
</tbody>
</table>

Popular choices of univariate kernels include the Gaussian kernel with unbounded support,

$$K(x) = (2\pi)^{-1/2}e^{-x^2/2}, \quad x \in \mathbb{R},$$

and the compactly supported “polynomial” kernels,

$$K(x) = \kappa_{ij}(1 - |x|^i)^jI_{||x|| \leq 1}, \quad \kappa_{ij} = \frac{i}{2\text{Beta}(j + 1, 1/i)}, \quad i > 0, j \geq 0.$$ \(4.47\)

Special cases of the polynomial kernel are the rectangular kernel ($j = 0$, $\kappa_{i0} = 1/2$), the triangular kernel ($i = 1, j = 1, \kappa_{11} = 1$), the Bartlett–Epanechnikov kernel ($i = 2, j = 1, \kappa_{21} = 3/4$), the biweight kernel ($i = 2, j = 2, \kappa_{22} = 15/16$), the triweight kernel ($i = 2, j = 3, \kappa_{23} = 35/32$), and, after a suitable rescaling, the Gaussian kernel ($i = 2, j = \infty$). Their specific forms are listed in Table 4.1 and graphed in Figure 4.5.

It has been known for some time that the Bartlett–Epanechnikov kernel minimizes the optimal asymptotic IMSE with respect to K. However, IMSE is, in fact, quite insensitive to the shape of the kernel, so the Gaussian or rectangular kernels are just as good in practice as the optimal kernel.

Multivariate kernels are usually radially symmetric unimodal densities, such as the Gaussian,

$$K(x) = \frac{1}{(2\pi)^{r/2}}e^{-x^T x/2}, \quad x \in \mathbb{R}^r,$$ \(4.48\)
and the compactly supported Bartlett–Epanechnikov,

\[
K(x) = \frac{r + 2}{2c_r} (1 - x^\tau x) I_{[x^\tau x \leq 1]}, \quad c_r = \frac{\pi^{r/2}}{\Gamma((r/2) + 1)}. \tag{4.49}
\]

In certain multivariate situations, it may be convenient to use product kernels of the form,

\[
K(x) = \prod_{j=1}^{r} K(x_j), \tag{4.50}
\]

which is a product of univariate kernel functions, where the kernels are the same for each dimension. If we take \(H \) in (4.43) to be the diagonal matrix \(H = \text{diag}\{h_{1,n}, \ldots, h_{r,n}\} = hA \) with different window widths in each dimension, where \(A = \text{diag}\{h_{1,n}/h, \ldots, h_{r,n}/h\} \), and let \(K \) be a product kernel, then (4.43) reduces to

\[
\hat{p}_H(x) = \frac{1}{nh^r} \sum_{i=1}^{n} \left\{ \prod_{j=1}^{r} K \left(\frac{x_j - X_{ij}}{h_{j,n}} \right) \right\}, \quad x \in \mathbb{R}^r, \tag{4.51}
\]

where \(x = (x_1, \ldots, x_r)^\tau \), \(X_i = (X_{i1}, \ldots, X_{ir})^\tau \), and \(h = (h_{1,n} \ldots h_{r,n})^{1/r} \) is the geometric mean of the \(r \) window widths.

4.5.2 Asymptotics

Early work on kernel density estimation emphasized asymptotic results, which depended upon the particular viewpoint considered.

The \(L_1 \) Approach. Among the remarkable \(L_1 \) results proved for kernel density estimates, we have that if \(K \) satisfies (4.45), then the kernel estimator (4.44) will be a strongly consistent estimator of \(p \) iff \(h_n \to 0 \) and
$nh_n \rightarrow \infty$, as $n \rightarrow \infty$, without any conditions on p (Devroye, 1983). Moreover, in the univariate case, MIAE is of order $O(n^{-2/5})$ (Devroye and Pena-ród, 1984), which is better than the corresponding L_1 rate for histograms. Explicit formulas for the minimum MIAE and the asymptotically optimal smoothing parameters for kernel estimators are available (Hall and Wand, 1988).

The L_2 Approach. Under regularity conditions on K and p, it can be shown that if $h_n \rightarrow 0$ as $n \rightarrow \infty$, then the univariate kernel density estimator is both asymptotically unbiased and asymptotically Gaussian (Parzen, 1962). In the multivariate case, the MISE is asymptotically minimized over all h satisfying the above conditions by

$$h_n^* = \alpha(K)\beta(p)n^{-1/(r+4)},$$

(4.52)

where r is the dimensionality, $\alpha(K)$ depends only upon the kernel K, and $\beta(p)$ depends only upon the unknown density p (Cacoullos, 1966). This result shows that the window width should get smaller as the sample size n gets larger; this reflects a commonsense notion that “local” smoothing information becomes more important as more data become available. Moreover, $\text{MISE} \rightarrow 0$ at the rate $O(n^{-4/(r+4)})$. These L_2 results show clearly the dimensionality effect, because these convergence rates become slower as the dimensionality r increases.

In the univariate case, the pointwise variance (4.3) and bias (4.4) of $\hat{p}_h(x)$ are found by using Taylor-series expansions:

$$\text{var}\{\hat{p}(x)\} \approx \frac{R(K)p(x)}{nh_n} - \frac{[p(x)]^2}{n},$$

(4.53)

$$\text{bias}\{\hat{p}(x)\} \approx \frac{1}{2}\sigma_k^2h_n^2p''(x);$$

(4.54)

where $R(g) = \int [g(x)]^2dx$ for any square-integrable function g, and $\sigma_k^2 = \int x^2K(x)dx$. See Exercise 4.10. Thus, we can reduce the variance by increasing the size of h_n (i.e., by oversmoothing), and bias reduction can take place if we make h_n small (i.e., by undersmoothing). This is the classical bias-variance trade-off dilemma, and so, to choose h_n, a compromise is needed.

Adding the variance term and the square of the bias term and then integrating wrt x gives us the asymptotic MISE (AMISE) for a univariate kernel density estimator:

$$\text{AMISE}(h_n) = \frac{R(K)}{nh_n} + \frac{1}{4}\sigma_k^4h_n^4R(p'').$$

(4.55)

Minimizing $\text{AMISE}(h_n)$ wrt h_n yields the asymptotically optimal window width,

$$h_n^* = \left\{\frac{R(K)}{\sigma_k^4R(p'')}\right\}^{1/5}n^{-1/5},$$

(4.56)
so that $\alpha(K) = \{R(K)/\sigma^4_K\}^{1/5}$ and $\beta(p) = \{R(p'')\}^{-1/5}$ in (4.52). Substituting the expression for h^*_n into AMISE shows that

$$\text{AMISE}^* = \frac{5}{4} [\sigma_K R(K)]^{4/5} [R(p'')]^{1/5} n^{-4/5}.$$

Consider the special case where K is a product Gaussian kernel (4.50) and the density p is multivariate Gaussian with diagonal covariance matrix, $\text{diag}\{\sigma^2_1, \ldots, \sigma^2_r\}$ (i.e., the variables are independent). Then, (4.52) reduces to

$$h^*_{j,n} = \left(\frac{4}{r+2}\right)^{1/(r+4)} \sigma_j n^{-1/(r+4)}, \ j = 1, 2, \ldots, r.$$ (4.58)

In the univariate case, where K is the standard Gaussian kernel and p is a Gaussian density with variance σ^2, then

$$h^*_n = 1.06 \sigma n^{-1/5}$$ (4.59)

is the asymptotically optimal window width. In the bivariate case, the constant in (4.58) is exactly 1. In general, $(4/(r+2))^{1/(r+4)}$ attains its minimum as a function of r when $r = 11$, where its value is 0.924. For general r, Scott (1992, p. 152) recommends the rule $h^*_{j,n} = \sigma_j n^{-1/(r+4)}$.

4.5.3 Example: 1872 Hidalgo Postage Stamps of Mexico

This example shows the effect of varying the window width h of a Gaussian kernel density estimate. The data\(^1\) consist of 485 measurements of the thickness of the paper on which the 1872 Hidalgo Issue postage stamps of Mexico were printed (Izenman and Sommer, 1988). This example is particularly interesting because of the fact that these stamps were deliberately printed on a mixture of paper types, each having its own thickness characteristics due to poor quality control in paper manufacture.

Today, the thickness of the paper on which this particular stamp image is printed is a primary factor in determining its price. In almost all cases, a stamp printed on relatively scarce “thick” paper is worth a great deal more than the same stamp printed on “medium” or “thin” paper. It is, therefore, important for stamp dealers and collectors to know how to differentiate between thick, medium, and thin paper. Quantitative definitions of the words thin and thick do not appear in any current stamp catalogue,

\(^1\)The Hidalgo stamp data can be found in the file Hidalgo1872 on the book’s website.
FIGURE 4.6. Gaussian kernel density estimates of the 485 measurements on paper thickness of the 1872 Hidalgo Issue postage stamps of Mexico. The window widths are (a) $h = 0.01$; (b) $h = 0.005$; (c) $h = 0.0036$; (d) $h = 0.0025$; (e) $h = 0.0012$; and (f) $h = 0.0005$. Notice the smooth appearance of the density estimates and the emergence of more modes as h is decreased.

and decisions as to the financial worth of such stamps are left to personal subjective judgment.

Figure 4.6 displays Gaussian kernel density estimates of the Hidalgo stamp data for six window widths: $h = 0.01, 0.005, 0.0036, 0.0025, 0.0012,$ and 0.0005. As h is reduced in magnitude, more structure and detail of the underlying density become visible and more modes emerge. Clearly, the estimate in panel (a) is too smooth, and that in panel (f) is too noisy. The most reasonable density estimate is that which corresponds to a window width of $h = 0.0012$ (see panel (e)) and has seven modes. The two biggest modes occur at thicknesses of 0.072 mm and 0.080 mm; a cluster of three side modes occur at 0.090 mm, 0.100 mm, and 0.110 mm; and there are two tail modes at 0.120 mm and 0.130 mm.

Our analysis does not stop there. We have more information regarding this particular stamp issue. Every stamp from the 1972 Hidalgo Issue was overprinted with year-of-consignment information: there was an 1872 consignment (289 stamps) and an 1873–1874 consignment (196 stamps). We divided these 485 thickness measurements into two groups according to the appropriate consignment overprint.

Gaussian kernel density estimates (with common window width $h = 0.0015$) were computed for the data from each consignment. The resulting
FIGURE 4.7. Gaussian kernel density estimates from data on the 1872 consignment \((n = 289)\) and 1873–1874 consignment \((n = 196)\) of the 1872 Hidalgo Postage Stamp Issue of Mexico. For both density estimates, a common window width of \(h = 0.0015\) was used.

density estimates, which are graphed in Figure 4.7, show clearly that the paper used for printing the stamps in the two consignments had very different thickness characteristics. It appears that a large proportion of the 1872 consignment of stamps was printed on very thick paper, which was not used for the 1873–1874 consignment.

Because 1872 Hidalgo Issue stamps printed on thick paper command much higher prices, these results show that one should look at year-of-consignment as an important factor for valuation purposes.

4.5.4 Estimating the Window Width

For kernel density estimation, rather than trying an ad hoc sequence of different window widths until we find one with which we are satisfied, it would be much more convenient to have an automated method for determining the optimal window width for any given data set.

For the \(L_2\) approach, we see from (4.52) that the optimal window width, \(h^*_n\), depends explicitly on the unknown density \(p\) through the quantity \(\beta(p)\), and so cannot be computed exactly. The most popular methods for estimating \(h^*_n\) are the so-called “rule-of-thumb” method, cross-validation, and the “plug-in” method.

Rule-of-Thumb Method An obvious way to estimate the window width is to insert a parametric estimate \(\hat{p}\) of \(p\) into \(\beta(p)\).
In the univariate case, we can choose a “reference density” for \(p \), find \(R(p) \), and then estimate the result using a random sample from \(p \). If we take \(p \) to be \(N(0, \sigma^2) \) and \(K \) to be a standard Gaussian kernel, then the “optimal” rule-of-thumb (ROT) window width for a Gaussian reference density (see (4.61)) would be \(\hat{h}^\text{ROT}_n = 1.06sn^{-1/5} \), where the sample standard deviation \(s \) is the usual estimate for \(\sigma \). Otherwise, a more robust estimate of \(\sigma \) may be used, such as \(\min\{s, \text{IQR}/1.34\} \), where IQR is the interquartile range, and for Gaussian data, \(\text{IQR} \approx 1.34s \) (Silverman, 1986, pp. 45–47).

For example, the Hidalgo postage stamp data has standard deviation \(s = 0.015 \), so that the optimal ROT window width is given by \(\hat{h}^\text{ROT}_n = (1.06)(0.015)(485)^{-1/5} = 0.005 \); as we see from Figure 4.6(b), this value yields an overly smoothed density estimate.

Rule-of-thumb estimators for window widths are generally regarded as unsatisfactory (with some exceptions). Simulations and case studies with real data both indicate that window widths produced by this method tend to be overly large; if that happens, the density estimate will be drastically oversmoothed and the presence of an important mode may be unknowingly removed.

Cross-Validation A popular method for determining the optimal window width is *leave-one-out cross-validation* (CV/n). In the univariate case, the basic algorithm removes a single value, say \(X_i \), from the sample, computes the appropriate density estimate at that \(X_i \) from the remaining \(n-1 \) sample values,

\[
\hat{p}_{h,-i}(X_i) = \frac{1}{(n-1)h} \sum_{j \neq i} K \left(\frac{X_i - X_j}{h} \right),
\]

and then chooses \(h \) to optimize some given criterion involving all values of \(\hat{p}_{h,-i}(X_i) \), \(i = 1, 2, \ldots, n \). A number of different versions of CV/n have been used for determining \(h \) in density estimation, including unbiased and biased cross-validation.

The *unbiased cross-validation* choice, \(h_n^\text{UCV} \), of window width is that \(h \) that minimizes

\[
UCV(h) = R(\hat{p}_h) - \frac{2}{n} \sum_{i=1}^{n} \hat{p}_{h,-i}(X_i),
\]

where \(R(g) = \int_R [g(x)]^2 dx \). The criterion (4.61), which is derived in exactly the same manner as the CV-expression for the histogram given in (4.32), is referred to as an *unbiased cross-validation* (UCV) criterion because it is exactly unbiased for a shifted version of MISE; that is,

\[
\mathbb{E}_p\{UCV(h)\} = \text{MISE}(h) - R(p).
\]
Only very mild tail conditions on K and p are needed to prove that h_{UCV}^n asymptotically minimizes ISE and gives good results even for long-tailed p; it has also been shown to perform asymptotically as well as the MISE-optimal (but unattainable) window width h_{n}^*, and even though convergence tends to be slow, it cannot be improved upon asymptotically.

Another approach to the problem of choosing h is to minimize AMISE(h) directly. In the univariate case, AMISE depends upon the unknown $R(p'')$, which we, therefore, need to estimate. Scott and Terrell (1987) showed that $E_p\{R(\hat{p}'')\} = R(p'') + R(K'')/nh^5 + O(h^2)$, so that $R(\hat{p}'')$ asymptotically overestimates $R(p'')$. From this result, they proposed the modified estimator

$$\hat{R}(p'') = R(\hat{p}'') - \frac{R(K'')}{nh^5}, \quad (4.63)$$

which is an asymptotically unbiased estimator of $R(p'')$. See also Hall and Marron (1987).

If we define $K_h(u) = h^{-1}K(u/h)$, then, $K''(u/h) = h^3K''_h(u)$. Differentiating $\hat{p}_h(x)$ (see (4.44)) twice wrt x gives

$$\hat{p}_h''(x) = \frac{1}{n} \sum_{i=1}^{n} K''_h(x - X_i). \quad (4.64)$$

Squaring (4.64), integrating the result wrt x, and then using a change of variable gives

$$R(\hat{p}'') = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} K''_h(X_i - X_j)$$

$$= \frac{1}{n} K''_h(0) + \frac{1}{n^2} \sum_{i\neq j} K''_h(X_i - X_j)$$

$$= \frac{R(K'')}{nh^5} + \frac{1}{n^2h^5} \sum_{i\neq j} K''_h(X_i - X_j), \quad (4.65)$$

where the convolution of two functions f and g is defined by $f * g(u) = \int f(z)g(z + u)dz$. Substituting (4.65) into the expression (4.63) yields

$$\hat{R}(p''_h) = \frac{1}{n^2h^5} \sum_{i\neq j} K''_h(X_i - X_j). \quad (4.66)$$

Substituting (4.66) as an estimator of $R(p'')$ into AMISE (4.55) and setting $h = h_n$ yields a biased cross-validation (BCV) criterion,

$$BCV(h_n) = \frac{R(K)}{nh_n} + \frac{\sigma_k^2}{nh_n} \sum_{i<j} K''_{h_n}(X_i - X_j). \quad (4.67)$$
The BCV estimator of h is that value, h_{n}^{BCV}, that (locally) minimizes the BCV(h_{n}) criterion.

For the Hidalgo stamp data example, the BCV choice of h is 0.0036, corresponding to Figure 4.6(c) and yielding an overly smoothed density estimate, whereas the UCV choice of h is 0.0005, corresponding to Figure 4.6(f) and yielding an undersmoothed density estimate.

Even though CV methods are popular, they have been strongly criticized. In general, we have seen that UCV tends to undersmooth, whereas BCV tends to oversmooth, especially for skewed distributions. Both methods are computationally intensive because they involve computing the differences between all pairs of data values (see (4.67) for BCV, and a similar formula can be given for UCV); thus, for large quantities of data (i.e., thousands of observations), these methods tend to become impractical. Furthermore, the UCV and BCV methods have been found to produce multiple local minima, and the question becomes one of which to choose (a recommended action in each case is to take the largest local minimum).

These criticisms, plus recent successful work on “plug-in” methods, have relegated the UCV and BCV methods to “first-generation” status.

Plug-in Methods The “plug-in” idea for estimating h_{n}^{*} can be traced back to Woodroofe (1970), who proposed a two-step procedure:

1. Choose a window width g_{n} for a “pilot” density estimate $\hat{p}_{g_{n}}(x)$, and use this density estimate to compute $\hat{R}(p'') = R(\hat{p}_{g_{n}})$;

2. Plug $\hat{R}(p'')$ into (4.59) to obtain the final window width, \hat{h}_{n}^{*}.

This idea of estimating $R(p'')$ in two steps via a pilot estimate has since been modified in a number of different ways, including a fully iterated version and a version that uses (4.63) to reduce the bias. Some of these candidate ideas proved useful, others less so. For example, in certain situations, using (4.63) can produce negative values for $\hat{R}(p'')$.

The most successful of these modifications was proposed by Sheather and Jones (1991). Estimating $R(p'')$ is different from estimating p, and so we expect the corresponding window widths, g_{n} and h_{n}, to be different, but related; that is, we expect the pilot window width $g_{n} = g(h_{n})$. Rather than use (4.63), we estimate $R(p'')$ by $R(\hat{p}_{g(h_{n})}'')$. The proposed window width, h_{n}^{SJ}, is that value of h_{n} that solves the equation,

$$h_{n} = \left\{ \frac{R(K)}{\sigma_{K}^{2}R(\hat{p}_{g(h_{n})}'')} \right\}^{1/5} n^{-1/5}. \quad (4.68)$$

The optimal choice for g_{n} is given by

$$g(h_{n}) = C(K) \left\{ \frac{R(p'')}{R(p''')^{1/7}} \right\} h_{n}^{5/7}, \quad (4.69)$$
where $C(K)$ is a constant dependent only upon the kernel K. The unknown quantities $R(p'')$ and $R(p''')$ are estimated by $R(\hat{p}_n'')$ and $R(\hat{p}_n''')$, respectively, where the window widths, a and b, are chosen according to the asymptotic optimality results. At this second step in the computations, $R(p'')$ and $R(p''')$ are estimated using the Gaussian reference density method, as we did for the ROT window width. The resulting convergence rate of $h_{SJ,n}^*$ is $O(n^{-5/14})$.

Applying the Sheather–Jones plug-in (SJPI) method to the Hidalgo stamp data yields an estimated window width of 0.0012, which corresponds to the density estimate in Figure 4.6(e). Thus, the plug-in estimator clearly outperforms any of the competing window-width estimators for the Hidalgo stamp data.

Plug-in methods are currently being promoted as “second-generation” methods. This viewpoint is based upon strong evidence of superior performance from asymptotics, simulations, and experience with real data. Despite this evidence, however, there are some reservations regarding the superiority of the plug-in method. In particular, Loader (1999) makes the following points: (1) the success of plug-in methods depends crucially upon an arbitrary specification of the pilot window width, and if misspecification occurs, poor density estimates will result; (2) in difficult examples, where there are many modes in the data, the SJPI method oversmoothes and completely misses the fine structure, whereas UCV, with its tendency to undersmooth, gives a good accounting of itself; and (3) the poor performance of the UCV method may be due to an inappropriate use of a fixed window width, and that instead a more data-adaptive window width would be a better choice.

Example: Eruptions of Old Faithful Geyser

Another example of the different window-width selection methods is displayed in Figure 4.8 for the well-known Old Faithful Geyser data. This data set, which has been explored at length in the density estimation literature, consists of the duration, in minutes, of 107 consecutive eruptions of Old Faithful Geyser (a hot spring that erupts hot water and steam at intervals ranging from 30 to 90 minutes, in Yellowstone National Park, Wyoming), 1–8 August 1978 (Weisberg, 1985, pp. 230–235).

We see the bimodality in the data; we also see that UCV provides a noisier density estimate than does BCV, with SJPI providing some degree of compromise between them. Compared with a histogram of the data, SJPI and BCV have substantially reduced the magnitude of the left mode.

2The data can be found in the file geyser available on the book’s website.
FIGURE 4.8. Gaussian kernel density estimators of the Old Faithful Geyser data. The window widths for the estimates were selected by unbiased cross-validation (left panel), Sheather–Jones plug-in method (center panel), and biased cross-validation (right panel).

relative to the right mode, whereas UCV retains that particular feature of the data.

4.6 Projection Pursuit Density Estimation

Multivariate kernel density estimators tend to be poor performers when it comes to high-dimensional data because extremely large sample sizes are needed to match the sort of numerical accuracy that is possible in low dimensions. In light of this, Friedman and Stuetzle (1982) and Friedman, Stuetzle, and Schroeder (1984) developed projection pursuit density estimation (PPDE) based upon the general projection pursuit algorithm. The PPDE method has been shown in simulations to possess excellent properties, and several striking applications of PPDE to real data have also been published.

4.6.1 The PPDE Paradigm

When dealing with small samples of high-dimensional data, the PPDE procedure may be jump-started by restricting attention to the subspace spanned by the first few significant principal components. A projection pursuit density estimator of p is then formed using the iterative procedure given in Table 4.2.

The iterative procedure is repeated as many times as necessary. At the kth iteration,

$$
\hat{p}^{(k)}(x) = \hat{p}^{(0)}(x) \prod_{j=1}^{k} g_j(a_j^x x) = \hat{p}^{(k-1)}(x) g_k(a_k^x x)
$$

(4.70)
4.6 Projection Pursuit Density Estimation

TABLE 4.2. *Projection pursuit density estimation algorithm.*

1. Input: \(\mathcal{L} = \{ X_i, i = 1, 2, \ldots, n \} \). Sphere the data to have mean 0 and covariance matrix \(I_r \).

2. Initialize: Choose \(\hat{p}^{(0)} \) to be an initial multivariate density estimate of \(p \), usually taken to be the standard multivariate Gaussian.

3. Do \(j = 1, 2, \ldots \):
 - Find the direction \(a_j \in \mathbb{R}^r \) for which the (model) marginal \(p_{a_j} \) along \(a_j \) differs most from the current estimated (data) marginal \(\hat{p}_{a_j} \) along \(a_j \). Choice of direction \(a_j \) will not generally be unique.
 - Given \(a_j \), define a univariate “augmenting function”
 \[
 g_j(a_j^T x) = \frac{p_{a_j}(a_j^T x)}{\hat{p}_{a_j}(a_j^T x)},
 \]
 - Update the previous estimate so that
 \[
 \hat{p}^{(j)}(x) = \hat{p}^{(j-1)}(x)g_j(a_j^T x).
 \]

will be the current multivariate density estimate, where

\[
\hat{p}^{(j)}(x) = \hat{p}^{(j-1)}(x)g_j(a_j^T x).
\]

The vectors \(\{a_j\} \) are unit-length directions in \(\mathbb{R}^r \), and the augmenting (or ridge) functions \(\{g_j\} \) are used to build up the structure of \(\hat{p}^{(0)} \) so that \(\hat{p}^{(k)} \) converges to \(p \) in some appropriate sense as \(k \to \infty \). The number \(k \) of iterations operates as a smoothing parameter, and a stopping rule is determined by balancing bias against the variance of the estimator.

Friedman, Stuetzle, and Schroeder (1984) suggest graphical inspection of the augmenting functions (i.e., plotting \(g_j(a_j^T x) \) against \(a_j^T x \) for \(j = 1, 2, \ldots, k \)) as a termination criterion for the iterative procedure. Computation of the augmenting functions \(\{g_j(a_j^T x)\} \) is discussed in Huber (1985, Section 15) and discussants Buja and Stuetzle (especially pp. 487–489), and Jones and Sibson (1987, Section 3). Given \(a_j \), estimate \(p_{a_j} \) by first projecting the sample data along the direction \(a_j \), thus obtaining \(z_i = a_j^T x_i, \ i = 1, 2, \ldots, n \), and then compute a kernel density estimate from the \(\{z_i\} \). Monte Carlo sampling is used to compute \(\hat{p}_{a_j} \), followed by kernel density estimation. Alternatives to kernel smoothing include cubic spline functions (Friedman, Stuetzle, and Schroeder, 1984) and the average shifted histogram (Jee, 1987).
4.6.2 Projection Indexes

PPDE is driven by a projection index usually of the form

$$I(p) = \int J(p(z))p(z)dz = \mathbb{E}_p\{J(p)\}, \quad (4.72)$$

where J is a smooth real-valued functional and z is a one-dimensional projected version of x. As a functional of p, $I(p)$ should be absolutely continuous with easily computable first derivatives. “Interesting” projections should correspond to random or unstructured projections.

Estimates of $I(p)$ should be amenable to fast computation, unaffected by the overall covariance structure of the data or by outliers or heavy tails. A very reliable and thorough numerical optimizer is absolutely essential for finding “substantive” maxima of $I(p)$, because sampling fluctuations tend to trap ineffective optimizers within a multitude of local maxima (Friedman, 1987).

If $\{z_i\}$ are the projected data, then we can estimate (4.72) by

$$\hat{I}(p) = \int J(\hat{p}(z))d\hat{F}_n(z) = \frac{1}{n} \sum_{i=1}^{n} J(\hat{p}(z_i)). \quad (4.73)$$

Thus, if $J(p(z)) = p(z)$, then $I(p) = \int [p(z)]^2dz$ can be estimated by $\hat{I}(p) = (1/n) \sum_{i=1}^{n} \hat{p}_h(z_i)$, where \hat{p}_h is a kernel estimator with window width h. Another choice is to take $J(p(z)) = \log_e p(z)$, so that $I(p) = \int p(z) \log_e p(z)dz$, which is (negative) cross-entropy, and (4.73) can be estimated at the kth iteration by $(1/n) \sum_{i=1}^{n} \log_e \hat{p}^{(k)}(z_i)$.

Other projection indexes that have been used for PPDE include a moment index based upon the sum of squares of the third and fourth sample cumulants of the projected data (Jones and Sibson, 1987) and the ISE criterion (Friedman, 1987; Hall, 1989a). The latter approaches, though related, differed on whether or not to transform the projected data first. Friedman used ISE between the transformed projected data density and the uniform density, and Hall’s version used the ISE between the untransformed projected data density and the standard Gaussian. Both Friedman and Hall used orthogonal series density estimators (Legendre polynomials and Hermite functions, respectively) to study their projection indexes.

Each of these indexes was designed to search for deviations from “uninterestingness,” whose definition depended upon the specific context. Thus, the Friedman–Tukey index searched for evidence of “clottedness” as well as departures from a parabolic density; the entropy index searched for departures of the projected data from Gaussian form because the Gaussian distribution maximizes entropy; and the moment index and ISE criteria also set up the Gaussian distribution as the least-interesting data feature.
4.7 Assessing Multimodality

As we have seen, it is not unusual for a data set, large or small, to have several modes (or local maxima) in its density estimate. Multiple modes strongly suggest that the underlying probability distribution can be modeled parametrically as a mixture of several probability distributions (each usually Gaussian), where initial values of the EM algorithm can be set by centering each mixture component at the location of a mode and setting the weight attached to that component according to the relative magnitude of the corresponding mode.

Of course, there is no guarantee that a mixture of unimodal densities will produce a multimodal density with the same number of modes as there are densities in the mixture; similarly, there is no guarantee that those individual modes will remain at the same locations in such a mixture. Indeed, the shape of the mixture distribution depends upon both the spacings of the modes and the relative shapes of the component distributions.

In many practical instances, however, the presence of more than a single mode does suggest evidence for a mixture; this has led to several tests being proposed for detecting multimodality in a distribution (see, e.g., Hartigan and Hartigan, 1985). Given a sample of data and some degree of assurance in multimodality, the modes can be evaluated in several ways. For example, Good and Gaskins (1980) used the MPL method of density estimation together with certain “bump-hunting” surgical techniques, whereas Silverman (1981, 1983) combined kernel-based density estimation with a hierarchical bootstrap testing procedure to determine the most probable number of modes in the underlying density. See Izenman and Sommer (1988) for an extensive discussion of Silverman’s test and application to the 1872 Hidalgo postage stamp data. Both methods are nonparametric, data-adaptive, and computationally intensive.

Bibliographical Notes

There is a huge literature on nonparametric density estimation. Because of the amount of material published, we cannot list all pertinent articles or even books on the subject. Furthermore, due to space considerations, there are many nonparametric density estimation methods, including orthogonal series estimators and adaptive-kernel estimators, that are not described in this chapter. For descriptions of these methods, see Izenman (1991) and the references therein.

The most useful books on the subject are by Scott (1992), Silverman (1986), and Simonoff (1996). Chapters on nonparametric density estimation

The origin of the histogram has been traced variously back to Galileo’s star observations of 1632, John Graunt’s mortality tables of 1662, the bar charts of William Playfair in 1786, and Karl Pearson in 1805 for the name. There are several surveys on choices of window width, including Jones, Marron, and Sheather (1996).

Multivariate kernel density estimation was studied by Cacoullos (1966) and Epanechnikov (1969). Cacoullos (1966) appears to have been the first to call K in (4.28) a kernel function; previously, K was known as a weight function. He also was the first to use product kernels.

Exercises

4.1 Consider the class of functions of the form $p(x) = \sum_{\ell=0}^{L-1} y_\ell I_{\ell x}(x)$, where $h \sum_{\ell=0}^{L-1} y_\ell = 1$. Given an iid sample, X_1, X_2, \ldots, X_n from $p(x)$, maximize the log-likelihood function, $L = \sum_{i=1}^{n} \log e [\sum_{\ell=0}^{L-1} y_\ell I_{\ell x}(x_i)]$, subject to the condition that $h \sum_{\ell=0}^{L-1} y_\ell = 1$. Show that the histogram (4.13) is the unique ML estimator of p. [Hint: Use Lagrangian multipliers.]

4.2 By minimizing AMISE in (4.27) wrt h_n, show that the optimal bin width, h_n^\ast, is given by (4.28) and that the AMISE$^\ast = \text{AMISE}(h_n^\ast)$ of the histogram with the optimal bin width is (4.30).

4.3 The average shifted histogram (ASH) (Scott, 1985a) is constructed by taking m histograms, $\hat{p}_1, \hat{p}_2, \ldots, \hat{p}_m$, say, each of which has the same bin width h_n, but with different bin origins, $0, h_n/m, 2h_n/m, \ldots, (m-1)h_n/m$, respectively, and then averaging those histograms,

$$\hat{p}_{\text{ASH}}(x) = m^{-1} \sum_{k=1}^{m} \hat{p}_k(x).$$

The resulting ASH is piecewise constant over intervals $[k\delta, (k+1)\delta)$ of width $\delta = h_n/m$; it has a similar block-like structure as a histogram but is defined over narrower bins. Derive the integrated variance and integrated squared-bias of the average shifted histogram. Show that the asymptotic MISE of the ASH is

$$\text{AMISE} = \frac{2}{3nh_n} \left(1 + \frac{1}{2m^2} \right) + \frac{h_n^2}{12m^2} R(p') + \frac{h_n^4}{144} \left(1 - \frac{2}{m^2} + \frac{3}{5m^2} \right) R(p'').$$

4.4 The frequency polygon (FP) (Scott, 1985b) connects the center of each pair of adjacent histogram bin-values with a straight line. If two adjacent
bin-values are \(\hat{p}_\ell = N_\ell/\hat{n}h_n \) and \(\hat{p}_{\ell+1} = N_{\ell}/\hat{n}h_n \), then the value of the FP at \(x \in [(\ell - \frac{1}{2})h_n, (\ell + \frac{1}{2})h_n] \) is

\[
\hat{p}_{\text{FP}}(x) = \left(\left(\ell + \frac{1}{2} \right) - \frac{x}{h_n} \right) \hat{p}_\ell + \left(\frac{x}{h_n} - \left(\ell - \frac{1}{2} \right) \right) \hat{p}_{\ell+1}.
\]

Whereas the histogram is discontinuous, the FP is a continuous density estimator. Derive the integrated variance and integrated squared-bias of the frequency polygon. [Hint: For ISB, use a Taylor series expansion of \(p(x) \) to the term involving \(p'' \); then, for IV, use \(\text{var}(X + Y) = \text{var}(X) + \text{var}(Y) + 2\text{cov}(X,Y) \) for binomial \(X \) and \(Y \).] Show that if \(p'' \) is absolutely continuous and \(R(p''') < \infty \), then the asymptotic MISE is given by

\[
\text{AMISE}(h_n) = \frac{2}{3n\hat{n}} + \frac{49}{2880} h_n^4 R(p'').
\]

Show that the \(h_n \) that minimizes \(\text{AMISE}(h_n) \) is

\[
h_n^* = 2 \left(\frac{15}{49R(p'')} \right)^{1/5} n^{-1/5}.
\]

4.5 Write a computer program to compute the FP and the ASH and try them out on a data set of your choice.

4.6 By considering \(m \) shifted histograms, let \(B_k = [k\delta, (k+1)\delta) \) be the \(k \)th bin of the ASH, where \(\delta = h_n/m \), and let \(\nu_k \) be the bin count in \(B_k \). Note that the ASH bin count for bin \(B_k \) is the average of the bin counts of the \(m \) shifted histograms, each of width \(\delta \), in bin \(B_k \). Show that, for \(x \in B_k \) and \(m \) large, the ASH can be expressed as a kernel density estimator with triangular kernel on \((-1, 1)\).

4.7 The ASH is not continuous but can be made continuous by linearly interpolating using the FP approach. Show that this ASH-FP density estimate can be expressed as a kernel estimator.

4.8 Rosenblatt’s density estimator is

\[
\hat{p}_n(x) = h^{-1} \left[F_n \left(x + \frac{h}{2} \right) - F_n \left(x - \frac{h}{2} \right) \right],
\]

where \(F_n(x) \) is the empirical cumulative distribution function, \(x \in \mathbb{R} \). Show that this estimator is a kernel density estimator. Which type of kernel corresponds to Rosenblatt’s estimator? Apply this kernel to estimate the density of the 1872 Hidalgo stamp data. What do you notice about the smoothness of the resulting density estimate?

4.9 Find the bias and variance of Rosenblatt’s estimator (Exercise 4.8). From these expressions, find the MISE of that estimator.
4.10 Verify equation (4.32).

4.11 Verify equations (4.53) and (4.54).

4.12 Generate n observations from the claw density,

$$p(x) = 0.5\mathcal{N}(0,1) + (0.1) \sum_{k=0}^{4} \mathcal{N}\left(\frac{k}{2} - 1, (0.1)^2\right),$$

and estimate that density using a kernel density estimator. Take $n = 100, 200,$ and $300,$ and repeat $1,000$ times at each sample size. Compare the performances of UCV, BCV, and SJPI window-width estimators for each simulation. Which window-width estimation method best finds the claws?

4.13 The galaxy velocity data consist of the radial velocities of 323 locations in the area of the spiral galaxy NGC7531 in the Southern Hemisphere; the data can be found on the book’s website. Compare the kernel density estimates of the galaxy data using UCV, BCV, and SJPI window-width estimators. Pay special attention to the number of modes in the estimates. Use Silverman’s test to determine the number of modes (see Silverman, 1981; Izenman and Sommer, 1988).

4.14 The ushighways data consist of the approximate length (in miles) of all 212 U.S. 3-digit interstate highways (spurs and connectors). The data were extracted by L. Winner from the Rand McNally 1993 Business Traveler’s Road Atlas and Guide to Major Cities and can be found on the book’s website. Compare the kernel density estimates for these data using UCV, BCV, and SJPI window-width estimators.
5
Model Assessment and Selection in Multiple Regression

5.1 Introduction

Regression, as a scientific method, first appeared around 1885, although the method of least squares was discovered 80 years earlier. Least squares owes its origins to astronomy and, specifically, to Legendre’s 1805 pioneering work on the determination of the orbits of planets in which he introduced and named the method of least squares. Adrien Marie Legendre estimated the coefficients of a set of linear equations by minimizing the error sum of squares. Gauss stated in 1809 that he had been using the method since 1795, but could not prove his claim with documented evidence. Within a few years, Gauss and Pierre Simon Laplace added a probability component — a Gaussian curve to describe the error distribution — that was crucial to the success of the method. Gauss went on to devise an elimination algorithm to compute least-squares estimates. Once introduced, least squares caught on immediately in astronomy and geodetics, but it took 80 years for these ideas to be transported to other disciplines.

The ideas of regression and correlation were developed in the mid-1880s by Francis Galton in studies of heredity stature, and he applied those ideas to a comparison of the heights of parents and their children (which led to his famous phrase of “regression to mediocrity”). Galton (and also
Francis Ysidro Edgeworth and Karl Pearson), however, failed to connect least squares to regression. It was George Udny Yule, in 1897, who showed that an assumption of a Gaussian error curve in regression could be replaced by an assumption that the variables were linearly related, and that, as a result, least squares could be applied to regression. Thus, the wealth of numerical algorithms already developed by astronomers and geodesists for finding least-squares solutions could be put to work solving regression equations.

Since then, regression has evolved into many different forms, including linear and nonlinear regression and parametric and nonparametric regression. Linear regression models, in particular, are referred to as simple, multiple, or multivariate depending upon the number of input and output variables considered. Simple linear regression deals with one input and one output, multiple regression deals with many inputs and one output, and multivariate regression deals with many inputs and many outputs.

5.2 The Regression Function and Least Squares

We assume that the output (or dependent, response) variable Y is linearly related to the input (or independent, predictor) variables X_1, \ldots, X_r in the following way,

$$Y = \beta_0 + \sum_{j=1}^{r} \beta_j X_j + e,$$

(5.1)

where e is an unobservable random variable (the error component) with mean 0 and variance σ^2. The relationship (5.1) is known as a linear regression model, where $\beta_0, \beta_1, \ldots, \beta_r$ are unknown parameters and $\sigma^2 > 0$ is an unknown error variance. The linearity of the model (5.1) is a result of its linearity in the parameters $\beta_0, \beta_1, \ldots, \beta_r$. Thus, transformations of the input variables (such as powers X_j^d and products X_jX_k) can be included in (5.1) without it losing its characterization as a linear regression model.

The goal is to estimate the true values of $\beta_0, \beta_1, \ldots, \beta_r$, and σ^2, and to assess the impact of each input variable on the behavior of Y. In the likely event that some of the input variables have negligible effects on Y, we may also wish to reduce the number of input variables to a smaller number, especially if r is large. In many uses of multiple regression, we are interested in predicting future values of Y, given future values of the input variables, and we would like to be able to measure the accuracy of those predictions.

The way we treat the model (5.1) depends upon our assumptions about how the input variables X_1, \ldots, X_r were generated. We distinguish between the case when the values of X_1, \ldots, X_r are randomly selected according to some probability distribution (the “random-X” case), a situation that
occurs with observational data, and the case when the values of X_1, \ldots, X_r are fixed in repeated sampling (the “fixed-X” case), possibly set through a designed experiment.

5.2.1 Random-X Case

Suppose we have an input vector of random variables $\mathbf{X} = (X_1, \ldots, X_r)^\tau$ and a random output variable Y, and suppose that these $r+1$ real-valued random variables are jointly distributed according to $P(\mathbf{X}, Y)$ with means $E(\mathbf{X}) = \mu_X$ and $E(Y) = \mu_Y$, respectively, and covariance matrices Σ_{XX}, $\Sigma_{YY} = \sigma_Y^2$, and Σ_{XY}.

Consider the problem of predicting Y by a function, $f(\mathbf{X})$, of \mathbf{X}. We measure prediction accuracy by a real-valued loss function $L(Y, f(\mathbf{X}))$, that gives the loss incurred if Y is predicted by $f(\mathbf{X})$. The expected loss is the risk function,

$$R(f) = E\{L(Y, f(\mathbf{X}))\},$$ \hfill (5.2)

which measures the quality of f as a predictor. The Bayes rule is the function f^* which minimizes $R(f)$, and the Bayes risk is $R(f^*)$.

For squared-error loss, $R(f)$ becomes the mean squared error criterion by which we judge $f(\mathbf{X})$ as a predictor of Y. We have that

$$R(f) = E(Y - f(\mathbf{X}))^2 = E_X[E_{Y|X}\{(Y - f(\mathbf{X}))^2|\mathbf{X}\}],$$ \hfill (5.4)

where the subscripts indicate the distribution over which the expectation is taken. Hence, $R(f)$ can be minimized pointwise (at each \mathbf{x}). We can write

$$Y - f(\mathbf{x}) = (Y - \mu(\mathbf{x})) + (\mu(\mathbf{x}) - f(\mathbf{x})),$$ \hfill (5.5)

where $\mu(\mathbf{x}) = E_{Y|\mathbf{X}}\{Y|\mathbf{X} = \mathbf{x}\}$ is the mean of the conditional distribution of Y given $\mathbf{X} = \mathbf{x}$ and is called the regression function of Y on \mathbf{X}. Squaring both sides of (5.5) and taking conditional expectations, we have that

$$E_{Y|\mathbf{X}}\{(Y - f(\mathbf{x}))^2|\mathbf{X} = \mathbf{x}\} = E_{Y|\mathbf{X}}\{(Y - \mu(\mathbf{x}))^2|\mathbf{X} = \mathbf{x}\} + (\mu(\mathbf{x}) - f(\mathbf{x}))^2,$$ \hfill (5.6)

where the cross-product term vanishes because $E_{Y|\mathbf{X}}\{Y - \mu(\mathbf{x})|\mathbf{X} = \mathbf{x}\} = 0$. Therefore, (5.6) is minimized with respect to f by taking

$$f^*(\mathbf{x}) = \mu(\mathbf{x}) = E_{Y|\mathbf{X}}\{Y|\mathbf{X} = \mathbf{x}\},$$ \hfill (5.7)

so that the pointwise minimum of (5.6) is given by

$$E_{Y|\mathbf{X}}\{(Y - f^*(\mathbf{x}))^2|\mathbf{X} = \mathbf{x}\} = E_{Y|\mathbf{X}}\{(Y - \mu(\mathbf{x}))^2|\mathbf{X} = \mathbf{x}\}.$$ \hfill (5.8)
Taking expectations of both sides, we have that the Bayes risk is

$$R(f^*) = \min_f R(f) = E\{(Y - \mu(X))^2\}. \tag{5.9}$$

Thus, the best predictor of Y at $X=x$, using minimum mean squared error to define “best,” is given by $\mu(x)$, the regression function of Y on X, evaluated at $X=x$, which is also the unique Bayes rule.

To be more specific, suppose the relationship (5.1) holds, where we assume that e is uncorrelated with the X_1, \ldots, X_r. The regression function, which is linear in X, is given by

$$\mu(X) = \beta_0 + \sum_{i=1}^r \beta_i X_i = \beta_0 + X^\tau \beta = Z^\tau \alpha, \tag{5.10}$$

where β_0 is the intercept, $\beta = (\beta_1, \ldots, \beta_r)^\tau$ is an r-vector of regression coefficients, $\alpha = (\beta_0 : \beta^\tau)^\tau$ is an $(r+1)$-vector, and $Z = (1 : X^\tau)^\tau$ is an $(r+1)$-vector. We then choose β_0 and β to minimize the quadratic objective function (5.8). Let

$$S(\alpha) = E\{(Y - Z^\tau \alpha)^2\}, \tag{5.11}$$

and define $\alpha^* = \arg \min \alpha S(\alpha)$. Differentiating $S(\alpha)$ with respect to α yields:

$$\frac{\partial S(\alpha)}{\partial \alpha} = -2E(ZY - ZZ^\tau \alpha). \tag{5.12}$$

Setting (5.12) equal to zero for a minimum, we get:

$$\alpha^* = \left[E(ZZ^\tau) \right]^{-1} E(ZY). \tag{5.13}$$

From (5.13), and noting that $\alpha^* = (\beta_0^* : \beta^{*\tau})^\tau$, it is not difficult to show (Exercise 5.1) that

$$\beta^* = \Sigma_{XX}^{-1} \Sigma_{XY}, \tag{5.14}$$

$$\beta_0^* = \mu_Y - \mu_X^\tau \beta^*. \tag{5.15}$$

In practice, because μ_X, μ_Y, Σ_{XX} and Σ_{XY} will be unknown, we estimate them by ML using data generated by the joint distribution of (X, Y).

Suppose that

$$D = \{(X_i, Y_i), i = 1, 2, \ldots, n\}, \tag{5.16}$$

are iid observations from $P(X, Y)$, where $X_i = (X_{i1}, \ldots, X_{ir})^\tau$ is the ith observed value of $X = (X_1, X_2, \ldots, X_r)^\tau$ and Y_i is the ith observed value of Y, $i = 1, 2, \ldots, n$. Let $X = (X_1, \ldots, X_n)^\tau$ be an $(n \times r)$-matrix and $Y = (Y_1, \ldots, Y_n)^\tau$ be an n-vector. We estimate μ_X and μ_Y by the r-vector $\bar{X} = n^{-1} \sum_{j=1}^n X_j$ and scalar $\bar{Y} = n^{-1} \sum_{j=1}^n Y_j$, respectively. Let $\bar{X} = (\bar{X}, \ldots, \bar{X})^\tau$ be an $(n \times r)$-matrix and $\bar{Y} = (\bar{Y}, \ldots, \bar{Y})^\tau$ be an n-vector.
Let $X_c = X - \bar{X}$ and $Y_c = Y - \bar{Y}$ be the mean-centered forms of X and Y, respectively, and estimate Σ_{XX} by $n^{-1}X_c^T X_c$ and Σ_{XY} by $n^{-1}X_c^T Y_c$. The least-squares estimates of (5.14) and (5.15) are given by

$$\hat{\beta}^* = (X_c^T X_c)^{-1}X_c^T Y_c,$$

(5.17)

$$\hat{\beta}_0^* = \bar{Y} - \bar{X}^T \hat{\beta}^*,$$

(5.18)

respectively.

5.2.2 Fixed-X Case

In the “fixed-X” case, we view the input variables X_1, \ldots, X_r as being fixed in repeated sampling. Thus, the value of Y may depend upon input variables whose values are selected by an experimentalist within the framework of a designed experiment, or Y may be observed conditional on the X_1, \ldots, X_r.

Suppose the n observations (5.16) satisfy (5.1), so that

$$Y_i = \beta_0 + \sum_{j=1}^r \beta_j X_{ij} + e_i, \quad i = 1, 2, \ldots, n,$$

(5.19)

where e_1, e_2, \ldots, e_n are i.i.d. random variables having the same distribution as e. Equations (5.19) can be written as

$$Y_i = Z_i^T \beta + e_i = \mu(X_i) + e_i, \quad i = 1, 2, \ldots, n,$$

(5.20)

where $\mu(X_i) = Z_i^T \beta$ is the regression function, $Z_i^T = (1, X_{i1}, \ldots, X_{ir})$, and $\beta^T = (\beta_0, \beta_1, \ldots, \beta_r)$. The n equations (5.20) can be written more compactly as

$$Y = Z \beta + e,$$

(5.21)

where $Y = (Y_1, \ldots, Y_n)^T$ is a random n-vector, $Z = (Z_1, \ldots, Z_n)^T$ is an $(n \times (r + 1))$-matrix with ith row $Z_i^T (i = 1, 2, \ldots, n)$, β is an $(r + 1)$-vector, and e is a random n-vector of unobservable errors with $E(e) = 0$ and $\text{var}(e) = \sigma^2 I_n$. To account for the intercept β_0, the first column of Z consists only of 1s.

We form the error sum of squares (ESS),

$$ESS(\beta) = \sum_{i=1}^n e_i^2 = e^T e = (Y - Z \beta)^T (Y - Z \beta),$$

(5.22)

and estimate β by minimizing $ESS(\beta)$ with respect to β. Differentiating $ESS(\beta)$ with respect to β yields

$$\frac{\partial ESS(\beta)}{\partial \beta} = -2Z^T (Y - Z \beta),$$

(5.23)
\[
\frac{\partial^2 \text{ESS}(\beta)}{\partial \beta \partial \beta^\top} = -2Z^\top Z, \quad (5.24)
\]
and setting result (5.23) equal to 0 for a minimum yields the normal equations,
\[
Z^\top Z \hat{\beta} = Z^\top \mathbf{y}. \quad (5.25)
\]
Assuming that the \(((r + 1) \times (r + 1))\)-matrix \(Z^\top Z\) is nonsingular (and, hence, invertible), the unique ordinary least-squares (OLS) estimator of \(\beta\) in the model (5.21) is given by
\[
\hat{\beta}_{\text{ols}} = (Z^\top Z)^{-1}Z^\top \mathbf{y}. \quad (5.26)
\]
Note the resemblance of (5.26) to (5.13).

We can write \(Z = (1_n : X^\top)\), where \(X^\top\) is an \((r \times n)\)-matrix, with a corresponding partition of \(\beta\) as \(\beta = (\beta_0 : \beta_\ast^\top)^\top\), where \(\beta_\ast = (\beta_1, \cdots, \beta_r)^\top\). Let \(\bar{X} = n^{-1}X1_n\) and \(\bar{Y} = n^{-1}1^\top_n\mathbf{y}\). As before, let \(\bar{X} = (\bar{X}, \cdots, \bar{X})\) be an \((n \times r)\)-matrix, each column of which is \(\bar{X}\), and let \(\bar{Y} = (\bar{Y}, \cdots, \bar{Y})^\top\), be an \(n\)-vector each element of which is \(\bar{y}\). Then, \(X_c = X - \bar{X}\) is an \((n \times r)\)-matrix and \(Y_c = Y - \bar{Y}\) is an \(n\)-vector. It is not difficult to show (Exercise 5.2) that
\[
\hat{\beta}_\ast = (X_c^\top X_c)^{-1}X_c^\top Y_c \quad (5.27)
\]
\[
\hat{\beta}_0 = \bar{Y} - \bar{X}^\top \hat{\beta}_\ast \quad (5.28)
\]
Clearly, the estimates (5.17) and (5.18) are identical to the corresponding estimates (5.27) and (5.28). Even though the descriptions differ as to how the input data are generated, the OLS estimates turn out to be the same for the random-\(X\) case and the fixed-\(X\) case.

For fixed \(X\) and assuming that \(\text{var}(\mathbf{y}) = \sigma^2 I_n\), the mean and variance of \(\hat{\beta}_{\text{ols}}\) in (5.26) are given by \(E(\hat{\beta}_{\text{ols}}) = \beta_\ast\) and
\[
\text{var}(\hat{\beta}_{\text{ols}}) = (Z^\top Z)^{-1}Z^\top \{\text{var}(\mathbf{y})\}Z(Z^\top Z)^{-1} = \sigma^2 (Z^\top Z)^{-1}, \quad (5.29)
\]
respectively.

The OLS regression estimator \(\hat{\beta}_{\text{ols}}\) has some very desirable properties that are characterized by the Gauss–Markov Theorem (Exercise 5.3). If we are looking for a linear unbiased estimator of \(\beta\) with minimum variance, the Gauss–Markov Theorem states that we need only consider \(\hat{\beta}_{\text{ols}}\).

The components of the \(n\)-vector of OLS fitted values are the vertical projections of the \(n\) points onto the LS regression surface (or hyperplane) \(\hat{y}_i = \hat{\mu}(x_i) = x_i^\top \hat{\beta}_{\text{ols}}, i = 1, 2, \ldots, n\). See Figure 5.1 for a geometrical view.

The variance of \(\hat{y}_i\) for fixed \(x_i\) is given by
\[
\text{var}(\hat{y}_i \mid x_i) = x_i^\top \{\text{var}(\hat{\beta}_{\text{ols}})\} x_i = \sigma^2 x_i^\top (Z^\top Z)^{-1}x_i. \quad (5.30)
\]
5.2 The Regression Function and Least Squares

The regression function and least squares model is given by

\[y = \text{proj}_M(y) = \text{OLS estimate} \]

where \(M = \text{span}(x_1, x_2) \) is the hyperplane spanned by the input variables, and the OLS fitted value \(\hat{y} \) is the orthogonal projection of the output value \(y \) onto \(M \).

![FIGURE 5.1. A geometrical view of the ordinary least-squares method, using two input variables, \(X_1 \) and \(X_2 \). The hyperplane spanned by the input variables is denoted by \(M \), and the OLS fitted value \(\hat{y} \) is the orthogonal projection of the output value \(y \) onto \(M \).](image)

The \(n \)-vector of fitted values \(\hat{Y} = (\hat{y}_1, \ldots, \hat{y}_n)^\tau \) is

\[\hat{Y} = Z\hat{\beta}_{\text{ols}} = Z(Z^\tau Z)^{-1}Z^\tau Y = HY, \]

(5.31)

where the \((n \times n)\)-matrix \(H = Z(Z^\tau Z)^{-1}Z^\tau \) is often called the hat matrix because it puts the “hat” on \(Y \). Note that \(H \) and \(I_n - H \) are both symmetric, idempotent matrices with \(H(I_n - H) = 0 \). Furthermore, \(HQ = Z \) and \((I_n - H)Z = 0 \). The variance of \(\hat{Y} \) is given by

\[\text{var}(\hat{Y}|X) = H\{\text{var}(Y)\}H^\tau = \sigma^2H. \]

(5.32)

The \(ij \)th component \(h_{ij} \) of \(H \) is the amount of leverage (or impact) that the observed value of \(y_j \) exerts on the fitted value \(\hat{y}_i \). The hat matrix \(H \) is, therefore, used to identify high-leverage points. In particular, the diagonal components \(h_{ii} \) satisfy \(0 \leq h_{ii} \leq 1 \), their sum is the number, \(r \), of input variables, and the average leverage magnitude is \(r/n \). From this, high-leverage points have been defined as those points having \(h_{ii} > 2r/n \).

The residuals, \(\hat{e} = Y - \hat{Y} = (I_n - H)Y \) are the OLS estimates of the unobservable errors \(e \). The residual vector can also be written as

\[\hat{e} = Y - Z\hat{\beta}_{\text{ols}} = (Z\beta + e) - Z(\beta + (Z^\tau Z)^{-1}Z^\tau e) = (I_n - H)e, \]

(5.33)

whence, assuming again that \(Z \) is fixed, it follows that \(E(\hat{e}) = 0 \) and \(\text{var}(\hat{e}) = \sigma^2(I_n - H) \). Hence, \(\text{var}(\hat{e}_i) = \sigma^2(1 - h_{ii}) \), where \(h_{ii} \) is the \(i \)th diagonal element of \(H \), \(i = 1, 2, \ldots, n \). The residual sum of squares (RSS) is given by

\[\text{RSS} = \sum_{i=1}^{n} \hat{e}_i^2 = \hat{e}^\tau \hat{e} = ESS(\hat{\beta}_{\text{ols}}). \]

(5.34)
Note that
\[
RSS = ESS(\beta) + (\beta - \hat{\beta}_{ols})^T Z^T Z (\beta - \hat{\beta}_{ols}).
\]
(5.35)
Dividing \(RSS \) by its number of degrees of freedom, \(n - r - 1 \), gives us an unbiased estimate of the error variance \(\sigma^2 \),
\[
\hat{\sigma}^2 = \frac{RSS}{n - r - 1},
\]
(5.36)
which is known as the residual variance. Hence, the OLS estimate of the \(\text{var}(\hat{\beta}_{ols}) \) is given by
\[
\hat{\text{var}}(\hat{\beta}_{ols}) = \hat{\sigma}^2 (Z^T Z)^{-1}.
\]
(5.37)
Residuals are often rescaled into internally Studentized residuals (which are more usually called standardized residuals) by dividing them by an estimate of their standard error,
\[
\hat{e}_i^S = \frac{\hat{e}_i}{\hat{\sigma}(1 - h_{ii})^{1/2}}, \quad i = 1, 2, \ldots, n.
\]
(5.38)
An externally Studentized residual can also be defined by omitting the \(i \)th case from the regression.

Because the \(n \) fitted values \(\hat{Y} = H\hat{\theta} \) and the \(n \) residuals \(\hat{e} = (I_n - H)\hat{\theta} \) have zero covariance and, hence, are uncorrelated, it follows that the regression of \(\hat{Y} \) on \(\hat{e} \) has zero slope. If the multiple regression model is correct, then a scatterplot of residuals (or Studentized residuals) against fitted values should show no discernible pattern (i.e., a slope of approximately zero). Anomalous patterns to look out for include nonlinearity, nonconstant variance, and possible outliers.

Now, consider the identity \(y_i - \bar{y} = (y_i - \bar{y}_i) + (\bar{y}_i - \bar{y}) \). Squaring both sides, summing over all \(n \) observations, and noting that the cross-product term disappears, we have that the \textit{total sum of squares},
\[
S_{YY} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = (Y - \bar{Y})^T (Y - \bar{Y}),
\]
(5.39)
can be written as \(S_{YY} = SS_{reg} + RSS \), where the \textit{regression sum of squares},
\[
SS_{reg} = \sum_{i=1}^{n} (\bar{y}_i - \bar{y}_i)^2 = \hat{\beta}_{ols}^T (Z^T Z) \hat{\beta}_{ols},
\]
(5.40)
and the \textit{residual sum of squares},
\[
RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = (Y - Z\hat{\beta}_{ols})^T (Y - Z\hat{\beta}_{ols}),
\]
(5.41)
5.2 The Regression Function and Least Squares

TABLE 5.1. ANOVA table for a multiple regression model.

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>df</th>
<th>Sum of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression on X_1, \ldots, X_r</td>
<td>r</td>
<td>$SS_{\text{reg}} = \hat{\beta}{\text{ols}}^\top (Z^\top Z) \hat{\beta}{\text{ols}}$</td>
</tr>
<tr>
<td>Residual</td>
<td>$n - r - 1$</td>
<td>$RSS = (Y - Z \hat{\beta}{\text{ols}})^\top (Y - Z \hat{\beta}{\text{ols}})$</td>
</tr>
<tr>
<td>Total</td>
<td>$n - 1$</td>
<td>$S_{YY} = (Y - \bar{Y})^\top (Y - \bar{Y})$</td>
</tr>
</tbody>
</table>

form an orthogonal decomposition, which can be summarized by an analysis of variance (ANOVA) table; see Table 5.1. The squared multiple correlation coefficient, $R^2 = SS_{\text{reg}}/S_{YY}$, lies between 0 and 1 and is used to measure the proportion of the total variation in Y that can be explained by a linear regression on the r Xs.

So far, no assumptions have been made about the probability distribution of the errors. If $e_i \sim N(0, \sigma^2)$, $i = 1, 2, \ldots, n$, it follows that

$$\hat{\beta}_{\text{ols}} \sim N_{r+1} (\beta, \sigma^2 (Z^\top Z)^{-1}),$$

(5.42)

$$RSS = (n - r - 1) \hat{\sigma}^2 \sim \sigma^2 \chi^2_{n-r-1},$$

(5.43)

and $\hat{\beta}_{\text{ols}}$ and $\hat{\sigma}^2$ are independently distributed. From the ANOVA table, we can determine whether there is a linear relationship between Y and the Xs. We compute the F-statistic,

$$F = \frac{SS_{\text{reg}}/r}{RSS/(n - r - 1)},$$

(5.44)

and compare the resulting F-value with an appropriate percentage point of the $F_{r,n-r-1}$ distribution. A small value for F implies that the data did not provide sufficient evidence to reject $\beta = 0$, whereas a large value indicates that at least one β_j is not zero. Under normality, if $\beta_j = 0$, the statistic

$$t_j = \frac{\hat{\beta}_j}{\hat{\sigma} \sqrt{v_{jj}}},$$

(5.45)

where v_{jj} is the jth diagonal entry of $(Z^\top Z)^{-1}$, follows the Student’s t distribution with $n - r - 1$ degrees of freedom, $j = 1, 2, \ldots, r$. A large value of $|t_j|$ is evidence that $\beta_j \neq 0$, whereas a small, near-zero value of $|t_j|$ is evidence that $\beta_j = 0$. For large n, t_j reduces to a Gaussian-distributed
random variable, and the cutoff value for $|t_j|$ is usually taken to be 2.0. For $0 < \alpha < 1$, it follows that a $(1 - \alpha) \times 100\%$ confidence region for β is given by the set of β-vectors such that

$$(r + 1)^{-1}(\hat{\beta}_{\text{ols}} - \beta)^T (Z^T Z)(\hat{\beta}_{\text{ols}} - \beta) \leq \hat{\sigma}^2 F_{r+1,n-r-1}^{\alpha}.$$ \hfill (5.46)

Geometrically, the confidence region (5.46) is an $(r + 1)$-dimensional ellipsoid with center β and orientation controlled by the matrix $Z^T Z$.

5.2.3 Example: Bodyfat Data

These data were used to produce predictive equations for lean body weight, a measure of health.\(^1\) Measurements were made on $n = 252$ men in order to relate the percentage of bodyfat determined by underwater weighing (bodyfat), which is inconvenient and costly to obtain, to a number of body circumference measurements, recorded using only a scale and measuring tape.

The $r = 13$ input variables are age in years (age), weight in lb (weight), height in inches (height), neck circumference in cm (neck), chest circumference in cm (chest), abdomen 2 circumference in cm (abdomen), hip circumference in cm (hip), thigh circumference in cm (thigh), knee circumference in cm (knee), extended biceps circumference in cm (biceps), forearm circumference in cm (forearm), and wrist circumference in cm (wrist).

The pairwise correlations of the input variables are given in Table 5.2. We see 13 correlations greater than 0.8 and two greater than 0.9. One observation (#39) appears to be an outlier in all variables except age, height, forearm, and wrist. Using these 13 body measurements, we wish to derive accurate predictive measurements of bodyfat.

To study the relationship between bodyfat and the 13 input variables, we formulate the regression equation as follows:

$$\text{bodyfat} = \beta_0 + \beta_1(\text{age}) + \beta_2(\text{weight}) + \beta_3(\text{height}) + \beta_4(\text{neck}) + \beta_5(\text{chest}) + \beta_6(\text{abdomen}) + \beta_7(\text{hip}) + \beta_8(\text{thigh}) + \beta_9(\text{knee}) + \beta_{10}(\text{ankle}) + \beta_{11}(\text{biceps}) + \beta_{12}(\text{forearm}) + \beta_{13}(\text{wrist}) + e,$$ \hfill (5.47)

where e is a random variable with mean zero and constant variance σ^2. The results of the multiple regression are given in Table 5.3 and summarized in Figure 5.2 by the ordered absolute values of the t-ratios of the 13 estimated

\(^1\)The data and literature references can be downloaded from the StatLib–Datasets Archive, \text{lib.stat.cmu.edu/datasets/}, under the filename \text{bodyfat}.\n
regression coefficients. We see a few large values in the residual analysis: 12 standardized residuals have absolute values greater than 2.0, and two of them (observations 39 and 224) have absolute values greater than 2.6. We estimate the error variance σ^2 by the residual variance, $\hat{\sigma}^2 = 18.572$ on 238 degrees of freedom. If the errors are Gaussian distributed (an assumption that is supported by the residual analysis), the t statistics for abdomen, wrist, forearm, neck, and age are significant.

5.3 Prediction Accuracy and Model Assessment

Prediction is the art of making accurate guesses about new response values that are independent of the current data. Good predictive ability is often recognized as the most useful way of assessing the fit of a model to data. Thus, the two aims of prediction and model assessment (or validation) are closely related to each other.

For prediction in regression, we use the learning data,

$$ \mathcal{L} = \{(X_i, Y_i), i = 1, 2, \ldots, n\}, \quad (5.48) $$

to regress Y on X, and then predict a new Y-value, Y^new, by applying the fitted model to a brand-new X-value, X^new, from the test set T. The resulting prediction is compared with the actual response value. The predictive ability of the regression model is assessed by its prediction (or generalization) error, an overall measure of the quality of the prediction, usually taken to be mean squared error. The definition of prediction error depends upon whether we consider X as fixed or as random.
TABLE 5.3. OLS estimation of coefficients for the regression model using the bodyfat data with \(r = 13, n = 252 \). The multiple \(R^2 \) is 0.749, the residual sum of squares is 4420.1, and the \(F \)-statistic is 54.5 on 13 and 238 degrees of freedom. A multiple regression using only those variables having \(|t| > 2\) (i.e., abdomen, wrist, forearm, neck, and age) has residual sum of squares 4724.9, \(R^2 = 0.731 \), and an \(F \)-statistic of 133.85 on 5 and 246 degrees of freedom.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Estimate</th>
<th>Std.Error</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-21.3532</td>
<td>22.1862</td>
<td>-0.9625</td>
</tr>
<tr>
<td>age</td>
<td>0.0646</td>
<td>0.0322</td>
<td>2.0058</td>
</tr>
<tr>
<td>weight</td>
<td>-0.0964</td>
<td>0.0618</td>
<td>-1.5584</td>
</tr>
<tr>
<td>height</td>
<td>-0.0439</td>
<td>0.1787</td>
<td>-0.2459</td>
</tr>
<tr>
<td>neck</td>
<td>-0.4755</td>
<td>0.2356</td>
<td>-2.0184</td>
</tr>
<tr>
<td>chest</td>
<td>-0.0172</td>
<td>0.1032</td>
<td>-0.1665</td>
</tr>
<tr>
<td>abdomen</td>
<td>0.9550</td>
<td>0.0902</td>
<td>10.5917</td>
</tr>
<tr>
<td>hip</td>
<td>-0.1886</td>
<td>0.1448</td>
<td>-1.3025</td>
</tr>
<tr>
<td>thigh</td>
<td>0.2483</td>
<td>0.1462</td>
<td>1.6991</td>
</tr>
<tr>
<td>knee</td>
<td>0.0139</td>
<td>0.2477</td>
<td>0.0563</td>
</tr>
<tr>
<td>ankle</td>
<td>0.1779</td>
<td>0.2226</td>
<td>0.7991</td>
</tr>
<tr>
<td>biceps</td>
<td>0.1823</td>
<td>0.1725</td>
<td>1.0568</td>
</tr>
<tr>
<td>forearm</td>
<td>0.4557</td>
<td>0.1993</td>
<td>2.2867</td>
</tr>
<tr>
<td>wrist</td>
<td>-1.6545</td>
<td>0.5332</td>
<td>-3.1032</td>
</tr>
</tbody>
</table>

FIGURE 5.2. Multiple regression results for the bodyfat data. The variable names are given on the vertical axis (listed in descending order of their absolute \(t \)-ratios) and the absolute value of the \(t \)-ratio for each variable on the horizontal axis.
5.3.1 Random-\(X\) Case

In the random-\(X\) case, the learning data \(\mathcal{L}\) are iid observations from the joint distribution of \((X, Y)\). The observed responses \(Y_i, i = 1, 2, \ldots, n\), are assumed to have been generated by the regression model,

\[
Y = \beta_0 + X^T \beta + e = \mu(X) + e, \quad \text{(5.49)}
\]

where \(\mu(X) = \mathbb{E}(Y|X) = \beta_0 + X^T \beta\), \(\mathbb{E}(e|X) = 0\), and \(\text{var}(e|X) = \sigma^2\). From \(\mathcal{T}\), we draw a new observation, \((X^{\text{new}}, Y^{\text{new}})\), where we assume \(Y^{\text{new}}\) is unknown, from the same distribution as \((X, Y)\), but independent of the learning set \(\mathcal{L}\). We assess the fitted model by predicting \(Y^{\text{new}}\) from \(X^{\text{new}}\).

If the estimated OLS regression function at \(X\) is

\[
\hat{\mu}(X) = \hat{\beta}_0 + X^T \hat{\beta}_{\text{ols}}, \quad \text{(5.50)}
\]

then the predicted value of \(Y\) at \(X^{\text{new}}\) is given by \(\hat{\mu}(X^{\text{new}})\). The prediction error \((\text{PE}_R)\) in this case is defined as the mean squared error in predicting \(Y^{\text{new}}\) using \(\hat{\mu}(X^{\text{new}})\),

\[
\text{PE}_R = \mathbb{E}\{(Y^{\text{new}} - \hat{\mu}(X^{\text{new}}))^2\} = \sigma^2 + \text{ME}_R, \quad \text{(5.51)}
\]

where the expectation is taken over \((X^{\text{new}}, Y^{\text{new}})\), and

\[
\text{ME}_R = \mathbb{E}\{(\mu(X^{\text{new}}) - \hat{\mu}(X^{\text{new}}))^2\} = (\beta - \hat{\beta}_{\text{ols}})^T \Sigma_{XX} (\beta - \hat{\beta}_{\text{ols}}), \quad \text{(5.52)}
\]

is the model error (i.e., the mean squared error of \(\hat{\mu}(X^{\text{new}})\) as a predictor of \(\mu(X^{\text{new}})\), a quantity also called the “expected bias-squared”), and \(\Sigma_{XX}\) is the covariance matrix of \(X\).

5.3.2 Fixed-\(X\) Case

In the fixed-\(X\) case, the \(r\)-vectors \(\{X_i\}\), whose transposes are the rows of the design matrix \(X\), are fixed by the experimental conditions, so that only \(Y\) is random. We assume that the true model generating the observations \(\{y_i\}\) on \(Y\) is

\[
Y_i = \beta_0 + X_i^T \beta + e_i = \mu(X_i) + e_i, \quad \text{(5.54)}
\]

where \(\mu(X_i) = \beta_0 + X_i^T \beta\) is the regression function evaluated at \(X_i\), and the errors \(e_i, i = 1, 2, \ldots, n\), are iid with mean 0 and variance \(\sigma^2\) and are uncorrelated with the \(\{X_i\}\). We assume that the test data in \(\mathcal{T}\) are generated by using “future-fixed” \(\{X^{\text{new}}\}\) points (Breiman, 1992), which may either be the same fixed design points \(\{X_i\}\) as in the learning data \(\mathcal{L}\) or they may be future values of \(X\) that are considered by the experimenter.
to be known and fixed (i.e., new design points). For convenience in this discussion, we assume the former situation holds. Thus, we assume that

\[T = \{(X_i, Y_i^{\text{new}}), i = 1, 2, \ldots, m\}, \]

where

\[Y_i^{\text{new}} = \mu(X_i) + e_i^{\text{new}}, \] (5.55)

and the \(\{e_i^{\text{new}}\} \) are independent of the \(\{e_i\} \) but have the same distribution.

We further assume that the \(\mathcal{X}^T \mathcal{X} \) matrix for the \(\{X_i\} \) is known.

The predicted value of \(Y^{\text{new}} \) at a future-fixed \(X \) is given by

\[\hat{\mu}(X) = \hat{\beta}_0 + X^T \hat{\beta}_{\text{ols}}, \] (5.56)

where \(\hat{\beta}_{\text{ols}} \) is the OLS estimate of the regression coefficients. The prediction error in the fixed-\(X \) case is defined as

\[PE_F = E \left(m^{-1} \sum_{i=1}^{m} (Y_i^{\text{new}} - \hat{\mu}(X_i))^2 \right) = \sigma^2 + ME_F, \] (5.57)

where the expectation is taken only over the \(\{Y_i^{\text{new}}\} \), and

\[ME_F = m^{-1} \sum_{i=1}^{m} (\mu(X_i) - \hat{\mu}(X_i))^2 \]

\[= (\beta - \hat{\beta}_{\text{ols}})^T (m^{-1} \mathcal{X}^T \mathcal{X})(\beta - \hat{\beta}_{\text{ols}}) \] (5.58)

is the model error due to the lack of fit to the true model. Compare (5.65) with (5.59).

5.4 Estimating Prediction Error

In the random-\(X \) case, when the entire data set \(D \) is large enough, we can use the partition into learning, validation, and test sets to do a thorough job of estimating the regression function, predicting future outcomes, and validating the model. However, in cases where such a division may not be practical, we have to use alternative methods.

5.4.1 Apparent Error Rate

As before, let \(\hat{\mu}(X^{\text{new}}) \) be the predicted value of \(Y \) at \(X = X^{\text{new}} \), and let

\[L(Y, \mu(X)) = (Y - \mu(X))^2 \]

be the loss incurred by predicting \(Y \) by \(\mu(X) \).

The prediction error \(PE \) for \(\hat{\mu}(X^{\text{new}}) \) is given by (5.57). We can estimate \(PE \) by

\[\hat{PE}(\hat{\mu}, D) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{\mu}(X_i))^2 = \frac{RSS}{n}, \] (5.60)
which we call the *apparent error rate* (or *resubstitution error rate*) for \(D \). This estimate of \(PE \) is computed by fitting the OLS regression function to the idiosyncracies of the original sample \(D \) and then applying that function to see how well it predicts those same members of \(D \). The apparent error rate is a misleadingly optimistic value because it estimates the predictive ability of the fitted model from the same data that was used to fit that model. Consequently, we expect that \(RSS/n \) will be too optimistic an estimate of \(PE \) with \(\hat{PE}(\hat{\mu}, D) < PE \).

Rather than using the apparent error rate for estimating prediction error, we use resampling methods (cross-validation and the bootstrap). Which resampling methodology we use depends upon whether the fixed-\(X \) or the random-\(X \) model is more appropriate. For the random-\(X \) case, we can use cross-validation or the “unconditional bootstrap,” and in the fixed-\(X \) case, we can use the “conditional bootstrap.” Cross-validation is not appropriate for estimating prediction error in the fixed-\(X \) case.

5.4.2 Cross-Validation

Among the methods available for estimating prediction error (and model error) for the random-\(X \) case, the most popular is *cross-validation* (Stone, 1974), of which there are several versions.

Suppose \(D \) is a random sample drawn from the joint probability distribution of \((X, Y)\) in \((r + 1)\)-dimensional space. If \(n = 2m \), we can randomly split \(D \) into two equal subsets, treating one subset as the *learning set* \(L \) and the other as the *test set* \(T \), where \(D = L \cup T \) and \(L \cap T = \emptyset \). Let \(T = \{(X_i', Y_i'), i = 1, 2, \ldots, m\} \). An estimate of \(PE_R \) obtained from the test set is

\[
\hat{PE} = \frac{1}{m} \sum_{i=1}^{m} (Y_i' - \hat{\mu}(X_i'))^2,
\]

where \(\hat{\mu}(X_i') = \hat{\beta}_0 + X_i'\hat{\beta}_{ols} \). The learning set and the test set are then switched and the resulting two estimates of \(PE_R \) are averaged to yield a final estimate.

To generalize the above procedure, assume that \(n = Vm \), where \(V \geq 2 \) is a small integer, such as 5 or 10. We split the data set \(D \) randomly into \(V \) disjoint subsets \(T_v, v = 1, 2, \ldots, V \), of equal size, where \(D = \bigcup_{v=1}^{V} T_v, T_v \cap T_{v'} = \emptyset, v \neq v' \). We next create \(V \) different versions of the data set, each version of which has a learning set consisting of \(V - 1 \) of the subsets (i.e., \((V - 1)m\) observations) and a test set of the one remaining subset (of \(m \) observations). In other words, we drop the \(T_v \) cases and consider the remaining learning set of \(L_v = D - T_v \) cases. Using only the \(L_v \) cases, we obtain the OLS regression function \(\hat{\mu}_{-v}(X) \). We then evaluate this regression function at the \(T_v \) test-set cases, yielding the values \(\hat{\mu}_v(X_i') \), \(X_i \in T_v \). We compute the prediction error from the \(v \)th test set \(T_v \), repeating the procedure \(V \)
times, while cycling through each of the test sets, $\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_V$. This procedure is called \textit{V-fold cross-validation} (CV/V). Combining these results gives us a CV/V-estimate of PE,

$$
\hat{PE}_{CV/V} = \frac{1}{V} \sum_{v=1}^{V} \sum_{(X_i, Y_i) \in \mathcal{T}_v} (Y_i - \hat{\mu}_v(X_i))^2.
$$

(5.62)

Then, subtract $\hat{\sigma}^2$ from \hat{PE} to get \hat{ME}, where $\hat{\sigma}^2$ is the residual variance obtained from the full data set.

The most computationally intensive version of cross-validation occurs when $m = 1$ (so that $V = n$). In this case, each learning set \mathcal{L}_v has size $n - 1$, and the test set \mathcal{T}_v has size one. At the ith stage, the ith case (x_i, y_i) is omitted from the ith learning set, and the OLS regression function $\hat{\mu}_i(x)$ is computed from that learning set and evaluated at x_i. This type of balanced split is referred to as the \textit{leave-one-out rule} (CV/n or LOO). The prediction error is then estimated by

$$
\hat{PE}_{CV/n} = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{\mu}_{-i}(X_i))^2.
$$

(5.63)

As before, we obtain \hat{ME} by subtracting $\hat{\sigma}^2$ from \hat{PE}.

As well as issues of computational complexity, the difference between taking $V = 5$ or 10 and taking $V = n$ is one of “bias versus variance.” The leave-one-out rule yields an estimate of PE_R that has low bias but high variance (arising from the high degree of similarity between the leave-one-out learning sets), whereas the 5-fold or 10-fold rule yields an estimate of PE_R with higher bias but lower mean squared error (and also lower variance). Furthermore, 10-fold (and even 5-fold) cross-validation appears to be better at model assessment than is leave-one-out cross-validation.

\textbf{5.4.3 Bootstrap}

For estimating prediction error in regression models, we can also use the bootstrap technique (Efron, 1979). In general, the specific version of the bootstrap to be applied has to depend upon what we actually assume about the stochastic model that may have generated the data. In regression models, it again boils down to whether we are in the random-X case (using the “unconditional” bootstrap) or the fixed-X case (“conditional” bootstrap).

\textit{Unconditional Bootstrap}

The unconditional bootstrap is used for the random-X case. We first sample n times \textit{with replacement} from the original sample, \mathcal{D}, to get a
5.4 Estimating Prediction Error

random-X bootstrap sample, which we denote by

$$D_R^b = \{(X_t^{*b}, Y_t^{*b}), i = 1, 2, \ldots, n\}. \quad (5.64)$$

Next, we regress Y_t^{*b} on X_t^{*b}, $i = 1, 2, \ldots, n$, and obtain an OLS regression function $\hat{\mu}_R^{*b}(X)$. If we then apply $\hat{\mu}_R^{*b}$ to the original sample, D, the resulting estimate of PE is given by

$$\widehat{PE}(\hat{\mu}_R^{*b}, D) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{\mu}_R^{*b}(X_i))^2. \quad (5.65)$$

Averaging $\widehat{PE}(\hat{\mu}_R^{*b}, D)$ over all B bootstrap samples yields the simple bootstrap estimator of PE,

$$\overline{PE}(D) = \frac{1}{B} \sum_{b=1}^{B} \widehat{PE}(\hat{\mu}_R^{*b}, D) = \frac{1}{Bn} \sum_{b=1}^{B} \sum_{i=1}^{n} (Y_i - \hat{\mu}_R^{*b}(X_i))^2, \quad (5.66)$$

which is not a particularly good estimate of PE because there are observations common to the bootstrap samples $\{D_R^b\}$ (that determined $\{\hat{\mu}_R^{*b}\}$) and the original sample D, and so an estimate of PE such as (5.66) will also be overly optimistic.

As another estimator of PE, an apparent error rate for D_R^b is computed by applying $\hat{\mu}_R^{*b}$ to D_R^b:

$$\widehat{PE}(\hat{\mu}_R^{*b}, D_R^b) = \frac{1}{n} \sum_{i=1}^{n} (Y_t^{*b} - \hat{\mu}_R^{*b}(X_t^{*b}))^2. \quad (5.67)$$

Averaging (5.67) over all B bootstrap samples yields

$$\overline{PE}(D_R^b) = \frac{1}{B} \sum_{b=1}^{B} \widehat{PE}(\hat{\mu}_R^{*b}, D_R^b) = \frac{1}{Bn} \sum_{b=1}^{B} \sum_{i=1}^{n} (Y_t^{*b} - \hat{\mu}_R^{*b}(X_t^{*b}))^2. \quad (5.68)$$

This estimate of PE has the same disadvantages as the apparent error rate for D.

We can improve on these estimates of PE by estimating the bias in using RSS/n (the apparent error rate for D) as an estimate of PE and then correcting RSS/n by subtracting its estimated bias. An estimate of that bias for D_R^b is the bth optimism,

$$\hat{\text{opt}}_R^b = \overline{PE}(\hat{\mu}_R^{*b}, D) - \overline{PE}(\hat{\mu}_R^{*b}, D_R^b). \quad (5.69)$$

Averaging $\hat{\text{opt}}_R^b$ over all B bootstrap samples yields an overall estimate,

$$\hat{\text{opt}}_R = \frac{1}{B} \sum_{b=1}^{B} \hat{\text{opt}}_R^b = \overline{PE}(D) - \overline{PE}(D_R^b), \quad (5.70)$$
of the average optimism, \(\text{opt} = \text{E}\{PE(\hat{\mu}, D) - \text{PE}(\hat{\mu}, D)\} \), which is generally positive. The bootstrap estimator of \(PE \) is given by the sum of the apparent error rate for \(D \) and the bias in that apparent error,

\[
\hat{PE}_R = \frac{RSS}{n} + \text{opt}_R ,
\]

(5.71)

and \(ME \) is estimated by \(\hat{ME}_R = \hat{PE}_R - \hat{\sigma}^2 \). In simulations, \(\hat{PE}_R \) (which is computationally more expensive than cross-validation) appears to have low bias and is slightly better for model assessment than is 10-fold cross-validation.

Recall that \(\hat{PE}_R(D) \) in (5.66) underestimates \(PE_R \) because there are observations common to the bootstrap samples \(\{D^*_R\} \) (operating as learning sets) and to the original data set \(D \) (operating as the test set). In fact, the chance that the \(i \)th observation \((X_i, Y_i) \) from \(D \) is selected at least once to be in the \(b \)th bootstrap sample \(D^*_R \) is

\[
\text{Prob}((X_i, Y_i) \in D^*_R) = 1 - \left(1 - \frac{1}{n}\right)^n \\
\rightarrow 1 - e^{-1} \approx 0.632 ,
\]

(5.72)
as \(n \to \infty \). Thus, on average, about 37% of the observations in \(D \) are left out of each bootstrap sample, which contains about 0.632\(n \) distinct observations. One unfortunate consequence of this result is that if \(n \) is close to \(r \), this will lead to numerical difficulties in computing \(\hat{\mu}^*_R \), because in such cases it is likely that \(\mathbf{X}^T \mathbf{X} \) will be singular or nearly singular when computed from a bootstrap sample.

We now use (5.72) to improve upon \(\text{opt}_R \) (and also \(\hat{PE}_R \)) by including in the computation the prediction errors for the \(i \)th observation \((X_i, Y_i) \) only from those bootstrap samples that do not contain that observation, \(i = 1, 2, \ldots, n \).

Let \(PE_R^{(1)} \) be the expected bootstrap prediction error at those points \((X_i, Y_i) \in D \) that are not included in the \(B \) bootstrap samples. We estimate \(PE_R^{(1)} \) as follows. Define \(n_{ib} \) to be the number of times that the \(i \)th observation \((X_i, Y_i) \) appears in the \(b \)th bootstrap sample, and set \(I_{ib} = 1 \) if \(n_{ib} = 0 \) and zero otherwise. Then, we estimate \(PE_R^{(1)} \) by

\[
\hat{PE}_R^{(1)} = \frac{1}{n} \sum_{i=1}^{n} \hat{PE}_i ,
\]

(5.73)

where

\[
\hat{PE}_i = \frac{\sum_b I_{ib}(Y_i - \hat{\mu}_b(X_i))^2}{\sum_b I_{ib}} .
\]

(5.74)
Efron and Tibshirani (1997) called $\hat{PE}_R^{(1)}$ the *leave-one-out bootstrap estimator* because of its similarity to the leave-one-out cross-validation estimator. Another way of writing (5.74) is

$$\hat{PE}_i = \frac{1}{B_i} \sum_{b \in C_i} (Y_i - \hat{\mu}_b(X_i))^2,$$ \hspace{1cm} (5.75)

where C_i is the set of indices of the bootstrap samples that do not contain (X_i, Y_i), and $B_i = |C_i|$ is the number of such bootstrap samples. These observations are often referred to as *out-of-bootstrap (OOB)* observations. Efron (1983) showed that $\hat{PE}_R^{(1)}$ is biased upwards compared to $\hat{PE}_{CV/n}$, which is nearly unbiased.

Based upon (5.72), the 0.632 *bootstrap estimator of optimism* is given by

$$\hat{opt}_R^{(0.632)} = 0.632(\hat{PE}_R^{(1)} - \hat{PE}(\hat{\mu}, D)).$$ \hspace{1cm} (5.76)

Replacing \hat{opt}_R in (5.71) by $\hat{opt}_R^{(0.632)}$ in (5.76) yields the 0.632 *bootstrap estimator of prediction error*,

$$\hat{PE}_R^{(0.632)} = \hat{PE}(\hat{\mu}, D) + \hat{opt}_R^{(0.632)}$$
$$= 0.368 \cdot \frac{RSS}{n} + 0.632 \cdot \hat{PE}_R^{(1)}.$$ \hspace{1cm} (5.77)

Although the 0.632 bootstrap estimator is an improvement over the apparent error rate, it still underestimates PE_R (Efron, 1983).

Example: Bodyfat Data (Continued)

Cross-validation and the unconditional bootstrap were used to estimate the prediction error for the bodyfat data. The results are summarized in Tables 5.4 and 5.5.

From Table 5.4, we see that the estimates obtained from $CV/5$, $CV/10$, CV/n, and the bootstrap (with $B = 500$) are reasonably close to each other. The apparent error rate, $RSS/n = 4420.064/252 = 17.5399$, underestimates the leave-one-out cross-validation estimate of the prediction error by more than 12%. Dividing RSS by its degrees of freedom to give an unbiased estimate of σ^2 yields $RSS/238 = 18.5717$, still well below the other estimates.

B=10 For a simple bootstrap illustration, let $B = 10$. The bootstrap computations are detailed in Table 5.5. The simple bootstrap estimate, $\hat{PE}_R(D) = 18.4692$, is the average of the first column and is much too small. The average of the third column, $\hat{opt}_R = 18.4692 - 15.9535 = 2.5157$, is the difference between the average of the first column and the average of the second column and yields a measure of how optimistic the apparent error
TABLE 5.4. Estimated prediction errors for the bodyfat data when the multiple regression model is fit. Listed are the apparent error rate (RSS/n) and the error rates from using 5-fold (CV/5), 10-fold (CV/10), leave-one-out cross-validation (CV/n), and the unconditional bootstrap and 0.632 bootstrap using B = 500. The subscript “R” indicates that the bootstrap computations are made for the random-X case. These results show the very optimistic value of the apparent error rate.

<table>
<thead>
<tr>
<th>RSS/n</th>
<th>(\hat{PE}_{CV/5})</th>
<th>(\hat{PE}_{CV/10})</th>
<th>(\hat{PE}_n)</th>
<th>(\hat{PE}_R)</th>
<th>(\hat{PE}_R^{(0.632)})</th>
</tr>
</thead>
</table>

rate is in estimating the prediction error. Finally, \(\hat{PE}_R = RSS/n + \hat{\text{opt}}_R = 17.5399 + 2.5815 = 20.1214\).

When we use \(B = 500\) bootstrap samples, we obtain \(\hat{PE}_R(D) = 18.7683\) and \(\hat{PE}(D^*_R) = 16.6191\), so that \(\hat{\text{opt}}_R = 18.7683 - 16.6191 = 2.1492\), whence, \(\hat{PE}_R = 17.5399 + 2.1492 = 19.6891\). We see a small difference between the bootstrap estimates of \(PE\) using \(B = 10\) and \(B = 500\) bootstrap samples.

Conditional Bootstrap

The conditional bootstrap for the fixed-\(X\) case operates by sampling with replacement from the residuals obtained from fitting the regression model to the non-stochastic inputs \(X_1, X_2, \ldots, X_n\) (Efron, 1979).

We first fit the model (5.21) and obtain the OLS regression coefficients \(\hat{\beta}_{\text{ols}} = (Z^\tau Z)^{-1}Z^\tau Y\), the estimated regression function \(\hat{\mu}(X) = X^\tau \hat{\beta}_{\text{ols}}\), the residuals \(\hat{e_1}, \hat{e_2}, \ldots, \hat{e_n}\), and the residual variance \(\hat{\sigma}^2\). When applying the conditional bootstrap, we assume that the errors of the model are iid and homoscedastic. For an extensive discussion of the effect of error variance heterogeneity on the conditional bootstrap, see Wu (1986).

Because \(E(RSS/n) = (1 - p/n)\sigma^2\), where \(p = r + 1\) is the number of parameters, \(RSS/n\) is biased downwards as an estimator of \(\sigma^2\), and the residuals tend to be smaller than the errors of the model. Some statisticians advocate rescaling the residuals upwards by multiplying each of them by the factor \((n/(n - p))^{1/2}\); Efron and Tibshirani (1993, p. 112) feel that the scaling issue becomes important only when \(p > n/4\).

Suppose we consider \(\hat{\beta}_{\text{ols}}\) to be the true value of the regression parameter. For the \(b\)th bootstrap sample, we sample with replacement from the residuals to get the bootstrapped residuals, \(\hat{e}_1^b, \hat{e}_2^b, \ldots, \hat{e}_n^b\), and then compute a new set of responses

\[Y_i^* = \hat{\mu}(X_i) + \hat{e}_i^b, \quad i = 1, 2, \ldots, n.\] (5.78)
TABLE 5.5. Unconditional bootstrap estimates of prediction error for the bodyfat data, where \(B = 10 \) bootstrap samples are taken. Each row of the table represents a bootstrap sample \(b \), and the multiple regression model is fit to that sample. For each \(b \), the first column is the simple bootstrap estimate of prediction error, the second column is the bootstrap apparent error rate, and the third column is the difference between the first two columns. The average optimism, in this case 2.4806, is the difference between the average of the first column and the average of the second column.

<table>
<thead>
<tr>
<th>(b)</th>
<th>(PE(\hat{\mu}^b_R, D))</th>
<th>(PE(\hat{\mu}^{*b}_R, D^{*b}_R))</th>
<th>(opt^{b}_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.5198</td>
<td>15.8261</td>
<td>2.6937</td>
</tr>
<tr>
<td>2</td>
<td>18.2555</td>
<td>13.5946</td>
<td>4.6609</td>
</tr>
<tr>
<td>3</td>
<td>17.9683</td>
<td>18.2385</td>
<td>-0.2702</td>
</tr>
<tr>
<td>4</td>
<td>18.9317</td>
<td>14.5406</td>
<td>4.3911</td>
</tr>
<tr>
<td>5</td>
<td>18.6249</td>
<td>15.7998</td>
<td>2.8251</td>
</tr>
<tr>
<td>6</td>
<td>18.0191</td>
<td>15.1146</td>
<td>2.9045</td>
</tr>
<tr>
<td>7</td>
<td>18.5381</td>
<td>17.7595</td>
<td>0.7786</td>
</tr>
<tr>
<td>8</td>
<td>18.9265</td>
<td>13.8298</td>
<td>5.0967</td>
</tr>
<tr>
<td>9</td>
<td>18.6881</td>
<td>18.8233</td>
<td>-0.1352</td>
</tr>
<tr>
<td>10</td>
<td>18.2201</td>
<td>16.0080</td>
<td>2.2121</td>
</tr>
<tr>
<td>ave</td>
<td>18.4692</td>
<td>15.9535</td>
<td>2.5157</td>
</tr>
</tbody>
</table>

The \(b \)th fixed-\(X \) bootstrap sample is now given by

\[
D^{*b}_F = \{ (X_i, Y^{*b}_i), \quad i = 1, 2, \ldots, n \}. \tag{5.79}
\]

We regress \(Y^{*b} \) on \(X \) to get a bootstrapped estimator,

\[
\hat{\beta}^{*b} = (Z^\tau Z)^{-1} Z^\tau Y^{*b}, \tag{5.80}
\]

of the regression coefficients, where \(Y^{*b} = (Y^{*b}_1, \ldots, Y^{*b}_n)^\tau \). Under this bootstrap sampling scheme, \(\sqrt{n}(\hat{\beta}^{*b} - \hat{\beta}_{ols}) \) is approximately distributed as \(\sqrt{n}(\hat{\beta}^{*b} - \hat{\beta}_{ols}) \) (Freedman, 1981). The bootstrap regression function is \(\hat{\mu}^{*b}_F(x) = \hat{\beta}_0 + x^\tau \hat{\beta}^{*b} \). Straightforward analogues of the estimates for the fixed-\(X \) case, similar to those for the unconditional case, can now be computed.

5.5 Instability of LS Estimates

If \(\mathcal{X}_c \) has less than full rank, then \(\mathcal{X}_c^\tau \mathcal{X}_c \) will be singular, and the OLS estimate of \(\beta \) will not be unique. Singularity occurs when the matrix \(\mathcal{X}_c \) is ill-conditioned, or the columns of \(\mathcal{X}_c \) are collinear, or when there are more variables than observations (i.e., \(r > n \)). If the assumptions for the regression model do not hold (e.g., due to ill-conditioned data, collinearity, correlated errors), then we have to look for alternative solutions.
Data are *ill-conditioned* for a given problem whenever the quantities to be computed for that problem are sensitive to small changes in the data. When that is the case, computational results, especially those obtained using matrix inversion routines, are likely to be *numerically unstable*. As a result, major errors (due to rounding and cancellations) tend to accumulate and severely skew the calculations. In some regression situations, the matrix \mathbf{X} (or its mean-centered version \mathbf{X}_c) may be *rank-deficient* or almost so because of too many highly correlated variables, which exhibit *collinearity*. Exact collinearity rarely occurs, but problems involving variables that are almost collinear (“near collinearity”) are not unusual.

In linear regression models, ill-conditioning and collinearity problems coincide. Near collinearity in linear regression problems is of major concern to statisticians and econometricians, especially when an overly large number of input variables is included in the initial model (the so-called kitchen-sink approach to modeling). Among the effects of near collinearity are overly large (positive or negative) estimated coefficient values whose signs may be reversed if negligible changes are made to the data. The standard errors of the estimated regression coefficients may also be dramatically inflated, thereby masking the presence of what would otherwise be significant regression coefficients.

There are several measures of ill-conditioning of a square matrix \mathbf{M}, the most popular of which is the *condition number*, $\kappa(\mathbf{M})$; see Section 3.2.9. In regression, $\mathbf{M} = \mathbf{X}^T \mathbf{X}$. Each variable may be scaled to have equal length (e.g., replacing x_{ij} by x_{ij}/s_i, where s_i is the sample standard deviation of the ith variable). The condition number of $\mathbf{X}^T \mathbf{X}$ (or \mathbf{X}) reduces to the ratio of the largest to the smallest nonzero singular value, $\kappa = \sigma_1/\sigma_r$, of \mathbf{X}. If κ is large, \mathbf{X} is said to be *ill-conditioned*. When exact collinearity occurs, $\kappa = \infty$.

As an alternative to κ, we can compute the set of *collinearity indices*,

$$\kappa_k(\mathbf{X}) = \sqrt{\text{VIF}_k}, \quad k = 1, 2, \ldots, r,$$

where

$$\text{VIF}_k = (1 - R_k^2)^{-1},$$

is the kth *variance inflation factor*, and R_k^2 is the squared multiple correlation coefficient of the kth column of \mathbf{X} on the other $r - 1$ columns of \mathbf{X}, $k = 1, 2, \ldots, r$. Large values of VIF_k (typically, $\text{VIF}_k > 10$) imply that R_k^2 is close to unity, which in turn suggests near collinearity may be present. The collinearity indices have value at least one and are invariant under scale changes of the columns of \mathbf{X}. For example, the bodyfat data has some very large VIF values: each of the variables *weight*, *chest*, *abdomen*, and *hip* has a VIF value in the range 10–50. The high VIF values for those particular four variables appear to reflect their high pairwise correlations.
5.6 Biased Regression Methods

Because the OLS estimates depend upon \((Z^\top Z)^{-1}\), we would experience numerical complications in computing \(\hat{\beta}_{\text{ols}}\) if \(Z^\top Z\) were singular or nearly singular. If \(Z\) is ill-conditioned, small changes to the elements of \(Z\) lead to large changes in \((Z^\top Z)^{-1}\), the estimator \(\hat{\beta}_{\text{ols}}\) becomes computationally unstable, and the individual component estimates may either have the wrong sign or be too large in magnitude. So, even though the regression model may be a good fit to the learning data, it will not generalize sufficiently well to the test data.

One way out of this situation is to abandon the requirement of an unbiased estimator of \(\beta\) and, instead, consider the possibility of using a biased estimator of \(\beta\). There are several such estimators that are superior (in terms of \(MSE\)) to \(\hat{\beta}_{\text{ols}}\) when \(Z\) is ill-conditioned or when \(Z^\top Z\) is singular (or nearly singular). Biased regression methods have primarily been used in chemometrics (e.g., food research, environmental pollution studies). In such applications, it is not unusual to see the number of input variables greatly exceed the number of observations, so that the OLS regression estimator does not exist.

We assume only that the \(X\)s and the \(Y\) have been centered, so that we have no need for a constant term in the regression. Thus, \(X\) is an \((n \times r)\)-matrix with centered columns and \(Y\) is a centered \(n\)-vector. Each of these biased estimators can be written in the form

\[
\hat{\beta} = \sum_j f(\lambda_j)\lambda_j^{-1}v_jv_j^\top s, \tag{5.83}
\]

where \(f(\lambda_j)\) is the \(j\)th “shrinkage” factor, \(v_j\) is the eigenvector associated with the \(j\)th largest eigenvalue \(\lambda_j\) of \(S = X^\top X\), and \(s = X^\top Y\). For a \(t\)-component PCR, the shrinkage factor is \(f(\lambda_j) = 1\) if \(j \leq t\), and 0 otherwise; for a \(t\)-component PLSR, \(f(\lambda_j)\) is a polynomial of degree \(t\); and for RR with ridge parameter \(k > 0\), \(f(\lambda_j) = f_k(\lambda_j) = \lambda_j/(\lambda_j + k)\).

5.6.1 Example: PET Yarns and NIR Spectra

These data\(^2\) were obtained from a calibration study (Swierenga, de Weijer, van Wijk, and Buydens, 1999) of polyethylene terephthalate (PET) yarns, which are used for textile (e.g., clothing materials) and industrial purposes.

\(^2\)The datafile PET.txt can be downloaded from the book’s website. It was originally provided by Erik Swierenga and is available as an R data set as part of The pls Package. see www.maths.lth.se/help/R/.R/library/pls/html/NIR.html.
PET yarns are produced by a process of melt-spinning, whose settings largely determine the final semi-crystalline structure of the yarn (i.e., its physical structure), which, in turn, determines its thermo-mechanical properties. As a result, parameters that characterize the physical structure of PET yarns are important quality parameters for the end use of the yarn.

Raman near-infrared (NIR) spectroscopy has recently become an important tool in the pharmaceutical and semiconductor industries for investigating structural information on polymers; in particular, it is used to reveal information on the chemical nature, conformational order, state of the order, and orientation of polymers. Thus, Raman spectra are used to predict the physical structure parameters of polymers.

In this example, we study the relationship between the overall density of a PET yarn to its NIR spectrum. The data consist of a sample of \(n = 21 \) PET yarns having known mechanical and structural properties. For each PET yarn, the \(Y \)-variable is the density (measured in \(kg/m^3 \)) of the yarn, and the \(r = 268 \) \(X \)-variables (measured at 268 frequencies in the range 598–1900 \(cm^{-1} \)) are selected from the NIR spectrum of that yarn. This example is quite representative of data sets in the chemometrics literature, in that \(r \gg n \). The 21 NIR spectra are displayed graphically in Figure 5.3; the spectra appear to have very similar characteristics, although there are noticeable differences in some curves.
5.6.2 Principal Components Regression

An obvious way of dealing with a matrix $\mathcal{X}^\tau \mathcal{X}$ that is singular (or nearly singular) is to substitute a generalized inverse G in place of $(\mathcal{X}^\tau \mathcal{X})^{-1}$. Suppose $\mathcal{X}^\tau \mathcal{X}$ has known rank t ($1 \leq t \leq r$), so that the smallest $r - t$ eigenvalues of $\mathcal{X}^\tau \mathcal{X}$ are all zero. Then, the spectral decomposition of $\mathcal{X}^\tau \mathcal{X}$ can be written as $\mathcal{X}^\tau \mathcal{X} = \mathbf{V} \Lambda \mathbf{V}^\tau$, where $\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_t\}$ is a diagonal matrix of the first t eigenvalues of $\mathcal{X}^\tau \mathcal{X}$ with diagonal elements ordered in magnitude from largest to smallest, and $\mathbf{V} = (\mathbf{v}_1, \ldots, \mathbf{v}_t)$ is an $(r \times t)$-matrix whose columns are the eigenvectors associated with the eigenvalues in Λ. The unique rank-t Moore–Penrose inverse G of $\mathcal{X}^\tau \mathcal{X}$ is, therefore, given by

$$G = (\mathcal{X}^\tau \mathcal{X})^+ = \mathbf{V} \Lambda^{-1} \mathbf{V}^\tau = \sum_{j=1}^{t} \lambda_j^{-1} \mathbf{v}_j \mathbf{v}_j^\tau,$$

and the generalized-inverse regression (GIR) estimator is

$$\widehat{\beta}_\text{gir}^{(t)} = G \mathcal{X}^\tau \mathbf{y} = \sum_{j=1}^{t} \lambda_j^{-1} \mathbf{v}_j \mathbf{v}_j^\tau \mathbf{s},$$

where $\mathbf{s} = \mathcal{X}^\tau \mathbf{y}$. The GIR fitted values are then given by

$$\widehat{\mathbf{y}}_\text{gir}^{(t)} = \mathcal{X} \widehat{\beta}_\text{gir}^{(t)} = \mathcal{X} \mathbf{V} (\Lambda^{-1} \mathbf{V}^\tau \mathbf{s}).$$

Marquardt (1970) showed that $\widehat{\beta}_\text{gir}$ minimizes the error sum of squares, $\text{ESS}(\beta)$, in (5.22) within the t-dimensional linear subspace spanned by \mathbf{V}. It follows that $\widehat{\beta}_\text{gir}$ is a constrained least-squares estimator of β and so is said to be conditionally unbiased. If $\mathcal{X}^\tau \mathcal{X}$ actually has a rank greater than t and we incorrectly use G in (5.85) to define the estimator of β, then $\widehat{\beta}_\text{gir}^{(t)}$ is a biased estimator of β.

The rows of the $(n \times t)$-matrix $\mathbf{Z}_t = \mathcal{X} \mathbf{V}$ are the scores of the first t principal components of \mathcal{X} (see Chapter 7). Regressing \mathbf{y} on \mathbf{Z}_t is a technique usually referred to as principal components regression (PCR) (Massy, 1965). This regression method is popularly used in chemometrics, where, for example, we may be interested in calibrating the fat concentration in n chemical samples to highly collinear absorbance measurements recorded at r fixed wavelength channels of an X-spectrum (Martens and Naes, 1989, sec. 3.4). In such situations, the number of variables r will likely be much greater than the number of observations n. PCR can be used to reduce the dimensionality of the regression by dropping those dimensions that contribute to the collinearity problem. PCR has also been used for mapping quantitative trait loci in statistical genetics, where \mathbf{y} represents a quantitative trait value (e.g., blood pressure, yield) and \mathcal{X} consists of the genotypes of a mouse or plant, etc., at each of r molecular markers (Hwang and Nettleton, 2003).
The estimated regression coefficients for the \(t \) principal components are given by the \(t \)-vector,

\[
\hat{\beta}_{\text{pcr}}^{(t)} = (Z_t^\tau Z_t)^{-1} Z_t^\tau Y = \Lambda^{-1} V^\tau s,
\]

(5.87)

where we have used \(V^\tau V = I_t \). Note that because of the orthogonality of the columns of \(V \), the elements of (5.87) do not change as \(t \) increases. Thus, (5.85) and (5.87) are related by \(\hat{\beta}_{\text{gir}}^{(t)} = V \hat{\beta}_{\text{pcr}}^{(t)} \), and the corresponding fitted values are given by

\[
\hat{y}_{\text{pcr}}^{(t)} = Z_t \hat{\beta}_{\text{pcr}}^{(t)} = X V \Lambda^{-1} V^\tau s = X \hat{\beta}_{\text{gir}}^{(t)} = \hat{y}_{\text{gir}}^{(t)},
\]

(5.88)

So, the fitted values obtained by GIR and PCR are identical.

It is usual to transform the PCR coefficients (5.87) into coefficients of the original input variables. Given \(\hat{\beta}_{\text{pcr}}^{(t)} = (\hat{\beta}_{\text{pcr},1}, \ldots, \hat{\beta}_{\text{pcr},t})^\tau \), we compute the \(r \)-vectors,

\[
\hat{\beta}^*_{\text{pcr},j} = \hat{\beta}_{\text{pcr},j} v_j, \quad j = 1, 2, \ldots, t.
\]

(5.89)

Then, the first \(k \) partial sums of the \(\{\hat{\beta}^*_{\text{pcr},j}\} \) give the \(k \)-component PCR coefficients of the original input variables; that is,

\[
\hat{\beta}^*_{\text{pcr}}^{(k)} = \sum_{j=1}^{k} \hat{\beta}^*_{\text{pcr},j} = V \hat{\beta}^{(k)}_{\text{pcr}}, \quad 1 \leq k \leq t.
\]

(5.90)

Note that \(\hat{\beta}^*_{\text{pcr}}^{(t)} = \hat{\beta}_{\text{ols}} \).

In practice, the rank of \(X^\tau X \) and, hence, the number of components is an unknown metaparameter to be determined from the data. If we extract principal components from the correlation matrix, Kaiser’s rule (Kaiser, 1960) suggests we retain only those principal components whose eigenvalues are greater than one. Another way of determining \(t \) is by cross-validation (Wold, 1978).

A caveat: Although PCR aims to relate \(Y \) and the \(\{X_j\} \) in the presence of severe collinearity, there is also the potential for PCR to fail dramatically. The principal components, \(Z_1, \ldots, Z_t \) (\(1 \leq t < r \)), which are used as inputs to a multiple regression, are chosen to correspond to the \(t \) highest-variance directions of \(X = (X_1, \ldots, X_r)^\tau \) while dropping the remaining \(r - t \) (low-variance) directions. Because the extraction of the principal components is accomplished without any reference to the output variable \(Y \), we have no reason to expect \(Y \) to be highly correlated with any of the principal components, in particular those having the largest eigenvalues. Indeed, \(Y \) may actually have its highest correlation with one of the last few principal components (Jolliffe, 1982) or even only the last one (Hadi and Ling, 1998) which is always dropped from the regression equation.
Example: The PET Yarn Data (Continued)

Each variable \((Y\) and all the \(X\)s\) from the PET yarn data has been centered. The \((21 \times 268)\)-matrix \(X\) yields at most \(t = \min\{20, 268\} = 20\) principal components. The 20 nonzero eigenvalues from the correlation matrix in descending order of magnitude are

\[
\begin{array}{cccccccccccc}
11.86 & 8.83 & 6.75 & 1.61 & 0.76 & 0.54 & 0.40 & 0.25 & 0.24 & 0.19 \\
0.14 & 0.11 & 0.08 & 0.07 & 0.06 & 0.05 & 0.04 & 0.03 & 0.02 \\
\end{array}
\]

There are four eigenvalues larger than one. The first component accounts for 52.5% of total variance, the first two components account for 81.6% of total variance, the first three components account for 98.6% of total variance, and the first four components account for 99.5% of total variance.

Figure 5.4 displays the PCR coefficients for \(t = 1, 3, 4, 20\) components. This figure shows that a single component yields regression estimates with almost no structure. By three components, the final structure is certainly visible, and the graph appears to settle down when we use four components. After four components, all that is added to the graph of the coefficient estimates is noise, which reinforces the information gained from the eigenvalues.

5.6.3 Partial Least-Squares Regression

In partial least-squares regression (PLSR), the derived variables (usually referred to as latent variables, components, or factors) are specifically constructed to retain most of the information in the \(X\) variables that helps predict \(Y\), while at the same time reducing the dimensionality of the regression. Whereas PCR constructs its latent variables using only data on the input variables, PLSR uses data on both the input and output variables. Chemometricians have adopted the name \(PLSR1\) to refer to PLSR using a single output variable and \(PLSR2\) to refer to PLSR using multiple output variables.

PLSR is typically obtained using an algorithm rather than as the result of an optimization procedure. There are several such algorithms. The most popular one is sequential, starting with an empty set and adding a single latent variable at each subsequent step of the process. The result is a sequence of prediction models, \(M_1, \ldots, M_t\), where \(M_k\) predicts the output variable \(Y\) through a linear function of the first \(k\) latent variables. The “best” of these PLSR models is that model that minimizes a cross-validation estimate of prediction error. (How well cross-validation actually selects the best model is as yet unknown, however.)
FIGURE 5.4. Principal component regression estimates for the PET yarn data. There are 268 coefficients. The numbers of PCR components are \(t = 1 \) (upper-left panel), \(t = 3 \) (upper-right panel), \(t = 4 \) (lower-left panel), \(t = 20 \) (lower-right panel). The horizontal axis is coefficient number.

The PLSR algorithm in Table 5.6 (Wold, Martens, and Wold, 1983) uses only a series of simple linear regression routines. We build the latent variables, \(Z_1, \ldots, Z_t \), in a stepwise fashion. At the \(k \)th step, \(Z_k \) is a weighted average of the \(X \)-residuals from the previous step, where the weights are proportional to covariances of the \(X \)-residuals from the previous step with the \(Y \)-residuals from the previous step. The resulting PLSR function is a linear combination of the \(Z_1, \ldots, Z_t \).

Empirical studies (Frank and Friedman, 1993) show that PLSR gives slightly better overall performance than does PCR, that fewer components are needed in PLSR than in PCR to provide a similar fit to the data, and that as the problem becomes increasingly more ill-conditioned, both biased methods yield substantial improvements in predictive ability over OLS. De Jong (1995) also showed that, in an \(R^2 \) sense and using \(t \) components, the PLSR fitted values are closer to the OLS fitted values than are the PCR fitted values.

The PLSR estimator, \(\hat{\beta}_\text{plsr}^{(t)} \), where \(t \) is the number of components, is a shrinkage estimator. This is a difficult result to prove. De Jong (1995) showed that, for \(1 \leq k \leq t \), \(\| \hat{\beta}_\text{plsr}^{(k)} \| \) is a strictly nondecreasing function of
TABLE 5.6. PLSR algorithm (Wold, Martens, and Wold, 1983).

1. Standardize each n-vector x_j of data on X_j so that it has mean 0 and standard deviation 1, and set $x_j^{(0)} = x_j$, $j = 1, 2, \ldots, r$. Center the n-vector Y of data on Y so that it has mean 0, and set $y^{(0)} = \bar{y}$. Set $\hat{y}^{(0)} = \bar{y}1_n$.

2. For $k = 1, 2, \ldots, t$:
 - For $j = 1, 2, \ldots, r$, regress $y^{(k-1)}$ on $x_j^{(k-1)}$ to get the OLS regression coefficient
 \[
 \hat{\beta}_{k-1,j} = \frac{\text{cov}(x_j^{(k-1)}, y^{(k-1)})}{\text{var}(x_j^{(k-1)})},
 \]
 where, for any n-vectors x and y, $\text{cov}(x, y) = x^\tau y$ and $\text{var}(x) = x^\tau x$.
 Compute $\hat{\beta}_{k-1,j} x_j^{(k-1)}$.
 - Compute the weighted average $z_k = \sum_{j=1}^{r} w_{k-1,j} \hat{\beta}_{k-1,j} x_j^{(k-1)}$ as a predictor of Y, where $w_{k-1,j} \propto \text{var}(x_j^{(k-1)})$. Thus,
 \[
 z_k \propto \sum_{j=1}^{r} \text{cov}(x_j^{(k-1)}, y^{(k-1)}) \cdot x_j^{(k-1)}.
 \]
 - Regress $y^{(k-1)}$ on z_k to get the OLS regression coefficient
 \[
 \hat{\theta}_k = \frac{\text{cov}(z_k, y^{(k-1)})}{\text{var}(z_k)}
 \]
 and the residual vector $y^{(k)} = y^{(k-1)} - \hat{\theta}_k z_k$.
 - Set $\hat{y}^{(k)} = \hat{y}^{(k-1)} + \hat{\theta}_k z_k$.
 - For $j = 1, 2, \ldots, r$, regress $x_j^{(k-1)}$ on z_k to get the OLS regression coefficient
 \[
 \hat{\phi}_{kj} = \frac{\text{cov}(z_k, x_j^{(k-1)})}{\text{var}(z_k)}
 \]
 and residual vector $x_j^{(k)} = x_j^{(k-1)} - \hat{\phi}_{kj} z_k$.
 - Stop when $\sum_{j=1}^{r} \text{var}(x_j^{(k)}) = 0$.

3. The PLSR function fitted with t components is, therefore, given by
\[
\hat{y}_{\text{plsr}}^{(t)} = \bar{y}1_n + \sum_{k=1}^{t} \hat{\theta}_k z_k.
\]
which implies that every PLSR iterate improves upon OLS; that is,
\[
\|\hat{\beta}_{\text{plsr}}^{(1)}\| \leq \|\hat{\beta}_{\text{plsr}}^{(2)}\| \leq \cdots \leq \|\hat{\beta}_{\text{plsr}}^{(t)}\| = \|\hat{\beta}_{\text{ols}}\|. \tag{5.91}
\]

Goutis (1996) used a geometric argument to give a direct proof that, for every \(1 \leq k \leq t\), \(\|\hat{\beta}_{\text{plsr}}^{(k)}\| \leq \|\hat{\beta}_{\text{ols}}\|\), and Phatak and de Hoog (2002) derived an explicit expression relating the PLSR estimator to the OLS estimator. The shrinkage behavior of individual PLSR coefficients turns out to be quite "peculiar": Frank and Friedman (1993) noted from empirical evidence and certain heuristics that whereas PLSR shrunk some OLS coefficients, it also expanded others. This shrinkage behavior was further studied by Butler and Denham (2000) and Lingjaerde and Christophersen (2000).

The **orthogonal loadings** algorithm uses a sequence of multiple regressions to arrive at the same PLSR solution as Wold’s algorithm (Helland, 1988). Also, Exercise 5.11 provides the theory behind the S-PLUS PLSR algorithm given in Brown (1993, Appendix E). The PLSR algorithm in Table 5.6 is an extension of the NIPALS algorithm (Wold, 1975). See also the SIMPLS algorithm (de Jong, 1993).

Example: The PET Yarn Data (Continued)

Each variable in the PET yarn data was centered. The PLSR estimates of all 268 regression coefficients in the vector \(\hat{\beta}_{\text{plsr}}^{(t)}\) for the PET yarn data are displayed in Figure 5.5. for \(t = 1, 3, 4, 20\) components. The 20-component PLSR estimate is the minimum-length LS estimator of the regression coefficient vector \(\beta\).

We see from Figure 5.5 that using only one PLSR component results in a set of regression estimates with little visible structure. Most of the variability in the regression coefficients occurs in the first 150 coefficients. The final shape of the coefficient estimates can already be discerned by 3 components, and a useful representation is given by 4 components. As additional components are added to the model, more and more high-frequency noise is added to the PLSR estimates.

5.6.4 Ridge Regression

Hoerl and Kennard (1970a) proposed that potential instability in the OLS estimator, \(\hat{\beta}_{\text{ols}} = (X^\tau X)^{-1}X^\tau Y\), of \(\beta\) could be tracked by adding a small constant value \(k\) to the diagonal entries of the matrix \(X^\tau X\) before taking its inverse. The result is the **ridge regression estimator** (or **ridge rule**),
\[
\hat{\beta}_{\text{rr}}(k) = (X^\tau X + kI_r)^{-1}X^\tau Y = W(k)\hat{\beta}_{\text{ols}}, \tag{5.92}
\]
where
\[
W(k) = (X^\tau X + kI_r)^{-1}X^\tau X. \tag{5.93}
\]
5.6 Biased Regression Methods

Thus, we have a class of estimators (5.92), indexed by a parameter k. When $k > 0$, $\beta_{rr}(k)$ is a biased estimator of β. In the special case $X^T X = I_r$ (the orthonormal design case), (5.92) reduces to $\beta_{rr}(k) = (1 + k)^{-1} \beta_{ols}$. When $k = 0$, (5.92) reduces to the OLS estimator.

Properties

The ridge regression estimator (5.92) can be characterized in three different ways — as an estimator with restricted length that minimizes the residual sum of squares, as a shrinkage estimator that shrinks the least-squares estimator toward the origin, and, given suitable priors, as a Bayes estimator.

1. A ridge regression estimator is the solution of a penalized least-squares problem. Specifically, it is the r-vector β that minimizes the error sum of squares,

$$ESS(\beta) = (Y - X\beta)^T (Y - X\beta),$$

subject to $\|\beta\|^2 \leq c$,

(5.94)

(5.95)
The ridge regression estimator, $\hat{\beta}_{rr}(k)$, as the solution of a penalized least-squares problem. The ellipses show the contours of the error sum-of-squares function, and the circle shows the boundary of the penalty function, $\beta_1^2 + \beta_2^2 \leq c$, where c is the radius of the circle. The ridge estimator is the point at which the innermost elliptical contour touches the circular penalty.

where $||\beta||^2 = \beta^T \beta$ and $c > 0$ is an arbitrary constant. To see this, form the function

$$\phi(\beta) = (Y - \mathcal{X}\beta)^T (Y - \mathcal{X}\beta) - \lambda \beta^T \beta, \quad (5.96)$$

where $\lambda > 0$ is a Lagrangian multiplier (or ridge parameter) that regularizes the stability of a ridge regression estimator, and $\beta^T \beta$ is a penalty function. Differentiate ϕ with respect to β, set the result equal to zero, and at the minimum, set $\beta = \hat{\beta}_{rr}(\lambda)$ to get

$$(\mathcal{X}^T \mathcal{X} - \lambda I_r) \hat{\beta}_{rr}(\lambda) = \mathcal{X}^T Y. \quad (5.97)$$

The result is obtained by solving this last equation for $\hat{\beta}_{rr}(\lambda)$ and then setting $k = \lambda$. Note that the restriction $\beta^T \beta \leq c$ on β is a hypersphere centered at the origin with bounded squared radius c, where the value of c determines the value of k. Figure 5.6 shows the two-parameter case.

2. A ridge regression estimator is a shrinkage estimator that shrinks the OLS estimator toward zero. The singular value decomposition of the $(n \times r)$-matrix \mathcal{X} is given by $\mathcal{X} = U \Lambda^{1/2} V^T$, where $\Lambda = \text{diag}(\lambda_j)$, $UU^T = U^T U = I_n$, $VV^T = V^T V = I_r$, and $\mathcal{X}^T \mathcal{X} = V \Lambda V^T$. The $\{\lambda_j\}$ are the ordered eigenvalues of $\mathcal{X}^T \mathcal{X}$. Let $P = \mathcal{X}V = U \Lambda^{1/2}$ so that $P^T P = \Lambda$. Then, we can write (5.92) as follows:

$$\hat{\beta}_{rr}(k) = (\mathcal{X}^T \mathcal{X} + k I_r)^{-1} \mathcal{X}^T Y$$

$$= (V \Lambda V^T + k VV^T)^{-1} V \Lambda^{1/2} U^T Y$$

$$= V(\Lambda + k I_r)^{-1} \Lambda^{1/2} U^T Y$$
\[\mathbf{V}(\mathbf{A} + k\mathbf{I}_r)^{-1}\mathbf{P}^\top\mathbf{Y}. \]

(5.98)

Now, if we let \(\alpha = \mathbf{V}^\top\beta \) (so that \(\beta = \mathbf{V}\alpha \)), then, the canonical form of the multiple regression model is

\[\mathbf{Y} = \mathbf{X}\beta + \mathbf{e} = \mathbf{P}\alpha + \mathbf{e}, \]

whence the OLS estimator of \(\alpha \) is \(\hat{\alpha}_{\text{ols}} = (\mathbf{P}^\top\mathbf{P})^{-1}\mathbf{P}^\top\mathbf{Y} = \mathbf{A}^{-1}\mathbf{V}^\top\mathbf{Y} \), where

\[\mathbf{s} = \mathbf{X}^\top\mathbf{Y}. \]

Set

\[\tilde{\alpha}_{\text{rr}}(k) = \mathbf{V}^\top\tilde{\beta}_{\text{rr}}(k) \]

\[= (\mathbf{A} + k\mathbf{I}_r)^{-1}\mathbf{P}^\top\mathbf{Y} \]

\[= (\mathbf{A} + k\mathbf{I}_r)^{-1}\mathbf{A}\hat{\alpha}_{\text{ols}}. \]

(5.100)

The \(j \)th component in the \(r \)-vector \(\tilde{\alpha}_{\text{rr}}(k) \) is, therefore, given by

\[\tilde{\alpha}_{\text{rr},j}(k) = \left(\frac{\lambda_j}{\lambda_j + k} \right) \hat{\alpha}_{\text{ols},j} = f_k(\lambda_j)\hat{\alpha}_{\text{ols},j}, \]

(5.101)

say, where \(0 < f_k(\lambda_j) \leq 1, \ j = 1, 2, \ldots, r \). For \(k > 0 \), \(\tilde{\alpha}_{\text{rr},j}(k) < \hat{\alpha}_{\text{ols},j} \), so that \(\tilde{\alpha}_{\text{rr},j}(k) \) shrinks \(\hat{\alpha}_{\text{ols},j} \) toward zero. Also, \(\tilde{\alpha}_{\text{rr},j}(k) \) can be written as \(\tilde{\alpha}_{\text{rr},j}(k) = w_j \cdot 0 + (1 - w_j)\hat{\alpha}_{\text{ols},j} \), with weight \(0 < w_j = k/(\lambda_j + k) < 1 \), whence it follows that the smaller the value of \(\lambda_j \) (for a given \(k > 0 \)), the larger the value of \(w_j \), and, hence, the greater is the shrinkage toward zero. Thus, ridge regression shrinks low-variance directions (small \(\lambda_j \)) more than it does high-variance directions (large \(\lambda_j \)).

Note that these conclusions hold for the canonical form of the regression model with \(\alpha \) as the coefficient vector. We can transform back by setting \(\hat{\beta}_{\text{rr}}(k) = \mathbf{V}\tilde{\alpha}_{\text{rr}}(k) \). However, \(\hat{\beta}_{\text{rr}}(k) \) may not shrink every component of \(\hat{\beta}_{\text{ols}} \). Indeed, for some \(j \), the \(j \)th component, \(\hat{\beta}_{\text{rr},j}(k) \), of \(\hat{\beta}_{\text{rr}}(k) \) may actually have the opposite sign from the corresponding component, \(\hat{\beta}_{\text{ols},j} \), of \(\hat{\beta}_{\text{ols}} \), or that \(|\hat{\beta}_{\text{rr},j}(k)| > |\hat{\beta}_{\text{ols},j}| \). What we can say, however, is that

\[||\hat{\beta}_{\text{rr}}(k)||^2 = ||\tilde{\alpha}_{\text{rr}}(k)||^2 = \sum_{j=1}^{r} \left(\frac{\lambda_j}{\lambda_j + k} \right)^2 \hat{\alpha}_{\text{ols},j}^2 \]

(5.102)

which is monotonically decreasing function of \(k \). Thus, \(||\hat{\beta}_{\text{rr}}(k)|| < ||\hat{\beta}_{\text{ols}}|| \), so that \(\hat{\beta}_{\text{rr}}(k) \) is a shrinkage estimator.

3. A ridge regression estimator is a Bayes estimator when \(\beta \) is given a suitable multivariate Gaussian prior. Suppose \(\mathbf{Y} = \mathbf{X}\beta + \mathbf{e} \), where now \(\mathbf{e} \sim \mathcal{N}_n(0, \sigma^2\mathbf{I}_n) \) and \(\sigma^2 \) is known. In other words, \(\mathbf{Y} \sim \mathcal{N}_n(\mathbf{X}\beta, \sigma^2\mathbf{I}_n) \). The likelihood is

\[L(\mathbf{Y}|\beta, \sigma) \propto \exp \left\{ -\frac{1}{2\sigma^2}(\mathbf{Y} - \mathbf{X}\beta)^\top(\mathbf{Y} - \mathbf{X}\beta) \right\} \]

\[\propto \exp \left\{ -\frac{1}{2\sigma^2}(\beta - \hat{\beta})^\top\mathbf{X}^\top\mathbf{X}(\beta - \hat{\beta}) \right\}, \]

(5.103)
which has the form $\mathcal{N}_r(\tilde{\beta}, \sigma^2(\mathcal{X}^\tau\mathcal{X})^{-1})$. Next, assume that the components of β are each independently distributed as Gaussian with mean 0 and known variance σ^2_β, so that $\beta \sim \mathcal{N}_r(0, \sigma^2_\beta \mathbf{I}_r)$ with prior density

$$
\pi(\beta) \propto \exp\left\{-\frac{\beta^\tau \beta}{2\sigma^2_\beta}\right\}.
$$

(5.104)

The posterior density of β is proportional to the likelihood times the prior, that is,

$$
p(\beta | \mathcal{Y}, \sigma) = L(\mathcal{Y} | \beta, \sigma) \pi(\beta)
\propto \exp\left\{-\frac{1}{2\sigma^2} \left[(\beta - \tilde{\beta})^\tau \mathcal{X}(\beta - \tilde{\beta}) + k\beta^\tau \beta \right] \right\},
$$

(5.105)

where $k = \sigma^2/\sigma^2_\beta$. Now, for the first term in the exponent, set $\beta - \tilde{\beta} = (\beta - \tilde{\beta}(k)) + (\tilde{\beta}(k) - \tilde{\beta})$, and, for the second term, $\beta = (\beta - \tilde{\beta}(k)) + \tilde{\beta}(k)$. Multiplying out both expressions and gathering like terms, we find that the posterior density of β is given by

$$
p(\beta | \mathcal{Y}, \sigma) \propto \exp\left\{-\frac{1}{2\sigma^2} \left[(\beta - \tilde{\beta}(k))^\tau (\mathcal{X}^\tau\mathcal{X} + k\mathbf{I}_r)(\beta - \tilde{\beta}(k)) \right] \right\}.
$$

(5.106)

In other words, the posterior density of β is multivariate Gaussian with mean vector (and posterior mode) $\tilde{\beta}(k)$ and covariance matrix $\sigma^2(\mathcal{X}^\tau\mathcal{X} + k\mathbf{I}_r)^{-1}$, where $k = \sigma^2/\sigma^2_\beta$. Note that if σ^2_β is very large, the prior density becomes vague, and a ridge regression estimator approaches the OLS estimator.

The Bias-Variance Trade-off

Consider the mean squared error of the ridge regression estimator,

$$
MSE(k) = \text{E}\{(\hat{\beta}_{tr}(k) - \beta)^\tau (\hat{\beta}_{tr}(k) - \beta)\}
$$

(5.108)

$$
= \text{VAR}(k) + \text{BIAS}^2(k),
$$

(5.109)

where the first term on the right-hand side is the variance and the second term is the bias-squared. The variance term is

$$
\text{VAR}(k) = \text{tr}\{\sigma^2(\mathcal{X}^\tau\mathcal{X} + k\mathbf{I}_r)^{-1}\mathcal{X}^\tau\mathcal{X}(\mathcal{X}^\tau\mathcal{X} + k\mathbf{I}_r)^{-1}\}
$$

$$
= \sigma^2\text{tr}\{(\Lambda + k\mathbf{I}_r)^{-1}\Lambda(\Lambda + k\mathbf{I}_r)^{-1}\}
$$

$$
= \sigma^2 \sum_{j=1}^r \frac{\lambda_j}{(\lambda_j + k)^2}.
$$

(5.110)

The bias is

$$
\text{E}(\hat{\beta}_{tr}(k) - \beta) = \text{E}\{(\mathcal{X}^\tau\mathcal{X} + k\mathbf{I}_r)^{-1}\mathcal{X}^\tau\mathcal{Y} - \beta\}
$$
whence the bias-squared term is

\[
BIAS^2(k) = (E(\hat{\beta}_{tr}(k) - \beta))^\tau (E(\hat{\beta}_{tr}(k) - \beta))
\]

\[
= \alpha^\tau \{(\Lambda + kI_r)^{-1} - I_r\}\{\Lambda + kI_r\}^{-1}\Lambda - I_r\}^\tau \alpha
\]

\[
= k^2 \sum_{j=1}^{r} \frac{\alpha_j^2}{(\lambda_j + k)^2}.
\] \hspace{1cm} (5.112)

Thus, the mean squared error for a ridge estimator (5.92) is given by

\[
MSE(k) = \sum_{j=1}^{r} \frac{\sigma^2 \lambda_j + k^2 \alpha_j^2}{(\lambda_j + k)^2},
\] \hspace{1cm} (5.113)

where \(\lambda_j\) is the \(j\)th largest eigenvalue of \(X^\tau X\), \(\alpha_j\) is the \(j\)th element of \(\alpha\) (the orthogonally transformed \(\beta\)), and \(\sigma^2\) is the error variance, \(j = 1, 2, \ldots, r\).

When \(k = 0\), the squared-bias term is zero. The variance term decreases monotonically as \(k\) increases from zero, whereas the squared-bias term increases. For large values of \(k\), the squared-bias term dominates the mean squared error. For these reasons, \(k\) has often been called the bias parameter.

Estimating the Ridge Parameter

We can use very small values of \(k\) to study how the OLS estimates would behave if the input data were mildly perturbed. If we observe large fluctuations in ridge estimates for very small \(k\), such instability would reflect the presence of collinearity in the input variables. The main problem of ridge regression is to decide upon the best value of \(k\). Choice of \(k\) is supposed to balance the “variance vs. bias” components of the mean squared error when estimating \(\beta\) by (5.92); the larger the value of \(k\), the larger the bias, but the smaller the variance. In applications, \(k\) is determined from the data in \(X\).

Hoerl and Kennard recommend use of the ridge trace, a graphical display of all components of the vector \(\hat{\beta}_{tr}(k)\) plotted on the same scatterplot against a range of values of \(k\). The ridge trace is often touted as a diagnostic tool that exhibits the degree of stability of the regression coefficients. Because \(k\) controls the amount of bias in the ridge estimate, the value of \(k\) is estimated (albeit subjectively) by the smallest value at which the trace stabilizes for all coefficients. Thisted (1976, 1980) argues that choosing an estimate of \(k\) to reflect stability of the ridge trace does not necessarily yield a meaningful reduction in mean squared error.
The ridge trace is also used as a variable selection procedure. If an estimated regression coefficient changes sign in the graph of its ridge trace, this is taken to mean that the OLS estimator of that coefficient has an incorrect sign, so that that variable should not be included in the regression model. Such a variable selection rule has been criticized as being “dangerous” (Thisted, 1976) because it eliminates variables without taking into account their virtues as predictors. Thisted argues that it is possible for a variable to be a poor predictor but have a small stable ridge trace, and, vice versa, to have a very unstable ridge trace but be an important variable for the regression model.

In an alternative version of the ridge trace, Hastie, Tibshirani, and Friedman (2001, Section 3.4.3) choose instead to plot the components of $\hat{\beta}_{\text{rr}}(k)$ against what they call the effective degrees of freedom,

$$\text{df}(k) = \text{tr}(W(k)) = \sum_{j=1}^{r} \lambda_j / (\lambda_j + k),$$

where the matrix $W(k)$ in (5.93) shrinks the OLS estimator.

The ridge parameter k can also be estimated using cross-validation techniques. A prescription for determining a V-fold cross-validatory choice of the ridge parameter k is given in Table 5.7.

Example: The PET Yarn Data (Continued)

As before, all variables in the PET yarn data are centered. The ridge trace for the first 60 RR coefficients is displayed in Figure 5.7. We see that several of the coefficient estimates change sign as k increases. The ridge trace (not shown here) for all 268 curves indicates that the ridge parameter k stabilizes for the centered PET yarn data at about the value 0.9.

Figure 5.8 shows the 268 ridge regression coefficient estimates for selected values of the ridge parameter k. The values of k are, from the top panel, $k = 0.00001, 0.01, 0.1, 1.0$. We see that the smaller the value of k, the more noisy the estimates, whereas the larger the value of k, the less noisy the estimates. If $k = 0$ (which is not possible in this application, where $r >> n$), then we would have the minimum-length LS estimate. The computations for this example were carried out using the data augmentation algorithm (see Exercise 5.8).

5.7 Variable Selection

It’s very easy to include too many input variables in a regression equation. When that happens, too many parameters will be estimated, the
TABLE 5.7. V-fold cross-validatory choice of ridge parameter k.

1. Standardize each x_j so that it has mean 0 and standard deviation 1, $j = 1, 2, \ldots, r$.
2. Partition the data into V learning and test sets corresponding to one of the versions of cross-validation ($V = 5, 10$, or n).
3. Choose k_1, k_2, \ldots, k_N to be N (possibly equally spaced) values of k.
4. For $i = 1, 2, \ldots, N$, and for $v = 1, 2, \ldots, V$,
 - Use the vth learning set to compute the ridge regression coefficients $\hat{\beta}_{-v}(k_i)$, say.
 - Obtain an estimate of prediction error, $\hat{PE}_v(k_i)$, say, by applying $\hat{\beta}_{-v}(k_i)$ to the corresponding vth test set.
5. For $i = 1, 2, \ldots, N$,
 - Average the V prediction error estimates to get an overall estimate of prediction error, $\hat{PE}_{CV/V}(k_i) = V^{-1} \sum_v \hat{PE}_v(k_i)$, say.
 - Plot the value of $\hat{PE}_{CV/V}(k_i)$ against k_i.
6. Choose that value of k that minimizes prediction error. In other words, the V-fold cross-validatory choice of k is given by
 \[\hat{k}_{CV/V} = \arg\min_{k_i} \hat{PE}_{CV/V}(k_i). \]

Regression function will have an inflated variance, and overfitting will take place. At the other extreme, if too few variables are included, the variance will be reduced, but the regression function will have increased bias, it will give a poor explanation of the data, and underfitting will occur. Some compromise between these extremes is, therefore, desirable. The notion of what makes a variable “important” is still not well understood, but one interpretation (Breiman, 2001b) is that a variable is important if dropping it seriously affects prediction accuracy.

The driving force behind variable selection is a desire for a parsimonious regression model (one that is simpler and more easily interpretable than is the model with the entire set of variables) combined with a need for greater accuracy in prediction. Selecting variables in regression models is a complicated problem, and there are many conflicting views on which type of variable selection procedure is best. In this section, we discuss several of these procedures.
5. Model Assessment and Selection in Multiple Regression

5.7. Stepwise Methods

There are two main types of stepwise procedures in regression: backwards elimination, forwards selection, and a hybrid version that incorporates ideas from both main types.

Backwards elimination (BE) begins with the full set of variables. At each step, we drop that variable whose F-ratio,

\[F = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1}, \]

(5.115)

is smallest, where \(RSS_0 \) is the residual sum of squares (with \(df_0 \) degrees of freedom) for the reduced model, and \(RSS_1 \) is the residual sum of squares (with \(df_1 \) degrees of freedom) for the larger model, where the “reduced” model is a submodel of the “larger” model. Then, we refit the reduced model and iterate again. Here, \(df_0 - df_1 = 1 \) and \(df_1 = n - k - 1 \), where \(k \) is the number of variables in the larger model.

Because of the relationship between the \(t \) and \(F \) distribution \((t_\nu^2 = F_{1,\nu}) \), this procedure is equivalent to dropping that variable with the smallest ratio of the least-squares regression coefficient estimate to its respective estimated standard error. For large samples, this ratio behaves like a standard Gaussian deviate \(Z \). A regression coefficient is, therefore, declared
significant at the 5% level if the absolute value of its Z-ratio is larger than 2.0, and nonsignificant otherwise. Those variables having nonsignificant coefficients (using either the F or Z definition) are dropped from the model. We stop when all variables retained in the model are larger than some predetermined value F_{delete}, usually taken as the 10% point of the $F_{1,n-k-1}$ distribution.

Forwards selection (FS) begins with an empty set of variables. At each step, we select from the variable list that variable with the largest F value (5.115) with $df_0 - df_1 = 1$ and $df_1 = n - k - 2$, where k is the number of variables in the smaller model, add that variable to the regression model, and then refit the enlarged model. We stop selecting variables for the model when the F value for each variable not currently in the model is smaller than some predetermined value F_{enter}, which is typically taken to be equal to 2 or 4 or the 25% point of the $F_{1,n-k-2}$ distribution.

A hybrid stepwise procedure alternates backwards and forwards in its model selection and stops when all variables have either been retained for inclusion or removed.
For the bodyfat data, when we use $F_{\text{enter}} = F_{\text{delete}} = 4.0$, only four input variables (\textit{abdomen}, \textit{weight}, \textit{wrist}, and \textit{forearm}) appear in the final model using any of the above stepwise procedures. If we set $F_{\text{enter}} = F_{\text{delete}} = 2.0$, three further variables, \textit{neck}, \textit{age}, and \textit{thigh}, are retained for the equation, although \textit{neck} and \textit{thigh} each have t-values smaller than 2.0.

\textbf{Criticisms of Stepwise Methods.} Stepwise procedures have been severely criticized for the following reasons: (1) When the input variables are highly correlated, stepwise methods can yield confusing conclusions. (2) The maximum (or minimum) of a set of correlated F statistics is not an F statistic. Hence, the decision rules used in stepwise regression to add or drop an input variable can be misleading. We should be very cautious in evaluating the significance (or not) of a regression coefficient when the associated variable is a candidate for inclusion or exclusion in a stepwise regression procedure. (3) There is no guarantee that the subsets obtained from either forwards selection or backwards elimination stepwise procedures will contain the same variables or even be the “best” subset. (4) When there are more variables than observations ($r > n$), backwards elimination is typically not a feasible procedure. (5) A stepwise procedure produces a single answer (a very specific subset) to the variable selection problem, although several different subsets may be equally good for regression purposes.

\section*{5.7.2 All Possible Subsets}

An alternative method of variable selection involves examining \textit{all possible subsets} of a given size and evaluating their powers of prediction. Thus, if we start out with r variables, each variable can be in or out of the subset; this implies that there are $2^r - 1$ different possible subsets that have to be examined (ignoring the empty subset). This number of candidate subsets quickly becomes very large even for moderate r (e.g., with 20 variables, there are more than a million subsets). Branch-and-bound algorithms (e.g., Furnival and Wilson, 1974) reduce this number to a more manageable size by eliminating large numbers of candidate models from consideration.

Let $k \in \{0, 1, 2, \ldots, r\}$ be the number of variables in a given regression submodel P with $|P| = p = k + 1$ parameters (k variables and an intercept). There are $\binom{r}{k}$ different subsets each having k variables. Using a variable selection criterion, each of those subsets may be compared and ranked.

Most subset selection procedures choose the best submodel by minimizing a selection criterion of the form,

$$\frac{RSS_P}{n} + \lambda \cdot p \cdot \hat{\sigma}^2 \cdot \frac{1}{n},$$

(5.116)

where λ is a \textit{penalty coefficient}, $\hat{\sigma}^2$ is the residual variance from the full model R^+, and RSS_P is the residual sum of squares for submodel P. In
the neural networks literature, RSS_P/n is called the learning (or training) error; we saw it before as the apparent error rate or resubstitution error rate. The term $\lambda\sigma^2/n$ is called the complexity term. Special cases of (5.116) are Akaike Information Criterion (AIC) (Akaike, 1973) and Mallows C_P (Mallows, 1973, 1995), both of which have $\lambda = 2$, and the Bayesian Information Criterion (BIC) (Akaike, 1978; Schwarz, 1978) with $\lambda = \log n$. The best submodel found using minimum-BIC will have fewer variables than by using minimum-C_P. Asymptotically, AIC and C_P are equivalent but have different properties than BIC.

The most popular of these criteria is $C_P = RSS_P/\hat{\sigma}^2 - (n - 2p)$. To compare submodels, we draw a scatterplot of C_P values against p. (Usually, we only plot the smallest few C_P values for each p.) Certain regions of the C_P-plot deserve special mention. For the full model,

$$C_{R^+} = |R^+| = r + 1,$$

(5.117)

“good” subsets (those with small bias) will have $C_P \approx p$, and those subsets with large bias will have C_P values greater than p. Furthermore, any subset with $C_P \leq r + 1$ also has $F \leq 2$ (a criterion used in stepwise regression for adding or eliminating a variable) and so is a candidate for a good subset. Analytical and empirical results suggest that C_P (and related criteria) tend to overfit when the full model has very high dimensionality.

The C_P plot for the bodyfat data is given in Figure 5.9, where we have plotted those subsets with the five smallest C_P values for each value of p. There are 27 subsets with $C_P < p$. The overall lowest $C_P = 5.9$ is obtained from a 7-variable subset with variables age, weight, neck, abdomen, thigh, forearm, and wrist.

5.7.3 Criticisms of Variable Selection Methods

There have been many criticisms leveled at variable selection methods in general. These include (1) inferential methods applied to a regression model assume that the variables are selected à priori. Subset selection procedures, however, use the data to add or delete variables and, hence, change the model. As such, they violate the inferential model and should be considered only as “heuristic data analysis tools” (Breiman, Friedman, Olshen, and Stone, 1984, p. 227). (2) When subset selection is data-driven, then the OLS estimates of the regression coefficients based upon the same data will be biased (even for large sample sizes) on the order 1–2 standard errors (Miller, 2002). (3) If the (learning) data are changed a small amount, this may drastically change the variables chosen for the optimal regression subset, rendering subset selection procedures very “unstable” (Breiman, 1996).
5.8 Regularized Regression

Both ridge regression and variable selection have their advantages and disadvantages. It would, therefore, be useful if we could construct a hybrid of these two ideas that would combine the best properties of each method — subset selection, shrinkage to improve prediction accuracy, and stability in the face of data perturbations.

Consider the general form of the penalized least-squares criterion, which can be written as

$$\phi(\beta) = (Y - X\beta)^T (Y - X\beta) + \lambda p(\beta),$$

(5.118)

for a given penalty function $p(\cdot)$ and regularization parameter λ. We can define a family (indexed by $q > 0$) of penalized least-squares estimators in which the penalty function,

$$p_q(\beta) = \sum_{j=1}^{r} |\beta_j|^q,$$

(5.119)

bounds the L_q-norm of the parameters in the model as

$$\sum_j |\beta_j|^q \leq c$$

(5.120)
FIGURE 5.10. Two-dimensional contours of the symmetric penalty function \(p_q(\beta) = |\beta_1|^q + |\beta_2|^q = 1 \) for \(q = 0.2, 0.5, 1, 2, 5 \). The case \(q = 1 \) (blue diamond) yields the lasso and \(q = 2 \) (red circle) yields ridge regression.

(Frank and Friedman, 1993). The two-dimensional contours of this symmetric penalty function for different values of \(q \) are given in Figure 5.10.

If we substitute the penalty function \(p_q(\beta) \) in (5.119) in place of \(p(\beta) \) in (5.118), we can write the criterion as \(\phi_q(\beta) \), \(q > 0 \). Then, \(\phi_q(\beta) \) is a smooth, convex function when \(q > 1 \), and is convex for \(q = 1 \), so that we can use classical optimization methods to minimize \(\phi_q(\beta) \). By contrast, \(\phi_q(\beta) \) is not convex when \(q < 1 \), and so its minimization is more complicated, especially when \(r \) is large.

Ridge regression corresponds to \(q = 2 \), and its corresponding penalty function is a circular disk \((r = 2)\) or sphere \((r = 3)\), or, for general \(r \), a rotationally invariant hypersphere centered at the origin. The ridge regression estimator is that point on the elliptical contours of \(ESS(\beta) \), centered at \(\hat{\beta} \), which first touches the hypersphere \(\sum_j \beta_j^2 \leq c \). The tuning parameter \(c \) controls the size of the hypersphere and, hence, how much we shrink \(\hat{\beta} \) toward the origin.

If \(q \neq 2 \), the penalty is no longer rotationally invariant. The most interesting case is \(q < 2 \), where the penalty function collapses toward the coordinate axes, so that not only does it shrink the coefficients toward zero, but it also sets some of them to be exactly zero, thus combining elements of ridge regression and variable selection. When \(q \) is set very close...
to 0, the penalty function places all its mass along the coordinate axes, and the contours of the elliptical region of $ESS(\beta)$ touch an undetermined number of axes (so that the resulting regression function has an unknown number of zero coefficients); the result is variable selection. The case $q = 1$ produces the lasso method having a diamond-shaped penalty function with the corners of the diamond on the coordinate axes.

A hybrid penalized LS regression method called the elastic net (Zou and Hastie, 2005) uses as $p(\beta)$ a linear combination of the ridge regression L_2 penalty function and the Lasso L_1 penalty function.

The Lasso

The Lasso (least absolute shrinkage and selection operator) is a constrained OLS minimization problem in which

$$ESS(\beta) = (Y - X\beta)^\tau(Y - X\beta)$$

is minimized for $\beta = (\beta_j)$ subject to the diamond-shaped condition that $\sum_{j=1}^r |\beta_j| \leq c$ (Tibshirani, 1996b). The regularization form of the problem is to find β to minimize

$$\phi(\beta) = (Y - X\beta)^\tau(Y - X\beta) + \lambda \sum_{j=1}^r |\beta_j|.$$ \hspace{1cm} (5.122)

This problem can be solved using complicated quadratic programming methods subject to linear inequality constraints.

The Lasso has a number of desirable features that have made it a popular regression algorithm. Just like ridge regression, the Lasso is a shrinkage estimator of β, where the OLS regression coefficients are shrunk toward the origin, the value of c controlling the amount of shrinkage. At the same time, it also behaves as a variable-selection technique: for a given value of c, only a subset of the coefficient estimates, $\hat{\beta}_j$, will have nonzero values, and reducing the value of c reduces the size of that subset. The coefficient values will be exactly zero when one of the elliptical contours of the function

$$ESS(\beta) = RSS + (\beta - \hat{\beta}_{\text{ols}})^\tau X^\tau X(\beta - \hat{\beta}_{\text{ols}}),$$

where $RSS = ESS(\hat{\beta})$ is a constant, touches a corner of the diamond-shaped penalty function.

In Figure 5.11, we display all 13 Lasso paths for the bodyfat data, both for the coefficients (left panel) and for the standardized coefficients (right panel). Variables are added to the regression model in the following order: 6 (abdomen), 3 (height), 1 (age), 13 (wrist), 4 (neck), 12 (forearm), 7 (hip), 11 (biceps), 8 (thigh), 2 (weight), 10 (ankle), 5 (chest), and 9 (knee). None of the coefficient paths cross zero and so no variables are dropped from the regression model at any stage of the Lasso process.
5.8 Regularized Regression

FIGURE 5.11. Lasso paths for the bodyfat data. The paths are plots of the coefficients $\{\hat{\beta}_j\}$ (left panel) and the standardized coefficients, $\{\hat{\beta}_j \| X_j \|_2\}$ (right panel) plotted against $\sum_j |\hat{\beta}_j|/\max \sum_j |\hat{\beta}_j|$. The variables are added to the regression model in the order: 6, 3, 1, 13, 4, 12, 7, 11, 8, 2, 10, 5, 9.

The Garotte

A different type of penalized least-squares estimator is due to Breiman (1995). Let $\hat{\beta}_{ols}$ be the OLS estimator and let $W = \text{diag}\{w\}$ be a diagonal matrix with nonnegative weights $w = (w_j)$ along the diagonal. The problem is to find the weights w that minimize

$$
\phi(w) = (Y - XW\hat{\beta}_{ols})^T(Y - XW\hat{\beta}_{ols})
$$

subject to one of the following two constraints,

1. $w \geq 0$, $1^T_r w = \sum_{j=1}^r w_j \leq c$ \hspace{1cm} \text{(nonnegative garotte)}

2. $w^T w = \sum_{j=1}^r w_j^2 \leq c$ \hspace{1cm} \text{(garotte)}.

Either version of the garotte seeks to find some desirable scaling of the regression coefficients. As c is decreased, more of the w_j become 0 (thus eliminating those particular variables from the regression function), while the nonzero $\hat{\beta}_{ols,j}$ shrink toward 0. Note that both versions of the garotte, which depend upon the existence of the OLS estimator, $\hat{\beta}_{ols}$, fail in situations where $r > n$.

The regularization parameter λ effects a compromise between how well the regression function fits the data and a size constraint on the coefficient vector. A large value of λ means that the size constraint dominates, whereas a small value of λ allows the OLS estimator to dominate. The value of λ can be determined in an objective fashion by V-fold cross-validation (see, e.g., Table 5.7).
Comparisons Extensive simulations comparing prediction accuracy under a wide variety of conditions and models (see, e.g., Breiman, 1995, 1996; Tibshirani, 1996b; Öjelund, Brown, Madsen, and Thyregod, 2002) show that ridge regression is very stable and is more accurate when there are many small coefficients, but does not do well when faced with a mixture of large and small coefficients; the nonnegative garotte is relatively stable and is more accurate when there are a few nonzero coefficients; the lasso performs well when there are a small-to-medium number of moderate-sized coefficients (while its estimates tend to have large biases); and subset selection, although very unstable, performs well only when there are a few nonzero coefficients.

5.9 Least-Angle Regression

The least-angle regression (LAR) algorithm (Efron, Hastie, Johnstone, and Tibshirani, 2004) is an automatic variable-selection method that improves upon Forwards Selection in multiple regression. It can also be used for situations in which \(r \gg n \). Simple modifications of LAR enable the Lasso and Forwards-Stagewise algorithms to be computed efficiently. The three algorithms are referred to jointly as LARS.

In this section, we describe the LARS and Forwards-Stagewise algorithms and relate them to the Lasso. For these algorithms, \(\mathcal{X} = (X_{ij}) \) is an \((n \times r)\)-matrix and \(\mathcal{Y} = (Y_1, \ldots, Y_n)^\top \). We assume that the input variables have been standardized to have mean zero, \(\sum_{i=1}^n X_{ij} = 0 \), and length one, \(\sum_{i=1}^n X_{ij}^2 = 1, j = 1, 2, \ldots, r \), and that the output variable has mean zero, \(\sum_{i=1}^n Y_i = 0 \). The “current” estimate of the regression function \(\mu = \mathcal{X}\beta \) is given by \(\hat{\mu} = \mathcal{X}\hat{\beta} \), where the \(j \)th column, \(\mathcal{X}_j = (X_{1j}, \ldots, X_{nj})^\top \), of \(\mathcal{X} = (\mathcal{X}_1, \ldots, \mathcal{X}_r) \) represents \(n \) observations on the \(j \)th covariate \(\mathcal{X}_j \). The vector of “current” correlations of \(\mathcal{X} \) with the “current” residual vector \(\mathcal{r} = \mathcal{Y} - \hat{\mu} \) is given by \(\hat{\mathcal{c}} = (\hat{c}_1, \ldots, \hat{c}_r)^\top = \mathcal{X}^\top \mathcal{r} \). The LARS algorithm builds up \(\hat{\mu} \) sequentially by piecewise-linear steps, where Forwards-Stagewise steps are much smaller than LARS steps.

5.9.1 The Forwards-Stagewise Algorithm

1. Initialize \(\hat{\beta} = 0 \), so that \(\hat{\mu} = 0 \) and \(\mathcal{r} = \mathcal{Y} \).
2. Find the covariate vector, \(\mathcal{X}_{j_1} \), say, most highly correlated with \(\mathcal{r} \), where \(j_1 = \arg \max_j |\hat{c}_j| \).
3. Update \(\hat{\beta}_{j_1}, \hat{\mathcal{r}}_{j_1} \leftarrow \hat{\beta}_{j_1} + \delta_{j_1} \), where \(\delta_{j_1} = \epsilon \cdot \text{sign}(\hat{c}_{j_1}) \) and \(\epsilon \) is a small constant that controls the step-length.
4. Update \(\hat{\mu} \leftarrow \hat{\mu} + \delta_{j_1} \mathcal{X}_{j_1} \) and \(\mathcal{r} \leftarrow \mathcal{r} - \delta_{j_1} \mathcal{X}_{j_1} \).
5. Repeat steps 2 and 3 many times until $\hat{c} = 0$. This is the OLS solution.

5.9.2 The LARS Algorithm

1. Initialize $\hat{\beta} = 0$, so that $\hat{\mu} = 0$ and $r = Y$. Start with the “active” set A an empty subset of indices of the set $\{1, 2, \ldots, r\}$.

2. Find the covariate vector, X_{j_1}, say, most highly correlated with r, where $j_1 = \arg \max_j |\hat{c}_j|$; the new active set is $A \leftarrow A \cup \{j_1\}$, and X_{j_1} is added to the regression model.

3. Move $\hat{\beta}_{j_1}$ toward $\text{sign}(\hat{c}_{j_1})$ (see Step 3 of Forwards-Stagewise algorithm) until some other covariate vector, X_{j_2}, say, has the same correlation with r as does X_{j_1}; the new active set is $A \leftarrow A \cup \{j_2\}$, and X_{j_2} is added to the regression model.

4. Update r and move $(\hat{\beta}_{j_1}, \hat{\beta}_{j_2})$ toward the joint OLS direction for the regression of r on (X_{j_1}, X_{j_2}) (i.e., equiangular between X_{j_1} and X_{j_2}), until a third covariate vector, X_{j_3}, say, is as correlated with r as are the first two variables; the new active set is $A \leftarrow A \cup \{j_3\}$, and X_{j_3} is added to the regression model.

5. After k LARS steps, $A = \{j_1, j_2, \ldots, j_k\}$, $\hat{\mu}_A$ is the current LARS estimate (where exactly k estimated coefficients, $\hat{\beta}_{j_1}, \hat{\beta}_{j_2}, \ldots, \hat{\beta}_{j_k}$, are nonzero and $X_{j_1}, X_{j_2}, \ldots, X_{j_k}$ define the linear regression model), and the current vector of correlations is $\hat{c} = X^\tau (Y - \hat{\mu}_A)$.

6. Continue until all r covariates have been added to the regression model and $\hat{c} = 0$. This is the OLS solution.

Modifications for LARS

LARS-Lasso The entire Lasso sequence of paths can be generated by a slight modification of the LARS algorithm. We start with the LARS algorithm; then, if a nonzero estimated coefficient becomes 0 (e.g., changes its sign), stop and remove that variable from A and from the calculation of the next equiangular direction. The LARS algorithm recomputes the best direction and continues on its way. All additions and subtractions of variables are made “one-at-a-time,” so that the number of steps for the LARS-Lasso algorithm can be larger than that of the LARS algorithm.

The LARS algorithm is efficient, involving of the order $O(r^3 + nr^2)$ computations, equivalent to carrying out OLS on the r input variables. The LARS-Lasso algorithm, in which we may need to drop a variable (costing at most an additional $O(r^2)$ computational operations for each variable dropped), generates the Lasso solution without difficulty.
Figure 5.11 was computed by the LARS-Lasso algorithm applied to the bodyfat data. The LARS algorithm yielded the same paths.

LARS-Stagewise A modified LARS algorithm in which A can drop one or more indices yields the Forwards-Stagewise algorithm, so that more steps than the LARS algorithm are needed to arrive at the OLS solution.

For the bodyfat data, the Forwards-Stagewise algorithm took the following sequence of steps: variables 6, 3, 1, 13, 4, 12, and 7 were added successively to the model; variables 3 and 1 were dropped; then variable 3 was added back, but in the next step was dropped again. Then, variables 11, 8, and 2 were added, but variable 13 was dropped. Variables 1, 10, 3, 13, 5, and 9 were next added. Then, variable 4 was dropped, then added back, then dropped again, and added back again; and variable 1 was dropped, added, dropped again, and then finally added back in. Thus, 29 modified LARS steps were needed to reach the OLS solution.

The R package `lars` includes a C_P-type statistic as a stopping rule to choose between possible LARS models. Because of its propensity to overfit in high-dimensional problems, however, there is some doubt as to how reliable C_P can be in selecting a parsimonious model.

Bibliographical Notes

There is a huge literature on multiple linear regression, and it is the area of statistics about which most is known. See, for example, Weisberg (1985) and Draper and Smith (1981, 1998).

The material on prediction error (Sections 5.4 and 5.5) is based upon the work of Efron (1983, 1986). The use of cross-validation for model selection purposes was introduced by Stone (1974) and Geisser (1975). (It is amusing to read that one discussant of Stone’s article likened cross-validation to witchcraft!) Based upon a conviction that “prediction is generally more relevant for inference than parameter estimation,” Geisser (1974, 1975) called the cross-validation technique the *predictive sample-reuse method*.

Book-length accounts of the bootstrap include Efron (1982), Hall (1992), Efron and Tibshirani (1993), and Chernick (1999). The names “unconditional” and “conditional” bootstrap were taken from Breiman (1992). Freedman (1981) distinguishes the two regression models for bootstrapping by calling the fixed-X case the “regression model” and the random-X case the “correlation model.” An account of regression problems with collinear data from an econometric point of view is given by Belsley, Kuh, and Welsch (1980).

The ridge regression estimator first appeared in 1962 in an article in a chemical engineering journal by A.E. Hoerl. This was followed by Hoerl
and Kennard (1970a,b). For the Bayesian characterization of the ridge estimator, see Lindley and Smith (1972), Chipman (1964), and Goldstein and Smith (1974).

In many texts, it is common to recommend standardizing (centering and scaling) the input variables prior to carrying out ridge regression. Such recommendations are not accepted by everyone, however. Thisted (1976), for example, states that “no argument has ever been advanced, nor does a single theorem in the ridge literature require, that $X^{\tau}X$ be in ‘correlation form’.” He goes on to argue that “because ridge rules are not invariant with respect to changes in origin of the predictor variables, it is important to recognize that origins are not arbitrary and that centering, taken as a rule of thumb always to be followed, can lead to misleading results and poor mean square error behavior.”

Some notes on terminology and notation origins . . . The penalized least-squares regression with penalty function (5.125) is widely referred to as bridge regression with the origin of the name ascribed to Frank and Friedman (1993). Although this name never appears in that reference, it apparently was first used by Friedman in a talk (Tibshirani, personal communication). . . . Mallows (1973) states that the use of the letter C in C_P was specifically chosen to honor Cuthbert Daniel, who helped Mallows develop the idea behind C_P at the end of 1963. . . . In an interview (Findley and Parzen, 1995), Akaike explains how AIC was named. Akaike had previously used the notation IC (for information criterion) in a 1974 article, and for another article had asked his assistant to compute some values of the IC. His assistant knew that if she called the quantity “IC,” Fortran would assume that it was integer-valued, which it was not. So, she put an A in front of IC to turn it into a noninteger-valued quantity. Akaike apparently thought that calling it AIC was a “good idea” because it could then be used as the first of a sequence of information criteria, AIC, BIC, etc.

Exercises

5.1 From the solution (5.12) to the least-squares problem in the random-X case, use the formula for inverting a partitioned matrix to show that (5.13) and (5.14) follow.

5.2 From the solution (5.26) to the least-squares problem in the fixed-X case, use the same matrix-inversion formula to show that (5.27) and (5.28) follow.

5.3 Show that $\text{cov}((a^{\tau} - d^{\tau}Z^{\tau})Y, d^{\tau}Z^{\tau}Y) = 0$ for the multiple regression model, where a is an n-vector and d is an $(r + 1)$-vector.
5.4 (Gauss–Markov Theorem) Assume that \(\hat{\boldsymbol{\beta}}_{\text{ols}} \) is any solution of the normal equations (5.25) and that \(Z \) is a matrix of fixed constants. Make no assumption that \(Z^\tau Z \) has full rank. Call \(c^\tau \beta \) estimable if we can find a vector \(a \) such that \(E(a^\tau Y) = c^\tau \beta \). If \(c^\tau \beta \) is estimable, show that \(c^\tau \hat{\beta}_{\text{ols}} \) is linear in \(Y \) and is unbiased for \(c^\tau \beta \). Using Exercise 5.3 or otherwise, show also that \(c^\tau \hat{\beta}_{\text{ols}} \) has minimum variance among all linear (in \(Y \)) unbiased estimators of \(c^\tau \beta \).

5.5 Suppose \(Z^\tau Z \) is nonsingular and that the solution of the normal equations is \(\hat{\beta}_{\text{ols}} = (Z^\tau Z)^{-1} Z^\tau Y \). Show that the Gauss–Markov Theorem holds.

5.6 Let \(G \) be a generalized inverse of \(Z^\tau Z \) and let a solution of the normal equations be given by the generalized-inverse regression estimator, \(\hat{\beta}^* = GZ^\tau Y \). Show that the Gauss–Markov Theorem holds.

5.7 Show that a generalized ridge regression estimator,

\[
\hat{\beta}_r(k) = (X^\tau X + k\Omega)^{-1} X^\tau y,
\]

can be obtained as a solution of minimizing \(\text{ESS}(\beta) \) subject to the elliptical restriction that \(\beta^\tau \Omega \beta \leq c \).

5.8 (Marquardt, 1970) Consider the following operation of data augmentation. Center and scale all input and output variables. Augment the \((n \times r)\)-matrix \(X \) with \(r \) additional rows of the form \(H_k = \sqrt{k}I_r \), where \(k \) is given, and denote the resulting \((n + r) \times r\)-matrix by \(X^* \). Augment the \(n \)-vector \(Y \) using \(r \) 0s, and denote the resulting \((n + r)\)-vector by \(Y^* \). Show that the ridge estimator can be obtained by applying OLS to the regression of \(Y^* \) on \(X^* \). Thus, one can carry out ridge regression using standard OLS regression software and obtain the correct ridge estimator. However, much of the rest of the regression output will be inappropriate for the original data \((X, Y)\).

5.9 In the PET yarn example, the variables were all centered, but not scaled. Standardize the input variables (the spectrum values) by centering and dividing each input variable by its standard deviation, and center the output variable (density). For the standardized data, recalculate: (1) the PCR coefficient estimates, (2) the PLSR coefficient estimates, and (3) the RR coefficient estimates for various values of \(k \) (including \(k > 1 \)), and redraw the ridge trace. What effect does standardizing have on the results that is not provided by centering alone? How would the results be affected by neither centering nor standardizing the variables?

5.10 Consider data on the composition of a liquid detergent. The datafile \texttt{detergent} can be downloaded from the book’s website. There are five \(Y \) output variables, representing four compounds in an aqueous solution (the
fifth Y variable is the amount of water in the solution), and they sum to unity. The X input variables consist of mid-infrared spectrum values recorded as the absorbances at $r = 1168$ equally spaced frequencies in the range $3100–759$ cm$^{-1}$. The data consist of $n = 12$ sample preparations of the detergent. Graph the 12 absorbance spectra and apply PCR, PLSR, and RR to the data using each of the first four Y variables in separate regressions.

5.11 (Mallows, 1973) Consider the C_P statistic. Let P^* be a subset with $p+1$ parameters that contains P. Show that $C_{P^*} - C_P$ is distributed as $2 - t_1^2$, where t_1 is the Student’s t variable having 1 degree of freedom. Show also that if the additional variable is unimportant, then the difference $C_{P^*} - C_P$ has mean and variance approximately equal to 1 and 2, respectively.

5.12 What is the relationship between R^2 and C_P?

5.13 If the regression model is correct, show that C_P can be used as an estimate of $|P|$, the number of parameters in the model.

5.14 For the OLS estimator $\hat{\beta}$ in the linear regression model $Y = X\beta + e$, where e has mean zero, show that $ESS(\beta) = RSS + (\beta - \hat{\beta}_{ols})^T X^T X (\beta - \hat{\beta}_{ols})$, where $RSS = ESS(\hat{\beta})$.

5.15 Consider the matrix X. Center and scale each column of X so that $X^T X$ is the correlation matrix. Regress the kth column of X on the other $r - 1$ columns of X in a multiple regression. Compute the residual sum of squares, RSS_k, $k = 1, 2, \ldots, r$, for each column. Near collinearity exhibits itself when at least one of the $RSS_1, RSS_2, \ldots, RSS_r$ is small. Show that RSS_k is the square-root of the kth diagonal element of $(X^T X)^{-1}$, which is referred to as the reciprocal square-root of VIF_k. Show that $VIF_k = (1 - R^2_k)^{-1}$, where R^2_k is the squared multiple correlation coefficient of the kth column of X regressed on the other $r - 1$ columns of X, $k = 1, 2, \ldots, r$.

5.16 Suppose the error component e of the linear regression model has mean 0, but now has var(e) = $\sigma^2 V$, where V is a known ($n \times n$) positive-definite symmetric matrix and $\sigma^2 > 0$ may not be necessarily known. Let $\hat{\beta}_{gls}$ denote the generalized least-squares (GLS) estimator:

$$\hat{\beta}_{gls} = \arg \min_\beta (Y - Z\beta)^T V^{-1} (Y - Z\beta).$$

Show that

$$\hat{\beta}_{gls} = (Z^T V^{-1} Z)^{-1} Z^T V^{-1} Y$$

has expectation β and covariance matrix

$$\text{var}(\hat{\beta}_{gls}) = \sigma^2 (Z^T V^{-1} Z)^{-1}.$$
What would be the consequences of incorrectly using the ordinary least-squares estimator $\hat{\beta}_{\text{ols}} = (Z^T Z)^{-1} Z^T Y$, of β when $\text{var}(e) = \sigma^2 V$?

The Boston housing data can be downloaded from the StatLib website lib.stat.cmu.edu/datasets/boston_corrected.txt. There are 506 observations on census tracts in the Boston Standard Metropolitan Statistical Area (SMSA) in 1970. The response variable is the logarithm of the median value of owner-occupied homes in thousands of dollars; there are 13 input variables (plus information on location of each observation). Compute the OLS estimates and compare them with those obtained from the following variable-selection algorithms: Forwards Selection (stepwise), C_p, the Lasso, LARS, and Forwards Stagewise.

Repeat comparisons between variable-selection algorithms in Exercise 5.18 for The Insurance Company Benchmark data set. The data gives information on customers of an insurance company and contains 86 variables on product-usage data and socio-demographic data derived from zip area codes. There are 5,822 customers in the learning set and another 4,000 in the test set. The data were collected to answer the following question: Can you predict who would be interested in buying a caravan insurance policy and give an explanation why? The data can be downloaded from kdd.ics.uci.edu/databases/tic/tic.html.
6

Multivariate Regression

6.1 Introduction

Multivariate linear regression is a natural extension of multiple linear regression in that both techniques try to interpret possible linear relationships between certain input and output variables. Multiple regression is concerned with studying to what extent the behavior of a single output variable Y is influenced by a set of r input variables $X = (X_1, \cdots, X_r)^\tau$. Multivariate regression has s output variables $Y = (Y_1, \cdots, Y_s)^\tau$, each of whose behavior may be influenced by exactly the same set of inputs $X = (X_1, \cdots, X_r)^\tau$.

So, not only are the components of X correlated with each other, but in multivariate regression, the components of Y are also correlated with each other (and with the components of X). In this chapter, we are interested in estimating the regression relationship between Y and X, taking into account the various dependencies between the r-vector X and the s-vector Y and the dependencies within X and within Y.

We describe two different multivariate regression scenarios, analogous to the fixed-X and random-X scenarios of multiple regression. In particular, we consider restricted versions of the multivariate regression problem based upon constraining the relationship between Y and X in some way. Such
constraints may be linear or nonlinear in form, and they may be known or unknown to the researcher prior to statistical analysis. Our approach is guided by the well-known principle that major theoretical, computational, and practical advantages may result if one is able to express a wide variety of statistics problems in terms of a common focus, especially where that focus is regression analysis.

With this in mind, we describe the multivariate reduced-rank regression model (RRR) (Izenman, 1975), which is an enhancement of the classical multivariate regression model and has recently received research attention in the statistics and econometrics literature. The following reasons explain the popularity of this model: RRR provides a unified approach to many of the diverse classical multivariate statistical techniques; it lends itself quite naturally to analyzing a wide variety of statistical problems involving reduction of dimensionality and the search for structure in multivariate data; and it is relatively simple to program because the regression estimates depend only upon the sample covariance matrices of X and Y and the eigendecomposition of a certain symmetric matrix that generalizes the multiple squared correlation coefficient R^2 from multiple regression.

6.2 The Fixed-X Case

Let $Y = (Y_1, \cdots, Y_s)^\tau$ be a random s-vector-valued output variate with mean vector μ_Y and covariance matrix Σ_{YY}, and let $X = (X_1, \cdots, X_r)^\tau$ be a fixed (nonstochastic) r-vector-valued input variate. The components of the output vector Y will typically be continuous responses, and the components of the input vector X may be indicator or “dummy” variables that are set up by the researcher to identify known groupings of the data associated with distinct subpopulations or experimental conditions.

Suppose we observe n replications,

$$\begin{align*}
(X_j^\tau, Y_j^\tau), & \quad j = 1, 2, \ldots, n,
\end{align*}$$

(6.1)
on the $(r + s)$-vector $(X^\tau, Y^\tau)^\tau$. We define an $(r \times n)$-matrix X and an $(s \times n)$-matrix Y by

$$\begin{align*}
X = (X_1, \cdots, X_n), & \quad Y = (Y_1, \cdots, Y_n).
\end{align*}$$

(6.2)

Form the mean vectors,

$$\begin{align*}
\bar{X} &= n^{-1} \sum_{j=1}^{n} X_j, & \bar{Y} &= n^{-1} \sum_{j=1}^{n} Y_j,
\end{align*}$$

(6.3)

and let

$$\begin{align*}
\bar{X} &= (\bar{X}, \cdots, \bar{X}), & \bar{Y} &= (\bar{Y}, \cdots, \bar{Y})
\end{align*}$$

(6.4)
be an \((r \times n)\)-matrix and an \((s \times n)\)-matrix, respectively. The centered versions of \(X\) and \(Y\) are defined by

\[
\begin{align*}
\mathcal{X}_c &= X - \bar{X} = (X_1 - \bar{X}, \ldots, X_n - \bar{X}), \quad (6.5) \\
\mathcal{Y}_c &= Y - \bar{Y} = (Y_1 - \bar{Y}, \ldots, Y_n - \bar{Y}), \quad (6.6)
\end{align*}
\]

respectively.

6.2.1 Classical Multivariate Regression Model

Consider the multivariate linear regression model

\[
\begin{align*}
\mathcal{Y} &= \mu + \Theta \mathcal{X} + \mathcal{E}, \quad (6.7)
\end{align*}
\]

where \(\mu\) is an \((s \times n)\)-matrix of unknown constants, \(\Theta = (\theta_{jk})\) is an \((s \times r)\)-matrix of unknown regression coefficients, and \(\mathcal{E} = (E_1, E_2, \ldots, E_n)\) is the \((s \times n)\) error matrix whose columns are each random \(s\)-vectors with mean \(0\) and the same unknown nonsingular \((s \times s)\) error covariance matrix \(\Sigma_{EE}\), and pairs of column vectors, \((E_j, E_k), j \neq k\), are uncorrelated with each other.

When the \(X\)s are considered to be fixed in repeated sampling (e.g., in designed experiments), the so-called design matrix \(\mathcal{X}\) consists of known constants and possibly also observed values of covariates, \(\Theta\) is a full-rank matrix of unknown fixed effects, and \(\mu = \mu_0 1_n\), where \(\mu_0\) is an unknown \(s\)-vector of constants.

Consider the problem of estimating arbitrary linear combinations of the \(\{\theta_{jk}\}\),

\[
\text{tr}(A\Theta) = \sum_j \sum_k A_{jk}\theta_{jk}, \quad (6.8)
\]

where \(A = (A_{jk})\) is an arbitrary matrix of constants. There are two equivalent ways to proceed. On the one hand, we can write

\[
\mu + \Theta \mathcal{X} = \Theta^* \mathcal{X}^*, \quad (6.9)
\]

where \(\Theta^* = (\mu_0 : \Theta)\) and \(\mathcal{X}^* = (1_n : X^\tau)\), and then estimate \(\Theta^*\). The other way is to remove \(\mu\) from the equation by centering \(\mathcal{X}\) and \(\mathcal{Y}\) and then estimate \(\Theta\) directly. It is the latter procedure we give here. The reader should verify that both procedures lead to the same results (see Exercise 6.7).

LS Estimation

If we set \(\mu = \bar{Y} - \Theta \bar{X}\), the model (6.7) reduces to

\[
\begin{align*}
\mathcal{Y}_c &= \Theta \mathcal{X}_c + \mathcal{E}, \quad (6.10)
\end{align*}
\]
Applying the “vec” operation to equation (6.10), we get
\[
\begin{align*}
\text{vec}(Y_c) & = (I_s \otimes X_c^\tau) \text{vec}(\Theta) + \text{vec}(\mathcal{E}). \\
& = (I_s \otimes \mathcal{X}_c^\tau) \text{vec}(\Theta) + \text{vec}(\mathcal{E}).
\end{align*}
\]

(6.11)

We see that the relationship (6.11) is just a multiple linear regression. The error variate \(\text{vec}(\mathcal{E}) \) has mean vector \(\mathbf{0} \) and \((sn \times sn) \) block-diagonal covariance matrix,
\[
\text{cov}(\text{vec}(\mathcal{E})) = E\{(\text{vec}(\mathcal{E}))(\text{vec}(\mathcal{E}))^\tau\} = \Sigma_{\mathcal{E}\mathcal{E}} \otimes I_n.
\]

(6.12)

Assuming that \(\mathcal{X}_c \mathcal{X}_c^\tau \) is nonsingular and using Exercise 5.16, the generalized least-squares estimator of \(\text{vec}(\Theta) \) is given by
\[
\text{vec}\left(\hat{\Theta}\right) = (6.13)
\]
\[
\begin{align*}
& = ((I_s \otimes \mathcal{X}_c)(\Sigma_{\mathcal{E}\mathcal{E}} \otimes I_n)^{-1}(I_s \otimes \mathcal{X}_c^\tau)(\Sigma_{\mathcal{E}\mathcal{E}} \otimes I_n)^{-1} \text{vec}(Y_c) \\
& = (I_s \otimes (\mathcal{X}_c \mathcal{X}_c^\tau)^{-1} \mathcal{X}_c) \text{vec}(Y_c),
\end{align*}
\]

(6.14)

using results on Kronecker products of matrices. By “un-vec’ing” (6.14), it follows that
\[
\hat{\Theta} = \mathcal{Y}_c \mathcal{X}_c^\tau (\mathcal{X}_c \mathcal{X}_c^\tau)^{-1},
\]

(6.15)
\[
\hat{\mu} = \mathcal{Y} - \hat{\Theta} \mathcal{X},
\]

(6.16)

Thus, under the above conditions and if \(\mathcal{X}_c \mathcal{X}_c^\tau \) is nonsingular, then the minimum-variance linear unbiased estimator of \(\text{tr}(A\Theta) \) is given by \(\text{tr}(A\hat{\Theta}) \). This is the multivariate form of the Gauss–Markov theorem.

We can interpret the estimator \(\hat{\Theta} \) in an important way. Suppose we transpose the regression equation (6.10) so that
\[
\begin{align*}
Z = W \beta + E,
\end{align*}
\]

(6.17)

where \(Z = \mathcal{Y}_c^\tau \), \(W = \mathcal{X}_c^\tau \), \(\beta = \Theta^\tau \), and \(E = \mathcal{E}^\tau \). The \(i \)th row vector, \(\mathcal{Y}_c(i) \), of \(\mathcal{Y}_c \) corresponds to the \(i \)th column vector, \(z_i \), of \(Z \) and represents all the \(n \) (mean-centered) observations on the \(i \)th output variable \(Y_{cij} = Y_{ij} - \bar{Y}_i \), \(j = 1, 2, \ldots, n \). Thus, the \(n \)-vector \(z_i \) can be modeled by the multiple regression equation,
\[
\begin{align*}
\text{vec}(Y_c)^{\tau} = \text{vec}(\Theta^\tau) = \text{vec}(\mathcal{X}_c^\tau) = \text{vec}(\mathcal{E})^\tau.
\end{align*}
\]

(6.18)

where \(\beta_i \) is the \(i \)th column of \(\beta \), and \(e_i \) is the \(i \)th column of \(E \). The OLS estimate of \(\beta_i \) is
\[
\hat{\beta}_i = (W^\tau W)^{-1} W^\tau z_i.
\]

(6.19)

Transforming back, we get that the least-squares estimator of \(\theta(i) \) (i.e., the \(i \)th row of \(\Theta \)) is
\[
\hat{\theta}(i) = \mathcal{Y}_c(i) \mathcal{X}_c^\tau (\mathcal{X}_c \mathcal{X}_c^\tau)^{-1},
\]

(6.20)
which is the ith row of $\hat{\Theta}$.

Thus, simultaneous (unrestricted) least-squares estimation applied to all the s equations of the multivariate regression model yields the same results as does equation-by-equation least-squares. As a result, nothing is gained by estimating the equations jointly, even though the output variables Y may be correlated.

In other words, even though the variables in Y may be correlated, perhaps even heavily correlated, the LS estimator, $\hat{\Theta}$, of Θ does not contain any reference to that correlation. Indeed, the result says that in order to estimate the matrix of regression coefficients Θ in a multivariate regression, all we need to do is (1) run s multiple regressions, each using a different Y variable, on all the X variables, (2) compute the vector of regression coefficient estimates, $\hat{\theta}_{(i)}$, $i = 1, 2, \ldots, s$, from each multiple regression, and then (3) arrange those estimates together into a matrix, which will be $\hat{\Theta}$. To those who encounter this result for the first time, it can be quite surprising!

In its basic classical formulation, therefore, we see that multivariate regression is a procedure that has no true multivariate content. That is, there is no reason to create specialized software to carry out a multivariate regression of Y on X when the same result can more easily be obtained by using existing multiple regression routines. This is one reason why many books on multivariate analysis do not contain a separate chapter on multivariate regression and also why the topics of multiple regression and multivariate regression are so often confused with each other.

Covariance Matrix of $\hat{\Theta}$

Using the “vec” operation and Kronecker products, it is not difficult to obtain the covariance matrix for $\hat{\Theta}$. Substituting (6.10) for Y_c into (6.15), we have that

$$\hat{\Theta} = (\Theta X_c + \mathcal{E})X_c^\tau (X_c X_c^\tau)^{-1} = \Theta + E X_c^\tau (X_c X_c^\tau)^{-1}.$$

(6.21)

Using the fact that X_c is a fixed matrix and that E has mean zero, we have that $\text{vec}(\hat{\Theta})$ has mean $\text{vec}(\Theta)$. Now, from (6.21),

$$\text{vec}(\hat{\Theta} - \Theta) = \text{vec}(EX_c^\tau (X_c X_c^\tau)^{-1}) = (I_s \otimes (X_c X_c^\tau)^{-1} X_c)\text{vec}(E),$$

whence,

$$\text{cov}(\text{vec}(\hat{\Theta})) = E\{(\text{vec}(\hat{\Theta} - \Theta))(\text{vec}(\hat{\Theta} - \Theta))^\tau\}$$

$$= (I_s \otimes (X_c X_c^\tau)^{-1} X_c)(I_s \otimes I_n)(I_s \otimes X_c^\tau (X_c X_c^\tau)^{-1})$$

$$= \Sigma E \otimes (X_c X_c^\tau)^{-1},$$

(6.22)

by using the multiplicative properties of Kronecker products.
So far, we have obtained the LS estimators of the multivariate linear regression model without imposing any distributional assumptions on the errors. If we now assume that the errors in the model are distributed as iid Gaussian random vectors,

\[E_j \sim \mathcal{N}(\mathbf{0}, \Sigma_{EE}), \quad j = 1, 2, \ldots, n, \]

then,

\[\text{vec}(\hat{\Theta}) \sim \mathcal{N}_{rs}(\text{vec}(\Theta), \Sigma_{EE} \otimes (X_c'X_c^{-1})^{-1}). \]

Furthermore, the distribution of the least-squares estimator (6.20) is

\[\hat{\theta}_{(i)} \sim \mathcal{N}_r(\theta_{(i)}, \sigma_i^2(X_c'X_c^{-1})^{-1}), \]

where \(\sigma_i^2 \) is the \(i \)th diagonal entry of \(\Sigma_{EE} \), \(i = 1, 2, \ldots, s \). Compare with (5.42).

If \(X_c \) has less than full rank, then the \((r \times r)\)-matrix \(X_c'X_c^{-1} \) will be singular. In this case, we can replace the \((X_c'X_c^{-1})^{-1} \) term either by a generalized inverse \((X_c'X_c^{-1})^{-1} \) or by a ridge-regression-like term such as \((X_c'X_c^{-1} + kI_r)^{-1} \), where \(k \) is a positive constant; see Section 5.6.4.

Fitted Values and Multivariate Residuals

The \((s \times n)\) matrix \(\hat{Y} \) of fitted values is given by

\[\hat{Y} = \mu + \hat{\Theta}X = \bar{Y} + \hat{\Theta}(X - \bar{X}), \]

or

\[\hat{Y}_c = \hat{\Theta}X_c = Y_cX_c'X_c^{-1}X_c = Y_cH, \]

where the \((n \times n)\) matrix \(H = X_c't(X_c'X_c^{-1})^{-1}X_c \) is the hat-matrix.

The \((s \times n)\) residual matrix \(\hat{E} \) is the difference between the observed and fitted values of \(Y \), namely,

\[\hat{E} = Y - \hat{Y} = Y_c - \hat{\Theta}X_c = Y_c - \hat{Y}_c = Y_c(I_n - H), \]

and, using (6.27), can also be written as

\[
\begin{align*}
\hat{E} &= Y_c - \hat{\Theta}X_c \\
&= (\Theta X_c + \varepsilon) - (\Theta + \varepsilon X_cX_c'^{-1})X_c \\
&= \varepsilon(I_n - H). \\
\end{align*}
\]

It follows immediately that \(\text{E(vec}(\hat{E})) = \mathbf{0} \). A straightforward calculation shows that

\[\text{cov}(\text{vec}(\hat{E})) = \Sigma_{EE} \otimes (I_n - H). \]
The (s × s) matrix version of the residual sum of squares is

\[S_e = \hat{E}\hat{E}^\tau = (Y_c - \hat{\Theta}X_c)(Y_c - \hat{\Theta}X_c)^\tau = Y_c(I_n - H)Y_c^\tau. \] (6.31)

It is not difficult to show that \(S_e = \mathcal{E}(I_n - H)\mathcal{E}^\tau \). Let \(\mathcal{E}(j) \) be the \(j \)th row of \(\mathcal{E} \). Then, the \(jk \)th element of \(S_e \) can be written as

\[(S_e)_{jk} = \mathcal{E}(j)(I_n - H)\mathcal{E}^\tau(k), \]

whence,

\[E\{ (S_e)_{jk} \} = E\{ \text{tr}((I_n - H)\mathcal{E}^\tau(k)\mathcal{E}(j)) \} = \text{tr}(I_n - H) \cdot (\Sigma_{\mathcal{E}\mathcal{E}})_{jk} = (n - r)(\Sigma_{\mathcal{E}\mathcal{E}})_{jk}. \]

We can now state the statistical properties of an estimate of the error covariance matrix. The residual covariance matrix,

\[\hat{\Sigma}_{\mathcal{E}\mathcal{E}} = \frac{1}{n - r} S_e, \] (6.32)

is statistically independent of \(\hat{\Theta} \) and has a Wishart distribution with \(n - r \) degrees of freedom and expectation \(\Sigma_{\mathcal{E}\mathcal{E}} \). We see that the residual covariance matrix \(\hat{\Sigma}_{\mathcal{E}\mathcal{E}} \) is an unbiased estimator for the error covariance matrix \(\Sigma_{\mathcal{E}\mathcal{E}} \).

The covariance matrix of \(\hat{\Theta} \) can, therefore, be estimated by

\[\hat{\text{cov}}(\text{vec}(\hat{\Theta})) = \hat{\Sigma}_{\mathcal{E}\mathcal{E}} \otimes (X_cX_c^\tau)^{-1}, \] (6.33)

where \(\hat{\Sigma}_{\mathcal{E}\mathcal{E}} \) is given by (6.32).

Confidence Intervals

We can now construct confidence intervals for arbitrary linear combinations of \(\text{vec}(\Theta) \). Let \(\gamma \) be an arbitrary \(sr \)-vector and consider \(\gamma^\tau \text{vec}(\hat{\Theta}) \). Assuming the error vectors are \(s \)-variate Gaussian as in (6.23), the independence of (6.15) and (6.32) means that the pivotal quantity

\[t = \frac{\gamma^\tau(\text{vec}(\hat{\Theta} - \Theta))}{\{ \gamma^\tau(\hat{\Sigma}_{\mathcal{E}\mathcal{E}} \otimes (X_cX_c^\tau)^{-1})\gamma \}^{1/2}} \] (6.34)

has the Student’s \(t \)-distribution with \(n - r \) degrees of freedom. Thus, a \((1 - \alpha) \times 100\% \) confidence interval for \(\gamma^\tau \text{vec}(\Theta) \) can be given by

\[\gamma^\tau \text{vec}(\hat{\Theta}) \pm t_{n-r}^{\alpha/2} \{ \gamma^\tau(\hat{\Sigma}_{\mathcal{E}\mathcal{E}} \otimes (X_cX_c^\tau)^{-1})\gamma \}^{1/2}, \] (6.35)

where \(t_{n-r}^{\alpha/2} \) is the \((1 - \alpha/2) \times 100\%-\)point of the \(t_{n-r} \)-distribution.
FIGURE 6.1. Three-variable Box–Behnken design for the Norwegian Paper Quality experiment. The three variables, X_1, X_2, and X_3, each have values $-1,0,1$. There are 13 design points consisting of the midpoints of each of the 12 edges of a three-dimensional cube and a point at the center of the cube. Source: NIST/SEMATECH e-Handbook of Statistical Methods, www.itl.nist.gov/div898/handbook/pri/section3/pri3362.htm.

6.2.2 Example: Norwegian Paper Quality

These data1 were obtained from a controlled experiment carried out in the paper-making factory of Norske Skog located in Skogn, Norway (Aldrin, 2000), which is the world’s second-largest producer of publication paper. There are $s = 13$ response variables, Y_1,\ldots,Y_{13}, which measure different characteristics of paper.

The purpose of the experiment was to uncover how these response variables were influenced by three predictor variables, X_1, X_2, X_3, each of which is controlled exactly with values $-1,0,1$ according to a 3-variable Box–Behnken design (Box and Behnken, 1960). See Figure 6.1. The 13-point design can be represented as the midpoints of each of the 12 edges of a three-dimensional cube and a point $(0,0,0)$ at the center of the cube.

At each of 11 design points, the response variables were measured twice; at the design point $(0,1,1)$, the response variables were measured only once; at the center point, the response variables were measured six times. To allow for interactions and nonlinear effects, the standard model for such designs includes an additional six predictor variables defined as $X_4 = X_1^2, X_5 = X_2^2, X_6 = X_3^2, X_7 = X_1X_2, X_8 = X_1X_3, X_9 = X_2X_3$, so that $r = 9$. The data set, therefore, consists of 29 observations measured on each of $r + s = 9 + 13 = 22$ variables.

1The data, which originally appeared in Aldrin (1996), can be found in the file norwaypaper1.txt on the book’s website or can be downloaded from the StatLib website lib.stat.cmu.edu/datasets.
TABLE 6.1. Norwegian paper quality data. This is the \((13 \times 9)\)-matrix of estimated regression coefficients, \(\hat{\Theta}\). The number of \(X\)-variables is \(r = 9\), the number of \(Y\)-variables is \(s = 13\), and the number of observations is \(n = 29\).

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.752</td>
<td>-0.449</td>
<td>-0.365</td>
<td>0.105</td>
<td>-0.291</td>
<td>0.545</td>
<td>0.111</td>
<td>0.390</td>
<td>0.217</td>
</tr>
<tr>
<td>-0.844</td>
<td>0.350</td>
<td>0.369</td>
<td>-0.039</td>
<td>0.226</td>
<td>-0.567</td>
<td>-0.141</td>
<td>-0.537</td>
<td>-0.324</td>
</tr>
<tr>
<td>0.286</td>
<td>-0.670</td>
<td>-0.572</td>
<td>0.044</td>
<td>-0.283</td>
<td>0.534</td>
<td>0.065</td>
<td>0.408</td>
<td>-0.163</td>
</tr>
<tr>
<td>0.497</td>
<td>-0.491</td>
<td>-0.666</td>
<td>0.142</td>
<td>-0.391</td>
<td>0.450</td>
<td>0.068</td>
<td>0.195</td>
<td>0.020</td>
</tr>
<tr>
<td>0.515</td>
<td>0.143</td>
<td>-0.570</td>
<td>-0.182</td>
<td>-0.372</td>
<td>0.420</td>
<td>-0.158</td>
<td>0.792</td>
<td>0.602</td>
</tr>
<tr>
<td>-0.717</td>
<td>0.039</td>
<td>-0.215</td>
<td>0.346</td>
<td>-0.362</td>
<td>0.055</td>
<td>0.139</td>
<td>0.462</td>
<td>0.125</td>
</tr>
<tr>
<td>0.878</td>
<td>0.051</td>
<td>-0.269</td>
<td>-0.324</td>
<td>-0.015</td>
<td>0.228</td>
<td>-0.243</td>
<td>0.126</td>
<td>0.255</td>
</tr>
<tr>
<td>-0.564</td>
<td>0.194</td>
<td>-0.357</td>
<td>-0.002</td>
<td>-0.427</td>
<td>0.046</td>
<td>0.236</td>
<td>-0.446</td>
<td>0.257</td>
</tr>
<tr>
<td>0.287</td>
<td>0.497</td>
<td>-0.600</td>
<td>-0.382</td>
<td>-0.011</td>
<td>0.837</td>
<td>0.143</td>
<td>0.380</td>
<td>-0.121</td>
</tr>
<tr>
<td>-0.654</td>
<td>-0.145</td>
<td>0.111</td>
<td>0.221</td>
<td>-0.354</td>
<td>-0.524</td>
<td>0.057</td>
<td>-0.682</td>
<td>0.336</td>
</tr>
<tr>
<td>0.174</td>
<td>-0.714</td>
<td>0.329</td>
<td>0.146</td>
<td>0.143</td>
<td>-0.144</td>
<td>0.086</td>
<td>-0.826</td>
<td>-0.731</td>
</tr>
<tr>
<td>-0.526</td>
<td>0.283</td>
<td>0.541</td>
<td>-0.832</td>
<td>0.428</td>
<td>0.339</td>
<td>0.214</td>
<td>0.125</td>
<td>0.173</td>
</tr>
<tr>
<td>0.505</td>
<td>0.052</td>
<td>0.428</td>
<td>-0.704</td>
<td>0.561</td>
<td>0.557</td>
<td>-0.231</td>
<td>-0.245</td>
<td>-0.181</td>
</tr>
</tbody>
</table>

Regressing \(Y = (Y_1, \cdots, Y_{13})^\tau\) on \(X = (X_1, \cdots, X_9)^\tau\), using formulas (6.15) and (6.16), yields the estimated mean vector \(\hat{\mu}\),

\[
\hat{\mu} = (32.393, 31.678, 7.034, 7.826, 14.734, 12.455, 9.996, 18.502, 22.414, 17.817, 21.405, 90.166, 23.547)^\tau,
\]

and the \((13 \times 9)\)-matrix of estimated regression coefficients \(\hat{\Theta}\), which is given in Table 6.1. Each row of Table 6.1 can also be obtained by regressing the \(Y\) variable corresponding to that row on all nine \(X\) variables; see Ex. 6.8.

6.2.3 Separate and Multivariate Ridge Regressions

As we have seen, multivariate OLS regression reduces to a collection of \(s\) separate multiple OLS regressions. We can improve substantially upon OLS while still pursuing an equation-by-equation regression strategy by applying a biased regression procedure, such as ridge regression, separately to each output variable.

Using the penalized least-squares formulation of uniresponse ridge regression (see Section 5.8.3), let

\[
\phi_j(\beta) = (y_j - X\beta)^\tau (y_j - X\beta) + \lambda_j \beta^\tau \beta, \quad j = 1, 2, \ldots, s, \tag{6.37}
\]

where we allow the possibility for different ridge parameters, \(\{\lambda_j\}\), for each equation. Separate ridge-regression estimators are the solutions to

\[
\hat{\beta}(\lambda_j) = \arg \min_{\beta} \phi_j(\beta), \quad j = 1, 2, \ldots, s, \tag{6.38}
\]
and the separate ridge parameters can be estimated using leave-one-out
cross-validation,
\[
\hat{\lambda}_j = \underset{\lambda}{\text{arg min}} \left\{ \sum_{i=1}^{n} (y_{j,i} - \tilde{y}_{j,-i}(\lambda))^2 \right\}, \quad j = 1, 2, \ldots, s, \tag{6.39}
\]
where \(\tilde{y}_{j,-i}(\lambda) \) is the predicted value (using ridge regression with ridge pa-
rameter \(\lambda \)) of the \(i \)th case of the \(j \)th response variable when the entire \(i \)th case is deleted from the learning set (Breiman and Friedman, 1997). Variations on this idea have been used to predict the outcome on election night in every British general election (and British elections to the European parliament) since 1974 (Brown, Firth, and Payne, 1999).

Although ridge regression can be predictively more accurate than is OLS in the case of a single output variable, this equation-by-equation strategy is unsatisfactory because it circumvents the issue that the output variables are correlated and that the combined ridge estimators do not yield a proper Bayes procedure.

Several extensions of (5.99) for the multivariate case have since been proposed that recognize the true multivariate nature of the problem. From (6.15), we have that
\[
\text{vec}(\hat{\Theta}) = (I_s \otimes X_c X_c^\tau)^{-1} (I_s \otimes X_c) \text{vec}(Y_c). \tag{6.40}
\]
A multivariate analogue of (5.99) can be based upon (6.40) by introducing a positive-definite \((s \times s)\) ridge matrix \(K \) so that
\[
\text{vec}(\hat{\Theta}(K)) = (I_s \otimes X_c X_c^\tau + (K \otimes I_r))^{-1} (I_s \otimes X_c) \text{vec}(Y_c) \tag{6.41}
\]
is a multivariate ridge regression estimator of \(\text{vec}(\Theta) \) (Brown and Zidek, 1980, 1982). The application of (6.41) to predicting British elections uses a diagonal \(K \). Even if \(X_c^\tau X_c \) is almost singular, (6.41) is still computable. Note that (6.41) reduces to (6.40) if \(K = 0 \). If \(K \) is chosen from the data, then the multivariate ridge estimator (6.41) becomes adaptive. A more complicated version of (6.41) was proposed by Haitovsky (1987).

6.2.4 Linear Constraints on the Regression Coefficients

It is sometimes necessary to consider a more restricted model than the classical multivariate regression model. In certain practical situations, we might need the elements of the regression coefficient matrix \(\Theta \) in the classical model \(Y_c = \Theta X_c + E \) to satisfy a set of known linear constraints.

A variety of applications can be based upon the general set of linear constraints,
\[
K \Theta L = \Gamma, \tag{6.42}
\]
where the matrix $K (m \leq s)$ and the matrix $L (u \leq r)$ are full-rank matrices of known constants, and Γ is a matrix of parameters (known or unknown). We often take $\Gamma = 0$.

In (6.42), the matrix K is used to set up relationships between the different columns of Θ (e.g., treatments), whereas L generates possible relationships between the different responses. In many problems of this kind, it is common to take $L = (I_u \vdash 0)^\tau$, where 0 is a $(u \times (r - u))$-matrix of zeroes. There are also situations in which L can be made more specific; in fact, L is peculiar to the multiresponse problem and does not have any analogue in the uniresponse situation.

Variable Selection

For example, suppose we wish to study whether a specific subset of the r input variables has little or no effect on the behavior of the output variables. Suppose we arrange the rows of X_c so that

$$X_c = (X_{c1}^\tau : X_{c2}^\tau)^\tau,$$

where X_{c1} has r_1 rows and X_{c2} has $r = r - r_1$ rows. Suppose we believe that the variables included in X_{c2} do not belong in the regression. Corresponding to the partition of X_c, we set $\Theta = (\Theta_1 \vdash \Theta_2)$, so that

$$Y_c = \Theta_1 X_{c1} + \Theta_2 X_{c2} + \mathcal{E}.$$

(6.44)

To study whether the input variables included in X_{c2} can be eliminated from the model, we set $K = I_s$ and $L = (0 \vdash I_{r_2 \times u})^\tau$, where 0 is a $(u \times r_1)$-matrix of zeroes and $I_{r_2 \times u}$ is an $(r_2 \times u)$-matrix of ones along the “diagonal” and zeroes elsewhere, so that $K\Theta L = \Theta_2 = 0$.

Profile Analysis

The constraints (6.42) can be used to handle a variety of experimental design problems. Such problems include profile analysis, where scores on a battery of tests (e.g., different treatments) are recorded on several independent groups of subjects and compared with each other. Typically, profile analysis is carried out on multivariate data obtained from longitudinal studies or clinical trials, where the components of each data vector are ordered by time.

The simplest form of profile analysis deals with a one-way layout in which there are r groups of subjects, where the jth group consists of n_j subjects selected randomly to receive one of r treatments, and $n_1 + n_2 + \cdots + n_r = n$.
The scores, which are assumed to be expressed in comparable units, on the s tests by the ith subject are given by the ith column in the $(s \times n)$-matrix $Y = (Y_1, \ldots, Y_n)$. We assume the model,

$$Y_i = \mu + \mu_i + \mathcal{E}_i, \quad i = 1, 2, \ldots, n, \quad (6.45)$$

where Y_i is a random s-vector, μ is an s-vector of constants that represents an overall mean vector, $(\mu_1, \ldots, \mu_n) = \Theta \mathcal{X}$ is an $(s \times n)$-matrix of fixed constants, and \mathcal{E}_i is a random s-vector with mean 0 and covariance matrix $\Sigma_{\mathcal{E}\mathcal{E}}$, $i = 1, 2, \ldots, n$. For convenience, we assume $\mu = 0$.

The design matrix \mathcal{X} is constructed using n dummy variables as columns, where the jth row value of the ith column equals 1 if the ith subject is in the jth group, and 0 otherwise:

$$r \times n \quad \mathcal{X} = \begin{pmatrix} 1 & \cdots & 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 1 \end{pmatrix}. \quad (6.46)$$

The matrix of regression coefficients Θ is given by:

$$s \times r \quad \Theta = \begin{pmatrix} \theta_{11} & \cdots & \theta_{1r} \\ \vdots & \ddots & \vdots \\ \theta_{s1} & \cdots & \theta_{sr} \end{pmatrix}. \quad (6.47)$$

The treatment-mean profile for the jth group is defined as the s-vector $s \times 1 \quad \theta_j = (\theta_{1j}, \ldots, \theta_{sj})^\tau$, $j = 1, 2, \ldots, r$. \quad (6.48)

The profile of the jth group is displayed as a graph of the points (k, θ_{kj}), $k = 1, 2, \ldots, s$; we connect successive points, (k, θ_{kj}) and $(k + 1, \theta_{k+1,j})$, $k = 1, 2, \ldots, s - 1$, by straight lines. All group profiles are plotted on the same graph for visual comparison.

The population profiles of the r groups are said to be similar if the line segments joining successive points of each group’s profile are parallel to the corresponding line segments of the profiles of all the other groups. In other words, the population profiles of the different groups are identical but with a constant difference between each pair of profiles. Figure 6.2 displays an example of parallel treatment-mean profiles of three groups ($r = 3$) at five different timepoints ($s = 5$). Restricting the profiles to be similar is equivalent to asserting that there is no interaction between treatments and groups.
FIGURE 6.2. Profile plots of population treatment means at five time-points ($s = 5$) on each of three hypothetical groups ($r = 3$), where the group profiles are parallel to each other.

This similarity of the r profiles can be expressed as a set of linear constraints on Θ. To do this, we set the matrix K to be

$$K = \begin{pmatrix}
1 & -1 & 0 & \ldots & 0 \\
0 & 1 & -1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & -1
\end{pmatrix} \quad (6.49)$$

and the matrix L to be

$$L = \begin{pmatrix}
1 & 0 & 0 & \ldots & 0 \\
-1 & 1 & 0 & \ldots & 0 \\
0 & -1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & -1
\end{pmatrix}, \quad (6.50)$$

so that $K1_s = 0$ and $L^T1_r = 0$. Setting $K\Theta L = 0$ gives constraints on Θ that reduce to

$$\begin{pmatrix}
\theta_{11} - \theta_{12} \\
\vdots \\
\theta_{1,r-1} - \theta_{1r}
\end{pmatrix} = \cdots = \begin{pmatrix}
\theta_{s1} - \theta_{s2} \\
\vdots \\
\theta_{s,r-1} - \theta_{sr}
\end{pmatrix}. \quad (6.51)$$

Thus, the r treatment mean profiles are to be piecewise-parallel to each other. Alternative K and L for this problem are
\[K = (I_{s-1} : -1_s), \quad L = (I_{r-1} : -1_r)^\top, \]
\[\text{(6.52)} \]

where \(1_s \) is an \(s \)-vector of ones.

We can constrain the population treatment mean profiles further, so that not only are they parallel, but also we could require them to be “coincident” (i.e., identical). To do this, take \(K = 1_s^\top \) and \(L \) as in (6.52), whence, \(K\Theta L = 0 \) translates to \(1_s^\top \theta_1 = 1_s^\top \theta_2 = \cdots = 1_s^\top \theta_r \), which is the condition needed for coincidental profiles.

Constrained Estimation

Consider the problem of finding \(\Theta^* \) that solves the following constrained minimization problem:

\[\hat{\Theta}^* = \arg \min_{\Theta \in \mathcal{L}} \text{tr}\{(Y_c - \Theta X_c)^\top (Y_c - \Theta X_c)\}. \]
\[\text{(6.53)} \]

Let \(\Lambda = (\lambda_{ij}) \) be a matrix of Lagrangian coefficients. The normal equations are:

\[\hat{\Theta}^* X_c^\tau c + K^\top \Lambda L^\tau = Y_c X_c^\tau \]
\[\text{(6.54)} \]

\[K\hat{\Theta}^* L = \Gamma. \]
\[\text{(6.55)} \]

From (6.54), we get

\[\hat{\Theta}^* = \hat{\Theta} - K^\tau \Lambda L^\tau (X_c^\tau X_c^{-1})^{-1}, \]
\[\text{(6.56)} \]

where \(\hat{\Theta} \) is given by (6.15). Substituting (6.56) into (6.55) gives

\[KK^\tau \Lambda L^\tau (X_c^\tau X_c^{-1})^{-1} L = K\hat{\Theta} L - \Gamma. \]
\[\text{(6.57)} \]

Solving this last expression for \(\Lambda \) gives

\[\Lambda = (KK^\tau)^{-1} (K\hat{\Theta} L - \Gamma)(L^\tau (X_c^\tau X_c^{-1})^{-1} L)^{-1}, \]
\[\text{(6.58)} \]

assuming the appropriate inverses exist. Substituting (6.58) into (6.56) yields

\[\hat{\Theta}^* = \hat{\Theta} - K^\tau (KK^\tau)^{-1} (K\hat{\Theta} L - \Gamma)(L^\tau (X_c^\tau X_c^{-1})^{-1} L)^{-1} L^\tau (X_c^\tau X_c^{-1})^{-1}. \]
\[\text{(6.59)} \]

Check that premultiplying (6.59) by \(K \) and postmultiplying by \(L \) leads to \(K\hat{\Theta}^* L = \Gamma \) as required by the constraint in (6.55).

It is common practice in profile analysis to plot the points \((k, \hat{\theta}_{kj}^*), k = 1, 2, \ldots, s\), corresponding to the \(j \)th group, and connect them by straight lines. The treatment-mean profiles for all \(r \) groups are usually plotted on the same graph for easy visual comparison.
Multivariate Analysis of Variance (MANOVA)

We now set up the *multivariate analysis of variance (MANOVA)* table for the constrained model. The matrix version of the residual sum of squares, S_e^*, under the constrained model is given by

$$
S_e^* = (\mathbf{Y}_c - \mathbf{\hat{\Theta}} \mathbf{\hat{\chi}})^T (\mathbf{Y}_c - \mathbf{\hat{\Theta}} \mathbf{\hat{\chi}})^T
$$

$$
= ((\mathbf{Y}_c - \mathbf{\hat{\Theta}} \mathbf{\hat{\chi}}) + (\mathbf{\hat{\Theta}} - \mathbf{\hat{\Theta}}^T) \mathbf{\hat{\chi}})((\mathbf{Y}_c - \mathbf{\hat{\Theta}} \mathbf{\hat{\chi}}) + (\mathbf{\hat{\Theta}} - \mathbf{\hat{\Theta}}^T) \mathbf{\hat{\chi}})^T
$$

$$
= (\mathbf{Y}_c - \mathbf{\hat{\Theta}} \mathbf{\hat{\chi}})(\mathbf{Y}_c - \mathbf{\hat{\Theta}} \mathbf{\hat{\chi}})^T + (\mathbf{\hat{\Theta}} - \mathbf{\hat{\Theta}}^T) \mathbf{\hat{\chi}} \mathbf{\hat{\chi}}^T (\mathbf{\hat{\Theta}} - \mathbf{\hat{\Theta}}^T)^T, \quad (6.60)
$$

where the first term on the rhs of (6.60) is the matrix version of the residual sum of squares, S_e, for the unconstrained model, and the second term is the additional source of variation, $S_h = S_e - S_e^*$, due to dropping the constraints. The cross-product terms disappear because $(\mathbf{Y}_c - \mathbf{\hat{\Theta}} \mathbf{\hat{\chi}}) \mathbf{\hat{\chi}}^T = 0$. Note that S_e is given by (6.31). Furthermore, the matrix version of the regression sum of squares, S_{reg}, for the unconstrained model is given by

$$
S_{reg} = \mathbf{\hat{\Theta}} \mathbf{\hat{\chi}}^T \mathbf{\hat{\chi}}^T (\mathbf{\hat{\Theta}} - \mathbf{\hat{\Theta}}^T)^T
$$

$$
= (\mathbf{\hat{\Theta}}^T + (\mathbf{\hat{\Theta}} - \mathbf{\hat{\Theta}}^T) \mathbf{\hat{\chi}}^T (\mathbf{\hat{\Theta}} - \mathbf{\hat{\Theta}}^T))^T
$$

$$
= \mathbf{\hat{\Theta}}^T \mathbf{\hat{\chi}}^T \mathbf{\hat{\chi}}^T (\mathbf{\hat{\Theta}} - \mathbf{\hat{\Theta}}^T)^T, \quad (6.61)
$$

where the cross-product terms disappear. The first term on the rhs of (6.61) is S_{reg}^*, the matrix version of the regression sum of squares for the constrained model, and the second term is, again, S_h.

We can collect these results in a MANOVA table — see Table 6.2 — in which both the constrained and unconstrained regression models are set out so that their sums of squares and degrees of freedom add up appropriately.

Using (6.58), we can write S_h more explicitly as follows:

$$
S_h = \mathbf{K}^T (\mathbf{K} \mathbf{K}^T)^{-1} (\mathbf{K} \mathbf{\hat{\Theta}} \mathbf{L} - \mathbf{\Gamma}) (\mathbf{L}^T (\mathbf{\hat{\chi}}^T \mathbf{\hat{\chi}}^T)^{-1} \mathbf{L})^{-1} (\mathbf{K} \mathbf{\hat{\Theta}} \mathbf{L} - \mathbf{\Gamma})^T (\mathbf{K} \mathbf{K}^T)^{-1} \mathbf{K}. \quad (6.62)
$$

Substituting (6.15) into (6.62), expanding, and taking expectations, we get

$$
E(S_h) = \mathbf{D}(\mathbf{K} \mathbf{\Theta} \mathbf{L} - \mathbf{\Gamma})(\mathbf{L}^T (\mathbf{\hat{\chi}}^T \mathbf{\hat{\chi}}^T)^{-1} \mathbf{L})^{-1} (\mathbf{K} \mathbf{\hat{\Theta}} \mathbf{L} - \mathbf{\Gamma})^T \mathbf{D}^T
$$

$$
+ \mathbf{F} \cdot E(\mathbf{E} \mathbf{G} \mathbf{E}^T) \cdot \mathbf{F}^T, \quad (6.63)
$$

where $\mathbf{D} = \mathbf{K}^T (\mathbf{K} \mathbf{K}^T)^{-1}$, $\mathbf{F} = \mathbf{D} \mathbf{K}$, and

$$
\mathbf{G} = \mathbf{\hat{\chi}}^T (\mathbf{\hat{\chi}}^T \mathbf{\hat{\chi}}^T)^{-1} \mathbf{L} (\mathbf{L}^T (\mathbf{\hat{\chi}}^T \mathbf{\hat{\chi}}^T)^{-1} \mathbf{L})^{-1} \mathbf{L}^T (\mathbf{\hat{\chi}}^T \mathbf{\hat{\chi}}^T)^{-1} \mathbf{\hat{\chi}}^T. \quad (6.64)
$$

Notice that $\mathbf{F}^2 = \mathbf{F} = \mathbf{F}^T$ and $\mathbf{G}^2 = \mathbf{G} = \mathbf{G}^T$, so that \mathbf{F} and \mathbf{G} are both projections. Now, the jkth entry in the $(s \times s)$-matrix $\mathbf{E} \mathbf{G} \mathbf{E}^T$ in (6.63) is the quadratic form $E_{(j)} \mathbf{G} \mathbf{E}^T_{(k)} = \sum_u \sum_v G_{uv} E_{ju} E_{kv}$, where $E_{(j)} = (E_{ju})$.
TABLE 6.2. MANOVA table for the constrained and unconstrained multivariate regression models, where \(u = \text{rank}(K) \).

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>df</th>
<th>Sum of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constrained model</td>
<td>(r - u)</td>
<td>(S_{reg}^* = \hat{\Theta}^\tau \lambda_c \lambda_c^\tau \hat{\Theta}^{\tau})</td>
</tr>
<tr>
<td>Due to dropping constraints</td>
<td>(u)</td>
<td>(S_h = (\hat{\Theta} - \hat{\Theta}^\tau) \lambda_c \lambda_c^\tau (\hat{\Theta} - \hat{\Theta}^\tau)^\tau)</td>
</tr>
<tr>
<td>Unconstrained model</td>
<td>(r)</td>
<td>(S_{reg} = \hat{\Theta} \lambda_c \lambda_c^\tau \hat{\Theta}^\tau)</td>
</tr>
<tr>
<td>Residual</td>
<td>(n - r - 1)</td>
<td>(S_e = (Y_c - \hat{\Theta} \lambda_c) (Y_c - \hat{\Theta} \lambda_c)^\tau)</td>
</tr>
<tr>
<td>Total</td>
<td>(n - 1)</td>
<td>(Y_c Y_c^\tau)</td>
</tr>
</tbody>
</table>

is the \(j \)th row of \(\mathcal{E} \). So, its expected value is given by \(E(\mathcal{E}^{(j)} G \mathcal{E}^{(k)^\tau}) = \sum_u G_{uu}(\Sigma_{\mathcal{E} \mathcal{E}})_{jk} = (\Sigma_{\mathcal{E} \mathcal{E}})_{jk} \cdot \text{tr}(G) \). Thus, \(E(\mathcal{E} G \mathcal{E}^\tau) = u \Sigma_{\mathcal{E} \mathcal{E}} \), because \(\text{tr}(G) = \text{tr}(I_u) = u \).

General Linear Hypothesis

From Table 6.2, we can test the general linear hypothesis,

\[
\mathcal{H}_0 : K \Theta L = \Gamma \quad \text{vs.} \quad \mathcal{H}_1 : K \Theta L \neq \Gamma.
\]

(6.65)

Under \(\mathcal{H}_0 \), \(E\{S_h/u\} = FS_{\mathcal{E} \mathcal{E}} F^\tau \). Furthermore, \(E\{S_e/(n-r-1)\} = \Sigma_{\mathcal{E} \mathcal{E}} \). A formal significance test of \(\mathcal{H}_0 \) vs. \(\mathcal{H}_1 \) can, therefore, be realized through a function (e.g., determinant, trace, or largest eigenvalue) of the quantity \(FS_h F^\tau (FS_e F^\tau)^{-1} \), where we use the fact that \(F \) is a projection matrix. Related test statistics have been proposed in the literature, including the following functions of \(S_h \) and \(S_e \):

1. **Hotelling–Lawley trace statistic**: \(\text{tr}\{S_h S_e^{-1}\} \)

2. **Roy’s largest root**: \(\lambda_{\text{max}}\{S_h S_e^{-1}\} \)

3. **Wilks’s lambda (likelihood ratio criterion)**: \(|S_e|/|S_h + S_e| \)

Under \(\mathcal{H}_0 \) and appropriate distributional assumptions, Hotelling–Lawley’s trace statistic and Roy’s largest root should both be small, whereas Wilk’s
lambda should be large (i.e., close to 1) under \mathcal{H}_0. In other words, we would reject \mathcal{H}_0 in favor of \mathcal{H}_1 if the trace statistic or largest root were large and if Wilk’s lambda were small (i.e., close to 0). Properties of these statistics are given in Anderson (1984, Chapter 8).

We can also compute an appropriate confidence region for $K\theta L - \Gamma$ by using the statistic $K\hat{\theta} L - \Gamma$. A formal significance test can be constructed from the resulting confidence region; if the confidence region does not contain 0, we say that the evidence from the data favors \mathcal{H}_1 rather than \mathcal{H}_0.

6.3 The Random-X Case

In this section, we treat the case where

$$
\begin{align*}
X^{\times 1} &= (X_1, \ldots, X_r)^\top, \\
Y^{\times 1} &= (Y_1, \ldots, Y_s)^\top,
\end{align*}
$$

(6.66)

are jointly distributed, with X having mean vector μ_X and Y having mean vector μ_Y, and with joint covariance matrix,

$$
\begin{pmatrix}
\Sigma_{XX} & \Sigma_{XY} \\
\Sigma_{YX} & \Sigma_{YY}
\end{pmatrix}.
$$

(6.67)

For convenience in exposition, we assume $s \leq r$. Although X is presumed to be the larger of the two sets of variates, this reflects purely a mathematical convenience, and similar expressions as appear here can be obtained in the case in which $r \leq s$. The variables X and Y are assumed to be continuous but may also include transformations (e.g., logs, square-roots, reciprocals), powers (e.g., squares, cubes), products, or ratios of the input variables. Notice that we have not assumed that the joint distribution of (6.66) is Gaussian.

6.3.1 Classical Multivariate Regression Model

Suppose Y is related to X by the following multivariate linear model:

$$
Y^{\times 1} = \mu^{\times 1} + \Theta^{\times r} X^{\times 1} + \epsilon^{\times 1},
$$

(6.68)

where μ and the regression coefficient matrix Θ are the unknown parameters and ϵ is the unobservable error component of the model with mean $E(\epsilon) = 0$ and unknown $(s \times s)$ error covariance matrix $\text{cov}(\epsilon) = \Sigma_{\epsilon\epsilon}$, and ϵ is distributed independently of X. Our first goal is to obtain suitable expressions for μ, Θ, and $\Sigma_{\epsilon\epsilon}$ that are optimal in a least-squares sense.
We are interested in finding the s-vector μ and $(s \times r)$-matrix Θ that minimize the $(s \times s)$-matrix,

$$W(\mu, \Theta) = E\{(Y - \mu - \Theta X)(Y - \mu - \Theta X)^\top\},$$

(6.69)

where the expectation is taken over the joint distribution of $(X^\top, Y^\top)^\tau$. Set $Y_c = Y - \mu_Y$ and $X_c = X - \mu_X$, and assume that Σ_{XX} is nonsingular. Expanding the right-hand-side of (6.69), we get that

$$W(\mu, \Theta) = E\{(Y_c^\top - \Theta X_c^\top)(\Theta X_c Y_c^\top - \Theta X_c)\}$$

$$= (\Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY})$$

$$+ (\Sigma_{XY} \Sigma_{XX}^{-1} - \Theta \Sigma_{XX}^{-1/2} \Theta)$$

$$+ (\mu - \mu_Y + \Theta \mu_X)(\mu - \mu_Y + \Theta \mu_X)^\top$$

$$\leq \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY},$$

(6.70)

with equality when

$$\mu = \mu_Y - \Theta \mu_X$$

(6.71)

$$\Theta = \Sigma_{XX}^{-1} \Sigma_{XY}.$$

(6.72)

The minimum achieved is $\Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$. The μ and Θ given by (6.71) and (6.72), respectively, minimize (6.69) and also minimize the trace, determinant, and jth largest eigenvalue of (6.69).

The $(s \times r)$-matrix Θ is called the (full-rank) regression coefficient matrix of Y on X, and

$$Y = \mu_Y + \Sigma_{YY} \Sigma_{XX}^{-1} (X - \mu_X)$$

(6.73)

is the (full-rank) linear regression function of Y on X, where “full rank” refers to the rank of Θ. At the minimum, the error variate is

$$E = Y - \mu_Y - \Sigma_{YY} \Sigma_{XX}^{-1} (X - \mu_X) = Y_c - \Sigma_{YX} \Sigma_{XX}^{-1} X_c.$$

(6.74)

From (6.74), we see that $E(E) = 0$, $\Sigma_{E} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$, and $E(E X_c^\top) = 0$.

6.3.2 Multivariate Reduced-Rank Regression

In Section 6.2.4, we described how to place constraints on Θ when X is considered fixed. An alternative way of constraining a multivariate regression model is through a rank condition on the matrix of regression coefficients. The resulting model is called the multivariate reduced-rank regression (RRR) model (Izenman, 1972, 1975). In this section, we describe the RRR scenario in which X and Y are jointly distributed (i.e., the random-X case). The reader is encouraged to develop the RRR model for the fixed-X case (see Exercises 6.4, 6.5, and 6.6).
Most applications of reduced-rank regression have been directed toward problems in time series (time domain and frequency domain) and econometrics. This development has led to the introduction of the related topic of cointegration into the econometric literature.

The Reduced-Rank Regression Model

Consider the multivariate linear regression model given by

\[
\begin{align*}
Y &= \mu + C X + \epsilon, \\
&= \mu + A B X + \epsilon,
\end{align*}
\]

where \(\mu\) and \(C\) are unknown regression parameters, and the unobservable error variate, \(\epsilon\), of the model has mean \(E(\epsilon) = 0\) and covariance matrix \(\text{cov}(\epsilon) = E(\epsilon\epsilon^T) = \Sigma\epsilon\epsilon\), and is distributed independently of \(X\). The difference between this model and that of (6.68) is that we allow the possibility that the rank of the regression coefficient matrix \(C\) is deficient; that is,

\[
\text{rank}(C) = t \leq \min(r, s).
\]

The “reduced-rank” condition (6.76) on the regression coefficient matrix \(C\) brings a true multivariate feature into the model. The rank condition implies that there may be a number of linear constraints on the set of regression coefficients in the model. Unlike the model studied in Section 6.2.4, however, the value of \(t\) and, hence, the number and nature of those constraints may not be known prior to statistical analysis. The name reduced-rank regression was introduced to distinguish the case \(1 \leq t < s\) from full-rank regression, where \(t = s\).

When \(C\) has reduced-rank \(t\), then, there exist two (nonunique) full-rank matrices, an \((s \times t)\) matrix \(A\) and a \((t \times r)\) matrix \(B\), such that \(C = AB\). The nonuniqueness occurs because we can always find a nonsingular \((t \times t)\)-matrix \(T\) such that \(C = (AT)(T^{-1}B) = DE\), which gives a different decomposition of \(C\). The model (6.75) can now be written as

\[
\begin{align*}
Y &= \mu + A B X + \epsilon, \\
&= \mu + A B X + \epsilon.
\end{align*}
\]

Given a sample, \((X^*_1, Y^*_1)^T, \ldots, (X^*_n, Y^*_n)^T\) of observations on \((X^*, Y^*)^T\), our goal is to estimate the parameters \(\mu, A,\) and \(B\) (and, hence, \(C\)) in some optimal manner.

Such a setup can be motivated within a time-series context (Brillinger, 1969). Suppose we wish to send a message based upon the \(r\) components of a vector \(X\) so that the message received, \(Y\), will be composed of \(s\) components. Suppose, further, that such a message can only be transmitted using \(t\) channels \((t \leq s)\). We would, therefore, first need to encode \(X\) into a \(t\)-vector \(\xi = BX\), where \(B\) is a \((t \times r)\)-matrix, and then on receipt of the coded message to decode it using an \((s \times t)\)-matrix \(A\) to form the \(s\)-vector
\[A \xi, \text{ which, it would be hoped, would be as “close” as possible to the desired } Y. \]

One of the primary aspects of reduced-rank regression is to assess the unknown value of the metaparameter \(t \), which we call the effective dimensionality of the multivariate regression (Izenman, 1980).

Minimizing a Weighted Sum-of-Squares Criterion

We, therefore, wish to find an \(s \)-vector \(\mu \), an \((s \times t)\)-matrix \(A \), and a \((t \times r)\)-matrix \(B \) to minimize a weighted sum-of-squares criterion,

\[
W(t) = E\{(Y - \mu - ABX)^\tau \Gamma (Y - \mu - ABX)\},
\]

where \(\Gamma \) is a positive-definite symmetric \((s \times s)\)-matrix of weights and the expectation is taken over the joint distribution of \((X^\tau, Y^\tau)^\tau\). In practice, we try out different forms of \(\Gamma \).

We minimize \(W(t) \) in two steps. As before, let \(X_c \) and \(Y_c \) denote the centered versions of \(X \) and \(Y \), respectively. The first step makes no rank condition on \(C \). The minimizing criterion becomes:

\[
W(t) = \frac{1}{2} tr\{\Sigma_YY - \Sigma_YX \Sigma_X^{-1} \Sigma_X^Y + \Sigma_YX \Sigma_X^{-1/2} \Sigma_{XX} \Sigma_X^{-1/2} \Sigma_{XY} \}
\]

where \(\Sigma_{XX} = \Sigma_X, \Sigma_{YY} = \Gamma^{1/2} \Sigma_{YY} \Gamma^{1/2}, \Sigma_{XY} = \Sigma_{XY} \Gamma^{1/2}, \) and \(C^* = \Gamma^{1/2} C \). Next, we assume that \(C \) has rank \(t \). From the Eckart–Young Theorem (see Section 3.2.10), the last expression is minimized by setting

\[
C^* \Sigma_{XX}^{1/2} = \sum_{j=1}^{t} \lambda_j^{1/2} v_j w_j^\tau,
\]

where \(v_j \) is the eigenvector associated with the \(j \)th largest eigenvalue \(\lambda_j \) of the matrix

\[
\Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XX} = \Gamma^{1/2} \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XX} \Gamma^{1/2}
\]

and

\[
w_j = \lambda_j^{-1/2} \Sigma_{XX}^{-1/2} \Sigma_{XY} v_j = \lambda_j^{-1/2} \Sigma_{XX}^{-1} \Sigma_{XY} \Gamma^{1/2} v_j.
\]

Thus, the minimizing \(C \) with reduced-rank \(t \) is given by

\[
C^{(t)} = \Gamma^{-1/2} \left(\sum_{j=1}^{t} v_j v_j^\tau \right) \Gamma^{1/2} \Sigma_{YX} \Sigma_{XX}^{-1}.
\]
The matrix \(C(t) \) in (6.83) is called the *reduced-rank regression coefficient matrix* with rank \(t \) and weight matrix \(\Gamma \).

It follows that \(W(t) \) in (6.78) is minimized by taking \(\mu, A, \) and \(B \) to be the following functions of \(t \),

\[
\begin{align*}
\mu(t) &= \mu_Y - A(t) B(t) \mu_X, \\
A(t) &= \Gamma^{-1/2} V_t, \\
B(t) &= V_t \Gamma^{-1/2} \Sigma_Y \Sigma_X^{-1} \Sigma_X \Gamma^{1/2},
\end{align*}
\]

respectively, where \(V_t = (v_1, \ldots, v_t) \) is an \((s \times t)\)-matrix, where the \(j \)th column, \(v_j \), is the eigenvector associated with the \(j \)th largest eigenvalue \(\lambda_j \) of the \((s \times s)\) symmetric matrix

\[
\Gamma^{1/2} \Sigma_Y \Sigma_X^{-1} \Sigma_X \Gamma^{1/2}.
\]

A stronger result (Rao, 1979) uses the Poincaré Separation Theorem (see Section 3.2.10) to show that if \(\Gamma = \Sigma_Y^{-1} \), then all the eigenvalues of the matrix

\[
\Gamma^{1/2} (Y - \mu - ABX)(Y - \mu - ABX)^\tau \Gamma^{1/2}
\]

are simultaneously minimized by the above \(\mu(t), A(t), \) and \(B(t) \). Hence, any function of those eigenvalues, which is increasing in each argument (e.g., trace or determinant), is also minimized by that choice.

The minimum value of the criterion \(W(t) \) is given by

\[
W_{\text{min}}(t) = \text{tr} \left\{ (Y_c - C(t) X_c)(Y_c - C(t) X_c)^\tau \Gamma \right\}
\]

\[
= \text{tr} \left\{ \Sigma_{YY} - \Gamma^{-1/2} \left(\sum_{j=1}^{t} \lambda_j v_j v_j^\tau \right) \Gamma^{-1/2} \Gamma \right\}
\]

\[
= \text{tr} \left\{ (\Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}) \Gamma + \sum_{j=t+1}^{s} \lambda_j v_j v_j^\tau \right\}
\]

\[
= \text{tr} \left\{ (\Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}) \right\} + \sum_{j=t+1}^{s} \lambda_j
\]

\[
= \text{tr} \{ \Sigma_{YY} \Gamma \} - \sum_{j=1}^{t} \lambda_j.
\]

When \(t = s \), we have that \(\sum_{j=1}^{s} v_j v_j^\tau = I_s \), whence \(C(t) \) in (6.83) reduces to the full-rank regression coefficient matrix \(\Theta = C(s) \). Furthermore, for any \(t \) and positive-definite matrix \(\Gamma \), the matrices \(C(t) \) and \(\Theta \) are related by the expression \(C(t) = P_{\Gamma}^{(t)} \Theta \), where

\[
P_{\Gamma}^{(t)} = \Gamma^{-1/2} \left(\sum_{j=1}^{t} v_j v_j^\tau \right) \Gamma^{1/2}
\]
is an idempotent, but not symmetric (unless \(\Gamma = I_s \)), \((s \times s)\)-matrix.

Special Cases of RRR

We have seen how the RRR model can be used to generalize the classical multivariate regression model by relaxing the implicit constraint on the rank of \(C \). More importantly, by carefully choosing the input vector \(X \), the output vector \(Y \), and the matrix \(\Gamma \) of weights, RRR can be used to play an important role as a unifying treatment of several classical multivariate procedures that were developed separately from each other.

The primary uses of RRR in the exploratory analysis of multivariate data include the following special cases:

- If we set \(X \equiv Y \) (and \(r = s \)) by making the output variables identical to the input variables, and set \(\Gamma = I_s \), then we have Harold Hotelling’s principal component analysis (see Section 7.2) and exploratory factor analysis (see Section 15.4).

- If we set \(\Gamma = \Sigma_{YY}^{-1} \), then we have Hotelling’s canonical variate and correlation analysis (see Section 7.3).

- Using the canonical variate analysis setup for RRR, if we set \(Y \) to be a vector of binary variables whose component values (0 or 1) indicate the group or class to which an observation belongs, then we have R.A. Fisher’s linear discriminant analysis (see Section 8.5).

- Using the canonical variate analysis setup for RRR, if we set \(X \) and \(Y \) each to be a vector of binary variables whose component values (0 or 1) indicate the row and column of a two-way contingency table to which an observation belongs, then we have correspondence analysis (see Section 18.2).

These special cases of multivariate reduced-rank regression show that the RRR model can be used as a general model for many different types of multivariate statistical analysis. Extensions of this model in other directions (e.g., to multivariate generalized linear models, wavelets, functional data) are currently undergoing development.

Sample Estimates

The mean vectors and covariance matrix of \(X \) and \(Y \) are typically unknown and have to be estimated before we can draw any useful inferences on the regression problem. Accordingly, we assume that a random sample of \(n \) independent observations, \((X_j^\tau, Y_j^\tau)^\tau, j = 1, 2, \ldots, n\), is obtained on the \((r + s)\)-vector \((X^\tau, Y^\tau)^\tau\).
First, we estimate \(\mu_X \) and \(\mu_Y \) by
\[
\hat{\mu}_X = \bar{X} = n^{-1} \sum_{j=1}^{n} X_j, \quad \hat{\mu}_Y = \bar{Y} = n^{-1} \sum_{j=1}^{n} Y_j,
\] (6.91)
respectively. We set
\[
X_{cj} = X_j - \bar{X}, \quad Y_{cj} = Y_j - \bar{Y}, \quad j = 1, 2, \ldots, n,
\] (6.92)
and let
\[
X_c = (X_{c1}, \ldots, X_{cn}), \quad Y_c = (Y_{c1}, \ldots, Y_{cn}).
\] (6.93)
Then, we estimate the components of the covariance matrix (6.67) by
\[
\hat{\Sigma}_{XX} = n^{-1} X_c X_r, \quad \hat{\Sigma}_{YX} = n^{-1} Y_c X_r = \hat{\Sigma}_{XY}, \quad \hat{\Sigma}_{YY} = n^{-1} Y_c Y_r.
\] (6.94-6.96)
All estimates of the unknowns in the multivariate regression models are based upon the appropriate elements of (6.94), (6.95), and (6.96).

Thus, \(A(t) \) in (6.85) and \(B(t) \) in (6.86) are estimated by
\[
\hat{A}^{(t)} = \Gamma^{-1/2} \hat{V}_t, \quad \hat{B}^{(t)} = \hat{V}_t^\top \Gamma^{1/2} \hat{\Sigma}_{YY}^{-1},
\] (6.97-6.98)
respectively, where
\[
\hat{V}_t = (\hat{v}_1, \ldots, \hat{v}_t)
\] (6.99)
is an \((s \times t)\)-matrix, the \(j \)th column, \(\hat{v}_j \), of which is the eigenvector associated with the \(j \)th largest eigenvalue \(\hat{\lambda}_j \) of the \((s \times s)\) symmetric matrix
\[
\Gamma^{1/2} \hat{\Sigma}_{YY}^{-1} \hat{\Sigma}_{XX} \Gamma^{1/2},
\] (6.100)
\(j = 1, 2, \ldots, s \). The reduced-rank regression coefficient matrix \(C^{(t)} \) in (6.83) is estimated by
\[
\hat{C}^{(t)} = \Gamma^{-1/2} \left(\sum_{j=1}^{t} \hat{v}_j \hat{v}_j^\top \right) \Gamma^{1/2} \hat{\Sigma}_{YY}^{-1} \hat{\Sigma}_{XX}^{-1},
\] (6.101)
and the full-rank regression coefficient matrix \(\Theta \) is estimated by
\[
\hat{\Theta} = \hat{C}^{(s)} = \hat{\Sigma}_{YY}^{-1} \hat{\Sigma}_{XX}^{-1}.
\] (6.102)
The sample estimators (6.97), (6.98), (6.100), (6.101), and (6.102) are identical to the estimators that appear in the reduced-rank regression solution
and full-rank regression solution when X is fixed (Exercise 6.4). It follows that the matrix of fitted values and the matrix of residuals for the random-X case are identical to those for the fixed-X case. Although the two formulations of the regression model are different, they yield identical sample estimates.

In many applications, it is not unusual to find that the matrix $\hat{\Sigma}_{XX}$ and/or the matrix $\hat{\Sigma}_{YY}$ are singular, or at least difficult to invert. This happens, for example, when $r, s > n$. We could replace their inverses by generalized inverses, but, based upon practical experience with the methods described in Section 6.3.4, we suggest the following alternative solution.

We borrow an idea from ridge regression, where we replace $\hat{\Sigma}_{XX}$ and $\hat{\Sigma}_{YY}$ in the RRR computations by a slight perturbation of their diagonal entries,

$$\hat{\Sigma}_{XX}^{(k)} = \hat{\Sigma}_{XX} + kI_r, \quad \hat{\Sigma}_{YY}^{(k)} = \hat{\Sigma}_{YY} + kI_s,$$

(6.103)

respectively, where $k > 0$. The estimates (6.103) of Σ_{XX} and Σ_{YY} are now invertible. The matrix (6.100) is then replaced by

$$\Gamma^{1/2} \hat{\Sigma}_{YX} \hat{\Sigma}_{XX}^{-1} \hat{\Sigma}_{XY} \Gamma^{1/2},$$

(6.104)

where $\hat{\Sigma}_{XX}^{-1}$ is the inverse of $\hat{\Sigma}_{XX}$, and its eigenvalues and eigenvectors are denoted by

$$(\hat{\lambda}_j^{(k)}, \hat{v}_j^{(k)}), \quad j = 1, 2, \ldots, t.$$ (6.105)

The estimated reduced-rank regression coefficient matrix $\hat{C}^{(t)}$ is replaced by

$$\hat{C}^{(t)}(k) = \Gamma^{-1/2} \left(\sum_{j=1}^{t} \hat{v}_j^{(k)} \hat{v}_j^{(k)\tau} \right) \Gamma^{1/2} \hat{\Sigma}_{YX} \hat{\Sigma}_{XX}^{-1},$$

(6.106)

and the full-rank regression coefficient matrix $\hat{\Theta}$ is replaced by

$$\hat{\Theta}^{(k)} = \hat{C}^{(s)}(k) = \hat{\Sigma}_{YX} \hat{\Sigma}_{XX}^{-1}.$$ (6.107)

How to choose k will be discussed in Section 6.3.4.

Asymptotic Distribution of Estimates

Because of the form of the LS estimates of matrices involved in the RRR solution, exact distribution results are not available. Fortunately, asymptotic results are available in some generality.

The asymptotic distribution of $\hat{C}^{(t)}$ is Gaussian with mean zero; that is,

$$\sqrt{n} \text{vec}(\hat{C}^{(t)} - C) \xrightarrow{d} \mathcal{N}_{sr}(0, \Psi^{(t)}), \quad \text{as } n \to \infty,$$

(6.108)
where convergence is in distribution. This result has been proved by several authors for the fixed-\(X\) case with Gaussian assumptions on the error variate. The most general result (Anderson, 1999), which applies to both fixed-\(X\) and random-\(X\) cases without any assumption of Gaussian errors, expresses the asymptotic covariance matrix, \(\Psi^{(t)}\), in the form

\[
\Psi^{(t)} = (\Sigma_{\xi\xi} \otimes \Sigma_{XX}^{-1}) - (M^{(t)} \otimes N^{(t)}),
\]

(6.109)

where

\[
M^{(t)} = \Sigma_{\xi\xi} - A^{(t)}(A^{(t)\tau} \Sigma_{\xi\xi}^{-1} A^{(t)})^{-1} A^{(t)\tau}
\]

(6.110)

\[
N^{(t)} = \Sigma_{XX}^{-1} - B^{(t)\tau}(B^{(t)} \Sigma_{XX} B^{(t)\tau})^{-1} B^{(t)}.
\]

(6.111)

Thus, \(\Psi^{(t)}\) consists of the full-rank covariance matrix, \(\Sigma_{\xi\xi} \otimes \Sigma_{XX}^{-1}\), with an adjustment by the matrix \(M^{(t)} \otimes N^{(t)}\) for reduced-rank \(t\). Anderson also notes that \(\Psi^{(t)}\) is invariant wrt any decomposition \(C^{(t)} = A^{(t)} B^{(t)} = (A^{(t)} T)(T^{-1} B^{(t)})\), where \(T\) is an arbitrary nonsingular matrix. Such general results allow asymptotic confidence regions to be constructed in situations when the errors are non-Gaussian.

6.3.3 Example: Chemical Composition of Tobacco

This is a small worked example designed to show the computations of RRR. The data\(^2\) are taken from a study on the chemical composition of tobacco leaf samples (Anderson and Bancroft, 1952, p. 205). There are \(n = 25\) observations on \(r = 6\) input variables, percent nitrogen (\(X_1\)), percent chlorine (\(X_2\)), percent potassium (\(X_3\)), percent phosphorus (\(X_4\)), percent calcium (\(X_5\)), and percent magnesium (\(X_6\)), and \(s = 3\) output variables, rate of cigarette burn in inches per 1,000 seconds (\(Y_1\)), percent sugar in the leaf (\(Y_2\)), and percent nicotine in the leaf (\(Y_3\)). The covariance matrices are as follows:

\[
\hat{\Sigma}_{XX} = \begin{pmatrix}
0.0763 & -0.0150 & -0.0005 & -0.0010 & 0.0682 & 0.0211 \\
-0.0150 & 0.3671 & -0.0145 & 0.0015 & 0.0330 & 0.0091 \\
-0.0005 & -0.0145 & 0.0659 & -0.0017 & -0.0595 & -0.0198 \\
-0.0010 & 0.0015 & -0.0017 & 0.0011 & 0.0002 & 0.0006 \\
0.0682 & 0.0330 & -0.0595 & 0.0002 & 0.1552 & 0.0380 \\
0.0211 & 0.0091 & -0.0198 & 0.0006 & 0.0380 & 0.0160 \\
\end{pmatrix}
\]

\[
\hat{\Sigma}_{YY} = \begin{pmatrix}
0.0279 & -0.1098 & 0.0189 \\
-0.1098 & 4.2277 & -0.7565 \\
0.0189 & -0.7565 & 0.2747 \\
\end{pmatrix}
\]

\(^2\)These data are available in the file tobacco.txt, which can be downloaded from the book’s website.
\[
\Sigma_{XY} = \begin{pmatrix}
0.0104 & -0.4004 & 0.1112 \\
-0.0631 & 0.5355 & -0.0859 \\
0.0209 & 0.1002 & -0.0396 \\
-0.0018 & 0.0164 & -0.0008 \\
-0.0080 & -0.3904 & 0.1417 \\
-0.0066 & -0.1364 & 0.0486 \\
\end{pmatrix} = \Sigma_{YX}^{-1}.
\]

We run these data through a reduced-rank regression using the weight matrix \(\Gamma = I_s\). First, we compute (6.100):

\[
\Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} = \begin{pmatrix}
0.019 & -0.101 & 0.013 \\
-0.101 & 3.090 & -0.760 \\
0.013 & -0.760 & 0.221 \\
\end{pmatrix},
\]

which has eigenvalues \(\hat{\lambda}_1 = 3.2821\), \(\hat{\lambda}_2 = 0.0378\), and \(\hat{\lambda}_3 = 0.0102\), and matrix of eigenvectors

\[
\hat{V} = (\hat{v}_1, \hat{v}_2, \hat{v}_3) = \begin{pmatrix}
0.031 & -0.470 & 0.882 \\
-0.970 & 0.198 & 0.140 \\
0.241 & 0.860 & 0.450 \\
\end{pmatrix}.
\]

For the rank-1 solution, \(\hat{v}_1\) is the first column of \(\hat{V}\); for the rank-2 solution, \(\hat{v}_2\) is the first two columns of \(\hat{V}\); and the full-rank solution is \(\hat{v}_3 = \hat{V}\).

The matrices \(\hat{A} = \hat{A}^{(3)} = \hat{V}\) and \(\hat{B} = \hat{B}^{(3)} = \hat{V} \hat{\Sigma}_{YX} \hat{\Sigma}_{XX}^{-1}\) are given by:

\[
\hat{A} = \begin{pmatrix}
0.031 & -0.470 & 0.882 \\
-0.970 & 0.198 & 0.140 \\
0.241 & 0.860 & 0.450 \\
\end{pmatrix},
\]

\[
\hat{B} = \begin{pmatrix}
4.324 & -1.359 & -1.481 & -13.729 & -0.453 & 3.867 \\
-0.411 & 0.099 & 0.365 & 2.457 & 0.306 & 1.230 \\
-0.302 & -0.081 & 0.578 & 1.048 & 0.375 & 0.034 \\
\end{pmatrix},
\]

respectively. The matrix \(\hat{A}^{(1)}\) is the first column of \(\hat{A}\), and \(\hat{A}^{(2)}\) is the first two columns of \(\hat{A}\). Similarly, the matrix \(\hat{B}^{(1)}\) is the first row of \(\hat{B}\), and \(\hat{B}^{(2)}\) is the first two rows of \(\hat{B}\). Estimates of the RRR coefficient matrices, \(\hat{C}^{(t)} = \hat{A}^{(t)} \hat{B}^{(t)}\), \(t = 1, 2, 3\), are given by

\[
\hat{C}^{(1)} = \begin{pmatrix}
0.134 & -0.042 & -0.046 & -0.427 & -0.014 & 0.120 \\
-4.195 & 1.318 & 1.436 & 13.318 & 0.439 & -3.751 \\
1.042 & -0.327 & -0.357 & -3.308 & -0.109 & 0.932 \\
\end{pmatrix},
\]

\[
\hat{C}^{(2)} = \begin{pmatrix}
0.328 & -0.089 & -0.218 & -1.582 & -0.158 & -0.459 \\
-4.276 & 1.338 & 1.509 & 13.806 & 0.500 & -3.507 \\
0.688 & -0.242 & -0.043 & -1.195 & 0.154 & 1.989 \\
\end{pmatrix},
\]

\[
\hat{C}^{(3)} = \hat{\Theta} = \begin{pmatrix}
0.062 & -0.160 & 0.292 & -0.658 & 0.173 & -0.428 \\
-4.319 & 1.326 & 1.590 & 13.953 & 0.553 & -3.502 \\
0.552 & -0.279 & 0.218 & -0.723 & 0.323 & 2.005 \\
\end{pmatrix}.
\]
and the vectors $\hat{\mu}^{(t)}$, $t = 1, 2, 3$, by

$$
\hat{\mu}^{(1)} = \begin{pmatrix} 1.750 \\ 14.688 \\ 2.640 \end{pmatrix}, \quad \hat{\mu}^{(2)} = \begin{pmatrix} 3.474 \\ 13.961 \\ -0.512 \end{pmatrix}, \quad \hat{\mu}^{(1)} = \begin{pmatrix} 1.411 \\ 13.633 \\ -1.565 \end{pmatrix}.
$$

6.3.4 Assessing the Effective Dimensionality

The most difficult part of the reduced-rank regression procedure is to assess the value of the metaparameter, t, of the multivariate regression. In order to determine t for a given multivariate sample, we recognize that such data will introduce noise into the relationship and, hence, will tend to obscure the actual structure of the matrix C, so that rank determination for any particular problem will be made more difficult.

We, therefore, distinguish between the “true” or “mathematical” rank of C, which will always be full (because it will be based upon a sample estimate of C) and the “practical” or “statistical” rank of C — the one of real interest — which will typically be unknown. We refer to t as the “effective dimensionality” of the multivariate regression.

The problem of determining the value of t is a selection problem. From the integers 1 through s (assuming without loss of generality that $s \leq r$), we are to choose the smallest integer such that the reduced-rank regression of Y on X with that integer as rank will be close (in some sense) to the corresponding full-rank regression.

From (6.89), $W_{\text{min}}(t)$ denotes the minimum value of (6.78) for a fixed value of t. The reduction in $W_{\text{min}}(t)$ obtained by increasing the rank from $t = t_0$ to $t = t_1$, where $t_0 < t_1$, is given by

$$
W_{\text{min}}(t_0) - W_{\text{min}}(t_1) = \sum_{j=t_0+1}^{t_1} \lambda_j.
$$

(6.112)

Note that (6.112) depends upon $\mathbf{\Gamma}$ only through the eigenvalues, $\{\lambda_j\}$, of the matrix (6.86). As a result, the rank of C can be assessed through some monotone function of the sequence of ordered sample eigenvalues $\{\hat{\lambda}_j, j = 1, 2, \ldots, s\}$, in which $\hat{\lambda}_j$ is compared with suitable reference values for each j, or by using the sum of some monotone function of the smallest $s - t_0$ sample eigenvalues. For example, Bartlett’s likelihood-ratio statistic for testing whether the last $s - t_0$ eigenvalues are zero is proportional to

$$
\sum_{j=t_0+1}^{s} \log(1 + \hat{\lambda}_j).
$$

An obvious disadvantage of relying solely on such formal testing procedures is that any routine application of them might fail to take into account the possible need for a preliminary screening of the data. Robustness of sample estimates of the eigenvalues and hence of the various tests
TABLE 6.3. Algorithm for using the rank trace to assess the effective dimensionality of a multivariate regression.

1. Define $\hat{C}^{(0)} = 0$ and $\hat{\Sigma}_{\varepsilon \varepsilon}^{(0)} = \hat{\Sigma}_{YY}$.
2. Carry out a sequence of s reduced-rank regressions for specific values of t. For $t = 1, 2, \ldots, s$,
 - compute $\hat{C}^{(t)}$ and $\hat{\Sigma}_{\varepsilon \varepsilon}^{(t)}$, and set $\hat{C}^{(s)} = \hat{\Theta}$ and $\hat{\Sigma}_{\varepsilon \varepsilon}^{(s)} = \hat{\Sigma}_{\varepsilon \varepsilon}$.
 - compute
 \[
 \Delta\hat{C}^{(t)} = \frac{\|\hat{\Theta} - \hat{C}^{(t)}\|}{\|\hat{\Theta}\|}, \quad \Delta\hat{\Sigma}_{\varepsilon \varepsilon}^{(t)} = \frac{\|\hat{\Sigma}_{\varepsilon \varepsilon} - \hat{\Sigma}_{\varepsilon \varepsilon}^{(t)}\|}{\|\hat{\Sigma}_{\varepsilon \varepsilon} - \hat{\Sigma}_{YY}\|},
 \]
 where $\|A\| = (\text{tr}(AA^\top))^{1/2} = \left(\sum_i \sum_j a_{ij}^2\right)^{1/2}$ is the classical Euclidean norm.
3. Make a scatterplot of the s points
 \[(\Delta\hat{C}^{(t)}, \Delta\hat{\Sigma}_{\varepsilon \varepsilon}^{(t)}), \quad t = 0, 1, 2, \ldots, s,
 \]
 and join up successive points on the plot. This is called the rank trace for the multivariate reduced-rank regression of \mathbf{Y} on \mathbf{X}.
4. Assess the rank of \mathbf{C} as the smallest rank for which both coordinates from step (3) are approximately zero.

when outliers or distributional peculiarities are present in the data can be a serious statistical obstacle to overcome.

Rank Trace

Suppose t^* is the true rank of \mathbf{C}. The basic idea behind the rank trace (Izenman, 1980) is that for $1 \leq t < t^*$, the entries in both the estimated regression coefficient matrix and the residual covariance matrix will “change” quite significantly each time we increase the rank in our sequence of reduced-rank regressions; as soon as the true rank is reached, these matrices will then cease to change significantly and will stabilize.

Let \hat{t} be an estimate of t. We expect the estimated rank-\hat{t} regression coefficient matrix, $\hat{C}^{(\hat{t})}$, to be very close to the estimated full-rank regression coefficient matrix $\hat{\Theta}$ when $\hat{t} = t^*$. Similarly, we can expect the rank-\hat{t} residual covariance matrix, $\hat{\Sigma}_{\varepsilon \varepsilon}^{(\hat{t})}$, to be very close to the full-rank residual
covariance matrix, \(\hat{\Sigma}_{\xi \xi} \), when \(\hat{t} = t^* \). The steps in the computation of the rank trace and the estimation of \(t \) are detailed in Table 6.3.

Thus, the first point (corresponding to \(t = 0 \)) is always plotted at \((1,1)\) and the last point (corresponding to \(t = s \)) is always plotted at \((0,0)\). The horizontal coordinate, \(\Delta \hat{C}(t) \), gives a quantitative representation of the difference between a reduced-rank regression coefficient matrix and its full-rank analogue, whereas the vertical coordinate, \(\Delta \hat{\Sigma}_{\xi \xi}(t) \), shows the proportionate reduction in the residual variance matrix in using a simple full-rank model rather than the computationally more elaborate reduced-rank model. The reason for including a special point for \(t = 0 \) is that without such a point, it would be impossible to assess the statistical rank of \(C \) at \(t = 1 \). In this formulation, \(t = 0 \) corresponds to the completely random model \(Y = \mu + \xi \).

Assessing the effective dimensionality of the multivariate regression by using step (4) in Table 6.3 involves a certain amount of subjective judgment, but from experience with many of these types of plots, the choice should not be too difficult. Because of the nature of \(\hat{C}(t) \), the sequence of values for the horizontal coordinate is not guaranteed to decrease monotonically from 1 to 0. It does appear, however, that in many of the applications of this method, and especially when we take \(\Gamma = I_s \) as the weight matrix, the plotted points appear within the unit square, but below the \((1,1)\)–\((0,0)\) diagonal line, indicating that the residual covariance matrices typically stabilize faster than do the regression coefficient matrices.

For example, the estimated RRR coefficient matrices, \(\hat{C}^{(1)} \), \(\hat{C}^{(2)} \), and \(\hat{C}^{(3)} \), for the tobacco data (see Section 6.3.3) do not appear to have stabilized at any specific rank \(t \leq 3 \). In Figure 6.3, we display the rank trace for the tobacco data with weight matrix the identity. Note that \(dC \) is shorthand for \(\Delta \hat{C}(t) \) and \(dE \) is shorthand for \(\hat{\Sigma}_{\xi \xi}(t) \). The rank-trace plot shows that a RRR solution with rank 1 is best, with no discernible difference between that solution and the full-rank solution. In this simple example, this conclusion agrees with the dominant magnitude of the largest sample eigenvalue, \(\hat{\lambda}_1 \), of \(\hat{\Sigma}_{YX} \hat{\Sigma}_{XY}^{-1} \hat{\Sigma}_{XX} \), which accounts for 98.6% of the trace of that matrix.

In certain applications, and when the weight matrix \(\Gamma \) is more complicated than \(I_s \) (e.g., \(\Gamma = \hat{\Sigma}_{YY}^{-1} \)), the rank trace often displays a different shape; for example, we may see points plotted outside the unit square or a non-monotonic pattern within the unit square. In such situations, we fix a positive constant \(k \) and replace the sample covariance matrices, \(\hat{\Sigma}_{XX} \) and \(\hat{\Sigma}_{YX} \) by \(\hat{\Sigma}_{XX}^{(k)} = \hat{\Sigma}_{XX} + kI_r \) and \(\hat{\Sigma}_{YX}^{(k)} = \hat{\Sigma}_{YX} + kI_s \), respectively, as in (6.103). Then, we compute \(\hat{C}(t)(k) \) as in (6.106) and \(\hat{\Sigma}_{\xi \xi}(t)(k) \) from the residuals. Using these adjusted estimates, we plot \(\Delta \hat{C}(t)(k) \) against \(\Delta \hat{\Sigma}_{\xi \xi}(t)(k) \). This gives us a rank trace for a specific value of \(k \). Start with \(k = 0 \); if the rank trace has monotonic shape, stop, and estimate the value of \(t \) as
in Table 6.3. If the rank trace does not have monotonic shape, increase the value of \(k \) slightly and draw the resulting rank trace; if that rank trace is monotonic, stop, and estimate \(t \). Continue increasing \(k \) until the associated rank trace is monotonic, at which point, stop and estimate \(t \).

Cross-Validation

An alternative method for assessing the value of \(t \) is the use of cross-validation. For each rank \(t \), compute a sequence of estimates of prediction error using any of CV/5, CV/10, or CV/\(n \). Then, identify the smallest rank such that, for larger ranks, the prediction error has stabilized and does not decrease significantly; this is similar to saying that at \(\hat{t} \), there is an elbow in the plot of prediction error vs. rank.

6.3.5 Example: Mixtures of Polyaromatic Hydrocarbons

This example refers to the data on the polyaromatic hydrocarbons (PAHs) and digitized spectra that were described in Section 2.2.2. The 50 spectra are displayed in Figure 2.2 and the scatterplot matrix of the 10 PAHs is displayed in Figure 2.3.

We use these data to carry out a reduced-rank regression of the PAH mixture concentrations (the \(Y \) variables) on the values of the digitized spectra (the \(X \) variables), where we treat the \(X \) variables as random. For this example, we take \(\Gamma = I_s \). Because of the high correlations between neighboring spectrum values, collinearities in the \(X \) variables may make the \((27 \times 27)\)-matrix \(\hat{\Sigma}_{XX} \) difficult to invert. So, we replace \(\hat{\Sigma}_{XX} \) and \(\hat{\Sigma}_{YY} \).
in the RRR computations by $\hat{\Sigma}^{(k)}_{XX}$ and $\hat{\Sigma}^{(k)}_{YY}$ respectively, as in (6.102). These covariance matrix estimates and the RRR estimates now depend upon the constant $k > 0$.

The rank trace for $\Gamma = I_s$ and $k = 0$ is plotted in Figure 6.4 (top-left panel). We see the rank trace is monotone within the unit square and so we estimate t as $\hat{t} = 5$. In the other panels, we show rank-trace plots for $\Gamma = \hat{\Sigma}^{-1}_{YY}$, the weight matrix for canonical variate analysis (CVA). In the top-right panel, the rank-trace plot for $k = 0$ (i.e., no regularization) is not monotonic; so, we increase the value of k slightly away from $k = 0$. The bottom-left and bottom-right panels show the rank-trace plot for $k = 0.000001$ and for $k = 0.001$, respectively. At $k = 0.000001$, the rank trace is monotone but not smooth, whereas at $k = 0.001$, the rank trace is a smooth, monotone sequence of points. The most appropriate estimate for t if we apply the weight matrix $\Gamma = \hat{\Sigma}^{-1}_{YY}$ is $\hat{t} = 5$, which agrees with our estimate for $\Gamma = I_s$.

Applying CV to the PAH data yields the CV prediction errors (PEs) as a function of the rank t, and these are given in Table 6.4 and Figure 6.5. As a method for estimating the true rank, t, of C, the CV PEs appear to level off at $t = 5$, which agrees with the rank assessments from the rank-trace plots.

6.4 Software Packages

A good source for SAS programs and discussion of SAS output for multivariate regression and MANOVA is Khattree and Naik (1999). It should be noted that although there is an RRR method implemented in the SAS procedure PROC PLS, it is not the same as and has no connection to the RRR method discussed in this book. The examples in this chapter were computed using the R program MULTANL+RRR (written by Charles Miller), which can be downloaded from the book’s website. An S-PLUS package rrr.s (written by Magne Aldrin) for carrying out RRR can be downloaded from the StatLib website at lib.stat.cmu.edu/S/.

Bibliographical Notes

In textbooks, multivariate regression is usually discussed within the context of the multivariate general linear model or multivariate analysis of variance (MANOVA), where the emphasis is most often placed on the fixed-X case.

The reduced-rank regression model has its origins in the work of Anderson (1951), Rao (1965), and Brillinger (1969). The deliberately alliterative
FIGURE 6.4. Rank trace for reduced-rank regression on the PAH data. There are $r = 27$ wavelengths, $s = 10$ PAHs, and $n = 50$ mixtures. Top-left panel: $\Gamma = I_s$. Other panels have $\Gamma = \hat{\Sigma}_{YY}^{-1}$ and $k = 0$ (top-right); $k = 0.000001$ (bottom-left); $k = 0.001$ (bottom-right).
6.4 Software Packages

TABLE 6.4. CV prediction errors for reduced-rank regression of the PAH data.

<table>
<thead>
<tr>
<th>Rank</th>
<th>CV/5</th>
<th>CV/10</th>
<th>CV/10/n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.254</td>
<td>0.242</td>
<td>0.248</td>
</tr>
<tr>
<td>2</td>
<td>0.186</td>
<td>0.171</td>
<td>0.166</td>
</tr>
<tr>
<td>3</td>
<td>0.143</td>
<td>0.124</td>
<td>0.117</td>
</tr>
<tr>
<td>4</td>
<td>0.102</td>
<td>0.086</td>
<td>0.082</td>
</tr>
<tr>
<td>5</td>
<td>0.077</td>
<td>0.060</td>
<td>0.054</td>
</tr>
<tr>
<td>6</td>
<td>0.070</td>
<td>0.054</td>
<td>0.047</td>
</tr>
<tr>
<td>7</td>
<td>0.070</td>
<td>0.054</td>
<td>0.047</td>
</tr>
<tr>
<td>8</td>
<td>0.070</td>
<td>0.053</td>
<td>0.047</td>
</tr>
<tr>
<td>9</td>
<td>0.068</td>
<td>0.052</td>
<td>0.046</td>
</tr>
<tr>
<td>10</td>
<td>0.064</td>
<td>0.047</td>
<td>0.040</td>
</tr>
</tbody>
</table>

The name “reduced-rank regression” was coined by Izenman (1972). Since then, the amount of research into the theory of reduced-rank regression models has steadily increased, leading to the monographs by van der Leeden (1990) and Reinsel and Velu (1998).

Because many authors mistakenly omit the hyphen in the name “reduced-rank regression,” we give reasons why it should be included. The terms “reduced-rank” and “full-rank” are *compound adjectives* describing the type of regression and, therefore, must take a hyphen. Further, without hyphens the methodology is apt to be confused with the topic of “rank regression,” which deals with multivariate regression of rank data (see, e.g., Davis and McKeen, 1993). Of course, we could also study reduced-rank regression of rank data.

Exercises

6.1 Using the result in the fixed-X case that the covariance matrix of the matrix of residuals \mathbf{E} is $\text{cov}(\text{vec}(\hat{\mathbf{E}})) = \Sigma_{\mathbf{EE}} \otimes (\mathbf{I}_n - \mathbf{H})$, find expressions for the means, variances, and covariances of the elements of the rows and columns of the matrix \mathbf{E}. Simplify your results when $\Sigma_{\mathbf{EE}} = \text{diag}\{\sigma_1^2, \ldots, \sigma_s^2\}$.

6.2 If $\Sigma_{\mathbf{XX}}$ and $\Sigma_{\mathbf{YY}}$ are nonsingular, show that the eigenvalues of \mathbf{R} lie between 0 and 1.

6.3 Let $\mathbf{X}' = \Psi + \Delta \mathbf{X}$ and $\mathbf{Y}' = \Phi + \Delta \mathbf{Y}$, where Δ and Δ are nonsingular. Show that the minimizing criterion (6.79) with $\Gamma = \Sigma_{\mathbf{YY}}^{-1}$ is invariant under these nonsingular transformations.

6.4 Develop a theory of reduced-rank regression for the “fixed-X” case.
6.5 Use the results from Exercise 6.1 to develop a theory of residual diagnostics from a multivariate reduced-rank regression (RRR) for the “fixed-X” case. In particular, derive the distribution theory for RRR residuals and the distribution of quadratic forms in RRR residuals. How could you use this theory to detect outliers?

6.6 Consider the likelihood-ratio test statistic for the dimensionality of a multivariate regression. Let the null hypothesis be that the true rank is at most \(t \) with the alternative that the regression is full-rank. Let \(Q_e^{(t)} = \hat{e}^{(t)} \hat{e}^{(t)\tau} \) and \(Q_e = \hat{e} \hat{e}^{\tau} \) denote the residual sum of squares matrices for a rank-\(t \) reduced-rank regression and a full-rank regression, respectively. Let \(\Lambda_{LR}^{(t)} = \det\{Q_e^{(t)}\}/\det\{Q_e\} \). Show that

\[
-2 \log_e \Lambda_{LR}^{(t)} = -n \sum_{j=t+1}^{s} \log_e (1 - \hat{\lambda}_j),
\]

where \(\hat{\lambda}_j \) is the \(j \)th largest eigenvalue of \(\hat{R} \). (Asymptotically, under the null hypothesis, \(-2 \log_e \Lambda_{LR}^{(t)} \sim \chi^2_{(s-t)(r-t)} \).)

6.7 Show that the two procedures described in Section 6.2.1 lead to the same results in estimating \(\text{tr}(A\Theta) \). The two procedures are (1) write \(\mu + \Theta \lambda^* = \Theta^* \lambda^* \), where \(\Theta^* = (\mu_0 : \Theta) \) and \(\lambda^* = (1_n : X^\tau)^\tau \), and then estimate \(\Theta^* \); (2) remove \(\mu \) by centering \(\lambda^* \) and \(\gamma^* \), and then estimate \(\Theta \) directly.
6.8 Using the data from the Norwegian paper quality example (Section 6.2.2), show that Table 6.1 can also be derived by regressing each of the 13 Ys on all the 9 Xs.

6.9 In the classical multivariate regression model (Section 6.2.1), show that \(S_e = Y_c^\prime (I_n - H) Y_c \), where \(H = X_c^\prime X_c^{-1} X_c \). Hence, or otherwise, show that \(S_e = E (I_n - H) E \).

6.10 Write a computer program to carry out a multivariate ridge regression, and then apply it to the Norwegian paper quality data. Compare the results with those obtained from separate univariate ridge regressions.

6.11 The data for this exercise is Table 6.1 in Andrews and Herzberg (1985, pp. 357–360), which can be downloaded from the StatLib website lib.stat.cmu.edu/datasets/Andrews/. The data consist of 8 measurements on each of 4 variates on 13 different types of root-stocks of apple trees. The 4 variates are: trunk girth in mm \((Y_1) \), and extension growth in cm \((Y_2) \) at 4 years after planting, and trunk girth in mm \((Y_3) \) and weight of tree above ground in lb \((Y_4) \) at 15 years after planting. So, there are \(s = 4 \) measurements on each of \(n = 8 \times 13 = 104 \) trees. Rescaling each variable might be appropriate. The design matrix \(X \) is a \((13 \times 104) \)-matrix of 0s and 1s depending upon which tree is derived from which root-stock. Regress the \((4 \times 104) \)-matrix \(Y \) on \(X \) and estimate the \((4 \times 13) \) regression coefficient matrix \(\Theta \). Estimate the \((4 \times 4) \) error covariance matrix \(\Sigma E \). Estimate the standard errors for these regression coefficient estimates. Compute the (unconstrained) MANOVA table for these data.

6.12 Extend the MANOVA analysis to a two-way layout of vector observations \(Y = (Y_{ij}) \), where \(i \) denotes the row and \(j \) denotes the column. The two-way model with one observation in each cell is defined by

\[
Y_{ij} = \mu + \mu_i + \mu_j + E_{ij}, \quad i = 1, 2, \ldots, I, \quad j = 1, 2, \ldots, J,
\]

where we assume that \(\sum_i \mu_i = \sum_j \mu_j = 0 \), and the \(E_{ij} \) are random \(s \)-vectors with mean 0. Write down the design matrix \(X \) and the matrix of regression coefficients \(\Theta \). Write down the partition of \(Y_{ij} - \bar{Y} \), where \(\bar{Y} \) is the average of all \(IJ \) observations, in terms of the \(i \)th row effect \(\bar{Y}_i - \bar{Y} \), the \(j \)th column effect \(\bar{Y}_j - \bar{Y} \), and the residual effect \(Y_{ij} - \bar{Y}_i - \bar{Y}_j + \bar{Y} \), where \(\bar{Y}_i \) is the average over all columns for the \(i \)th row, and \(\bar{Y}_j \) is the average over all rows for the \(j \)th column. Derive the corresponding partition in terms of sums-of-squares and determine their respective degrees of freedom. Write down the corresponding two-way MANOVA table.

6.13 Generalize Exercise 6.11 to the case of \(m \) observations \(Y_{ijk} \) in each cell \((k = 1, 2, \ldots, m) \), where an interaction term \(\mu_{ij} \) satisfying \(\sum_i \mu_{ij} = \sum_j \mu_{ij} = 0 \) is added to the model. The error term now becomes \(E_{ijk} \). The \(i \)th row effect is \(\bar{Y}_i - \bar{Y} \), the \(j \)th column effect is \(\bar{Y}_j - \bar{Y} \), the interaction
effect is $\bar{Y}_{ij} - \bar{Y}_{i.} - \bar{Y}_{.j} + \bar{Y}$, and the residual is $Y_{ijk} - \bar{Y}_{ij}$. Derive the two-way MANOVA table for this case.

6.14 Write a program to carry out a constrained multivariate regression including the MANOVA Table 6.2.

6.15 Run a RRR on the Norwegian paper quality data. Plot the rank trace using $\Gamma = I_s$ as the weight matrix. Estimate the effective dimensionality of the multivariate regression. Compare the estimate with one obtained using CV.

6.16 Using the results (6.109), (6.110), and (6.111), show that the asymptotic covariance of the regression coefficient matrix $\text{vec}(\hat{C}^{(t)})$ reduces to $\Sigma_{\varepsilon\varepsilon} \otimes \Sigma_{XX}^{-1}$ when $t = s$ (i.e., full rank).
7

Linear Dimensionality Reduction

7.1 Introduction

When faced with situations involving high-dimensional data, it is natural to consider the possibility of projecting those data onto a lower-dimensional subspace without losing important information regarding some characteristic of the original variables. One way of accomplishing this reduction of dimensionality is through variable selection, also called feature selection (see Section 5.7). Another way is by creating a reduced set of linear or nonlinear transformations of the input variables. The creation of such composite variables (or features) by projection methods is often referred to as feature extraction. Usually, we wish to find those low-dimensional projections of the input data that enjoy some sort of optimality properties.

Early examples of projection methods were linear methods such as principal component analysis (PCA) (Hotelling, 1933) and canonical variate and correlation analysis (CVA or CCA) (Hotelling, 1936), and these have become two of the most popular dimensionality-reducing techniques in use today. Both PCA and CVA are, at heart, eigenvalue-eigenvector problems. Furthermore, both can be viewed as special cases of multivariate reduced-rank regression. This latter connection to regression is fortuitous. Whereas PCA and CVA were once regarded as isolated statistical tools, their now
being part of such a well-traveled tool as regression means that we should be able to carry out feature selection and extraction, as well as outlier detection within an integrated framework.

7.2 Principal Component Analysis

Principal component analysis (PCA) (Hotelling, 1933) was introduced as a technique for deriving a reduced set of orthogonal linear projections of a single collection of correlated variables, \(\mathbf{X} = (X_1, \ldots, X_r)^\tau \), where the projections are ordered by decreasing variances. Variance is a second-order property of a random variable and is an important measurement of the amount of information in that variable. PCA has also been referred to as a method for “decorrelating” \(\mathbf{X} \); as a result, the technique has been independently rediscovered by many different fields, with alternative names such as Karhunen–Loève transform and empirical orthogonal functions, which are used in communications theory and atmospheric sciences, respectively.

PCA is used primarily as a dimensionality-reduction technique. In this role, PCA is used, for example, in lossy data compression, pattern recognition, and image analysis. We have already seen in Section 5.7.2 how PCA is used in chemometrics to construct derived variables in biased regression situations, when the number of input variables is too large for useful analysis.

In addition to reducing dimensionality, PCA can be used to discover important features of the data. Discovery in PCA takes the form of graphical displays of the principal component scores. The first few principal component scores can reveal whether most of the data actually live on a linear subspace of \(\mathbb{R}^r \) and can be used to identify outliers, distributional peculiarities, and clusters of points. The last few principal component scores show those linear projections of \(\mathbf{X} \) that have smallest variance; any principal component with zero or near-zero variance is virtually constant, and, hence, can be used to detect collinearity, as well as outliers that pop up and alter the perceived dimensionality of the data.

7.2.1 Example: The Nutritional Value of Food

Nutritional data from 961 food items are listed alphabetically in this data set. The nutritional components of each food item are given by the following seven variables: fat (grams), food energy (calories), carbohydrates

1The data are given in the file food.txt, which can be downloaded from the book’s website or from http://www.ntwrks.com/~mikev/chart1.html.
TABLE 7.1. Coefficients of the six principal components of the covariance matrix of the transformed food nutrition data.

<table>
<thead>
<tr>
<th>Food Component</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
<th>PC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>0.557</td>
<td>0.099</td>
<td>0.275</td>
<td>0.130</td>
<td>0.455</td>
<td>0.617</td>
</tr>
<tr>
<td>Food energy</td>
<td>0.536</td>
<td>0.357</td>
<td>-0.137</td>
<td>0.075</td>
<td>0.273</td>
<td>-0.697</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>-0.025</td>
<td>0.672</td>
<td>-0.568</td>
<td>-0.286</td>
<td>-0.157</td>
<td>0.344</td>
</tr>
<tr>
<td>Protein</td>
<td>0.235</td>
<td>-0.374</td>
<td>-0.639</td>
<td>0.599</td>
<td>-0.154</td>
<td>0.119</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.253</td>
<td>-0.521</td>
<td>-0.326</td>
<td>-0.717</td>
<td>0.210</td>
<td>-0.003</td>
</tr>
<tr>
<td>Saturated fat</td>
<td>0.531</td>
<td>-0.019</td>
<td>0.261</td>
<td>-0.150</td>
<td>-0.791</td>
<td>0.022</td>
</tr>
<tr>
<td>Variance</td>
<td>2.649</td>
<td>1.330</td>
<td>1.020</td>
<td>0.680</td>
<td>0.267</td>
<td>0.055</td>
</tr>
<tr>
<td>% Total Variance</td>
<td>44.1</td>
<td>22.2</td>
<td>17.0</td>
<td>11.3</td>
<td>4.4</td>
<td>0.9</td>
</tr>
</tbody>
</table>

(grams), protein (grams), cholesterol (milligrams), weight (grams), and saturated fat (grams). Food items are listed according to very disparate serving sizes, which include teaspoon, tablespoon, cup, loaf, slice, cake, cracker, package, piece, pie, biscuit, muffin, pat, wedge, stalk, cookie, and pastry. To equalize out the different types of servings for each food, we first divide each variable by weight of the food item (which leaves us with 6 variables), and then, because of wide variations in the different variables, each variable is standardized by subtracting its mean and dividing the result by its standard deviation. The resulting data are $X = (X_{ij})$.

A PCA of the transformed data yields six principal components ordered by decreasing variances. The first three principal components, PC1, PC2, and PC3, which account for more than 83% of the total variance, have coefficients given in Table 7.1. Notice that PC1 puts little weight on carbohydrates, and PC2 puts little weight on fat and saturated fat.

The scatterplot of the first two principal components is given in Figure 7.1. The scatterplot appears to show a number of interesting features. Notice the almost straight-line edge to the plotted points at the upper left-hand corner. We also can identify various groups of points in this display, where the food items in each group have been ordered by magnitude of that nutritional component, starting at the largest value:

1. **Cholesterol**: 318 (raw egg yolk), 189 (chicken liver), 62 (beef liver), 312 (fried egg), 313 (hard-cooked egg), 314 (poached egg), 315 (scrambled egg), and 317 (raw whole egg).

2. **Protein**: 357 (dry gelatin), 778 (raw seaweed), 952 and 953 (yeast), and 578–580 (parmesan cheese).

3. **Saturated fat**: 124–129 (butter), 441 and 442 (lard), 212 (bitter chocolate), 224–226 (coconut), 326 and 327 (cooking fat), and 166–168 (cheddar cheese).
FIGURE 7.1. Scatterplot of the first two principal components of the food nutrition data. Numbers next to certain points indicate the food item corresponding to that point. Multiple food items may be plotted at the same point.

4. Fat and food energy: 326 and 327 (cooking fat), 441 and 442 (lard), 603 and 604 (peanut oil), 549–550 (olive oil), 248 and 249 (corn oil), 764 and 765 (safflower oil), 810–813 (soybean cottonseed oil), 841 and 842 (sunflower oil), 124–129 (salted butter), and 488–492 (margarine).

5. Carbohydrates: 837–840 (white sugar), 393 (hard candy), 836 (brown sugar), 553 (onion powder), 339 (fondant), 834 (Kellogg Sugar Frosted Flakes), 843 (sunflower seeds), 844 (Super Sugar Crisp Cereal), 427 (jelly beans), 141 (carob flour), and 221 (coca powder).

Most of these points are identified in the scatterplot, but some are covered too well to be displayed clearly. We see that food item 318 (raw egg yolk) is an outlier along an imaginary cholesterol axis and 124–129 (butter) and 441 and 442 (lard) are outliers along an imaginary saturated-fat axis. Similarly, in scatterplots of PC1 and PC3, and of PC2 and PC3 (not shown here), we see that food items 357 (dry gelatin) and 779 (raw seaweed) are outliers along an imaginary protein axis.
7.2.2 Population Principal Components

Assume that the random r-vector

$$X = (X_1, \ldots, X_r)^\tau$$

has mean μ_X and $(r \times r)$ covariance matrix Σ_{XX}. PCA seeks to replace the set of r (unordered and correlated) input variables, X_1, X_2, \ldots, X_r, by a (potentially smaller) set of t (ordered and uncorrelated) linear projections, ξ_1, \ldots, ξ_t ($t \leq r$), of the input variables,

$$\xi_j = b_j^\tau X = b_{j1}X_1 + \cdots + b_{jr}X_r, \quad j = 1, 2, \ldots, t,$$

where we minimize the loss of information due to replacement.

In PCA, “information” is interpreted as the “total variation” of the original input variables,

$$\sum_{j=1}^r \text{var}(X_j) = \text{tr}(\Sigma_{XX}).$$

From the spectral decomposition theorem (Section 3.2.4), we can write

$$\Sigma_{XX} = U\Lambda U^\tau, \quad U^\tau U = I_r,$$

where the diagonal matrix Λ has diagonal elements the eigenvalues, $\{\lambda_j\}$, of Σ_{XX}, and the columns of U are the eigenvectors of Σ_{XX}. Thus, the total variation is $\text{tr}(\Sigma_{XX}) = \text{tr}(\Lambda) = \sum_{j=1}^r \lambda_j$.

The jth coefficient vector, $b_j = (b_{j1}, \ldots, b_{jr})^\tau$, is chosen so that:

- The first t linear projections ξ_j, $j = 1, 2, \ldots, t$, of X are ranked in importance through their variances $\{\text{var}(\xi_j)\}$, which are listed in decreasing order of magnitude: $\text{var}(\xi_1) \geq \text{var}(\xi_2) \geq \ldots \geq \text{var}(\xi_t)$.

- ξ_j is uncorrelated with all ξ_k, $k < j$.

The linear projections (7.2) are then known as the first t principal components of X.

There are two popular derivations of the set of principal components of X: PCA can be derived using a least-squares optimality criterion, or it can be derived as a variance-maximizing technique. In the next two subsections, we discuss these two definitions.

7.2.3 Least-Squares Optimality of PCA

Let

$$B = (b_1, \cdots, b_t)^\tau,$$

be a $(t \times r)$-matrix of weights $(t \leq r)$. The linear projections (7.2) can be written as a t-vector,

$$\xi = BX,$$
where $\xi = (\xi_1, \cdots, \xi_t)^T$. We want to find an r-vector μ and an $(r \times t)$-matrix A such that the projections ξ have the property that $X \approx \mu + A\xi$ in some least-squares sense. We use the least-squares error criterion,

$$E\{(X - \mu - A\xi)^T(X - \mu - A\xi)\}, \quad (7.7)$$

as our measure of how well we can reconstruct X by the linear projection ξ.

We can write the criterion (7.7) in a more transparent manner by substituting BX for ξ. The criterion is now a function of an $(r \times t)$-matrix A and a $(t \times r)$-matrix B (both of full rank t), and an r-vector μ. The goal is to choose A, B, and μ to minimize

$$E\{(X - \mu - ABX)^T(X - \mu - ABX)\}. \quad (7.8)$$

For example, when $t = 1$, we can write (7.8) as the least-squares problem,

$$\min_{\mu,A,B} E \sum_{j=1}^r (X_j - \mu_j - a_j^1 b_1^T X)^2, \quad (7.9)$$

where $\mu = (\mu_1, \cdots, \mu_r)^T$, $A = a_1 = (a_{11}, \cdots, a_{1r})^T$, and $B = b_1^T$.

The criterion (7.8) is just (6.80) with $Y \equiv X$, $s = r$, and $\Gamma = I_r$. Hence, (7.8) is minimized by the reduced-rank regression solution,

$$A^{(t)} = (v_1, \cdots, v_t) = B^{(t)\tau}, \quad (7.10)$$

$$\mu^{(t)} = (I_r - A^{(t)}B^{(t)})\mu_X, \quad (7.11)$$

where $v_j = v_j(\Sigma_{XX})$ is the eigenvector associated with the jth largest eigenvalue, λ_j, of Σ_{XX}. Thus, our best rank-t approximation to the original X is given by

$$\hat{X}^{(t)} = \mu^{(t)} + C^{(t)}X = \mu_X + C^{(t)}(X - \mu), \quad (7.12)$$

where

$$C^{(t)} = A^{(t)}B^{(t)} = \sum_{j=1}^r v_j v_j^\tau \quad (7.13)$$

is the reduced-rank regression coefficient matrix with rank t for the principal components case. From (6.91), the minimum value of (7.8) is given by $\sum_{j=t+1}^r \lambda_j$, the sum of the smallest $r - t$ eigenvalues of Σ_{XX}.

It may be helpful to think of these results in the following way. Let $V = (v_1, \cdots, v_r)$ be the $(r \times r)$-matrix whose columns are the complete set of r ordered eigenvectors of Σ_{XX}. We have shown that the most accurate rank-t least-squares reconstruction of X can be obtained by using the composition of two linear maps $L' \circ L$. The first map $L : \mathbb{R}^r \to \mathbb{R}^r$ takes the first
columns of V to form t linear projections of X, and then the second map $L' : \mathbb{R}^t \to \mathbb{R}^r$ uses those same t columns of V to carry out a linear reconstruction of X from those projections.

The first t principal components (also known as the Karhunen–Loève transform) of X are given by the linear projections, ξ_1, \ldots, ξ_t, where

$$\xi_j = v_j^T X, \quad j = 1, 2, \ldots, t. \quad (7.14)$$

The covariance between ξ_i and ξ_j is

$$\text{cov}(\xi_i, \xi_j) = \text{cov}(v_i^T X, v_j^T X) = v_i^T \Sigma_{XX} v_j = \lambda_j v_i^T v_j = \delta_{ij} \lambda_j, \quad (7.15)$$

where δ_{ij} is the Kronecker delta, which equals 1 if $i = j$ and zero otherwise. Thus, λ_1, the largest eigenvalue of Σ_{XX}, is $\text{var}\{\xi_1\}$; λ_2, the second-largest eigenvalue of Σ_{XX}, is $\text{var}\{\xi_2\}$; and so on, while all pairs of derived variables are uncorrelated, $\text{cov}(\xi_i, \xi_j) = 0$, $i \neq j$.

A goodness-of-fit measure of how well the first t principal components represent the r original variables in the lower-dimensional space is given by the ratio

$$\frac{\lambda_{t+1} + \cdots + \lambda_r}{\lambda_1 + \cdots + \lambda_r} \quad (7.16)$$

which is the proportion of the total variation in the input variables that is explained by the last $r - t$ principal components. If the first t principal components explain a large proportion of the total variation in X, then the ratio (7.16) should be small.

Actually, more is true. Not only do $\mu^{(t)}$, $A^{(t)}$, and $B^{(t)}$ minimize the scalar criterion (7.8), but also they simultaneously minimize all the eigenvalues of the $(r \times r)$-matrix

$$\Psi^{(t)} = \mathbb{E}\{(X - \mu - ABX)(X - \mu - ABX)^\tau\}, \quad (7.17)$$

thereby also minimizing any function of those eigenvalues, such as their sum (trace of (7.17) and, hence, (7.8)) and their product (determinant of (7.17)). We can see this as follows. From (6.80), setting $Y \equiv X$, $s = r$, and $\Gamma = I_r$, we have that

$$\Psi^{(t)} \geq \Sigma_{XX} - \Sigma_{X,ABX} \Sigma_{ABX,ABX}^{-1} \Sigma_{ABX,X} = \Sigma_{XX} - D, \quad (7.18)$$

where

$$D = \Sigma_{XX} B^\tau A^\tau (AB \Sigma_{XX} B^\tau A^\tau)^{-1} AB \Sigma_{XX}. \quad (7.19)$$

Note that the $(r \times r)$-matrix D has rank at most t ($\leq r$). We wish to find μ, A, and B to minimize the jth largest eigenvalue of D. From the
Courant–Fischer Min-Max theorem (see Section 3.2.10),

\[
\lambda_j(\Sigma_{XX} - D) = \min_{L: \text{rank}(L) \leq j - 1} \max_{\alpha: L\alpha = 0, D\alpha = 0} \frac{\alpha^\tau (\Sigma_{XX} - D)\alpha}{\alpha^\tau \alpha} \\
\geq \min_{L, \alpha: (L|D)\alpha = 0} \max_{\alpha: \alpha^\tau \alpha = 1} \frac{\alpha^\tau \Sigma_{XX}\alpha}{\alpha^\tau \alpha} \\
= \min_{L, \alpha: (L|D)\alpha = 0} \max_{\alpha: \alpha^\tau \alpha = 1} \frac{\alpha^\tau \Sigma_{XX}\alpha}{\alpha^\tau \alpha} \\
= \lambda_{t+j}(\Sigma_{XX}), \quad (7.20)
\]

because \(\text{rank}(\text{(L|D)}) \leq j - 1 + t\). Thus,

\[
\lambda_j(\Phi^{(t)}) \geq \lambda_{j+t}(\Sigma_{XX}). \quad (7.21)
\]

By plugging in the above \(\mu^{(t)}, A^{(t)}, \text{and } B^{(t)}\) into the expression for \(\Psi^{(t)}\), it follows immediately that the minimum value of \(\lambda_j(\Psi^{(t)})\) is actually given by \(\lambda_{t+j}(\Sigma_{XX})\).

7.2.4 PCA as a Variance-Maximization Technique

In the original derivation of principal components (Hotelling, 1933), the coefficient vectors,

\[
b_j = (b_{j1}, b_{j2}, \ldots, b_{jr})^\tau, \quad j = 1, 2, \ldots, t, \quad (7.22)
\]

in (7.5) were chosen in a sequential manner so that the variances of the derived variables (\(\text{var}\{\xi_j\} = b_j^\tau \Sigma_{XX} b_j\)) are arranged in descending order subject to the normalizations \(b_j^\tau b_j = 1, j = 1, 2, \ldots, t\), and that they are uncorrelated with previously chosen derived variables (\(\text{cov}(\xi_i, \xi_j) = b_i^\tau \Sigma_{XX} b_j = 0, i < j\)).

The first principal component, \(\xi_1\), is obtained by choosing the \(r\) coefficients, \(b_1\), for the linear projection \(\xi_1\), so that the variance of \(\xi_1\) is a maximum. A unique choice of \(\{\xi_j\}\) is obtained through the normalization constraint \(b_j^\tau b_j = 1, \text{for all } j = 1, 2, \ldots, t\). Form the function

\[
f(b_1) = b_1^\tau \Sigma_{XX} b_1 - \lambda_1 (1 - b_1^\tau b_1), \quad (7.23)
\]

where \(\lambda_1\) is a Lagrangian multiplier. Differentiating \(f(b_1)\) with respect to \(b_1\) and setting the result equal to zero for a maximum yields

\[
\frac{\partial f(b_1)}{\partial b_1} = 2(\Sigma_{XX} - \lambda_1 I_r)b_1 = 0. \quad (7.24)
\]
This is a set of r simultaneous equations. If $b_1 \neq 0$, then λ_1 must be chosen to satisfy the determinantal equation
\[
| \Sigma_{XX} - \lambda_1 I_r | = 0. \tag{7.25}
\]
Thus, λ_1 has to be the largest eigenvalue of Σ_{XX}, and b_1 the eigenvector, v_1, associated with λ_1.

The second principal component, ξ_2, is then obtained by choosing a second set of coefficients, b_2, for the next linear projection, ξ_2, so that the variance of ξ_2 is largest among all linear projections of X that are also uncorrelated with ξ_1 above. The variance of ξ_2 is $\text{var}(\xi_2) = b_2^T \Sigma_{XX} b_2$, and this has to be maximized subject to the normalization constraint $b_2^T b_2 = 1$ and orthogonality constraint $b_1^T b_2 = 0$. Form the function
\[
f(b_2) = b_2^T \Sigma_{XX} b_2 + \lambda_2 (1 - b_2^T b_2) + \mu b_1^T b_2, \tag{7.26}\]
where λ_2 and μ are the Lagrangian multipliers. Differentiating $f(b_2)$ with respect to b_2 and setting the result equal to zero for a maximum yields
\[
\frac{\partial f(b_1)}{\partial b_1} = 2(\Sigma_{XX} - \lambda_2 I_r) b_2 + \mu b_1 = 0. \tag{7.27}\]
Premultiplying this derivative by b_1^T and using the orthogonality and normalization constraints, we have that $2 b_1^T \Sigma_{XX} b_2 + \mu = 0$. Premultiplying the equation $(\Sigma_{XX} - \lambda_2 I_r) b_2 = 0$ by b_2^T yields $b_2^T \Sigma_{XX} b_1 = 0$, whence $\mu = 0$. Thus, λ_2 has to satisfy $(\Sigma_{XX} - \lambda_2 I_r) b_2 = 0$. This means that λ_2 is the second largest eigenvalue of Σ_{XX}, and the coefficient vector b_2 for the second principal component is the eigenvector, v_2, associated with λ_2.

In this sequential manner, we obtain the remaining sets of coefficients for the principal components $\xi_3, \xi_4, \ldots, \xi_r$, where the ith principal component ξ_i is obtained by choosing the set of coefficients, b_i, for the linear projection ξ_i so that ξ_i has the largest variance among all linear projections of X that are also uncorrelated with $\xi_1, \xi_2, \ldots, \xi_{i-1}$. The coefficients of these linear projections are given by the ordered sequence of eigenvectors $\{v_j\}$, where v_j associated with the jth largest eigenvalue, λ_j, of Σ_{XX}.

7.2.5 Sample Principal Components

In practice, we estimate the principal components using n independent observations, $\{X_i, \ i = 1, 2, \ldots, n\}$, on X. We estimate μ_X by
\[
\hat{\mu}_X = \bar{X} = n^{-1} \sum_{i=1}^{n} X_i. \tag{7.28}\]
As before, let $X_{ci} = X_i - \bar{X}, i = 1, 2, \ldots, n$, and set $X_c = (X_{c1}, \ldots, X_{cn})$ to be an $(r \times n)$-matrix. We estimate Σ_{XX} by the sample covariance matrix,
\[
\hat{\Sigma}_{XX} = n^{-1} S = n^{-1} X_c X_c^T. \tag{7.29}\]
The ordered eigenvalues of $\hat{\Sigma}_{XX}$ are denoted by $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \ldots \geq \hat{\lambda}_r \geq 0$, and the eigenvector associated with the jth largest sample eigenvalue $\hat{\lambda}_j$ is the jth sample eigenvector \hat{v}_j, $j = 1, 2, \ldots, r$.

We estimate $A^{(t)}$ and $B^{(t)}$ by

$$\hat{A}^{(t)} = (\hat{v}_1, \ldots, \hat{v}_t) = \hat{B}^{(t)\tau},$$

(7.30)

where \hat{v}_j is the jth sample eigenvector of $\hat{\Sigma}_{XX}$, $j = 1, 2, \ldots, t$ ($t \leq r$). The best rank-t reconstruction of X is given by

$$\hat{X}^{(t)} = \bar{X} + \hat{C}^{(t)}(X - \bar{X}),$$

(7.31)

where

$$\hat{C}^{(t)} = \hat{A}^{(t)}\hat{B}^{(t)} = \sum_{j=1}^{t} \hat{v}_j^\tau \hat{v}_j$$

(7.32)

is the reduced-rank regression coefficient matrix corresponding to the principal components case.

The jth sample PC score of X is given by

$$\hat{\xi}_j = \hat{v}_j^\tau X_c,$$

(7.33)

where $X_c = X - \bar{X}$. The variance, λ_j, of the jth principal component is estimated by the sample variance $\hat{\lambda}_j$, $j = 1, 2, \ldots, t$. A sample estimate of the measure (7.16) of how well the first t principal components represent the r original variables is given by the statistic

$$\frac{\hat{\lambda}_{t+1} + \cdots + \hat{\lambda}_r}{\hat{\lambda}_1 + \cdots + \hat{\lambda}_r},$$

(7.34)

which is the proportion of the total sample variation that is explained by the last $r - t$ sample principal components.

It is hoped that the sample variances of the first few sample PCs will be large, whereas the rest will be small enough for the corresponding set of sample PCs to be omitted. A variable that does not change much (relative to other variables) in independent measurements may be treated approximately as a constant, and so omitting such low-variance sample PCs and putting all attention on high-variance sample PCs is, therefore, a convenient way of reducing the dimensionality of the data set.

The exact distribution of the eigenvalues of the random matrix $XX^\tau \sim W_r(n, I_r)$ was discovered independently and simultaneously in 1939 by Fisher, Girshick, Hsu, and Roy and in 1951 by Mood and has the form,

$$p(x_1, \ldots, x_r) = c_{r,n} \prod_{j=1}^{r} [w(x_j)]^{1/2} \prod_{j<k} (x_j - x_k),$$

(7.35)
where \(x_1 \geq x_2 \geq \cdots \geq x_r \) are the ordered eigenvalues of \(XX^\tau \), \(w(x) = x^{n-r-1}e^{-x} \) is the weight function for the Laguerre family of orthogonal polynomials, and \(c_{r,n} \) is a normalizing constant dependent upon \(r \) and \(n \). For a proof, see, for example, Anderson (1984, Section 13.3). The second product in (7.35) involving the pairwise differences of eigenvalues is the Jacobian term, also known as the Vandermonde determinant (Johnstone, 2006). In the case when the population eigenvalues are not all equal, the exact distribution of the sample eigenvalues is known (James, 1960) but is extremely complicated.

When the dimensionality, \(r \), is very large, maybe even larger than the sample size \(n \), then the exact distribution result (7.35) does not hold. In such situations, random-matrix theory has proved to be very useful in providing asymptotic results; see, e.g., Johnstone (2001, 2006). As before, suppose \(XX^\tau \sim W_r(n,I_r) \). The empirical distribution function computes the proportion of sample eigenvalues that are less than a given value of \(k \),

\[
G_r(k) = \frac{1}{r} \# \{x_j \leq k\}. \tag{7.36}
\]

It can be shown that if \(r/n \to \gamma \in (0, \infty) \), then, \(G_r(k) \to G(k) \) a.s., where the limiting distribution \(G(k) \) has density \(g(k) = G'(k) \), and

\[
g(k) = \frac{\sqrt{(b_+ - k)(k - b_-)}}{2\pi\gamma k}, \quad b_\pm = (1 \pm \sqrt{\gamma})^2. \tag{7.37}
\]

This so-called Quarter-Circle Law is due to Marčenko and Pastur (1967); it also holds in more general situations.

In Figure 7.2, we display the density \(g(k) \) for \(\gamma = 1/4 \) and \(\gamma = 1 \). The larger is \(r/n \), the more spread out is the limiting density. When \(r = n/4 \), the density is concentrated on the interval \([1/4, 9/4]\), and when \(r = n \), the density is spread out over the interval \([0, 4]\).

7.2.6 How Many Principal Components to Retain?

Probably the main question asked while carrying out a PCA is how many principal components to retain. Because the criterion for a good projection in PCA is a high variance for that projection, we should only retain those principal components with large variances. The question, therefore, boils down to one involving the magnitudes of the eigenvalues of \(\hat{\Sigma}_{XX} \): how small can an eigenvalue be while still regarding the corresponding principal component as significant?

Scree Plot: The sample eigenvalues from a PCA are ordered from largest to smallest. It is usual to plot the ordered sample eigenvalues against their order number; such a display is called a “scree plot” (Cattell, 1966), after the break between a mountainside and a collection of boulders usually found
FIGURE 7.2. Density $g(k)$ of eigenvalues of a Wishart matrix in the limiting case when $r/n \to \gamma \in (0, \infty)$. The two curves correspond to the values $\gamma = 1/4$ and $\gamma = 1$. The larger r/n, the more spread out are the eigenvalues.

at its base. If the largest few sample eigenvalues dominate in magnitude, with the remaining sample eigenvalues very small, then the scree plot will exhibit an “elbow” in the plot corresponding to the division into “large” and “small” values of the sample eigenvalues. The order number at which the elbow occurs can be used to determine how many principal components to retain. It is usually recommended to retain those PCs up to the elbow and also the first PC following the elbow. A related popular criterion for use when an elbow may not be present in the scree plot is to use a cutoff point of 90% of total variance.

What would a scree plot look like for the eigenvalues of the covariance matrix of Gaussian data? We display two scenarios, where the only difference is the sample size. Generate an $(r \times n)$-matrix Z all of whose entries are iid $\mathcal{N}(0, 1)$, let D be an $(r \times r)$ diagonal matrix, and set $X = DZ$. Let $\hat{\Sigma}_{XX} = n^{-1}X'X$ be an $(r \times r)$ covariance matrix. Let $r = 30$ and set $D^2 = \text{Diag}(12, 11, 10, 9, 8, 7, 3, 3, 3, \cdots, 3)$. Then, $X'X \sim \mathcal{W}_r(n, D^2)$. The scree plot of the eigenvalues of $\hat{\Sigma}_{XX}$ in the case that $n = 300$ is given in the left panel of Figure 7.3, where there is an elbow at 7. Now, suppose $n = 30$. Then, the scree plot of the eigenvalues is given in the right panel of Figure 7.3 and shows no discernible elbow. This example suggests that the relationship between n and r can determine whether or not the scree plot is useful in determining how many PCs to retain.

In the food nutrition example, the eigenvalues of the covariance matrix of the transformed data are given in Table 7.1. The scree plot of these
eigenvalues, which is given in the left panel of Figure 7.4, shows no elbow. This may be explained by the fact that the leading PC explains only a 44% share of the total variance, there is no really dominant group of eigenvalues, and it takes four PCs to pass 90% of total variance.

PC Rank Trace: The problem of deciding how many principal components to retain is equivalent to obtaining a useful estimate of the rank of the regression coefficient matrix C in the principal components case. So, if we can obtain a good estimate of the rank, we should have a solution to this problem.

We saw in Chapter 6 that the rank trace plots the loss of information when approximating the full-rank regression by a sequence of reduced-rank regressions having increasing ranks. When the true rank of the regression, t_0, say, is reached, the points in the rank trace plot following that rank (i.e., ranks $t_0 + 1, \ldots, r$) should cease to change significantly from both the point for t_0 and the full-rank point (rank r).

In the principal components case, the expressions for the points in the rank trace simplify greatly and are very simple to compute. It is not difficult to show (see Exercise 7.6) that

$$
\Delta \hat{C}^{(t)} = \left(1 - \frac{t}{r}\right)^{1/2},
$$

(7.38)

$$
\Delta \hat{\Sigma}^{(t)}_{\varepsilon \varepsilon} = \left(\frac{\hat{\lambda}^2_{t+1} + \cdots + \hat{\lambda}^2_r}{\hat{\lambda}^2_1 + \cdots + \hat{\lambda}^2_r}\right)^{1/2},
$$

(7.39)
FIGURE 7.4. Food nutrition example. Left panel: Scree plot. Right panel: PC rank-trace plot with values of \(t \) placed next to the plotted point. The scree plot for the sample covariance matrix of the transformed data does not offer any advice on the number of principal components to retain, whereas the rank trace plot suggests retaining 4 or 5 principal components. The modified version of Kaiser’s rule recommends retaining three PCs.

Comparing (7.39) with (7.34), we see that we are again looking at the smallest \(r - t \) sample eigenvalues (although this time they are each squared). A plot of (7.39) against (7.38) is called a PC rank trace plot (Izenman, 1980). All the information regarding the dimensionality of the regression is, therefore, contained in the residual covariance matrices and not in the regression coefficients. Furthermore, the \(r + 1 \) plotted points decrease monotonically from (1,1) to (0,0). We assess the rank \(t \) of \(\mathbf{C} \) by \(\hat{t} \), the smallest integer value between 1 and \(r \) at which an “elbow” can be detected in the PC rank trace plot.

In Figure 7.4, the right panel shows the PC rank trace plot for the sample covariance matrix of the food nutrition data. We assess the rank from the rank-trace plot as \(\hat{t} = 4 \) or 5.

Kaiser’s Rule: When dealing with the PCA of a sample correlation matrix, Kaiser (1960) suggested (in the context of exploratory factor analysis) that only those principal components be retained whose eigenvalues exceed unity. This decision guideline is based upon the argument that because the total variation of all \(r \) standardized variables is equal to \(r \), it follows that a principal component should account for at least the average variation of a single standardized variable. This rule is popular but controversial; there is evidence that the cutoff value of 1 is too high. A modified rule retains all PCs whose eigenvalues of the sample correlation matrix exceed 0.7.

For the food nutrition data, the eigenvalues of the sample correlation matrix are 2.6486, 1.3301, 1.0201, 0.6801, 0.2665, and 0.00546. Three of these
7.2 Principal Component Analysis

7.2.7 Graphical Displays

For diagnostic and data analytic purposes, it is usual to plot the first sample PC scores against the second sample PC scores,

\[(\hat{\xi}_{i1}, \hat{\xi}_{i2}), \quad i = 1, 2, \ldots, n,\] (7.40)

where \(\hat{\xi}_{ij} = \hat{\mathbf{v}}_j^T \mathbf{x}_i, \quad i = 1, 2, \ldots, n, \quad j = 1, 2\). A more general graphical tool for displaying the sample PC scores associated with the largest few sample eigenvalues (variances) is the scatterplot matrix, in which all possible pairs of variables are plotted in two dimensions.

See Figure 7.1 for a graphical display of the first two PCs of the food nutrition data and Figure 7.6 for a graphical display of the first three PCs of the pendigits data.

A three-dimensional scatterplot of the first three sample PC scores is also strongly recommended, especially if a “brush and spin” feature is available.

7.2.8 Example: Face Recognition Using Eigenfaces

In this example, we apply PCA to a single face photographed under \(n = 11\) illumination and expression conditions; see Figure 2.4. Recall from Section 2.3.3 that each face, as a picture image, starts out as a \((320 \times 243)\)-matrix of intensity values, which are quantized to 8-bit grayscale \((0–255, \text{with } 0 \text{ as black and } 255 \text{ as white})\), and then translated into a stacked vector of length \(r = 77,760\).

From a PCA of the \(n\) \(r\)-vectors, \(\mathbf{X}_1, \ldots, \mathbf{X}_n\), of stacked images, we compute the first \(t\) PC scores, \(\hat{\xi}_1^{(t)}, \ldots, \hat{\xi}_n^{(t)}\), where \(\hat{\xi}_i^{(t)} = \hat{\mathbf{B}}_i^{(t)} \mathbf{x}_i = (\hat{\xi}_{i1}^{(t)}, \ldots, \hat{\xi}_{it}^{(t)})^T\) is a \(t\)-vector, \(1 \leq t \leq r\). It is usual to plot the points \((\hat{\xi}_{i1}, \hat{\xi}_{i2})\), \(i = 1, 2, \ldots, n\), and annotate the scatterplot with face identifiers. Faces corresponding to the same individual should project to points very close to each other in the scatterplot, whereas faces corresponding to different individuals should project to more distant points. Also, faces of the same individual with very similar poses should be plotted close to each other, whereas different poses should be plotted far away from each other.

The best rank-\(t\) reconstruction of the \(i\)th original face is obtained by computing \(\hat{\mathbf{X}}_i^{(t)} = \mathbf{X} + \hat{\mathbf{C}}^{(t)} (\mathbf{X}_i - \mathbf{X})\), \(i = 1, 2, \ldots, n\), where \(\mathbf{X}\) is the “average” face given by (7.28) and \(\hat{\mathbf{C}}^{(t)}\) is given by (7.33). The average of all the faces can be seen in the left panel of Figure 7.5. If the \(r\)-vectors \(\hat{\mathbf{X}}_1^{(t)}, \ldots, \hat{\mathbf{X}}_n^{(t)}\) are unstacked and displayed as images, they each have the appearance of a “ghostly” face. The reconstructed face image improves as we increase
7. Linear Dimensionality Reduction

FIGURE 7.5. The cumulative effect of the nine principal components, adding one PC at a time, for eigenface 6 (“sad”). The sad face starts to appear by the fifth PC. The average eigenface is given in the left panel.

Each face image in the data set can be represented exactly as a linear combination of all r such ghostly faces or eigenfaces, or approximately as a linear combination of the first t eigenfaces, which are ordered by decreasing eigenvalues.

In the right panel of Figure 7.5, we see the effect of increasing the number of principal components on the reconstruction of face 6 (“sad”). The first eigenface is fuzzy but recognizable as a face. Adding PCs increases the sharpness of the image, and the “sad” face starts to emerge at eigenface 5.

7.2.9 Invariance and Scaling

A shortcoming of PCA is that the principal components are not invariant under rescalings of the initial variables. In other words, a PCA is sensitive to the units of measurement of the different input variables. Standardizing (centering and then scaling) the X-variables,

$$Z \leftarrow (\text{diag}(\Sigma_{XX}))^{-1/2}(X - \mu_X),$$

(7.41)

is equivalent to carrying out PCA using the correlation (rather than the covariance) matrix. When using the correlation matrix, the total variation of the standardized variables is r, the trace of the correlation matrix. The lack of scale invariance implies that a PCA using the correlation matrix may be very different from a similar analysis using the corresponding covariance matrix, and no simple relationship exists between the two sets of results. In the initial formulation and application of PCA, we note that Hotelling
(1933), who was dealing with a battery of test scores, extracted principal
components from the correlation matrix of the data.

Standardization in the PCA context has its advantages. In some fields,
standardization is customary. In heterogeneous situations, where the units
of measurement of the input variables are not commensurate or the ranges
of values of the variables differ considerably, standardization is especially
relevant. If the variables have heterogeneous variances, it is a good idea to
standardize the variables before carrying out PCA because the variables
with the greatest variances will tend to overwhelm the leading principal
components with the remaining variables contributing very little.

On statistical inference grounds, standardization is usually regarded as
a nuisance because it complicates the distributional theory. Indeed, the
asymptotic distribution theory for the eigenvalues and eigenvectors of a
sample correlation matrix turns out to be extremely difficult to derive.
Furthermore, certain simplifications, such as pretending that the sample
correlation matrix has the same distributional properties as the sample
covariance matrix, tend not to work and, hence, lead to incorrect inference
results for principal components.

7.2.10 Example: Pen-Based Handwritten Digit Recognition

These data\(^2\) were obtained from 44 writers, each of whom handwrote 250
eamples of the digits 0, 1, 2, \ldots, 9 in a random order (Alimoglu, 1995).
The digits were written inside boxes of 500 \(\times\) 500 pixel resolution on a
pressure-sensitive tablet with an integrated LCD screen. The subjects were
monitored only during the first entry screens. Each screen contained five
boxes with the digits to be written displayed above. Subjects were told
to write only inside these boxes. If they made a mistake or were unhappy
with their writing, they were instructed to clear the contents of a box by
using an on-screen button. Unknown to the writers, the first 10 digits were
ignored as writers became familiar with the input device.

The raw data on each of \(n = 10,992\) handwritten digits consisted of a
sequence, \((x_t, y_t), t = 1, 2, \ldots, T,\) of tablet coordinates of the pen at fixed
time intervals of 100 milliseconds, where \(x_t\) and \(y_t\) were integers in the
range 0–500. These data were then normalized to make the representations
invariant to translation and scale distortions. The new coordinates were
such that the coordinate that had the maximum range varied between 0
and 100. Usually \(x_t\) stays in this range, because most integers are taller than
they are wide. Finally, from the normalized trajectory of each handwritten

\(^2\)These data are available in the file pendigits on the book’s website. The description
was obtained from \url{www.ics.uci.edu/~learn/databases/pendigits}.\n
digit, 8 regularly spaced measurements, \((x_1, y_1, \ldots, x_8, y_8)\), were chosen by spatial resampling, which gave a total of \(r = 16\) input variables.

A PCA of the correlation matrix (i.e., the covariance matrix of normalized variables) reveals that the variances of the first five principal component (PC) scores are larger than unity: 4.717, 3.229, 2.577, 1.230, 1.063; thus, the first five PCs together explain about 80% of the total variation, 16, in the data. A reduction in dimensionality from 16 to 5, therefore, retains a substantial amount of the total variation. Scatterplots of the first three PC scores, which explain about 66% of the total variation, are displayed in Figure 7.6, where the points are colored by type of digit.

From these three 2D scatterplots, we can make the following observations: the majority of handwritten examples of each digit cluster together, although there is a great deal of overlapping of clusters; each scatterplot has a distinctive shape, with strong suggestions of circular or torus-like appearance; and there appears to be lots of outlying points. A 3D-rotating scatterplot of the first three principal components reveals a hollow, hemispherical point configuration with crab-like arms.

7.2.11 Functional PCA

In some situations, we may need to analyze data consisting of functions or curves. Although such functional data are often time-dependent, we do not assume that time itself plays a special role. In fact, functional data from different and independent individuals may be recorded at different sets of time points, and in each of those instances, the data may not be equally spaced. In such cases, it is advantageous to view an individual’s functional observations as a continuously defined record observed at a set of discrete points, so that a single data point is the entire function (rather than each observed data value). In other cases, we may be able to view independent replications of the entire curve.

Given a set of sample curves from a number of individuals, where each curve represents repeated measurements on the same individual, we may wish to characterize the main features of those curves. One method of doing this is through a functional version of PCA (see, e.g., Ramsay and Silverman, 1997, Chapters 6 and 7). Because we are observing curves rather than individual values, the vector-valued observations \(\mathbf{X}_1, \ldots, \mathbf{X}_n\) are replaced by the univariate functions \(X_1(t), \ldots, X_n(t)\), where \(t\) may indicate time, but in general is to be thought of as a continuous index varying within a closed interval \([0, T]\).

In functional PCA, each sample curve is considered to be an independent realization of a univariate stochastic process \(X(t)\) (having possibly cyclical or periodic form) with smooth mean function \(E\{X(t)\} = \mu(t)\) and
covariance function

$$\text{cov}\{X(s), X(t)\} = \sigma(s, t).$$ \hspace{1cm} (7.42)

By a spectral decomposition of the covariance function, we can express σ as an orthogonal expansion (in the L_2 sense) in terms of its eigenvalues \{\lambda_j\} and associated eigenfunctions \{V_j(t)\}, so that

$$\sigma(s, t) = \sum_{j=1}^{\infty} \lambda_j V_j(s)V_j(t),$$ \hspace{1cm} (7.43)

where the eigenvalues quickly tend to zero and the first few eigenfunctions are slowly varying. The covariance function σ is positive-definite and, hence, we can take the eigenvalues to be nonnegative and ordered: $\lambda_1 \geq \lambda_2 \geq \cdots \geq 0$. The goal is to determine the primary components of functional

FIGURE 7.6. Scatterplots of the first three principal components (PCs) of the correlation matrix from the pendigits data, where $r = 16$ and $n = 10,992$. The top-left panel displays the scatterplot of the first three principal component scores. The top-right panel shows the first and second PCs, the bottom-right panel shows the first and third PCs, and the bottom-left panel shows the second and third PCs. The 10 digits are shown by the following colors: green (0), brown (1), light blue (2), light magenta (3), purple (4), blue (5), light red (6), light green (7), orange (8), and light cyan (9).
variation in $\sigma(s,t)$, where the eigenvalues indicate the amount of total variance attributed to each component.

A random curve can then be expressed as

$$X(t) = \mu(t) + \sum_{j=1}^{\infty} \xi_j V_j(t), \quad (7.44)$$

where the coefficient

$$\xi_j = \int [X(t) - \mu(t)] V_j(t) dt \quad (7.45)$$

is a scalar random variable (called the jth functional PC score) with $E\{\xi_j\} = 0$, $\text{var}\{\xi_j\} = \lambda_j$, $\sum_j \lambda_j < \infty$, and $\text{cov}\{\xi_j, \xi_k\} = 0, j \neq k$. The eigenfunctions $\{V_j(t)\}$ (called PC functions) satisfy

$$\int [V_j(t)]^2 dt = 1, \quad \int V_j(t)V_k(t) dt = 0, j \neq k, \quad (7.46)$$

where the integrals are taken over $[0, T]$, which may be periodic. The expansion (7.42) is the well-known Karhunen–Loève expansion of $X(t)$. Thus, $X(t) - \mu(t)$ may be thought of as a finite sum of orthogonal curves each having uncorrelated random amplitudes.

Although a scientific phenomenon may be viewed as functional, in reality we typically only have a finite amount of knowledge about that phenomenon through sampling. Consequently, estimates of the mean curve $\mu(t)$ and the covariance function σ are based upon a collection of n sample curves, $X_1(t), \ldots, X_n(t)$, where $X_i(t) = \mu(t) + \sum_j \xi_{ij} V_j(t)$ is the ith individual curve. The ith point on the ith curve is denoted by $X_{ik} = X_i(t_k)$.

We briefly mention possible estimation procedures and refer the interested reader to the excellent books by Ramsay and Silverman on this topic. One approach to analyzing such data is, first, to smooth each individual sample curve (e.g., using spline methods or local-linear smoothers), and then apply functional PCA assuming that the smooth curves are the completely observed curves. This gives a set of eigenvalues $\{\hat{\lambda}_j\}$ and (smooth) eigenfunctions $\{\hat{V}_j(t)\}$ extracted from the sample covariance matrix of the smoothed data. The first and second estimated eigenfunctions are then graphed with a view to examining the extent and location of individual curve variation.

Other approaches to functional PCA have been developed, including the use of roughness penalties and regularization, which optimize the selection of smoothing parameter and choice of the number of PCs simultaneously rather than separately in two stages.
7.2.12 What Can Be Gained from Using PCA?

The short answer is that it depends on what we are trying to accomplish and the nature of the application in question. PCA is a linear technique built for several purposes: it enables us, first, to decorrelate the original variables in the study, regardless of whether \(r < n \) or \(n < r \); second, to carry out data compression, where we pay decreasing attention to the numerical accuracy by which we encode the sequence of principal components; third, to reconstruct the original input data using a reduced number of variables according to a least-squares criterion; and fourth, to identify potential clusters in the data.

In certain applications, PCA can be misleading. PCA is heavily influenced when there are outliers in the data (e.g., in computer vision, images can be corrupted by noisy pixels), and such considerations have led to the construction of robust PCA. In other situations, the linearity of PCA may be an obstacle to successful data reduction and compression, and so in Chapter 16, we consider nonlinear versions of PCA.

7.3 Canonical Variate and Correlation Analysis

Canonical variate and correlation analysis (CVA or CCA) (Hotelling, 1936) is a method for studying linear relationships between two vector variates, which we denote by \(\mathbf{X} = (X_1, \cdots, X_r)^\tau \) and \(\mathbf{Y} = (Y_1, \cdots, Y_s)^\tau \). As such, it has been used to solve theoretical and applied problems in econometrics, business (primarily, finance and marketing), psychometrics, geography, education, ecology, and atmospheric sciences (e.g., weather prediction).

Hotelling applied CVA to the relationship between a set of two reading test scores \((X_1 = \text{reading speed}, X_2 = \text{reading power}) \) and a set of two arithmetic test scores \((Y_1 = \text{arithmetic speed}, Y_2 = \text{arithmetic power}) \) obtained from 140 fourth-grade children, so that \(r = s = 2 \).

7.3.1 Canonical Variates and Canonical Correlations

We assume that

\[
\begin{pmatrix}
\mathbf{X} \\
\mathbf{Y}
\end{pmatrix}
\]

(7.47)

is a collection of \(r + s \) variables partitioned into two disjoint subcollections, where \(\mathbf{X} \) and \(\mathbf{Y} \) are jointly distributed with mean vector and covariance matrix given by

\[
\mathbb{E}\left\{ \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} \right\} = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix},
\]

(7.48)
respectively, where Σ_{XX} and Σ_{YY} are both assumed to be nonsingular.

CVA seeks to replace the two sets of correlated variables, X and Y, by t pairs of new variables,

$$(\xi_i, \omega_i), \quad i = 1, 2, \ldots, t, \quad t \leq \min(r, s),$$

(7.50)

where

$$\xi_j = g_j^T X = g_{1j} X_1 + g_{2j} X_2 + \cdots + g_{rj} X_r$$

$$\omega_j = h_j^T Y = h_{1j} Y_1 + h_{2j} Y_2 + \cdots + h_{sj} Y_s$$

(7.51)

$j = 1, 2, \ldots, t$, are linear projections of X and Y, respectively. The jth pair of coefficient vectors, $g_j = (g_{1j}, \ldots, g_{rj})^\tau$ and $h_j = (h_{1j}, \ldots, h_{sj})^\tau$, are chosen so that

- the pairs $\{(\xi_j, \omega_j)\}$ are ranked in importance through their correlations,

$$\rho_j = \text{corr}\{\xi_j, \omega_j\} = \frac{g_j^T \Sigma_{XY} h_j}{(g_j^T \Sigma_{XX} g_j)^{1/2}(h_j^T \Sigma_{YY} h_j)^{1/2}}, \quad j = 1, 2, \ldots, t,$$

(7.52)

which are listed in descending order of magnitude: $\rho_1 \geq \rho_2 \geq \cdots \geq \rho_t$.

- ξ_j is uncorrelated with all previously derived ξ_k: $\text{cov}\{\xi_j, \xi_k\} = g_j^T \Sigma_{XX} g_k = 0, \quad k < j.$

(7.53)

- ω_j is uncorrelated with all previously derived ω_k: $\text{cov}\{\omega_j, \omega_k\} = h_j^T \Sigma_{YY} h_k = 0, \quad k < j.$

(7.54)

The pairs (7.44) are known as the first t pairs of canonical variates of X and Y and their correlations (7.45) as the t largest canonical correlations.

The CVA technique ensures that every bit of correlation is wrung out of the original X and Y variables and deposited in an orderly fashion into pairs of new variables, $(\xi_j, \omega_j), \quad j = 1, 2, \ldots, t$, which have a special correlation structure. If the notion of correlation is regarded as the primary determinant of information in the system of variables, then CVA is a major tool for reducing the dimensionality of the original two sets of variables.

7.3.2 Example: COMBO-17 Galaxy Photometric Catalogue

The data for this example consist of a subset of a public catalogue of a large number of astronomical objects (e.g., stars, galaxies, quasars) with
TABLE 7.2. Variables used to analyze 3,438 galaxies from the Chandra Deep Field South area of the sky. The variables are divided into \(r = 23 \) X-variables and \(s = 6 \) Y-variables.

<table>
<thead>
<tr>
<th>X-variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>UjMag, BjMag, VjMag, usMag, gsMag, rsMag,</td>
</tr>
<tr>
<td>UbMag, BbMag, VbMag, S280Mag,</td>
</tr>
<tr>
<td>W420F_E, W462F_E, W485F_D, W518F_E, W571F_S,</td>
</tr>
<tr>
<td>W604F_E, W646F_D, W696F_E, W753F_E, W815F_S,</td>
</tr>
<tr>
<td>W856F_D, W914F_D, W914F_E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y-variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rmag, ApD_Rmag, mu_max, MC_z, MC_z_ml, chi2red</td>
</tr>
</tbody>
</table>

brightness measurements in 17 passbands covering the range 350–930 nm (Wolf, Meisenheimer, Kleinheinrich, Borch, Dye, Gray, Wisotski, Bell, Rix, Cimatti, Hasinger, and Szokoly, 2004). All objects in the catalogue are found in the Chandra Deep Field South, one of the most popularly studied areas of the sky. Figure 7.7 shows a high-resolution composite image of the Chandran Deep Field South, based upon images obtained in 2003 with the Wide Field Imager on the ground-based 2.2-m MPG/ESO telescope located at the European Southern Observatory (ESO) on La Silla, Chile. The image displays more than 100,000 galaxies, several thousand stars, and hundreds of quasars. COMBO-17 (“Classifying Objects by Medium-Band Observations in 17 filters”) is an international collaboration project whose mission is to study the evolution of galaxies.

This particular subset of the data set consists of the \(n = 3,438 \) objects in the Chandra Deep Field South that are classified as “Galaxies” and for which there are no missing values for any of the 65 variables (24 observations were omitted because of missing data). We also omitted five redundant variables and all error variables in the data set; the 29 remaining variables were then divided into a group of \(r = 23 \) X-variables and a group of \(s = 6 \) Y-variables, which are listed in Table 7.2.

Of the Y-variables, Rmag is the total \(R \)-band magnitude (magnitudes are inverted logarithmic measures of brightness), ApD_Rmag is the aperture difference of Rmag, mu_max is the central surface brightness in Rmag, MC_z is the mean redshift in the distribution \(p(z) \), MC_z_ml is the peak

3The complete catalogue of 63,501 astronomical objects can be obtained from the website vizier.u-strasbg.fr/viz-bin/VizieR-4 or from the COMBO-17 website www.mpia.de/COMBO/combo_index.html. The data set used in this example is a subset and can be downloaded from astrostatistics.psu.edu/datasets/COMBO17.html. The author thanks Donald Richards for very helpful discussions on this data set.
of the redshift distribution $p(z)$, and chi2red is the reduced χ^2-value of the best-fitting template.

Of the X-variables, $UJMag, BJMag, VJMag, USMag, GsMag, RsMag, UbMag, BbMag, VbMag$, and $S280Mag$ are all absolute magnitudes of the galaxy in 10 bands. The first nine of these magnitudes are very highly correlated with each other, with all pairwise correlations greater than 0.93. They are based upon the measured magnitudes and the redshifts and represent the intrinsic luminosities of the galaxies. The other variables are the observed brightnesses in 13 bands in sequence from 420 nm in the ultraviolet to 915 nm in the far red; these variables are also highly correlated with each other, with correlations decreasing as distance between bands increases.

The pairwise plots of all six pairs of canonical variates of the COMBO-17 data are displayed in Figure 7.8. The canonical correlations are, in decreasing order of magnitude, 0.942, 0.538, 0.077, 0.037, 0.030, and 0.020; two of
These correlations are large, whereas the rest are very small. We also see many outliers in these plots. For example, galaxy Nr = 3605 is prominent in all six plots, and galaxies Nr = 3033, 3277, and 6423 are prominent in at least three plots.

7.3.3 Least-Squares Optimality of CVA

Let the \((t \times r)\)-matrix \(G\) and the \((t \times s)\)-matrix \(H\), with \(1 \leq t \leq \min(r, s)\), be such that \(X\) and \(Y\) are linearly projected into new vector variates,

\[
\xi = GX, \quad \omega = HY,
\]

(7.55)

respectively. Consider the problem of finding \(\nu\), \(G\), and \(H\) so that

\[
HY \approx \nu + GX
\]

(7.56)

in some least-squares sense. More precisely, we wish to find \(\nu\), \(G\), and \(H\) to minimize the \((t \times t)\)-matrix,

\[
E\{(HY - \nu - GX)(HY - \nu - GX)^\tau\},
\]

(7.57)

where we assume that the covariance matrix of \(\omega\) is \(\Sigma_{\omega\omega} = H\Sigma_{YY}H^\tau = I_t\).
Fix the matrix H and minimize the error criterion (7.57) first with respect to ν and G. We set $\omega_c = \omega - \mu_\omega = \omega - G\mu_X$, and write $\omega - \nu - G\omega_c$ as $\omega_c + (H\mu_Y - \nu - G\mu_X) - G\omega_c$, where $X_c = X - \mu_X$. Then,

$$
\min_{\nu, G} E\{(\omega - \nu - G\omega_c)(\omega - \nu - G\omega_c)^\tau\} \\
\geq \min_G E\{(\omega_c - G\omega_c)(\omega_c - G\omega_c)^\tau\} \\
= \text{tr}\{\Sigma_{\omega \omega} - \Sigma_{\omega X} \Sigma_{X X}^{-1} \Sigma_{X \omega}\} \\
+ \min_G \text{tr}\{(G\Sigma_{X X}^{1/2} - \Sigma_{\omega X} \Sigma_{X X}^{-1/2})(G\Sigma_{X X}^{1/2} - \Sigma_{\omega X} \Sigma_{X X}^{-1/2})^\tau\} \\
\geq \text{tr}\{\Sigma_{\omega \omega} - \Sigma_{\omega X} \Sigma_{X X}^{-1} \Sigma_{X \omega}\} \\
= \text{tr}\{H\Sigma_{Y Y} H^\tau - H\Sigma_{Y X} \Sigma_{X X}^{-1} \Sigma_{X Y} H^\tau\} \\
= t - \sum_{j=1}^t \lambda_j (H\Sigma_{Y X} \Sigma_{X X}^{-1} \Sigma_{X Y} H^\tau),
$$

(7.58)

where the first inequality becomes an equality iff $\nu = H\mu_Y - G\mu_X$, and the second inequality becomes an equality iff $G = \Sigma_{\omega X} \Sigma_{X X}^{-1} = H\Sigma_{Y X} \Sigma_{X X}^{-1}$.

Now set $U^\tau = H\Sigma_{Y Y}^{1/2}$, so that $U^\tau U = I_t$. Then, by the Poincaré Separation Theorem (see Section 3.2.10), (7.58) becomes

$$
t - \sum_{j=1}^t \lambda_j (U^\tau RU) \geq t - \sum_{j=1}^t \lambda_j (R),
$$

where

$$
R = \Sigma_{Y Y}^{-1/2} \Sigma_{Y X} \Sigma_{X X}^{-1} \Sigma_{X Y} \Sigma_{Y Y}^{-1/2},
$$

(7.59)

with equality only when the columns of U are the eigenvectors associated with the first t eigenvalues of R.

To summarize: The ν, G, and H that minimize (7.57) are given by

$$
\nu^{(t)} = H^{(t)} \mu_Y - G^{(t)} \mu_X,
$$

(7.60)

$$
G^{(t)} = \begin{pmatrix}
\lambda_1 u_1^\tau \\
\vdots \\
\lambda_t u_t^\tau
\end{pmatrix} = \Sigma_{Y Y}^{-1/2} \Sigma_{X Y} \Sigma_{X X}^{-1} = \begin{pmatrix}
\lambda_1 u_1^\tau \\
\vdots \\
\lambda_t u_t^\tau
\end{pmatrix},
$$

(7.61)

$$
H^{(t)} = \begin{pmatrix}
v_1^\tau \\
\vdots \\
v_t^\tau
\end{pmatrix} = \Sigma_{Y Y}^{-1/2},
$$

(7.62)

respectively, where u_j is the eigenvector associated with the jth largest eigenvalue λ_j^2 of

$$
R^* = \Sigma_{X X}^{-1/2} \Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X} \Sigma_{X X}^{-1/2},
$$

(7.63)
and v_j is the eigenvector associated with the jth largest eigenvalue λ_j^2 of R in (7.59), $j = 1, 2, \ldots, t$.

Let $g_j^T = (g_{1j}, \ldots, g_{rj})$ and $h_j^T = (h_{1j}, \ldots, h_{sj})$ be the jth rows of $G^{(t)}$ and $H^{(t)}$, respectively, $j = 1, 2, \ldots, t$. The r-vector g_j and the s-vector h_j are generally assumed to have unit length; that is, $g_j^T g_j = h_j^T h_j = 1$, $j = 1, 2, \ldots, t$. The jth pair of canonical variates scores, (ξ_j, ω_j), is given by

$$\begin{align*}
\xi_j &= g_j^T X, \\
\omega_j &= h_j^T Y,
\end{align*}$$

where

$$
g_j = \Sigma^{-1/2}_{XX} \Sigma_{XY} \Sigma_{YY}^{-1/2} v_j = \lambda_j \Sigma_{XX}^{-1/2} u_j,$$

$$h_j = \Sigma_{YY}^{-1/2} v_j,$$

$j = 1, 2, \ldots, t$. The covariance matrix of the canonical variates scores,

$$\begin{align*}
\xi^{(t)} &= G^{(t)} X, \\
\omega^{(t)} &= H^{(t)} Y,
\end{align*}$$

is given by

$$\text{cov}\{\xi^{(t)}, \omega^{(t)}\} = \left(\begin{array}{cc}
\Lambda & \Lambda \\
\Lambda & \mathbf{I}_t
\end{array} \right),$$

where

$$\Lambda = \begin{pmatrix}
\lambda_1^2 & 0 & \cdots & 0 \\
0 & \lambda_2^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_t^2
\end{pmatrix},$$

and the correlation matrix is

$$\text{corr}\{\xi^{(t)}, \omega^{(t)}\} = \left(\begin{array}{cc}
\mathbf{I}_t & \Lambda^{1/2} \\
\Lambda^{1/2} & \mathbf{I}_t
\end{array} \right).$$

If we set $\rho_j = \lambda_j$, $j = 1, 2, \ldots, t$, then, (7.68) shows us that

- $\text{corr}\{\xi_j, \xi_k\} = \delta_{jk}$, $j, k = 1, 2, \ldots, t$,
- $\text{corr}\{\xi_j, \omega_k\} = \rho_j \delta_{jk}$, $j, k = 1, 2, \ldots, t$,
- $\text{corr}\{\omega_j, \omega_k\} = \delta_{jk}$, $j, k = 1, 2, \ldots, t$,

where δ_{jk} is the Kronecker delta (i.e., $\delta_{jj} = 1, \delta_{jk} = 0, j \neq k$).

We can, therefore, view the coefficients, $\{g_{ij}\}$ and $\{h_{ij}\}$, of the linear combinations (7.51) as being chosen in the following sequential manner. The first pair (ξ_1, ω_1) has the largest possible correlation ρ_1 among all such linear combinations of X and Y. The second pair, (ξ_2, ω_2), has the largest possible correlation ρ_2 among all linear combinations of X and Y in which ξ_2 is uncorrelated with ξ_1 and ω_2 is uncorrelated with ω_1. The jth pair, (ξ_j, ω_j), has the largest possible correlation ρ_j among all linear
combinations of X and Y in which ξ_j is uncorrelated with $\xi_1, \xi_2, \ldots, \xi_{j-1}$ and ω_j is uncorrelated with $\omega_1, \omega_2, \ldots, \omega_{j-1}$. See Exercise 7.1. It follows that

$$1 > \rho_1 > \rho_2 > \rho_3 > \cdots > \rho_t > 0. \quad (7.71)$$

The pairs of canonical variates, (ξ_j, ω_j), $j = 1, 2, \ldots, t$, are usually arranged in computer output in the form of two groups, $\xi_1, \xi_2, \ldots, \xi_t$ and $\omega_1, \omega_2, \ldots, \omega_t$. The correlation, ρ_j, between ξ_j and ω_j is called the canonical correlation coefficient associated with the jth pair of canonical variates, $j = 1, 2, \ldots, t$.

7.3.4 Relationship of CVA to RRR

Compare the expressions (7.60), (7.61), and (7.62) with those of the reduced-rank regression solutions, (6.86), (6.87), and (6.88).

When $\Gamma = \Sigma_{YY}^{-1}$, the matrices $B^{(t)}$ in (6.88) and $G^{(t)}$ in (7.61) are identical. Furthermore, the matrices $A^{(t)}$ in (6.87) and $H^{(t)}$ in (7.62) are related by

$$H^{(t)}A^{(t)} = H^{(t)}, \quad A^{(t)}H^{(t)}A^{(t)} = A^{(t)}. \quad (7.72)$$

Thus, $A^{(t)}$ is a g-inverse of $H^{(t)}$, and vice versa. That is,

$$H^{(t)} = A^{(t)-}. \quad (7.73)$$

Thus, in a least-squares sense,

$$A^{(t)-}Y \approx A^{(t)-}\mu^{(t)} + B^{(t)}X. \quad (7.74)$$

When $t = s$, two further relations hold,

$$(A^{(s)}H^{(s)}) = A^{(s)}H^{(s)}, \quad (H^{(s)}A^{(s)}) = H^{(s)}A^{(s)}. \quad (7.75)$$

Hence, in the full-rank case only, $H^{(s)} = A^{(s)+}$, the unique Moore–Penrose generalized inverse of $A^{(s)}$ (see Section 3.2.7). Also, $\nu^{(s)} = A^{(s)+}\mu^{(s)}$.

Computationally, the CVA solution, $\nu^{(t)}$, $G^{(t)}$, and $H^{(t)}$, can be obtained directly from the RRR solution, $\mu^{(t)}$, $A^{(t)}$, and $B^{(t)}$ (and, of course, vice versa).

This relationship allows us to carry out a CVA using reduced-rank regression (RRR) routines. Moreover, the number t of pairs of canonical variates with nonzero canonical correlations is equal to the rank t of the regression coefficient matrix C. This is a very important point. We have shown that the pairs of canonical variates can be computed using a multivariate RRR routine. Instead of having an isolated methodology for dealing with two sets of correlated variables (as Hotelling developed), we can incorporate canonical variate analysis as an integral part of multivariate regression methodology.
The reduced-rank regression coefficient matrix corresponding to CVA is given by

\[
C_{CVA}^{(t)} = \Sigma_{YY}^{1/2} \left(\sum_{j=1}^{t} v_j v_j^{\top} \right) \Sigma_{YY}^{-1/2} \Sigma_{YX} \Sigma_{XX}^{-1},
\]

where \(v_j \) is the eigenvector associated with the \(j \)th largest eigenvalue \(\lambda_j \) of \(R \).

Because the \((s \times s)\)-matrix \(R \) plays such a major role in CVA, the following special cases may aid in its interpretation.

- When \(s = 1 \), \(R \) reduces to the squared multiple correlation coefficient (also called the population coefficient of determination) of \(Y \) with the best linear predictor of \(Y \) using \(X_1, X_2, \ldots, X_r \),

\[
R = \rho^2_{Y.X} = \frac{\sigma_{XY}^2 \Sigma_{XX}^{-1} \sigma_{XY}}{\sigma_Y^2},
\]

where \(\sigma_Y^2 \) is the variance of \(Y \) and \(\sigma_{XY} \) is the \(r \)-vector of covariances of \(Y \) with \(X \).

- When \(r = s = 1 \), \(R \) is the squared correlation coefficient between \(Y \) and \(X \),

\[
R = \rho^2 = \frac{\sigma_{XY}^2}{\sigma_X^2 \sigma_Y^2},
\]

where \(\sigma_X^2 \) and \(\sigma_Y^2 \) are the variances of \(X \) and \(Y \), respectively, and \(\sigma_{XY} \) is the covariance between \(X \) and \(Y \).

The \(j \)th canonical correlation coefficient, \(\rho_j \), can, therefore, be interpreted as the multiple correlation coefficient of either \(\xi_j \) with \(Y \) or \(\omega_j \) with \(X \). Using a multiple regression analogy, we can interpret \(\rho_j \) either as that proportion of the variance of \(\xi_j \) that is attributable to its linear regression on \(Y \) or as that proportion of the variance of \(\omega_j \) that is attributable to its linear regression on \(X \).

7.3.5 CVA as a Correlation-Maximization Technique

Hotelling’s approach to CVA maximized correlations between linear combinations of \(X \) and of \(Y \). Consider, again, the arbitrary linear projections \(\xi = g^{\top} X \) and \(\omega = h^{\top} Y \), where, for the sake of convenience and with no loss of generality, we assume that \(E(X) = \mu_X = 0 \) and \(E(Y) = \mu_Y = 0 \). Then, both \(\xi \) and \(\omega \) have zero means. We further assume that they both have unit variances; that is, \(g^{\top} \Sigma_{XX} g = 1 \) and \(h^{\top} \Sigma_{YY} h = 1 \).

The first step is to find the vectors \(g \) and \(h \) such that the random variables \(\xi \) and \(\omega \) have maximal correlation,

\[
\text{corr}(\xi, \omega) = g^{\top} \Sigma_{XY} h,
\]

(7.79)
among all such linear functions of \(X \) and \(Y \). To find \(g \) and \(h \) to maximize (7.79), we set

\[
f(g, h) = g^\top \Sigma_{XY} h - \frac{1}{2} \lambda (g^\top \Sigma_{XX} g - 1) - \frac{1}{2} \mu (h^\top \Sigma_{YY} h - 1),
\]

where \(\lambda \) and \(\mu \) are Lagrangian multipliers. Differentiate \(f(g, h) \) with respect to \(g \) and \(h \), and then set both partial derivatives equal to zero:

\[
\frac{\partial f}{\partial g} = \Sigma_{XY} h - \lambda \Sigma_{XX} g = 0,
\]

\[
(7.81)
\]

\[
\frac{\partial f}{\partial h} = \Sigma_{YX} g - \mu \Sigma_{YY} h = 0.
\]

\[
(7.82)
\]

Multiplying (7.81) on the left by \(g^\top \) and (7.82) on the left by \(h^\top \), we obtain

\[
g^\top \Sigma_{XY} h - \lambda g^\top \Sigma_{XX} g = 0,
\]

\[
(7.83)
\]

\[
h^\top \Sigma_{YX} g - \mu h^\top \Sigma_{YY} h = 0,
\]

\[
(7.84)
\]

respectively, whence, the correlation between \(\xi \) and \(\omega \) satisfies

\[
g^\top \Sigma_{XY} h = \lambda = \mu.
\]

\[
(7.85)
\]

Rearranging terms in (7.83), and then substituting \(\lambda \) for \(\mu \) into (7.84), we get that

\[
-\lambda \Sigma_{XX} g + \Sigma_{XY} h = 0,
\]

\[
(7.86)
\]

\[
\Sigma_{YX} g - \lambda \Sigma_{YY} h = 0.
\]

\[
(7.87)
\]

Premultiplying (7.86) by \(\Sigma_{YX} \Sigma_{XX}^{-1} \), then substituting (7.87) into the result, and rearranging terms gives

\[
(\Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} - \lambda^2 \Sigma_{YY}) h = 0.
\]

\[
(7.88)
\]

which is equivalent to

\[
(\Sigma_{YY}^{-1/2} \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} \Sigma_{YY}^{-1/2} - \lambda^2 \mathbf{I}_s) h = 0.
\]

\[
(7.89)
\]

For there to be a nontrivial solution to this equation, the following determinant has to be zero:

\[
|\Sigma_{YY}^{-1/2} \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} \Sigma_{YY}^{-1/2} - \lambda^2 \mathbf{I}_s| = 0.
\]

\[
(7.90)
\]

It can be shown that the determinant in (7.90) is a polynomial in \(\lambda^2 \) of degree \(s \), having \(s \) real roots, \(\lambda_1^2 \geq \lambda_2^2 \geq \cdots \geq \lambda_s^2 \geq 0 \), say, which are the eigenvalues of

\[
\mathbf{R} = \Sigma_{YY}^{-1/2} \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} \Sigma_{YY}^{-1/2}
\]

\[
(7.91)
\]

with associated eigenvectors \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_s \). The maximal correlation between \(\xi \) and \(\omega \) would, therefore, be achieved if we took \(\lambda = \lambda_1 \), the largest
eigenvalue of \(R \). The resultant choice of coefficients \(g \) and \(h \) of \(\xi \) and \(\omega \), respectively, are given by the vectors

\[
g_1 = \Sigma_{XX}^{-1} \Sigma_{XY} \Sigma_{YY}^{-1/2} v_1, \quad h_1 = \Sigma_{YY}^{-1/2} v_1; \tag{7.92}
\]

compare with (7.65) and (7.66). In other words, the first pair of canonical variates is given by \((\xi_1, \omega_1)\), where \(\xi_1 = g_1^T X \) and \(\omega_1 = h_1^T Y \), and their correlation is \(\text{corr}(\xi_1, \omega_1) = g_1^T \Sigma_{XY} h_1 = \lambda_1 \).

Given \((\xi_1, \omega_1)\), let \(\xi = g^T X \) and \(\omega = h^T Y \) denote a second pair of arbitrary linear projections with unit variances. We require \((\xi, \omega)\) to have maximal correlation among all such linear combinations of \(X \) and \(Y \), respectively, which are also uncorrelated with \((\xi_1, \omega_1)\). This last condition translates into \(g^T \Sigma_{XX} g_1 = h^T \Sigma_{YY} h_1 = 0 \). Furthermore, by (7.86) and (7.87), we require

\[
\text{corr}(\xi, \omega_1) = g^T \Sigma_{XY} h_1 = \lambda_1 g^T \Sigma_{XX} g_1 = 0, \tag{7.93}
\]

\[
\text{corr}(\omega, \xi_1) = h^T \Sigma_{XY} g_1 = \lambda_1 h^T \Sigma_{YY} h_1 = 0. \tag{7.94}
\]

We choose \(g \) and \(h \) to maximize (7.79) subject to the above conditions. Set

\[
f(g, h) = g^T \Sigma_{XY} h - \frac{1}{2} \lambda (g^T \Sigma_{XX} g - 1) - \frac{1}{2} \mu (h^T \Sigma_{YY} h - 1)
+ \eta g^T \Sigma_{XX} g_1 + \nu h^T \Sigma_{YY} h_1, \tag{7.95}
\]

where \(\lambda, \mu, \eta, \) and \(\nu \) are Lagrangian multipliers. Differentiate \(f(g, h) \) with respect to \(g \) and \(h \), and then set both partial derivatives equal to zero:

\[
\frac{\partial f}{\partial g} = \Sigma_{XY} h - \lambda \Sigma_{XX} g + \eta \Sigma_{XX} g_1 = 0, \tag{7.96}
\]

\[
\frac{\partial f}{\partial h} = \Sigma_{YY} g - \mu \Sigma_{YY} h + \nu \Sigma_{YY} h_1 = 0. \tag{7.97}
\]

Multiplying (7.96) on the left by \(g^T \) and (7.97) on the left by \(h^T \), and taking note of (7.93) and (7.94), these equations reduce to (7.86) and (7.87), respectively. We, therefore, take the second pair of canonical variates to be \((\xi_2, \omega_2)\), where

\[
g_2 = \Sigma_{XX}^{-1} \Sigma_{XY} \Sigma_{YY}^{-1/2} v_2, \quad h_2 = \Sigma_{YY}^{-1/2} v_2, \tag{7.98}
\]

and their correlation is \(\text{corr}(\xi_2, \omega_2) = g_2^T \Sigma_{XY} h_2 = \lambda_2 \).

We continue this sequential procedure, deriving eigenvalues and eigenvectors, until no further solutions can be found. This gives us sets of coefficients for the pairs of canonical variates, \((\xi_1, \omega_1), (\xi_2, \omega_2), \ldots, (\xi_k, \omega_k)\), \(k = \min(r, s) \), where the \(i \)th pair of canonical variates \((\xi_i, \omega_i)\) is obtained by choosing the coefficients \(g_i \) and \(h_i \) such that \((\xi_i, \omega_i)\) has the largest correlation among all pairs of linear combinations of \(X \) and \(Y \) that are also uncorrelated with all previously derived pairs, \((\xi_j, \omega_j)\), \(j = 1, 2, \ldots, i - 1 \).
7.3.6 Sample Estimates

Thus, G and H are estimated by

$$
\hat{G}^{(t)} = \begin{pmatrix} \hat{v}_1^T \\ \vdots \\ \hat{v}_t^T \end{pmatrix} \hat{\Sigma}_{YY}^{-1/2} \hat{\Sigma}_{YX} \hat{\Sigma}_{XX}^{-1} = \begin{pmatrix} \hat{\lambda}_1 \hat{u}_1^T \\ \vdots \\ \hat{\lambda}_t \hat{u}_t^T \end{pmatrix} \hat{\Sigma}_{XX}^{-1/2}, \quad (7.99)
$$

$$
\hat{H}^{(t)} = \begin{pmatrix} \hat{v}_1^T \\ \vdots \\ \hat{v}_t^T \end{pmatrix} \hat{\Sigma}_{YY}^{-1/2}, \quad (7.100)
$$

respectively, where \hat{u}_j is the eigenvector associated with the jth largest eigenvalue $\hat{\lambda}_j^2$ of the ($r \times r$) symmetric matrix

$$
\hat{R}^* = \hat{\Sigma}_{XX}^{-1/2} \hat{\Sigma}_{YX} \hat{\Sigma}_{YY}^{-1} \hat{\Sigma}_{YX} \hat{\Sigma}_{XX}^{-1/2}, \quad (7.101)
$$

$j = 1, 2, \ldots, t$, and \hat{v}_j is the eigenvector associated with the jth largest eigenvalue $\hat{\lambda}_j^2$ of the ($s \times s$) symmetric matrix

$$
\hat{R} = \hat{\Sigma}_{YY}^{-1/2} \hat{\Sigma}_{YX} \hat{\Sigma}_{XX}^{-1} \hat{\Sigma}_{XY} \hat{\Sigma}_{YY}^{-1/2}, \quad (7.102)
$$

$j = 1, 2, \ldots, t$. The jth row of $\hat{\xi} = \hat{G}^{(t)}X$ and the jth row of $\hat{\omega} = \hat{H}^{(t)}Y$ together form the jth pair of sample canonical variates $(\hat{\xi}_j, \hat{\omega}_j)$ given by

$$
\hat{\xi}_j = \hat{g}_j^T X, \quad \hat{\omega}_j = \hat{h}_j^T Y, \quad (7.103)
$$

with values (or canonical variate scores) of

$$
\hat{\xi}_{ij} = \hat{g}_j^T X_i, \quad \hat{\omega}_{ij} = \hat{h}_j^T Y_i, \quad i = 1, 2, \ldots, n, \quad (7.104)
$$

where

$$
\hat{g}_j^T = \hat{v}_j^T \hat{\Sigma}_{YY}^{-1/2} \hat{\Sigma}_{YX} \hat{\Sigma}_{XX}^{-1} = \hat{\lambda}_j \hat{u}_j^T \hat{\Sigma}_{XX}^{-1/2} \quad (7.105)
$$

is the jth row of $\hat{G} = \hat{G}^{(t)}$ and

$$
\hat{h}_j^T = \hat{v}_j^T \hat{\Sigma}_{YY}^{-1/2} \quad (7.106)
$$

is the jth row of $\hat{H} = \hat{H}^{(t)}$. The sample canonical correlation coefficient for the jth pair of sample canonical variates, $(\hat{\xi}_j, \hat{\omega}_j)$, is given by

$$
\hat{\rho}_j = \hat{\lambda}_j = \frac{\hat{g}_j^T \hat{\Sigma}_{XY} \hat{h}_j}{(\hat{g}_j^T \hat{\Sigma}_{XX} \hat{g}_j)^{1/2}(\hat{h}_j^T \hat{\Sigma}_{YY} \hat{h}_j)^{1/2}}, \quad j = 1, 2, \ldots, t, \quad (7.107)
$$

It is usually hoped that the first t pairs of sample canonical variates will be the most important, exhibiting a major proportion of the correlation.
present in the data, whereas the remainder can be neglected without losing too much information concerning the correlational structure of the data. Thus, only those pairs of canonical variates with high canonical correlations should be retained for further analysis.

An estimator of the rank-t regression coefficient matrix corresponding to the canonical variates case is given by

$$\hat{C}^{(t)} = \hat{\Sigma}_{YY}^{1/2} \left(\sum_{j=1}^{t} \hat{v}_j \hat{v}_j^T \right) \hat{\Sigma}_{YY}^{-1/2} \hat{\Sigma}_{YX} \hat{\Sigma}_{XX}^{-1},$$ \hspace{1cm} (7.108)

where \hat{v}_j is the eigenvector associated with the jth largest eigenvalue of \hat{R}, $j = 1, 2, \ldots, s$. When X and Y are jointly Gaussian, the asymptotic distribution of $\hat{C}^{(t)}$ in (7.108) is available (Izenman, 1975).

The exact distribution of the sample canonical correlations when X and Y are jointly Gaussian and some of the population canonical correlations are nonzero is extremely complicated, having the form of a hypergeometric function of two matrix arguments (Constantine, 1963; James, 1964). In the null case, when X and Y are independent and all the population canonical correlations are zero, the exact density of the squares of the nonzero sample canonical correlations is given by

$$p(x_1, \ldots, x_t) = c_{r,s,n} \prod_{j=1}^{s} [w(x_j)]^{1/2} \prod_{j<k} (x_j - x_k),$$ \hspace{1cm} (7.109)

where the $x_1, \geq x_2 \geq \cdots \geq x_s$ are the eigenvalues of R, $w(x) = x^{r-s-1}(1-x)^{n-r-s-2}$ is the weight function corresponding to the Jacobi family of orthogonal polynomials, and $c_{r,s,n}$ is a normalization constant depending upon r, s, and n. For details, see, for example, Anderson (1984, Section 13.4). The second product in (7.106) is the Jacobian, also known as the *Vandermonde determinant* (Johnstone, 2006). Asymptotic distribution results are also available when the first t canonical correlations are positive, smaller than unity, and distinct.

7.3.7 Invariance

Unlike principal component analysis, canonical correlations are invariant under simultaneous nonsingular linear transformation of the random vectors X and Y. Suppose we consider linear transformations of X and Y:

$$X \to DX, \quad Y \to FY,$$ \hspace{1cm} (7.110)

where the $(r \times r)$-matrix D and the $(s \times s)$-matrix F are nonsingular. Then, the canonical correlations of DX and FY are identical to those of X and Y. See Exercise 7.11. A consequence of this result is that a CVA using the
covariance matrix will yield the same canonical correlations as a CVA using the corresponding correlation matrix.

7.3.8 How Many Pairs of Canonical Variates to Retain?

Because the question of how many pairs of canonical variates to retain is equivalent to determining the rank t of the regression coefficient matrix $C^{(t)}$ in a reduced-rank regression for CVA, we approach this problem as a rank-determination problem. Although X and Y are treated symmetrically in CVA, the RRR formulation turns CVA into a supervised learning technique. Prediction error can be used as a measure of how good X is in predicting Y using cross-validation. In the case of the rank trace, no reductions of the expressions for the coordinates of the plotted points can be obtained for the CV case as we were able to do for the PC case. The CV rank trace can have points plotted on the exterior to the unit square, and the sequence of points may not be monotonically decreasing; we can, however, introduce a regularization parameter into the rank-trace computations to keep the plotted points within the unit square.

7.4 Projection Pursuit

Projection pursuit (PP) was motivated by the desire to discover “interesting” low-dimensional (typically, one- or two-dimensional) linear projections of high-dimensional data (Friedman and Tukey, 1974). The Gaussian distribution, which has always occupied a central place in statistical theory and application, turns out to be “least interesting” when dealing with low-dimensional projections of multivariate data. This is due to the fact that each of the marginals of a multivariate Gaussian distribution is Gaussian and that most low-dimensional projections of high-dimensional data look approximately Gaussian-distributed (Diaconis and Freedman, 1984). We should, therefore, not expect to see unusual patterns or structure in low-dimensional projections of highly multivariate data.

PP was originally driven by the desire to expose specific non-Gaussian features (variously referred to as “local concentration,” “clusters of distinct groups,” “clumpiness,” or “clottedness”) of the data. An exhaustive search for such features is clearly impossible, and so the search was automated. Indexes of interestingness were created and optimized numerically in an attempt to imitate how users instinctively (by eye) choose interesting projections. This formulation was later replaced by a search for projections that are as far from Gaussianity as possible.

The general strategy behind PP consists of the following two-step process:
1. Set up a projection index I to judge the merit of a particular one- or two-dimensional (or sometimes three-dimensional) projection of a given set of multivariate data.

2. Use an optimization algorithm to find the global and local extrema of that projection index over all m-dimensional projections of the data ($m = 1, 2$ or 3).

For a given m, the optimization step determines the most informative m-dimensional projection of the data. A graphical display of the projections is the output of choice in practice.

7.4.1 Projection Indexes

Huber (1985) argues that projection indexes should be chosen to possess certain computational and analytical properties, especially that of affine invariance (location and scale invariance). Examples of affine invariant indexes include absolute cumulants (e.g., skewness and kurtosis), and Shannon negative entropy (negentropy), both of which are nonnegative in general, but are equal to zero if the underlying distribution is Gaussian. If, however, the data are centered and sphered (having mean zero and covariance matrix the identity), then there is no reason to require affine invariance of the projection index because every projection of the sphered data inherits its properties (i.e., also has mean zero and covariance matrix the identity).

A special case of PP occurs when the projection index is the variance, $\text{var}(Y) = \mathbf{w}^\top \mathbf{\Sigma} \mathbf{X} \mathbf{w}$, of the unit-length projection $Y = \mathbf{w}^\top \mathbf{x}$. In this case, maximizing the variance with respect to \mathbf{w} reduces PP to PCA, and the resulting projections are the leading principal components of \mathbf{X}. Bolton and Krzanowski (1999) show that maximizing the variance is equivalent to minimizing the corresponding Gaussian log-likelihood; in other words, the projection is most interesting (in a variance sense) when \mathbf{X} is least likely to be Gaussian.

Cumulant-Based Index

The absolute value of kurtosis, $|\kappa_4(Y)|$, of the one-dimensional projection $Y = \mathbf{w}^\top \mathbf{X}$ has been widely used as a measure of non-Gaussianity of Y. It has value zero for a Gaussian variable and is positive for a non-Gaussian variable. An unbiased estimate of $\kappa_4(Y)$ is given by the so-called k-statistic k_4 (see, e.g., Kendall and Stuart, 1969, p. 280). Although $\kappa_4(Y)$ is affine invariant and fast to compute, it is not robust, and outliers can have a pretty drastic effect on estimates of $|\kappa_4(Y)|$.
In fact, maximizing or minimizing the kurtosis, \(\kappa_4(Y) \), of projected data \(Y \) with respect to direction \(w \) has been advocated as a way of detecting multivariate outliers (Gnanadesikan and Kettenring, 1972; Peña and Prieto, 2001). A maximal value of kurtosis would result from a small, concentrated amount of outlier contamination, whereas a minimal value of kurtosis would be due to a large amount of contamination.

Polynomial-Based Indexes

Let \(Y = w^\top X \) denote a continuous random variable having probability density function \(p_Y(y) \). Polynomial-based projection indexes take the general form of weighted versions of integrated squared error,

\[
I(Y) = \int [\phi(y) - p_Y(y)]^2 w(y) dy,
\]

where \(w(y) \) is a given weight function on \(\mathbb{R} \). Examples of \(w(y) \) include \(w(y) = 1/\phi(y) \), 1, and \(\phi(y) \), where \(\phi(y) \) is the standard Gaussian density with zero mean and unit variance.

Now, \(Y \) is standard Gaussian with density \(\phi(y) \) iff \(U = 2\Phi(Y) - 1 \) is uniformly distributed on the interval \([-1, 1]\), where \(\Phi(Y) = \int_{-\infty}^{Y} \phi(y) dy \) (see Exercise 7.12). Hence, the integrated squared error between the density of \(U \), \(p_U(u) \), say, and the uniform density,

\[
I_F(Y) = \int_{-1}^{1} [p_U(u) - \frac{1}{2}]^2 du = \int_{-1}^{1} [p_U(u)]^2 du - \frac{1}{2},
\]

(7.112)

can be used as a projection index (Friedman, 1987). The idea is that the further \(p_U(u) \) is from the uniform density, the further \(Y \) would be from Gaussianity. It turns out that this index, if transformed back to the original scale, can be reexpressed as (7.111) with \(w(y) = 1/\phi(y) \), assuming \(p_Y(y)/[\phi(y)]^{1/2} \) is square-integrable. For heavy-tailed \(p_Y(y) \), \(I_F(Y) \) can be infinite, and so will not be very useful as a projection index. It can be shown that \(I_F(Y) \) can be approximated by

\[
I_F(Y) \approx \frac{[\kappa_3(Y)]^2}{12} + \frac{[\kappa_4(Y)]^2}{48},
\]

(7.113)

which is the moment-based projection index of Jones and Sibson (1987).

Interestingly enough, it turns out that outliers in projected data are not unusual. In simulation experiments using a moment-based index similar to (7.113) (see Friedman and Johnstone’s discussions of Jones and Sibson, 1987), outliers were observed to appear repeatedly in projections of even well-behaved multivariate Gaussian data. Furthermore, there is no obvious way to robustify (7.113).
Another possibility is take $w(y) = 1$ in $I(Y)$ (Hall, 1989). It is not difficult to show that Hall’s index, $I_H(Y)$, can be approximated by

$$I_H^0(Y) \propto (E\{\phi(Y)\} - E\{\phi(Z)\})^2,$$

(7.114)

where Z is standard Gaussian and $E\{\phi(Z)\} = (2\pi^{1/2})^{-1}$. Hall’s index (and its two-dimensional analogue) appears to identify projections of the data that have a “hole” in their center (Cook, Buja, Cabrera, and Hurley, 1995).

Taking $w(y) = \phi(y)$ in $I(Y)$ puts more weight around the center of the distribution, rather than at the tails (Cook, Buja, and Cabrera, 1993). It can be shown that $I_{CB}(Y)$ can also be approximated by (7.114). We shall see a generalized form of (7.114) again when we discuss independent component analysis.

Two-dimensional projection indexes are generally built by simple extensions of their one-dimensional versions. Suppose X has been centered and sphered as before. Let $Y = (Y_1, Y_2)^T$ be a bivariate projection of X, where $Y_1 = w_1^T X$ and $Y_2 = w_2^T X$. We want to find w_1 and w_2 so that Y_1 and Y_2 are uncorrelated (i.e., $w_1^T w_2 = 0$) and that the joint distribution, $p_Y(y_1, y_2)$, of (Y_1, Y_2) has some interesting structure. Furthermore, we require the projections to have equal variances (i.e., $w_1^T w_1 = w_2^T w_2 = 1$). In this case, the bivariate Gaussian density, $\phi(y_1, y_2)$, is deemed the least-interesting two-dimensional structure.

Shannon Negentropy

The entropy of a random variable, which was introduced by Claude E. Shannon in 1948, has become a valuable concept in information theory. The entropy of the random variable Y gives us a notion of how much information is contained in Y. Essentially, entropy is largest when Y has greatest variance (i.e., when Y is most unpredictable). If Y is a continuous random variable with probability density function $p_Y(y)$, then the (differential) entropy $H(Y)$ of Y is defined by

$$H(Y) = -\int p_Y(y) \log p_Y(y) dy.$$

(7.115)

Among all random variables having equal variance, the largest value of $H(Y)$ occurs when Y has a Gaussian distribution (Rao, 1965, p. 132). Small values of $H(Y)$ occur when the distribution of Y is concentrated on specific values. Huber (1985) had the idea of using differential entropy as a measure of non-Gaussianity and, hence, as a projection index.

If we normalize $H(Y)$ so that it has the value zero for a Gaussian variable and otherwise is always nonnegative, we arrive at negentropy defined by

$$J(Y) = H(Z) - H(Y),$$

(7.116)
where \(Z \) is a Gaussian random variable having the same variance as \(Y \). If
\(Z \sim \mathcal{N}(0, 1) \), it is easy to show that \(\mathcal{H}(Z) = \frac{1}{2} |1 + \log 2\pi| \approx 1.419 \). Jones and Sibson (1987) derive an efficient projection index based upon \(J(Y) \).

7.4.2 Optimizing the Projection Index

Given a projection index, the next step is to optimize that index, if possible using an algorithm with high speed and low memory requirements. Researchers have preferred different types of optimizing algorithms, including steepest ascent and genetic algorithms. In fact, projection indexes are notorious for getting trapped in numerous local maxima. Getting trapped repeatedly in suboptimal local maxima can delay convergence to the global maximum. It is important, therefore, to use a numerical optimizer that has the ability to avoid such local maxima.

7.5 Visualizing Projections Using Dynamic Graphics

Graphical methods are vital tools for exploring multivariate data. Most statistical graphics methods in common use today can be classified as *static graphics*, such as scatterplots, scatterplot matrices, and displays of projection pursuit results. Additional details from statistic displays can be visualized by using a range of colors or different shapes, characters, or symbols for various levels or characteristics of the data.

Innovative and more informative *dynamic graphics* were devised by John W. Tukey during the early 1970s for visually searching for low-dimensional structure within multivariate data. Such searches were enhanced by the development of custom-designed computer hardware and software (PRIM-9) to carry out the operations of *picturing* ("an ability to look at data from several different directions in multidimensional space"), *rotation* ("at a minimum, the ability to turn the data so that it can be viewed from any direction that is chosen"), *masking* ("the ability to select suitable subregions of the multidimensional space for consideration"), and *isolation* ("the ability to select any subsample of the data points for consideration") in up to 9 dimensions (Fisherkeller, Friedman, and Tukey, 1974).

The graphical data analysis concepts embedded in PRIM-9 have been upgraded and enhanced by the XGOBI/GGobi data visualization system (Swayne, Cook, and Buja, 1998; Cook, Buja, Cabrera, and Hurley, 1995). Examples of the types of dynamic graphics included in the XGOBI/GGobi system are

- The *grand tour* (Asimov, 1985) of data recorded on an \(r \)-dimensional set of variables, \(X \), seeks to generate a continuous sequence of
low-dimensional projections of the X-data, where projections are visualized in one, two, or three dimensions and are designed to be representative of all possible projections of the data.

- The correlation tour of data recorded on two nonoverlapping sets of variables, an r-dimensional set X and an s-dimensional set Y, seeks to generate a continuous sequence of one-dimensional projections of the X-data and of the Y-data in order to display the amount of correlation in those projections.

The grand tour can be regarded as a dynamic version of PCA and the correlation tour as a dynamic version of CVA. The main problem is the huge number of potentially interesting projections. Some guidance is, therefore, needed. For both tours, “interesting” projections can be automatically selected by optimizing one of the objective functions associated with projection pursuit methods. The objective functions discussed above are included in a menu of indexes in the XGobi/GGobi system.

7.6 Software Packages

PCA is included in R, S-PLUS, SAS, SPSS, MATLAB, and MINITAB. CVA (or CCA) is usually confused with linear discriminant analysis (see, e.g., Venables and Ripley, 2002, p. 332), which is a special case of CVA (see Chapter 8). CVA — in the sense of this chapter — is not included in most major software packages.

PCA and CVA are included as special cases of multivariate reduced-rank regression in the RRR+MULTANL package, which can be downloaded from the book’s website. Versions of this package are available for use with R, S-PLUS, and MATLAB.

Bibliographical Notes

Classical descriptions of PCA and CVA can be found in any text on multivariate analysis; in particular, we recommend Anderson (1984, Chapters 11 and 12) and Seber (1984, Chapter 5) for theoretical treatments and Gnanadesikan (1977, Chapters 2 and 3) and Lattin, Carroll, and Green (2003, Chapters 4 and 9) for applied viewpoints. Detailed treatments of PCA can be found in Jackson (2003) and Jolliffe (1986). The relationships between multivariate reduced-rank regression and PCA and CVA can be found in Izenman (1975).

The original concept of projection pursuit was formulated by Kruskal (1969, 1972), but it was Friedman and Tukey (1974) who gave it the catchy
name. The development of PP was based upon the experience (and frustrations) of working with an interactive computer graphics program called PRIM-9 (Fisherkeller, Friedman, and Tukey, 1974), which was the first program to use operations such as picturing, rotation, isolation, and masking for visually exploring multivariate data in up to 9 dimensions. The high-point of PRIM-9 was a 25-minute movie taken in 1974 of Tukey analyzing high-dimensional particle physics data. Friedman and Stuetzle (2002) give an historical account of the origins and development of PRIM-9 and PP. The XGobi/GGobi computer graphics programs are the improved and enhanced descendants of PRIM-9. PP has recently been rediscovered by researchers in independent component analysis (see Chapter 15).

Exercises

7.1 Generate a random sample of size \(n = 100 \) from a three-dimensional \((r = 3)\) Gaussian distribution, where one of the variables has very high variance (relative to the other two). Carry out PCA on these data using the covariance matrix and the correlation matrix. In each case, find the eigenvalues and eigenvectors, draw the scree plot, compute the PC scores, and plot all pairwise PC scores in a matrix plot. Compare results.

7.2 Carry out a RRR on the data from Exercise 7.1 using the PCA formulation (i.e., \(Y = X, \Gamma = I_r \)). Compute the rank trace and determine the number of principal components to retain. Compare results with those of Exercise 7.1.

7.3 In the file turtles.txt, there are three variables, length, width, and height, of the carapaces of 48 painted turtles, 24 female and 24 male. Take logarithms of all three variables. Estimate the mean vector and covariance matrix of the male turtles and of the female turtles separately. Find the eigenvalues and eigenvectors of each estimated covariance matrix and carry out a PCA of each data set. Find an expression for the volume of a turtle carapace for males and for females. (Hint: use the fact that the variables are logarithms of the original measurements.) Compare volumes of male and female carapaces.

7.4 In the pen-based handwritten digit recognition (pendigits) example of Section 7.2.1, compute the variance of each of the 16 variables and show that they are very similar. Then, carry out PCA using the covariance matrix. How many PCs explain 80% and 90% of the total variation in the data? Display the first three PCs using pairwise scatterplots as in Figure 7.1. Do you see any differences between a covariance-based and a correlation-based PCA for this example?
7.5 For the **pendigits** data, draw the scree plot and the rank trace plot. How many PCs would you retain based upon each plot? Do you get the same answer from both plots?

7.6 For the principal components case, show that the points in the PC rank trace are given by (7.38) and (7.39).

7.7 The file **SwissBankNotes.txt** consists of six variables measured on 200 old Swiss 1,000-franc bank notes. The first 100 are genuine and the second 100 are counterfeit. The six variables are length of the bank note, height of the bank note, measured on the left, height of the bank note, measured on the right, distance of inner frame to the lower border, distance of inner frame to the upper border, and length of the diagonal. Carry out a PCA of the 100 genuine bank notes, of the 100 counterfeit bank notes, and of all 200 bank notes combined. Do you notice any differences in the results?

7.8 In Section 5.5, condition number and condition indices were discussed as a means of detecting and identifying ill-conditioned data and collinearity in regression problems. How would such measures help in PCA or CVA? Compute these various statistics for the **pendigits** data.

7.9 Carry out a PCA of Fisher’s **iris** data. These data consist of 50 observations on each of three species of iris: *Iris setosa*, *Iris versicolor*, and *Iris virginica*. The four measured variables are sepal length, sepal width, petal length, and petal width. Ignore the species labels. Compute the PC scores and plot all pairwise sets of PC scores in a matrix plot. Explain your results, taking into consideration the species labels.

7.10 Consider an \((r \times r)\) correlation matrix with the same correlation, \(\rho\), say, in the off-diagonal entries. Find the eigenvalues and eigenvectors of this matrix when \(r = 2, 3, 4\). Generalize your results to any \(r\) variables. As examples, set \(\rho = 0.1, 0.3, 0.5, 0.7, 0.9\).

7.11 Show that the set of canonical variates is invariant under simultaneous nonsingular linear transformations of the random vectors \(X\) and \(Y\).

7.12 Let \(r = s = 2\) and suppose the equicorrelation model holds for \(X\) and \(Y\). Then, \(\Sigma_{XX} = \Sigma_{YY} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}\) and \(\Sigma_{XY} = \begin{pmatrix} \rho & \rho \\ \rho & \rho \end{pmatrix}\). Find the canonical correlations and the canonical variates. Generalize your results to general \(r\) and \(s\). Find the matrix \(R\) and the RRR solutions for \(t = 1, 2\).

7.13 For the **COMBO-17** galaxy data, compute a rank-2 multivariate RRR of \(Y\) on \(X\) in which \(\Gamma = \Sigma_{YY}^{-1}\) for the CV situation. Compute the multivariate residuals from the regression, plot them in any way you regard as interesting, and try to find the outliers mentioned in the example.
7.14 Show that Y is standard Gaussian with density $\phi(y)$ iff $U = 2\Phi(Y) - 1$ is uniformly distributed on the interval $[-1, 1]$, where $\Phi(Y) = \int_{-\infty}^{Y} \phi(y)dy$.

7.15 Draw the density of the eigenvalues of a Wishart matrix, $XX^\top \sim \mathcal{W}_r(n, I_r)$, where $r/n \to \gamma \in (0, \infty)$, for γ equal to 0.2, 0.5, 1, 4, 9, 16.
8

Linear Discriminant Analysis

8.1 Introduction

Suppose we are given a learning set \(L \) of multivariate observations (i.e., input values in \(\mathbb{R}^r \)), and suppose each observation is known to have come from one of \(K \) predefined classes having similar characteristics. These classes may be identified, for example, as species of plants, levels of credit worthiness of customers, presence or absence of a specific medical condition, different types of tumors, views on Internet censorship, or whether an e-mail message is spam or non-spam. To distinguish the known classes from each other, we associate a unique class label (or output value) with each class; the observations are then described as labeled observations.

In each of these situations, there are two main goals:

Discrimination: Use the information in a learning set of labeled observations to construct a classifier (or classification rule) that will separate the predefined classes as much as possible.

Classification: Given a set of measurements on a new unlabeled observation, use the classifier to predict the class of that observation.

A classifier is a combination of the input variables. In the machine learning literature, discrimination and classification are described as supervised.
learning techniques; together, they are also referred to as tasks of class prediction.

Whether these goals are at all achievable depends upon the information provided by the input variables. When there are two classes (i.e., $K = 2$), we need only one classifier, and when there are more than two classes, we need at least two (and at most $K - 1$) classifiers to differentiate between the classes and to predict the class of a future observation.

Consider the following medical diagnosis example. If a patient enters the emergency room with severe stomach pains and symptoms consistent with both food poisoning and appendicitis, a decision has to be made as to which illness is more likely for that patient; only then can the patient be treated. For this example, the problem is that the appropriate treatment for one cause of illness is the opposite treatment for the other: appendicitis requires surgery, whereas food poisoning does not, and an incorrect diagnosis could lead to a fatal result. In light of the results from the clinical tests, the physician has to decide upon a course of treatment to maximize the likelihood of success. If the combination of test results points in a particular direction, surgery is recommended; otherwise, the physician recommends a non-surgical treatment. A classifier is constructed from past experience based upon the test results of previously treated patients (the learning set). The more reliable the classifier, the greater the chance for a successful diagnostic outcome for a future patient.

Similarly, a credit card company or a bank uses loan histories of past customers to decide whether a new customer would be a good or bad credit risk; a post office uses handwriting samples of a large number of individuals to design an automated method for distinguishing between different handwritten digits and letters; molecular biologists use gene expression data to distinguish between known classes of tumors; political scientists use frequencies of word usage to identify the authorship of different political tracts; and a person who uses e-mail would certainly like to have a filter that recognizes whether a message is spam or not.

In this chapter, we focus upon the most basic type of classifier: a linear combination of the input variables. This problem has been of interest to statisticians since R.A. Fisher introduced the linear discriminant function (Fisher, 1936).

8.1.1 Example: Wisconsin Diagnostic Breast Cancer Data

Breast cancer is the second largest cause of cancer deaths among women. Three methods of diagnosing breast cancer are currently available: mammography; fine needle aspirate (FNA) with visual interpretation; and surgical biopsy. Although biopsies are the most accurate in distinguishing
malignant lumps from benign ones, they are invasive, time consuming, and costly.

A computer imaging system has recently been developed at the University of Wisconsin-Madison (Street, Wolberg, and Mangasarian, 1993; Mangasarian, Street, and Wolberg, 1995) with the goal of developing a procedure that diagnoses FNAs with very high accuracy. A small-gauge needle is used to extract a fluid sample (i.e., FNA) from a patient’s breast lump or mass (detected by self-examination and/or mammography); the FNA is placed on a glass slide and stained to highlight the nuclei of the constituent cells; an image from the FNA is transferred to a workstation by a video camera mounted on a microscope; and the exact boundaries of the nuclei are determined.

Ten variables of the nucleus of each cell are computed from fluid samples. They are listed in Table 8.1. The variables are constructed so that larger values would typically indicate a higher likelihood of malignancy. For each image consisting of 10–40 nuclei, the mean value (mv), extreme value (i.e., largest or worst value, biggest size, most irregular shape) (ev), and standard deviation (sd) of each of these cellular features are computed, resulting in a total of 30 real-valued variables. The 30 variables are

Because all 30 variables consist of nonnegative measurements with skewed histograms, we took natural logarithms of each variable before analyzing the data. Data values of zero were replaced by the value 0.001 prior to transforming. When we refer to variables in this example, we mean the transformed variables.

The data set consists of 569 cases (images), of which 212 were diagnosed as malignant (confirmed by biopsy) and 357 as benign (confirmed by biopsy or by subsequent periodic medical examinations). Many pairs of the 30 variables are highly correlated; for example, 19 correlations are between 0.8 and 0.9, and 25 correlations are greater than 0.9 (six of which are greater than 0.99). The problem is how best to separate the malignant from the benign lumps (without performing surgery); a secondary problem is how to do this using as few variables as possible.

To discriminate between the benign and malignant lumps, a linear discriminant function (LDF) can be derived by estimating the coefficients for an optimal linear combination of the 30 input variables. From the resulting LDF, we compute a score for each of the 569 tumors, and we then separate the scores by group.

Histograms of the scores on the LDF for the benign (group 0) and malignant (group 1) tumors are displayed in the left panel of Figure 8.1, and kernel density estimates of the scores of the two groups (group 0 is the left curve and group 1 is the right curve) are displayed in the right panel. We can see a certain amount of overlap in the distribution of the LDF of the two groups, showing that perfect discrimination between benign and malignant tumors cannot be attained using the LDF with these data.

8.2 Classes and Features

We assume that the population \(\mathcal{P} \) is partitioned into \(K \) unordered classes, groups, or subpopulations, which we denote by \(\Pi_1, \Pi_2, \ldots, \Pi_K \). Each item in \(\mathcal{P} \) is classified into one (and only one) of those classes. Measurements on a sample of items are to be used to help assign future unclassified items to one of the designated classes. The random \(r \)-vector \(\mathbf{X} \), given by

\[
\mathbf{X} = (X_1, \cdots, X_r)^\top,
\]

represents the \(r \) measurements on an item (i.e., \(\mathbf{X} \in \mathbb{R}^r \)). The variables \(X_1, X_2, \ldots, X_r \) are likely to be chosen because of their suspected ability

1The original data can be found in the file wdbc at the book’s website and in the file breast-cancer-wisconsin/wdbc.data at the website http://www.ics.uci.edu/pub/machine-learning-databases/.
8.3 Binary Classification

Consider, first, the binary classification problem \((K = 2)\) where we wish to discriminate between two classes \(\Pi_1\) and \(\Pi_2\), such as the “malignant” and “benign” tumors in the breast cancer example.

8.3.1 Bayes’s Rule Classifier

Let

\[
P(X \in \Pi_i) = \pi_i, \quad i = 1, 2, \tag{8.2}
\]

be the prior probabilities that a randomly selected observation \(X = x\) belongs to either \(\Pi_1\) or \(\Pi_2\). Suppose also that the conditional multivariate probability density of \(X\) for the \(i\)th class is

\[
P(X = x | X \in \Pi_i) = f_i(x), \quad i = 1, 2. \tag{8.3}
\]

We note that there is no requirement that the \(\{f_i(\cdot)\}\) be continuous; they could be discrete or be finite mixture distributions or even have singular
covariance matrices. From (8.2) and (8.3), Bayes’s theorem yields the posterior probability,

\[p(\Pi_i|x) = \frac{f_i(x)\pi_i}{f_1(x)\pi_1 + f_2(x)\pi_2}, \] (8.4)

that the observed \(x \) belongs to \(\Pi_i, i = 1, 2 \).

For a given \(x \), a reasonable classification strategy is to assign \(x \) to that class with the higher posterior probability. This strategy is called the Bayes’s rule classifier. In other words, we assign \(x \) to \(\Pi_1 \) if

\[\frac{p(\Pi_1|x)}{p(\Pi_2|x)} > 1, \] (8.5)

and we assign \(x \) to \(\Pi_2 \) otherwise. The ratio \(p(\Pi_1|x)/p(\Pi_2|x) \) is referred to as the “odds-ratio” that \(\Pi_1 \) rather than \(\Pi_2 \) is the correct class given the information in \(x \). Substituting (8.4) into (8.5), the Bayes’s rule classifier assigns \(x \) to \(\Pi_1 \) if

\[\frac{f_1(x)}{f_2(x)} > \frac{\pi_2}{\pi_1}, \] (8.6)

and to \(\Pi_2 \) otherwise. On the boundary \(\{ x \in R^r | f_1(x)/f_2(x) = \pi_2/\pi_1 \} \), we randomize (e.g., by tossing a fair coin) between assigning \(x \) to either \(\Pi_1 \) or \(\Pi_2 \).

8.3.2 Gaussian Linear Discriminant Analysis

We now make the Bayes’s rule classifier more specific by following Fisher’s (1936) assumption that both multivariate probability densities in (8.3) are multivariate Gaussian (see Section 3.3.2) having arbitrary mean vectors and a common covariance matrix. That is, we take \(f_1(\cdot) \) to be a \(\mathcal{N}(\mu_1, \Sigma_1) \) density and \(f_2(\cdot) \) to be a \(\mathcal{N}(\mu_2, \Sigma_2) \) density, and we make the homogeneity assumption that \(\Sigma_1 = \Sigma_2 = \Sigma_{XX} \).

The ratio of the two densities is given by

\[\frac{f_1(x)}{f_2(x)} = \exp\left\{ -\frac{1}{2}(x - \mu_1)^\tau \Sigma_{XX}^{-1}(x - \mu_1) \right\} \exp\left\{ -\frac{1}{2}(x - \mu_2)^\tau \Sigma_{XX}^{-1}(x - \mu_2) \right\}, \] (8.7)

where the normalization factors \((2\pi)^{-r/2}|\Sigma_{XX}|^{-1/2}\) in both numerator and denominator cancel due to the equal covariance matrices of both classes. Taking logarithms (a monotonically increasing function) of (8.7), we have that

\[\log_e \frac{f_1(x)}{f_2(x)} = (\mu_1 - \mu_2)^\tau \Sigma_{XX}^{-1} x - \frac{1}{2}(\mu_1 - \mu_2)^\tau \Sigma_{XX}^{-1}(\mu_1 + \mu_2) \] (8.8)

\[= (\mu_1 - \mu_2)^\tau \Sigma_{XX}^{-1}(x - \bar{\mu}), \] (8.9)
where $\mu = (\mu_1 + \mu_2)/2$. The second term in the right-hand side of (8.8) can be written as

$$\begin{align*}
(\mu_1 - \mu_2)^T \Sigma_{XX}^{-1} (\mu_1 + \mu_2) &= \mu_1^T \Sigma_{XX}^{-1} \mu_1 - \mu_2^T \Sigma_{XX}^{-1} \mu_2. \\
(8.10)
\end{align*}$$

It follows that

$$L(x) = \log_e \left\{ \frac{f_1(x)\pi_1}{f_2(x)\pi_2} \right\} = b_0 + b^T x$$

is a linear function of x, where

$$b = \Sigma_{XX}^{-1} (\mu_1 - \mu_2)$$

and

$$b_0 = -\frac{1}{2} \{ \mu_1^T \Sigma_{XX}^{-1} \mu_1 - \mu_2^T \Sigma_{XX}^{-1} \mu_2 \} + \log_e (\pi_2/\pi_1).$$

Thus, we assign x to Π_1 if the logarithm of the ratio of the two posterior probabilities is greater than zero; that is,

$$\begin{align*}
\text{if } L(x) > 0, \text{ assign } x \text{ to } \Pi_1. \\
\text{if } L(x) < 0, \text{ assign } x \text{ to } \Pi_2.
\end{align*}$$

Otherwise, we assign x to Π_2. Note that on the boundary $\{ x \in R^r | L(x) = 0 \}$, the resulting equation is linear in x and, therefore, defines a hyperplane that divides the two classes. The rule (8.14) is generally referred to as Gaussian linear discriminant analysis (LDA).

The part of the function $L(x)$ in (8.11) that depends upon x,

$$U = b^T x = (\mu_1 - \mu_2)^T \Sigma_{XX}^{-1} x,$$

is known as Fisher’s linear discriminant function (LDF). Fisher actually derived the LDF using a nonparametric argument that involved no distributional assumptions. He looked for that linear combination, $a^T X$, of the feature vector X that separated the two classes as much as possible. In particular, he showed that $a \propto \Sigma_{XX}^{-1} (\mu_1 - \mu_2)$ maximized the squared difference of the two class means of $a^T X$ relative to the within-class variation of that difference (see Exercise 8.3).

Total Misclassification Probability

The LDF partitions the feature space R^r into disjoint classification regions R_1 and R_2. If x falls into region R_1, it is classified as belonging to Π_1, whereas if x falls into region R_2, it is classified into Π_2. We now calculate the probability of misclassifying x.

Misclassification occurs either if x is assigned to Π_2, but actually belongs to Π_1, or if x is assigned to Π_1, but actually belongs to Π_2. Define

$$\Delta^2 = (\mu_1 - \mu_2)^T \Sigma_{XX}^{-1} (\mu_1 - \mu_2)$$

(8.16)
to be the *squared Mahalanobis distance* between Π_1 and Π_2. Then,

$$E(U|X \in \Pi_i) = b^T \mu_i = (\mu_1 - \mu_2)^T \Sigma_{XX}^{-1} \mu_i$$

and

$$\text{var}(U|X \in \Pi_i) = b^T \Sigma_{XX} b = \Delta^2,$$

for $i = 1, 2$. The *total misclassification probability* is, therefore,

$$P(\Delta) = P(X \in R_2|X \in \Pi_1) \pi_1 + P(X \in R_1|X \in \Pi_2) \pi_2,$$

where

$$P(X \in R_2|X \in \Pi_1) = P(L(X) < 0|X \in \Pi_1)$$

$$= P\left(Z < -\frac{\Delta}{2} - \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1}\right)$$

$$= \Phi\left(-\frac{\Delta}{2} - \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1}\right)$$

(8.20)

and

$$P(X \in R_1|X \in \Pi_2) = P(L(X) > 0|X \in \Pi_2)$$

$$= P\left(Z > \frac{\Delta}{2} - \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1}\right)$$

$$= \Phi\left(-\frac{\Delta}{2} + \frac{1}{\Delta} \log_e \frac{\pi_2}{\pi_1}\right).$$

(8.21)

In calculating these probabilities, we use the fact that $L(X) = b_0 + U$, and then standardize U by setting

$$Z = \frac{U - E(U|X \in \Pi_i)}{\sqrt{\text{var}(U|X \in \Pi_i)}} \sim N(0, 1).$$

In (8.20) and (8.21), $\Phi(\cdot)$ is the cumulative standard Gaussian distribution function. If $\pi_1 = \pi_2 = 1/2$, then

$$P(X \in R_2|X \in \Pi_1) = P(X \in R_1|X \in \Pi_2) = \Phi(-\Delta/2),$$

and, hence, $P(\Delta) = 2\Phi(-\Delta/2)$.

A graph of $P(\Delta)$ against Δ shows a downward-sloping curve, as one would expect; it has the value 1 when $\Delta = 0$ (i.e., the two populations are identical) and tends to zero as Δ increases. In other words, the greater the distance between the two population means, the less likely one is to misclassify x.

Sampling Scenarios

Usually, the $2r + r(r + 1)/2$ distinct parameters in μ_1, μ_2, and Σ_{XX} will be unknown, but can be estimated from learning data on X. Assume, then,
that we have available independent learning samples from the two classes \(\Pi_1 \) and \(\Pi_2 \). Let \(\{X_{1j}\} \) be a learning sample of size \(n_1 \) taken from \(\Pi_1 \) and let \(\{X_{2j}\} \) be a learning sample of size \(n_2 \) taken from \(\Pi_2 \).

The following different scenarios are possible when sampling from population \(\mathcal{P} \):

1. **Conditional sampling**, where a sample of fixed size \(n = n_1 + n_2 \) is randomly selected from \(\mathcal{P} \), and at a fixed \(x \) there are \(n_i(x) \) observations from \(\Pi_i \), \(i = 1, 2 \). This sampling scenario often appears in bioassays.

2. **Mixture sampling**, where a sample of fixed size \(n = n_1 + n_2 \) is randomly selected from \(\mathcal{P} \) so that \(n_1 \) and \(n_2 \) are randomly selected. This is quite common in discrimination studies.

3. **Separate sampling**, where a sample of fixed size \(n_i \) is randomly selected from \(\Pi_i \), \(i = 1, 2 \), and \(n = n_1 + n_2 \). Overall, this is the most popular scenario.

In all three cases, ML estimates of \(b_0 \) and \(\mathbf{b} \) can be obtained (Anderson, 1982).

Sample Estimates

The ML estimates of \(\mu_i, i = 1, 2 \), and \(\Sigma_{XX} \) are given by

\[
\hat{\mu}_i = \bar{X}_i = n_i^{-1} \sum_{j=1}^{n_i} X_{ij}, \quad i = 1, 2, \tag{8.22}
\]

\[
\hat{\Sigma}_{XX} = n^{-1} S_{XX}, \tag{8.23}
\]

respectively, where

\[
S_{XX} = S^{(1)}_{XX} + S^{(2)}_{XX}, \tag{8.24}
\]

and

\[
S^{(i)}_{XX} = \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)(X_{ij} - \bar{X}_i)^\top, \quad i = 1, 2, \tag{8.25}
\]

where \(n = n_1 + n_2 \). If we wish to compute an unbiased estimator of \(\Sigma_{XX} \), we can divide \(S_{XX} \) in (8.24) by its degrees of freedom \(n - 2 = n_1 + n_2 - 2 \) (rather than by \(n \)) to make \(\hat{\Sigma}_{XX} \).

The prior probabilities, \(\pi_1 \) and \(\pi_2 \), may be known or can be closely approximated in certain situations from past experience. If \(\pi_1 \) and \(\pi_2 \) are unknown, they can be estimated by

\[
\hat{\pi}_i = \frac{n_i}{n}, \quad i = 1, 2, \tag{8.26}
\]

respectively. Substituting these estimates into \(L(x) \) in (8.11) yields

\[
\hat{L}(x) = \hat{b}_0 + \hat{b}^\top x, \tag{8.27}
\]
where
\[\hat{b} = \hat{\Sigma}_{XX}^{-1}(\bar{X}_1 - \bar{X}_2) \] (8.28)
\[\hat{b}_0 = -\frac{1}{2} \{ \bar{X}_1^T \hat{\Sigma}_{XX}^{-1}\bar{X}_1 - \bar{X}_2^T \hat{\Sigma}_{XX}^{-1}\bar{X}_2 \} + \log \frac{n_1}{n} - \log \frac{n_2}{n} \] (8.29)
are the ML estimates of \(b \) and \(b_0 \), respectively. The classification rule assigns \(x \) to \(\Pi_1 \) if \(\hat{L}(x) > 0 \), and assigns \(x \) to \(\Pi_2 \) otherwise.

The second term of \(\hat{L}(x) \),
\[\hat{b}^T x = (\bar{X}_1 - \bar{X}_2)^T \hat{\Sigma}_{XX}^{-1} x, \] (8.30)
estimates Fisher’s LDF. For large samples (\(n_i \to \infty, i = 1, 2 \)), the distribution of \(\hat{b} \) in (8.28) is Gaussian (Wald, 1944). This result allows us to study the separation of two given training samples, as well as the assumptions of normality and covariance matrix homogeneity, by drawing a histogram or normal probability plot of the LDF evaluated for every observation in the training samples. Nonparametric density estimates of the LDF scores for each class are especially useful in this regard; see, for example, Figure 8.1.

Example: Wisconsin Breast Cancer Data (Continued)

For the Wisconsin Diagnostic Breast Cancer Data, we estimate the priors \(\pi_1 \) and \(\pi_2 \) by \(\hat{\pi}_1 = n_1/n = 357/569 = 0.6274 \) and \(\hat{\pi}_2 = n_2/n = 212/569 = 0.3726 \), respectively. The coefficients of the LDF are estimated by first computing \(\bar{X}_1, \bar{X}_2 \), and the pooled covariance matrix \(\hat{\Sigma}_{XX} \), and then using (8.28). The results are given in Table 8.2.

The leave-one-out cross-validation (CV/n) procedure drops one observation from the data set, reestimates the LDF from the remaining \(n - 1 \) observations, and then classifies the omitted observation; the procedure is repeated 569 times for each observation in the data set. The confusion table for classifying the 569 observations is given in Table 8.3. In this table, the row totals are the true classifications, and the column totals are the predicted classifications using Fisher’s LDF and leave-one-out cross-validation.

From Table 8.3, we see that LDA leads to too many malignant tumors being misdiagnosed as “benign”: of the 212 malignant tumors, 192 are correctly classified and 20 are not; and of the 357 benign tumors, 353 are correctly classified and 4 are not. The misclassification rate for Fisher’s LDF in this example is, therefore, estimated by CV/n as \(24/569 = 0.042 \), or 4.2%.

For comparison, the apparent error rate (i.e., the error rate obtained by classifying each observation using the LDF, then dividing the number of misclassified observations by \(n \)) is given by \(19/569 = 0.033 \), or 3.3%, which is clearly an overly optimistic estimate of the LDF misclassification rate.
TABLE 8.2. Estimated coefficients of Fisher’s linear discriminant function for the Wisconsin diagnostic breast cancer data. All variables are logarithms of the original variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coeff.</th>
<th>Variable</th>
<th>Coeff.</th>
<th>Variable</th>
<th>Coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius.mv</td>
<td>–30.586</td>
<td>radius.sd</td>
<td>–2.630</td>
<td>radius.ev</td>
<td>6.283</td>
</tr>
<tr>
<td>texture.mv</td>
<td>–0.317</td>
<td>texture.sd</td>
<td>–0.602</td>
<td>texture.ev</td>
<td>2.313</td>
</tr>
<tr>
<td>peri.mv</td>
<td>35.215</td>
<td>peri.sd</td>
<td>0.262</td>
<td>peri.ev</td>
<td>–3.176</td>
</tr>
<tr>
<td>area.mv</td>
<td>–2.250</td>
<td>area.sd</td>
<td>–3.176</td>
<td>area.ev</td>
<td>–1.913</td>
</tr>
<tr>
<td>smooth.mv</td>
<td>0.327</td>
<td>smooth.sd</td>
<td>0.139</td>
<td>smooth.ev</td>
<td>1.540</td>
</tr>
<tr>
<td>comp.mv</td>
<td>–2.165</td>
<td>comp.sd</td>
<td>–0.398</td>
<td>comp.ev</td>
<td>0.528</td>
</tr>
<tr>
<td>scav.mv</td>
<td>1.371</td>
<td>scav.sd</td>
<td>0.047</td>
<td>scav.ev</td>
<td>–1.161</td>
</tr>
<tr>
<td>ncv.mv</td>
<td>0.509</td>
<td>ncv.sd</td>
<td>0.953</td>
<td>ncv.ev</td>
<td>–0.947</td>
</tr>
<tr>
<td>symt.mv</td>
<td>–1.223</td>
<td>symt.sd</td>
<td>–0.530</td>
<td>symt.ev</td>
<td>2.911</td>
</tr>
<tr>
<td>fracd.mv</td>
<td>–3.585</td>
<td>fracd.sd</td>
<td>–0.521</td>
<td>fracd.ev</td>
<td>4.168</td>
</tr>
</tbody>
</table>

8.3.3 LDA via Multiple Regression

The above results on LDA can also be obtained using multiple regression. We create an indicator variable Y showing which observations fall into which class, and then regress that Y on the feature vector X. Let

$$Y = \begin{cases}
y_1 & \text{if } X \in \Pi_1 \\
y_2 & \text{if } X \in \Pi_2
\end{cases}$$

be the class labels and let

$$Y = (y_11_{n_1}^T : y_21_{n_2}^T)$$

be the $(1 \times n)$ row vector whose components are the values of Y for all n observations. Let

$$X = (X_1 : X_2)$$

be an $(r \times n)$-matrix, where X_1 is the $(r \times n_1)$-matrix of observations from Π_1 and X_2 is the $(r \times n_2)$-matrix of observations from Π_2.

TABLE 8.3. Confusion table for the Wisconsin Diagnostic Breast Cancer Data. Row totals are the true classifications and column totals are predicted classifications using leave-one-out cross-validation.

<table>
<thead>
<tr>
<th>Predicted benign</th>
<th>Predicted malignant</th>
<th>Row total</th>
</tr>
</thead>
<tbody>
<tr>
<td>True benign</td>
<td>353</td>
<td>4</td>
</tr>
<tr>
<td>True malignant</td>
<td>20</td>
<td>192</td>
</tr>
<tr>
<td>Column total</td>
<td>373</td>
<td>196</td>
</tr>
</tbody>
</table>
Let
\[X_c = X - \bar{X} = X \mathbf{H}_n \]
(8.34)
\[Y_c = Y - \bar{Y} = Y \mathbf{H}_n, \]
(8.35)
where \(\mathbf{H}_n = \mathbf{I}_n - n^{-1} \mathbf{J}_n \) is the “centering matrix” and \(\mathbf{J}_n = \mathbf{1}_n \mathbf{1}_n^T \) is an \((n \times n)\)-matrix of ones.

If we regress the row vector \(Y_c \) on the matrix \(X_c \), the OLS estimator of the multiple regression coefficient vector \(\beta \) is given by
\[\hat{\beta}^T = Y_c X_c^T (X_c X_c^T)^{-1}. \]
(8.36)

We have the following cross-product matrices:
\[X_c X_c^T = S_{XX} + k d d^T, \]
(8.37)
\[Y_c X_c^T = k(y_1 - y_2) d^T, \]
(8.38)
\[Y_c Y_c^T = k(y_1 - y_2)^2, \]
(8.39)
where
\[d = n_1^{-1} X_1 \mathbf{1}_{n_1} - n_2^{-1} X_2 \mathbf{1}_{n_2} = \bar{X}_1 - \bar{X}_2, \]
(8.40)
\[S_{XX} = \chi_1^T \mathbf{H}_n \chi_1^T + \chi_2^T \mathbf{H}_n \chi_2^T, \]
(8.41)
and \(k = n_1 n_2 / n \). See (8.23). Thus,
\[\hat{\beta}^T = k(y_1 - y_2) d^T (S_{XX} + k d d^T)^{-1} = k(y_1 - y_2)^2 d^T S_{XX}^{-1} (I_r + k d d^T S_{XX}^{-1})^{-1}. \]
(8.42)

From the matrix result (3.4), setting \(A = I_r, u = k d, \) and \(v^T = d^T S_{XX}^{-1} \), we have that
\[(I_r + k d d^T S_{XX}^{-1})^{-1} = I_r - \frac{k d d^T S_{XX}^{-1}}{1 + k d d^T S_{XX}^{-1} d}. \]
\[= \frac{I_r}{1 + k d d^T S_{XX}^{-1} d}, \]
whence,
\[\hat{\beta} = \left(\frac{k(y_1 - y_2)}{n - 2 + T^2} \right) \hat{\Sigma}_{XX}^{-1} d, \]
(8.43)
where \(\hat{\Sigma}_{XX} = S_{XX} / (n - 2) \) and
\[T^2 = k d^T \hat{\Sigma}_{XX}^{-1} d = \frac{n_1 n_2}{n} (\bar{X}_1 - \bar{X}_2)^T \hat{\Sigma}_{XX}^{-1} (\bar{X}_1 - \bar{X}_2) \]
(8.44)
is Hotelling’s \(T^2 \) statistic, which is used for testing the hypothesis that \(\mu_1 = \mu_2 \). Assuming multivariate normality,
\[\left(\frac{n - r - 1}{r(n - 2)} \right) T^2 \sim F_{r, n - r - 1} \]
(8.45)
when this hypothesis is correct (see, e.g., Anderson, 1984, Section 5.3.4).

Note that $D^2 = d^T \hat{\Sigma}^{-1}_{XX} d$ is proportional to an estimate of Δ^2 (see (8.16)). From (8.28) and (8.43), it follows that

$$\hat{\beta} \propto \hat{\Sigma}^{-1}_{XX}(\bar{X}_1 - \bar{X}_2) = \hat{b}.$$ \hspace{1cm} (8.46)

where the proportionality constant is $n_1n_2(y_1 - y_2)/n(n_1 + n_2 - 2 + T^2)$. This fact was first noted by Fisher (1936). Thus, we can obtain Fisher’s estimated LDF (8.28) (up to a constant of proportionality) through multiple regression using an indicator response variable.

How should we choose the values y_1 and y_2? Four different choices are given in Table 8.4. In choosing the values of y_1 and y_2, researchers were initially concerned about ease of computation. The only part of $\hat{\beta}$ in (8.43) that depends upon y_1 and y_2 is $y_1 - y_2$. Thus, Fisher wanted $y_1 - y_2 = 1$ and $Y = 0$; Bishop wanted $k(y_1 - y_2) = n$; Ripley wanted $\bar{Y} = 0$ and the total sum of squares $n_1y_1^2 + n_2y_2^2 = n$; and Lattin, Carroll, and Green wanted $y_1 \Sigma^{-1}_{y} = d^T$. With the public availability of high-speed computers, more simplistic choices are used, including $(y_1, y_2) = (1, 0)$ or $(1, -1)$. Fortunately, it does not matter which values of (y_1, y_2) we pick: these different choices of (y_1, y_2) yield $\hat{\beta}s$ that are proportional to each other.

Example: Wisconsin Diagnostic Breast Cancer Data (Continued)

When we regress Y (1 if the patient’s tumor is malignant and 0 otherwise) on each of the 30 (log-transformed) variables one at a time, all but four of the coefficients are declared to be significant. (A coefficient is “significant” at the 5% level if its absolute t-ratio is greater than the value 2.0 and is nonsignificant otherwise.)

At the other extreme, regressing Y on all 30 variables results in only eight significant coefficients. Table 8.5 gives the multiple regression of Y on the 30 (log-transformed) variables. The estimated coefficients in this table are proportional to those given in Table 8.2 for the LDF. The ordered magnitudes of the ratio of estimated coefficient to its estimated standard error for all 30 variables is displayed in Figure 8.2.

Such conflicting behavior is probably due to high pairwise correlations among the variables: 19 correlations are between 0.8 and 0.9, and 25 correlations are greater than 0.9 (six of which are greater than 0.99).

8.3.4 Variable Selection

High-dimensional data often contain pairs of highly correlated variables, which introduce collinearity into discrimination and classification problems. So, variable selection becomes a priority. The connection between Fisher’s
8. Linear Discriminant Analysis

TABLE 8.4. Proposed values of \((y_1, y_2)\) for LDA via multiple regression.

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>((y_1, y_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher (1936)</td>
<td>((n_2/n, -n_1/n))</td>
</tr>
<tr>
<td>Bishop (1995, p. 109)</td>
<td>((n/n_1, -n/n_2))</td>
</tr>
<tr>
<td>Ripley (1996, p. 102)</td>
<td>(\pm (-n_2/n_1)^{1/2}, (n_1/n_2)^{1/2})</td>
</tr>
<tr>
<td>Lattin et al (2003, p. 437)</td>
<td>((1/n_1, -1/n_2))</td>
</tr>
</tbody>
</table>

LDF and multiple regression provides us with a vehicle for selecting important discriminating variables. Thus, the variable selection techniques of FS and BE stepwise procedures, \(C_p\), LARS, and Lasso can all be used in the discrimination context as well as in regression; see Exercise 8.10.

8.3.5 Logistic Discrimination

We see from (8.11) and the fact that \(p(\Pi_2|x) = 1 - p(\Pi_1|x)\) at \(X = x\), that the posterior probability density satisfies

\[
\logit p(\Pi_1|x) = \log_e \left(\frac{p(\Pi_1|x)}{1 - p(\Pi_1|x)} \right) = \beta_0 + \beta^T x, \tag{8.47}
\]

which has the form of a **logistic regression model**. The logistic approach to discrimination assumes that the log-likelihood ratio (8.11) can be modeled as a linear function of \(x\). Inverting the relationship (8.47), we have that

\[
p(\Pi_1|x) = \frac{e^{L(x)}}{1 + e^{L(x)}}, \tag{8.48}
\]

\[
p(\Pi_2|x) = \frac{1}{1 + e^{L(x)}}, \tag{8.49}
\]

where

\[
L(x) = \beta_0 + \beta^T x. \tag{8.50}
\]

We can write (8.48) as

\[
p(\Pi_1|x) = \frac{1}{1 + e^{-L(x)}} = \sigma(L(x)), \tag{8.51}
\]

say, where \(\sigma(u) = 1/(1 + e^{-u})\) in (8.51) is a sigmoid function (“S-shaped”) (see Figure 8.3), taking values of \(u \in \mathbb{R}\) onto \((0, 1)\).

Maximum-Likelihood Estimation

In light of (8.50), we now write \(p(\Pi_1|x)\) as \(p_1(x, \beta_0, \beta)\), and similarly for \(p_2(x, \beta_0, \beta)\). Thus, instead of first estimating \(\mu_1, \mu_2,\) and \(\Sigma_{XX}\) as we did...
TABLE 8.5. Multiple regression results for linear discriminant analysis on the Wisconsin diagnostic breast cancer data. All variables are logarithms of the original variables. Y is taken to be 1 if the patient’s tumor is malignant and 0 if benign. Listed are the estimated regression coefficients, their respective estimated standard errors, and the Z-ratio of those two values. The multiple R^2 is 0.777 and the F-statistic is 62.43 on 30 and 538 degrees of freedom.

<table>
<thead>
<tr>
<th></th>
<th>Coeff.</th>
<th>S.E.</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-14.348</td>
<td>3.628</td>
<td>-3.955</td>
</tr>
<tr>
<td>radius.mv</td>
<td>-6.168</td>
<td>2.940</td>
<td>-2.098</td>
</tr>
<tr>
<td>texture.mv</td>
<td>-0.064</td>
<td>0.217</td>
<td>-0.294</td>
</tr>
<tr>
<td>peri.mv</td>
<td>7.102</td>
<td>2.385</td>
<td>2.978</td>
</tr>
<tr>
<td>area.mv</td>
<td>-0.454</td>
<td>1.654</td>
<td>-0.274</td>
</tr>
<tr>
<td>smooth.mv</td>
<td>0.066</td>
<td>0.233</td>
<td>0.284</td>
</tr>
<tr>
<td>comp.mv</td>
<td>-0.437</td>
<td>0.162</td>
<td>-2.690</td>
</tr>
<tr>
<td>scav.mv</td>
<td>0.277</td>
<td>0.104</td>
<td>2.669</td>
</tr>
<tr>
<td>ncaev.mv</td>
<td>0.103</td>
<td>0.094</td>
<td>1.096</td>
</tr>
<tr>
<td>symtv.mv</td>
<td>-0.247</td>
<td>0.167</td>
<td>-1.473</td>
</tr>
<tr>
<td>fracd.mv</td>
<td>-0.723</td>
<td>0.353</td>
<td>-2.047</td>
</tr>
<tr>
<td>radius.sd</td>
<td>-0.530</td>
<td>0.277</td>
<td>-1.915</td>
</tr>
<tr>
<td>texture.sd</td>
<td>-0.122</td>
<td>0.080</td>
<td>-1.527</td>
</tr>
<tr>
<td>peri.sd</td>
<td>0.053</td>
<td>0.131</td>
<td>0.405</td>
</tr>
<tr>
<td>area.sd</td>
<td>0.691</td>
<td>0.271</td>
<td>2.555</td>
</tr>
<tr>
<td>smooth.sd</td>
<td>0.028</td>
<td>0.074</td>
<td>0.377</td>
</tr>
<tr>
<td>comp.sd</td>
<td>-0.080</td>
<td>0.100</td>
<td>-0.800</td>
</tr>
<tr>
<td>scav.sd</td>
<td>0.010</td>
<td>0.096</td>
<td>0.100</td>
</tr>
<tr>
<td>ncaev.sd</td>
<td>0.192</td>
<td>0.098</td>
<td>1.970</td>
</tr>
<tr>
<td>symtv.sd</td>
<td>-0.107</td>
<td>0.085</td>
<td>-1.255</td>
</tr>
<tr>
<td>fracd.sd</td>
<td>-0.105</td>
<td>0.069</td>
<td>-1.516</td>
</tr>
<tr>
<td>radius.ev</td>
<td>1.267</td>
<td>1.922</td>
<td>0.659</td>
</tr>
<tr>
<td>texture.ev</td>
<td>0.467</td>
<td>0.283</td>
<td>1.647</td>
</tr>
<tr>
<td>peri.ev</td>
<td>-0.641</td>
<td>0.800</td>
<td>-0.801</td>
</tr>
<tr>
<td>area.ev</td>
<td>-0.386</td>
<td>1.012</td>
<td>-0.381</td>
</tr>
<tr>
<td>smooth.ev</td>
<td>0.311</td>
<td>0.259</td>
<td>1.200</td>
</tr>
<tr>
<td>comp.ev</td>
<td>0.106</td>
<td>0.173</td>
<td>0.617</td>
</tr>
<tr>
<td>scav.ev</td>
<td>-0.234</td>
<td>0.135</td>
<td>-1.730</td>
</tr>
<tr>
<td>ncaev.ev</td>
<td>-0.191</td>
<td>0.126</td>
<td>-1.517</td>
</tr>
<tr>
<td>symtv.ev</td>
<td>0.587</td>
<td>0.209</td>
<td>2.816</td>
</tr>
<tr>
<td>fracd.ev</td>
<td>0.841</td>
<td>0.255</td>
<td>3.292</td>
</tr>
</tbody>
</table>
in (8.24) and (8.25) in order to estimate \(\beta_0 \) and the coefficient vector \(\beta \), we can estimate \(\beta_0 \) and \(\beta \) directly through (8.47).

We define a response variable \(Y \) that identifies the population to which \(X \) belongs,

\[
Y = \begin{cases}
1 & \text{if } X \in \Pi_1 \\
0 & \text{otherwise}.
\end{cases}
\]

(8.52)

The values of \(Y \) are the class labels. Conditional on \(X \), the Bernoulli random variable \(Y \) has \(P(Y = 1) = \pi_1 \) and \(P(Y = 0) = 1 - \pi_1 = \pi_2 \). Thus, we are interested in modeling binary data, and the usual way we do this is through logistic regression.

Given \(n \) observations, \((X_i, Y_i), i = 1, 2, \ldots, n,\) on \((X, Y)\), the conditional likelihood for \((\beta_0, \beta)\) can be written as

\[
L(\beta_0, \beta) = \prod_{i=1}^{n} (p_1(x_i, \beta_0, \beta))^{y_i} (1 - p_1(x_i, \beta_0, \beta))^{1-y_i},
\]

(8.53)

whence, the conditional log-likelihood is

\[
\ell(\beta_0, \beta) = \sum_{i=1}^{n} \{y_i \log p_1(x_i, \beta_0, \beta) + (1 - y_i) \log (1 - p_1(x_i, \beta_0, \beta))\}
\]
\[\ell(\beta_0, \beta) = \sum_{i=1}^{n} \left\{ y_i (\beta_0 + \beta^T x_i) - \log_e (1 + e^{\beta_0 + \beta^T x_i}) \right\}. \] (8.54)

The ML estimates, \((\tilde{\beta}_0, \tilde{\beta})\), of \((\beta_0, \beta)\) are obtained by maximizing \(\ell(\beta_0, \beta)\) with respect to \(\beta_0\) and \(\beta\). The maximization algorithm boils down to an iterative version of a weighted least-squares procedure in which the weights and the responses are updated at each iteration step. The details of the iteratively reweighted least-squares algorithm are given below.

The maximum-likelihood estimates \((\tilde{\beta}_0, \tilde{\beta})\) can be plugged into (8.50) to give another estimate of the LDF,

\[\tilde{L}(x) = \tilde{\beta}_0 + \tilde{\beta}^T x. \] (8.55)

The classification rule,

\[\text{if } \tilde{L}(x) > 0, \text{ assign } x \text{ to } \Pi_1, \] (8.56)

otherwise, assign \(x\) to \(\Pi_2\), is referred to as \textit{logistic discriminant analysis}. We note that maximizing (8.54) will not, in general, yield the same estimates for \(\beta_0\) and \(\beta\) as we found in (8.28) and (8.29) for Fisher’s LDF.

An equivalent classification procedure is to use \(\tilde{L}(x)\) in (8.55) to estimate the probability \(p(\Pi_1 | x)\) in (8.48). Substituting \(\tilde{L}(x)\) into (8.48) yields the estimate

\[\tilde{p}(\Pi_1 | x) = \frac{e^{\tilde{L}(x)}}{1 + e^{\tilde{L}(x)}}, \] (8.57)

so that \(x\) is assigned to \(\Pi_1\) if \(\tilde{p}(\Pi_1 | x)\) is greater than some cutoff value, say 0.5, and \(x\) is assigned to \(\Pi_2\) otherwise.
Iteratively Reweighted Least-Squares Algorithm

It will be convenient (temporarily) to redefine the \(r \)-vectors \(x_i \) and \(\beta \) as the following \((r+1)\)-vectors: \(x_i \leftarrow (1, x_i^T)^T \), and \(\beta \leftarrow (\beta_0, \beta^T)^T \). Thus, \(\beta_0 + \beta^T x_i \) can be written more compactly as \(\beta^T x_i \). We also write \(p_1(x_i, \beta, \beta_0) \) as \(p_1(x_i, \beta) \) and \(\ell(\beta_0, \beta) \) as \(\ell(\beta) \).

Differentiating (8.54) and setting the derivatives equal to zero yields the score equations:

\[
\frac{\partial \ell(\beta)}{\partial \beta} = \sum_{i=1}^{n} x_i \{ y_i - p_1(x_i, \beta) \} = 0. \tag{8.58}
\]

These are \(r + 1 \) nonlinear equations in the \(r + 1 \) logistic parameters \(\beta \).

From (8.58), we see that \(n_1 = \sum_{i=1}^{n} p_1(x_i, \beta) \) and, hence, also that \(n_2 = \sum_{i=1}^{n} p_2(x_i, \beta) \).

The nonlinear equations (8.58) are solved using an algorithm known as *iteratively reweighted least-squares* (IRLS). The second derivatives of \(\ell(\beta) \) are given by the \((r+1) \times (r+1)\) Hessian matrix:

\[
\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T} = -\sum_{i=1}^{n} x_i x_i^T p_1(x_i, \beta)(1 - p_1(x_i, \beta)). \tag{8.59}
\]

The IRLS algorithm is based upon using the Newton–Raphson iterative approach to finding ML estimates. Starting values of \(\hat{\beta}^{(0)} = 0 \) are recommended. Then, the \((k+1)\)st step in the algorithm replaces the \(k \)th iterate \(\hat{\beta}^{(k)} \) by

\[
\hat{\beta}^{(k+1)} = \hat{\beta}^{(k)} - \left(\frac{\partial^2 \ell(\beta)}{\partial \beta \partial \beta^T} \right)^{-1} \frac{\partial \ell(\beta)}{\partial \beta}, \tag{8.60}
\]

where the derivatives are evaluated at \(\hat{\beta}^{(k)} \).

Using matrix notation, we set

\[
\mathbf{X} = (X_1, \cdots, X_n), \quad \mathbf{Y} = (Y_1, \cdots, Y_n)^T,
\]
to be an \((r+1) \times n\) data matrix and \(n \)-vector, respectively, and let \(\mathbf{W} = \text{diag}\{w_i\} \) be an \((n \times n)\) diagonal weight-matrix with \(i \)th diagonal element

\[
w_i = p_1(x_i, \hat{\beta})(1 - p_1(x_i, \hat{\beta})), \quad i = 1, 2, \ldots, n.
\]

The score vector of first derivatives (8.58) and the Hessian matrix (8.59) can be written as

\[
\hat{\ell}(\beta) = \mathbf{X} (\mathbf{Y} - \mathbf{p}_1), \quad \hat{\ell}(\beta) = -\mathbf{X} \mathbf{W} \mathbf{X}^T, \tag{8.61}
\]

respectively, where \(\mathbf{p}_1 \) is the \(n \)-vector.
\[p_1 = (p_1(x_1, \tilde{\beta}), \ldots, p_1(x_n, \tilde{\beta}))^T. \]

Then, (8.60) can be written as:

\[
\begin{align*}
\tilde{\beta}^{(k+1)} &= \tilde{\beta}^{(k)} + (\mathcal{X}W\mathcal{X}^T)^{-1}\mathcal{X}(y - p_1) \\
&= (\mathcal{X}W\mathcal{X}^T)^{-1}\mathcal{X}\mathcal{W}\mathcal{X}^T\tilde{\beta}^{(k)} + W^{-1}(y - p_1)
\end{align*}
\]

where

\[z = \mathcal{X}^T\tilde{\beta}^{(k)} + W^{-1}(y - p_1) \]

is an \(n \)-vector. The \(i \)th element of \(z \) is given by

\[z_i = x_i^T\tilde{\beta}^{(k)} + \frac{y_i - p_1(x_i, \tilde{\beta}^{(k)})}{p_1(x_i, \tilde{\beta}^{(k)})(1 - p_1(x_i, \tilde{\beta}^{(k)})}. \]

The update (8.63) has the form of a generalized least-squares estimator (see Exercise 5.17) with \(W \) as the diagonal matrix of weights, \(z \) as the response vector, and \(\mathcal{X} \) as the data matrix. Note that \(p_1 = p_1^{(k)}, z = z^{(k)} \), and \(W = W^{(k)} \) have to be updated at every step in the algorithm because they each depend upon \(\tilde{\beta}^{(k)} \). Furthermore, the update formula (8.63) assumes that the \(((r + 1) \times (r + 1))\)-matrix \(\mathcal{X}W\mathcal{X}^T \) can be inverted, a condition that will be violated in applications where \(n < r + 1 \).

Despite the fact that convergence of the IRLS algorithm to the maximum of \(\ell(\beta) \) cannot be guaranteed, the algorithm does converge for most practical situations. We refer the reader to Thisted (1988, Section 4.5.6) for a detailed discussion of IRLS and its properties. The algorithm is used extensively in fitting generalized linear models (see, e.g., McCullagh and Nelder, 1989, Section 2.5).

Example: Wisconsin Diagnostic Breast Cancer Data (Continued)

Carrying out a logistic regression on all 30 transformed variables in the Wisconsin diagnostic breast cancer study results in huge values for both the estimated regression coefficients and their estimated standard errors. This, in turn, yields tiny values for all 30 \(t \)-ratios. This situation is caused by the high collinearity present in the data.

To reduce the number of variables, we apply BE stepwise regression to these data. Table 8.6 lists the parameter estimates and their estimated standard errors for a final model consisting of nine variables. Most of the pairwise correlations between these nine variables are quite moderate, with the only correlations greater than 0.8 being those of 26 (ncav.mv) with 29 (scav.ev) and 6 (comp.mv).
8.3.6 Gaussian LDA or Logistic Discrimination?

Theoretical and empirical comparisons have been carried out between Gaussian LDA and logistic discriminant analysis. Some of the differences are the following:

1. The conditional log-likelihood (8.54) is valid under general exponential family assumptions on \(f(\cdot) \) (which includes the multivariate Gaussian model with common covariance matrix). This suggests that logistic discrimination is more robust to nonnormality than Gaussian LDA.

2. Simulation studies have shown that when the Gaussian distributional assumptions or the common covariance matrix assumption are not satisfied, logistic discrimination performs much better.

3. Sensitivity to gross outliers can be a problem for Gaussian LDA, whereas outliers are reduced in importance in logistic discrimination, which essentially fits a sigmoidal function (rather than a linear function).

4. Logistic discriminant analysis is asymptotically less efficient than is Gaussian LDA because the latter is based upon full ML rather than conditional ML.

5. At the point when we would expect good discrimination to take place, logistic discrimination requires a much larger sample size than does Gaussian LDA to attain the same (asymptotic) error rate distribution (Efron, 1975), and this result extends to LDA using an exponential family with plug-in estimates.

TABLE 8.6. BE stepwise logistic regression results for the Wisconsin diagnostic breast cancer data.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Coeff.</th>
<th>S.E.</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-66.251</td>
<td>19.504</td>
<td>-3.397</td>
</tr>
<tr>
<td>smooth.mv</td>
<td>15.179</td>
<td>7.469</td>
<td>2.032</td>
</tr>
<tr>
<td>comp.mv</td>
<td>-14.774</td>
<td>4.890</td>
<td>-3.022</td>
</tr>
<tr>
<td>ncv.mv</td>
<td>10.476</td>
<td>3.377</td>
<td>3.102</td>
</tr>
<tr>
<td>texture.sd</td>
<td>-6.963</td>
<td>2.304</td>
<td>-3.022</td>
</tr>
<tr>
<td>area.sd</td>
<td>12.943</td>
<td>3.070</td>
<td>4.216</td>
</tr>
<tr>
<td>fracd.sd</td>
<td>-5.476</td>
<td>1.754</td>
<td>-3.122</td>
</tr>
<tr>
<td>texture.ev</td>
<td>23.224</td>
<td>5.753</td>
<td>4.036</td>
</tr>
<tr>
<td>scav.ev</td>
<td>4.986</td>
<td>1.568</td>
<td>3.180</td>
</tr>
<tr>
<td>fracd.ev</td>
<td>17.166</td>
<td>5.912</td>
<td>2.904</td>
</tr>
</tbody>
</table>
8.3.7 Quadratic Discriminant Analysis

How is the classification rule (8.14) affected if the covariance matrices of the two Gaussian populations are not equal to each other? That is, if \(\Sigma_1 \neq \Sigma_2 \). In this case, (8.8) becomes

\[
\log_e \frac{f_1(x)}{f_2(x)} = c_0 - \frac{1}{2} \left\{ (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1) - (x - \mu_2)^T \Sigma_2^{-1} (x - \mu_2) \right\} \quad (8.66)
\]

\[
= c_1 - \frac{1}{2} x^T (\Sigma_1^{-1} - \Sigma_2^{-1}) x + (\mu_1^T \Sigma_1^{-1} - \mu_2^T \Sigma_2^{-1}) x, \quad (8.67)
\]

where \(c_0 \) and \(c_1 \) are constants that depend only upon the parameters \(\mu_1 \), \(\mu_2 \), \(\Sigma_1 \), and \(\Sigma_2 \). The log-likelihood ratio (8.67) has the form of a quadratic function of \(x \). In this case, set

\[
Q(x) = \beta_0 + \beta^T x + x^T \Omega x, \quad (8.68)
\]

where

\[
\Omega = -\frac{1}{2} (\Sigma_1^{-1} - \Sigma_2^{-1}) \quad (8.69)
\]

\[
\beta = \Sigma_1^{-1} \mu_1 - \Sigma_2^{-1} \mu_2 \quad (8.70)
\]

\[
\beta_0 = -\frac{1}{2} \left\{ \log_e \left(\frac{|\Sigma_1|}{|\Sigma_2|} \right) + \mu_1^T \Sigma_1^{-1} \mu_1 - \mu_2^T \Sigma_2^{-1} \mu_2 \right\} - \log_e (\pi_2/\pi_1). \quad (8.71)
\]

Note that \(\Omega \) is an \((r \times r)\) symmetric matrix. The classification rule is to assign \(x \) to \(\Pi_1 \) if (8.67) is greater than \(\log_e (\pi_2/\pi_1) \); that is,

\[
\text{if } Q(x) > 0, \text{ assign } x \text{ to } \Pi_1, \quad (8.72)
\]

and assign \(x \) to \(\Pi_2 \) otherwise.

The function \(Q(x) \) of \(x \) is called a quadratic discriminant function (QDF) and the classification rule (8.72) is referred to as quadratic discriminant analysis (QDA). The boundary \(\{ x \in \mathbb{R}^r | Q(x) = 0 \} \) that divides the two classes is a quadratic function of \(x \).

An approximation to the boundaries obtained by QDA can be obtained using an LDA approach that enlists the aid of the linear terms, squared terms, and all pairwise products of the feature variables. For example, if we have two feature variables \(X_1 \) and \(X_2 \), then “quadratic LDA” would use \(X_1, X_2, X_1^2, X_2^2, \) and \(X_1 X_2 \) in the linear discriminant function with \(r = 5 \).

Maximum-Likelihood Estimation

If the \(r(r + 3) \) distinct parameters in \(\mu_1, \mu_2, \Sigma_1, \) and \(\Sigma_2 \) are all unknown, and \(\pi_1 \) and \(\pi_2 \) are also unknown (1 additional parameter), they
can be estimated using learning samples as above, with the exception of the covariance matrices, where the ML estimator of Σ_i is

$$\hat{\Sigma}_i = n_i^{-1} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)(X_{ij} - \bar{X}_i)^T, \quad i = 1, 2. \quad (8.73)$$

Substituting the obvious estimators into $Q(x)$ in (8.68) gives us

$$\hat{Q}(x) = \hat{\beta}_0 + \hat{\beta}^T x + x^T \hat{\Omega} x, \quad (8.74)$$

where

$$\hat{\Omega} = -\frac{1}{2}(\hat{\Sigma}_1^{-1} - \hat{\Sigma}_2^{-1}), \quad (8.75)$$

$$\hat{\beta} = \hat{\Sigma}_1^{-1} \bar{X}_1 - \hat{\Sigma}_2^{-1} \bar{X}_2 \quad (8.76)$$

$$\hat{\beta}_0 = -\hat{c}_1 - \log e \frac{n_2}{n} + \log e \frac{n_1}{n}, \quad (8.77)$$

and where \hat{c}_1 is the estimated version of the first term in (8.67).

Because the classifier $\hat{Q}(x)$ depends upon the inverses of both $\hat{\Sigma}_1$ and $\hat{\Sigma}_2$, it follows that if either n_1 or n_2 is smaller than r, then $\hat{\Sigma}_i \ (i = 1 \text{ or } 2, \text{ as appropriate})$ will be singular and QDA will fail.

8.4 Examples of Binary Misclassification Rates

In this section, we compare the two-class discriminant analysis methods LDA and QDA on a number of well-known data sets.\(^2\) These data sets, which are listed in Table 8.7, are

BUPA liver disorders These data are the results of blood tests considered to be sensitive to liver disorders arising from excessive alcohol consumption. The first five variables are all blood tests: *mcv* (mean corpuscular volume), *alkphos* (alkaline phosphotase), *sgpt* (alamine aminotransferase), *sgot* (aspartate aminotransferase), and *gammagt* (gamma-glutamyl transpeptidase); the sixth variable is *drinks* (number of half-pint equivalents of alcoholic beverages drunk per day). All patients are males: 145 subjects in class 1 and 200 in class 2.

Ionosphere These are radar data collected by a system of 16 high-frequency phased-array antennas in Goose Bay, Labrador, with a total transmitted power of the order 6.4 kilowatts. The targets were free electrons

\(^2\)These data sets can be found in the files *ionosphere*, *bupa*, *sonar*, and *spambase* on the book’s website. More details can be found in the UCI Machine Learning Repository at archive.ics.uci.edu/ml/datasets.html.
in the ionosphere. The two classes are “Good” for radar returns that show evidence of some type of structure in the ionosphere and “Bad” for those that do not and whose signals pass through the ionosphere. The received electromagnetic signals are complex-valued and were processed using an autocorrelation function whose arguments are the time of a pulse and the pulse number. There were 17 pulse numbers, which are described by two measurements per pulse number. One variable (♯2) was removed from the data set because its value for all observations was zero.

Sonar Sonar signals are bounced off a metal cylinder (representing a mine) or a roughly cylindrical rock at various aspect angles and under various conditions. There are 111 observations obtained by bouncing sonar off a metal cylinder and 97 obtained from the rock. The transmitted sonar signal is a frequency-modulated chirp, rising in frequency. The data set contains signals obtained from a variety of aspect angles, spanning 90 degrees for the cylinder and 180 degrees for the rock. Each observation is a set of 60 numbers in the range 0–1, where each number represents the energy within a particular frequency band, integrated over a certain period of time.

Spambase This data set derives from a collection of spam e-mails (unsolicited commercial e-mail, which came from a postmaster and individuals who had filed spam) and non-spam e-mails (which came from filed work and personal e-mails). Most of the variables indicate whether a particular word or character was frequently occurring in the e-mail: 48 variables have the form “word_freq_WORD,” that gives the percentage of the words in the e-mail which match WORD; 6 variables have the form “word_freq_CHARS,” that gives the percentage of characters in the e-mail which match CHAR; and 3 “run-length” variables, measuring the average length, length of longest, and sum of length of uninterrupted sequences of consecutive capital letters. There are 1813 spam (39.4%) and 2788 non-spam observations in the data set.

Table 8.7 lists the CV misclassification rates for LDA and QDA for each data set. These two-class data sets have quite varied CV misclassification rates and, in three out of the five data sets (the exceptions are the ionosphere and sonar data sets), LDA is a better classifier than QDA.

Figure 8.4 displays the kernel density estimates of the class-conditional scores of the linear discriminant function (LD1) for the binary classification data sets spambase, ionosphere, sonar, and bupa. These data sets are arranged in order of LDA misclassification rates, from smallest to largest. The less overlap between the two density estimates, the smaller the misclassification rate; the greater the overlap between the two density estimates, the larger the misclassification rate.
TABLE 8.7. Summary of data sets with two classes. Listed are the sample size \((n)\), number of variables \((r)\), and number of classes \((K)\). Also listed for each data set are leave-one-out cross-validation \((CV/n)\) misclassification rates for linear discriminant analysis \((LDA)\) and quadratic discriminant analysis \((QDA)\). The data sets are listed in increasing order of LDA misclassification rates.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>(n)</th>
<th>(r)</th>
<th>(K)</th>
<th>LDA</th>
<th>QDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer (wdbc)</td>
<td>569</td>
<td>30</td>
<td>2</td>
<td>0.042</td>
<td>0.062</td>
</tr>
<tr>
<td>Spambase</td>
<td>4601</td>
<td>57</td>
<td>2</td>
<td>0.113</td>
<td>0.170</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>351</td>
<td>33</td>
<td>2</td>
<td>0.137</td>
<td>0.128</td>
</tr>
<tr>
<td>Sonar</td>
<td>208</td>
<td>60</td>
<td>2</td>
<td>0.245</td>
<td>0.240</td>
</tr>
<tr>
<td>BUPA liver disorders</td>
<td>345</td>
<td>6</td>
<td>2</td>
<td>0.301</td>
<td>0.406</td>
</tr>
</tbody>
</table>

8.5 Multiclass LDA

Assume now that the population of interest is divided into \(K > 2\) nonoverlapping (disjoint) classes. For example, in a database made publicly available by the U.S. Postal Service, each item is a \((16 \times 16)\) pixel image of a digit extracted from a real-life zip code that is handwritten onto an envelope. The database consists of thousands of these handwritten digits, each of which is viewed as a point in an input space of 256 dimensions. The classification problem is to assign each digit to one of the 10 classes \(0, 1, 2, \ldots, 9\).

We could carry out \(\binom{K}{2}\) different two-class linear discriminant analyses, where we set up a sequence of “one class \(\text{versus}\) the rest” classification scenarios. Such a solution does not work because it would produce regions that do not belong to any of the \(K\) classes considered (see Exercise 8.13).

Instead, the two-class methodology carries over in a straightforward way to the multiclass situation. Specifically, we wish to partition the sample space into \(K\) nonoverlapping regions \(R_1, R_2, \ldots, R_K\), such that an observation \(x\) is assigned to class \(\Pi_i\) if \(x \in R_i\). The partition is to be determined so that the total misclassification rate is a minimum.

Text Categorization

A note of caution is in order here: not all multiclass classification problems fit this description. Text categorization is an important example. At the simplest level of information processing, we save and categorize files, e-mail messages, and URLs; in more complicated activities, we assign news items, computer FAQs, security information, author identification, junk mail identification, and so on, to predefined categories. For example, about 810,000 documents of newswire stories in the Reuters Business Briefing database RCV1 (Lewis, Yang, Rose, and Li, 2004) are assigned by topic
into 103 categories. The classification problem is to assign each document to a topic based solely upon the textual content of that document (represented as a vector of words). Because documents can be assigned to more than one topic, text categorization does not fit the standard description of a classification problem.

8.5.1 Bayes’s Rule Classifier

Let

\[\text{Prob}(X \in \Pi_i) = \pi_i, \quad i = 1, 2, \ldots, K, \]
(8.78)
be the prior probabilities of a randomly selected observation \(X \) belonging to each of the different classes in the population, and let

\[
\text{Prob}(X = x|X \in \Pi_i) = f_i(x), \quad i = 1, 2, \ldots, K,
\]

(8.79)

be the multivariate probability density for each class. The resulting posterior probability that an observed \(x \) belongs to the \(i \)th class is given by

\[
p(\Pi_i|x) = \text{Prob}(X \in \Pi_i|X = x) = \frac{f_i(x)\pi_i}{\sum_{k=1}^{K} f_k(x)\pi_k}, \quad i = 1, 2, \ldots, K.
\]

(8.80)

The Bayes’s rule classifier for \(K \) classes assigns \(x \) to that class with the highest posterior probability. Because the denominator of (8.80) is the same for all \(\Pi_i, i = 1, 2, \ldots, K \), we assign \(x \) to \(\Pi_i \) if

\[
f_i(x)\pi_i = \max_{1 \leq j \leq K} f_j(x)\pi_j.
\]

(8.81)

If the maximum in (8.81) does not uniquely define a class assignment for a given \(x \), then use a random assignment to break the tie between the appropriate classes.

Thus, \(x \) gets assigned to \(\Pi_i \) if \(f_i(x)\pi_i > f_j(x)\pi_j \), for all \(j \neq i \), or, equivalently, if \(\log_e(f_i(x)\pi_i) > \log_e(f_j(x)\pi_j) \), for all \(j \neq i \). The Bayes’s rule classifier can be defined in an equivalent form by pairwise comparisons of posterior probabilities. We define the “log-odds” that \(x \) is assigned to \(\Pi_i \) rather than to \(\Pi_j \) as follows:

\[
L_{ij}(x) = \log_e \left\{ \frac{p(\Pi_i|x)}{p(\Pi_j|x)} \right\} = \log_e \left\{ \frac{f_i(x)\pi_i}{f_j(x)\pi_j} \right\}.
\]

(8.82)

Then, we assign \(x \) to \(\Pi_i \) if \(L_{ij}(x) > 0 \) for all \(j \neq i \). We define classification regions, \(R_1, R_2, \ldots, R_K \), as those areas of \(\mathbb{R}^r \) such that

\[
R_i = \{x \in \mathbb{R}^r | L_{ij}(x) > 0, j = 1, 2, \ldots, K, j \neq i \},
\]

(8.83)

\[
i = 1, 2, \ldots, K.
\]

This argument can be made more specific by assuming for the \(i \)th class \(\Pi_i \) that \(f_i(\cdot) \) is the \(\mathcal{N}_r(\mu_i, \Sigma_i) \) density, where \(\mu_i \) is an \(r \)-vector and \(\Sigma_i \) is an \((r \times r) \) covariance matrix, \(i = 1, 2, \ldots, K \). We further assume that the covariance matrices for the \(K \) classes are identical, \(\Sigma_1 = \cdots = \Sigma_K \), and equal to a common covariance matrix \(\Sigma_{XX} \).

Under these multivariate Gaussian assumptions, the log-odds of assigning \(x \) to \(\Pi_i \) (as opposed to \(\Pi_j \)) is a linear function of \(x \),

\[
L_{ij}(x) = b_{0ij} + b_{ij}^\top x,
\]

(8.84)

where

\[
b_{ij} = (\mu_i - \mu_j)^\top \Sigma_{XX}^{-1}
\]

(8.85)
\[b_{0ij} = -\frac{1}{2} \{ \mu_i^\top \Sigma^{-1}_X \mu_i - \mu_j^\top \Sigma^{-1}_X \mu_j \} + \log_e (\pi_i/\pi_j). \] (8.86)

Because \(L_{ij}(x) \) is linear in \(x \), the regions \(\{ R_i \} \) in (8.83) partition \(r \)-dimensional space by means of hyperplanes.

Maximum-Likelihood Estimates

Typically, the mean vectors and common covariance matrix will all be unknown. In that case, we estimate the \(Kr + r(r+1)/2 \) distinct parameters by taking learning samples from each of the \(K \) classes. Thus, from the \(i \)th class, we take \(n_i \) observations, \(X_{ij}, j = 1, 2, \ldots, n_i \), on the \(r \)-vector (8.1), that are then collected into the data matrix,

\[\mathcal{X}_i = (X_{i1}, \cdots, X_{in_i}), \quad i = 1, 2, \ldots, K. \] (8.87)

Let \(n = \sum_{i=1}^K n_i \) be the total number of observations. The \(K \) data matrices (8.87) are then arranged into a single data matrix \(\mathcal{X} \) which has the form

\[\mathcal{X} = \begin{pmatrix} \mathcal{X}_1 & \cdots & \mathcal{X}_K \end{pmatrix} = \begin{pmatrix} X_{11}, \cdots, X_{1,n_1}, \cdots, X_{K1}, \cdots, X_{K,n_K} \end{pmatrix}. \] (8.88)

The mean of each variable for the \(i \)th class is given by the \(r \)-vector,

\[\bar{X}_i = n_i^{-1} \mathcal{X}_i = n_i^{-1} \sum_{j=1}^{n_i} X_{ij}, \quad i = 1, 2, \ldots, K, \] (8.89)

and these \(K \) vectors are arranged into the matrix,

\[\bar{X} = \begin{pmatrix} \bar{X}_1, \cdots, \bar{X}_K \end{pmatrix}. \] (8.90)

Let

\[\mathcal{X}_c = \mathcal{X} - \bar{X} = (\mathcal{X}_1 \mathbf{H}_{n_1} \cdots \mathcal{X}_K \mathbf{H}_{n_K}), \] (8.91)

where \(\mathbf{H}_{n_j} \) is the \((n_j \times n_j)\) “centering matrix.” Then, we compute

\[S_{XX} = \mathcal{X}_c \mathcal{X}^\top_c = \sum_{i=1}^K \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)(X_{ij} - \bar{X}_i)^\top. \] (8.92)

Now, consider the following standard decomposition,

\[X_{ij} - \bar{X} = (X_{ij} - \bar{X}_i) + (\bar{X}_i - \bar{X}), \] (8.93)
TABLE 8.8. Multivariate decomposition of the total covariance matrix for \(K \) classes \(\Pi_1, \Pi_2, \ldots, \Pi_K \), when a random learning sample of \(n_i \) observations is drawn from \(\Pi_i, \ i = 1, 2, \ldots, K \).

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>df</th>
<th>Sum of Squares Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between classes</td>
<td>(K - 1)</td>
<td>(S_B = \sum_{i=1}^{K} n_i (\bar{X}_i - \bar{X})(\bar{X}_i - \bar{X})^\tau)</td>
</tr>
<tr>
<td>Within classes</td>
<td>(n - K)</td>
<td>(S_W = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}i)(X{ij} - \bar{X}_i)^\tau)</td>
</tr>
<tr>
<td>Total</td>
<td>(n - 1)</td>
<td>(S_{tot} = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (X_{ij} - \bar{X})(X_{ij} - \bar{X})^\tau)</td>
</tr>
</tbody>
</table>

for the \(j \)th observation within the \(i \)th class, where

\[
\bar{X} = n^{-1}X^\tau 1_n = n^{-1} \sum_{i=1}^{K} \sum_{j=1}^{n_i} X_{ij} = (\bar{X}_1, \ldots, \bar{X}_r)^\tau \quad (8.94)
\]

is the overall mean vector ignoring class identifiers. Postmultiplying each side of (8.93) by their respective transposes, multiplying out the right-hand side, then summing over all \(n \) observations, and noting that the cross-product term vanishes (see Exercise 8.3), we arrive at the well-known multivariate analysis of variance (MANOVA) identity,

\[
S_{tot} = S_B + S_W, \quad (8.95)
\]

where \(S_{tot}, S_B, \) and \(S_{tot} \) are given in Table 8.8.

Thus, the total covariance matrix of the observations, \(S_{tot} \), having \(n - 1 \) degrees of freedom and calculated by ignoring class identity, is partitioned into a part representing the between-class covariance matrix, \(S_B \), having \(K - 1 \) degrees of freedom, and another part representing the pooled within-class covariance matrix, \(S_W (= S_{XX}) \), having \(n - K \) degrees of freedom. An unbiased estimator of the common covariance matrix, \(\Sigma_{XX} \), of the \(K \) classes is, therefore, given by

\[
\hat{\Sigma}_{XX} = (n - K)^{-1}S_W = (n - K)^{-1}S_{XX}. \quad (8.96)
\]

If we let \(f_i(x) = f_i(x, \eta_i) \), where \(\eta_i \) is an \(r \)-vector of unknown parameters, and assume that the \(\{\pi_i\} \) are known, the posterior probabilities (8.80)
are estimated by
\[
\hat{p}(\Pi_i|x) = \frac{f_i(x, \hat{\eta}_i)\pi_i}{\sum_{j=1}^{K} f_j(x, \hat{\eta}_j)\pi_j}, \quad i = 1, 2, \ldots, K, \tag{8.97}
\]
where \(\hat{\eta}_i\) is an estimate of \(\eta_i\). The classification rule, therefore, assigns \(x\) to \(\Pi_i\) if
\[
f_i(x, \hat{\eta}_i)\pi_i = \max_{1 \leq j \leq K} f_j(x, \hat{\eta}_j)\pi_j,
\]
which is often referred to as the plug-in classifier.

If the \(\{f_i(\cdot)\}\) are multivariate Gaussian densities and \(\eta_i = (\mu_i, \Sigma_{XX})\), then, the sample version of \(L_{ij}(x)\) is given by
\[
\hat{L}_{ij}(x) = \hat{b}_{0ij} + \hat{b}_{ij}^\tau x,
\]
where
\[
\hat{b}_{ij} = (\bar{X}_i - \bar{X}_j)^\tau \hat{\Sigma}_{XX}^{-1}
\]
\[
\hat{b}_{0ij} = -\frac{1}{2} \left\{ \bar{X}_i^\tau \hat{\Sigma}_{XX}^{-1} \bar{X}_i - \bar{X}_j^\tau \hat{\Sigma}_{XX}^{-1} \bar{X}_j \right\} + \log_e \left\{ \frac{n_i}{n} \right\} - \log_e \left\{ \frac{n_j}{n} \right\},
\]
where we have estimated the prior \(\pi_i\) by the proportionality estimate, \(\hat{\pi}_i = n_i/n\), \(i = 1, 2, \ldots, K\). The classification rule reduces to:

Assign \(x\) to \(\Pi_i\) if \(\hat{L}_{ij}(x) > 0, j = 1, 2, \ldots, K, j \neq i\). \(\tag{8.102}\)

In other words, we assign \(x\) to that class \(\Pi_i\) with the largest value of \(\hat{L}_{ij}(x)\).

In the event that the covariance matrices cannot be assumed to be equal, estimates of the mean vectors are obtained using (8.89), and the \(i\)th class covariance matrix, \(\Sigma_i\), is estimated by its maximum-likelihood estimate,
\[
\hat{\Sigma}_i = n_i^{-1} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)(X_{ij} - \bar{X}_i)^\tau, \quad i = 1, 2, \ldots, K. \tag{8.103}
\]

There are \(Kr + Kr(r+1)/2\) distinct parameters that have to be estimated, and, if \(r\) is large, this is a huge increase over carrying out LDA. The resulting quadratic discriminant analysis (QDA) is similar to that of the two-class case if we make our decisions based upon comparisons of \(\log_e f_i(x), i = 1, 2, \ldots, K - 1\), with \(\log_e f_K(x)\), say.

8.5.2 Multiclass Logistic Discrimination

The logistic discrimination method extends to the case of more than two classes. Setting \(u_i = \log_e \{f_i(x)\pi_i\}\), we can express (8.80) in the form
\[
p(\Pi_i|x) = \frac{e^{u_i}}{\sum_{k=1}^{K} e^{u_k}} = \sigma_i, \tag{8.104}
\]
say. In the statistical literature, (8.104) is known as a multiple logistic model, whereas in the neural network literature, it is known as a normalized exponential (or softmax) activation function. Because we can write

$$\sigma_i = \frac{1}{1 + e^{-w_i}}; \quad (8.105)$$

where $w_i = u_i - \log\{\sum_{k \neq i} e^{u_k}\}$, σ_i is a generalization of the logistic sigmoid activation function (Figure 8.2).

Suppose we arbitrarily designate the last class (Π_K) to be a reference class and assume Gaussian distributions with common covariance matrices. Then, we define

$$L_i(x) = u_i - u_K = b_{0i} + b_i^T x, \quad (8.106)$$

where

$$b_i = (\mu_i - \mu_K)^T \Sigma^{-1}_{XX} \quad (8.107)$$

$$b_{0i} = \frac{1}{2} \{ \mu_i^T \Sigma^{-1}_{XX} \mu_i - \mu_K^T \Sigma^{-1}_{XX} \mu_K \} + \log\{ \pi_i / \pi_K \}. \quad (8.108)$$

If we divide the numerator and denominator of (8.104) by e^{u_K} and use (8.106), the posterior probabilities can be written as

$$p(\Pi_i | x) = \frac{e^{L_i(x)}}{1 + \sum_{k=1}^{K-1} e^{L_k(x)}}, \quad i = 1, 2, \ldots, K - 1, \quad (8.109)$$

$$p(\Pi_K | x) = \frac{1}{1 + \sum_{k=1}^{K-1} e^{L_k(x)}} \quad (8.110)$$

If we write $f_i(x) = f_i(x, \eta_i)$, where η_i is an r-vector of unknown parameters, then we estimate η_i by $\hat{\eta}_i$ and $f_i(x)$ by $\hat{f}_i(x) = f_i(x, \hat{\eta}_i)$. As before, we assign x to that class that maximizes $f_i(x, \hat{\eta}_i), i = 1, 2, \ldots, K$. This classification rule is known as multiple logistic discrimination.

8.5.3 LDA via Reduced-Rank Regression

We now generalize to the multiclass case the idea for the two-class case ($K = 2$), in which we showed that the LDF can be obtained (up to a proportionality constant) by using multiple regression with a single indicator variable as the response variable.

In the multiclass case, we take the response variables to be a set of distinct indicator variables whose number is one fewer than the number of classes. If we know which observations fall into the first $K - 1$ classes, then the remaining observations automatically fall into the Kth class, and so we do not need an additional indicator variable to document that fact. The observations in the Kth class are instead each specified by a zero variable.
Some have used the Kth class (which could actually be any class, not just the last one) as a reference class to which all other classes may be compared.

As in the two-class case, the indicator variables are taken to be response variables. We now show that multiclass LDA is a special case of canonical variate analysis, which, as we saw in Chapter 7, is itself a special case of multivariate reduced-rank regression. It is for this reason that many authors refer to LDA as canonical variate analysis.

Identifying Classes Using Indicator Variables

In the following development, we set $K = s + 1$, where s is to be the number of output variables. Each observation in (8.88) is associated with its corresponding class by defining an indicator response s-vector Y_{ij}, which has a 1 in the ith position if the jth observation r-vector, X_{ij}, comes from Π_i, and zeroes in all other positions, $j = 1, 2, \ldots, n_i, i = 1, 2, \ldots, s + 1$. In other words, if $Y_{ij} = (Y_{ijk})$, then, $Y_{ijk} = 1$ if $k = i$ and $Y_{ijk} = 0$ otherwise.

For the ith class Π_i, we have the matrix,

$$
\mathbf{Y}_i = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ \end{pmatrix}
$$

in which all n_i columns are identical, $i = 1, 2, \ldots, s + 1$. Thus, the indicator response matrix \mathbf{Y} is given by

$$
\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_{11}, \cdots, \mathbf{Y}_{1,n_1}, \cdots, \mathbf{Y}_{s+1,1}, \cdots, \mathbf{Y}_{s+1,n_{s+1}} \\ \end{pmatrix}
$$

$$
= \begin{pmatrix} 1 & \cdots & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 & \cdots & 1 & 0 & \cdots & 0 \\ \end{pmatrix}
$$

Each column of \mathbf{Y} has a single 1 with the exception of the last set of n_{s+1} columns, whose every entry is equal to zero.

The s-vector of row means of \mathbf{Y} is given by

$$
\mathbf{Y} = \mathbf{n}^{-1} \mathbf{Y}_1 \mathbf{n} = (n_1/n, \ldots, n_s/n)^T.
$$

The ith component of \mathbf{Y} estimates the prior probability, π_i, that a randomly selected observation belongs to Π_i; that is, $\hat{\pi}_i = n_i/n, i = 1, 2, \ldots, s$, and $\hat{\pi}_{s+1} = n_{s+1}/n$. Let

$$
\mathbf{\hat{Y}} = (\hat{\mathbf{Y}}, \ldots, \hat{\mathbf{Y}})
$$

(8.114)
denote the matrix whose columns are \(n \) copies of the \(s \)-vector (8.113), and let

\[
\mathbf{Y}_c = \mathbf{Y} - \bar{\mathbf{Y}} = \mathbf{Y} \mathbf{H}_n,
\]

where \(\mathbf{H}_n \) is the \((n \times n)\) centering matrix. Then, the entries of \(\mathbf{Y}_c \) are either \(1 - (n_i/n) \) or \(-n_i/n\). The cross-product matrix

\[
\mathbf{S}_{YY}^{s \times s} = \mathbf{Y}_c \mathbf{Y}_c^\tau = \text{diag}\{n_1, \ldots, n_s\} - n\bar{\mathbf{Y}}\bar{\mathbf{Y}}^\tau
\]

has \(i \)-th diagonal entry \(n_i(1 - n_i/n) \) and off-diagonal entry \(-n_in_i'/n\) for the \(i \)-th row and \(i' \)-th column, \(i \neq i' \), \(i, i' = 1, 2, \ldots, s \). We invert \(\mathbf{S}_{YY} \) to get

\[
\mathbf{S}_{YY}^{-1} = \text{diag}\{n_1^{-1}, \ldots, n_s^{-1}\} + n_s^{-1} \mathbf{J}_s \text{,}
\]

where \(\mathbf{J}_s = \mathbf{1}_s \mathbf{1}_s^\tau \) is an \((s \times s)\)-matrix of 1s.

Generating Canonical Variates

We now have all the ingredients to carry out a canonical variate analysis of \(\mathbf{X} \) and \(\mathbf{Y} \). The central computation involves the eigenvalues and associated eigenvectors \((\hat{\lambda}_j, \hat{\mathbf{v}}_j)\), \(j = 1, 2, \ldots, s \), of the matrix,

\[
\hat{\mathbf{R}}^{s \times s} = \mathbf{S}_{YY}^{-1/2} \mathbf{S}_{YX} \mathbf{S}_{XX}^{-1} \mathbf{S}_{XY} \mathbf{S}_{YY}^{-1/2},
\]

where

\[
\mathbf{S}_{XY} = \mathbf{X}_c \mathbf{Y}_c^\tau = (n_1(\bar{\mathbf{X}}_1 - \bar{\mathbf{X}}), \ldots, n_s(\bar{\mathbf{X}}_s - \bar{\mathbf{X}})) = \mathbf{S}_{YX}^\tau.
\]

We recall the following fact from Section 7.3. The \(j \)-th largest eigenvalue, \(\hat{\lambda}_j^\ast \), and associated eigenvector, \(\hat{\mathbf{v}}_j^\ast \), of the matrix

\[
\hat{\mathbf{R}}^{r \times r} = \mathbf{S}_{XX}^{-1/2} \mathbf{S}_{XY} \mathbf{S}_{YY}^{-1} \mathbf{S}_{YX} \mathbf{S}_{XX}^{-1/2}
\]

are related to those of \(\hat{\mathbf{R}} \) by

\[
\hat{\lambda}_j = \hat{\lambda}_j^\ast, \quad \hat{\mathbf{v}}_j = \mathbf{S}_{YY}^{-1/2} \mathbf{S}_{YX} \mathbf{S}_{XX}^{-1/2} \hat{\mathbf{v}}_j^\ast,
\]

\(j = 1, 2, \ldots, \min(r, s) \). Notice that \(\hat{\mathbf{R}}^\ast \) depends upon \(\mathbf{Y}_c \) through the projection matrix

\[
\mathbf{P}_\mathbf{Y} = \mathbf{Y}_c \mathbf{S}_{YY}^{-1} \mathbf{Y}_c
\]

onto the columns of \(\mathbf{Y}_c \). So, for any set of vectors that spans \(\mathbf{Y}_c \), \(\hat{\mathbf{R}}^\ast \) will be unchanged.
We rescale \hat{v}^*_j by setting

$$\gamma_j = S_X^{-1/2} \hat{v}^*_j$$

(8.124)

$$= \hat{\lambda}_j^{-1} S_X^{-1} S_{XY} S_{YY}^{-1/2} \hat{v}_j,$$

(8.125)

$j = 1, 2, \ldots, \min(r, s)$. From (8.122) and (8.125), we have that the $(r \times r)$-matrix S_B in Table 8.5 can be more easily expressed as

$$S_B = S_X Y^{-1} S_Y X$$

(8.126)

(see Exercise 8.4). Writing out the jth eigenequation $\hat{R} \hat{v}_j = \hat{\lambda}_j \hat{v}_j$, premultiplying both sides by $S_X^{-1/2} S_{XY} S_{YY}^{-1/2}$, and then using (8.126), we obtain

$$S_B \gamma_j = \hat{\lambda}_j (S_B + S_W) \gamma_j,$$

(8.127)

which shows that γ_j is the eigenvector associated with the jth largest eigenvalue $\hat{\lambda}_j$ of the $(r \times r)$-matrix $(S_B + S_W)^{-1} S_B$. Rearranging (8.127), we have that

$$S_B \gamma_j = \mu_j S_W \gamma_j,$$

(8.128)

where

$$\mu_j = \frac{\hat{\lambda}_j}{1 - \hat{\lambda}_j}, \quad j = 1, 2, \ldots, \min(r, s).$$

(8.129)

In other words, the eigenvalues and eigenvectors of \hat{R} are equivalent to the eigenvalues and eigenvectors of $S_W^{-1} S_B$ (or of its symmetric version $S_W^{-1/2} S_B S_W^{-1/2}$). In general, the $(s \times r)$-matrix $S_W^{-1} S_B$ has $\min(r, s) = \min(r, K - 1)$ nonzero eigenvalues. If $K \leq r$, then S_B will not have full rank, resulting in $r - s = r - K + 1$ zero eigenvalues.

From (7.72) and (7.73), we set

$$\hat{g}_j^\tau = \hat{v}_j^\tau S_Y^{-1/2} S_Y X S_X^{-1},$$

(8.130)

$$\hat{h}_j^\tau = \hat{v}_j^\tau S_Y^{-1/2},$$

(8.131)

$j = 1, 2, \ldots, t$. Then, from (7.69), we calculate the jth pair of canonical variates $(\hat{\xi}_j, \hat{\omega}_j)$, where

$$\hat{\xi}_j = \hat{g}_j^\tau X_c = \gamma_j^\tau X_c,$$

(8.132)

$$\hat{\omega}_j = \hat{h}_j^\tau Y_c = \gamma_j^\tau S_{XY} S_{YY}^{-1} Y_c,$$

(8.133)

$j = 1, 2, \ldots, t$. In (8.132), X is an observed r-vector, while in (8.133), Y is an indicator response s-vector, and $X_c = X - \bar{X}$ and $Y_c = Y - \bar{Y}$. The coefficient vector

$$\gamma_j = (\gamma_{j1}, \cdots, \gamma_{jr})^\tau$$

(8.134)
is the jth discriminant vector, $j = 1, 2, \ldots, \min(r, s)$.

The first LDF evaluated at X_c is given by

$$\hat{\xi}_1 = \gamma_1^T X_c$$

and has the property that, among all such linear combinations of the xs, it alone can discriminate best between the K classes. The second LDF is given by

$$\hat{\xi}_2 = \gamma_2^T X_c$$

and is the best discriminator between the K classes among all such linear combinations of the xs that are uncorrelated with $\hat{\xi}_1$. The jth LDF,

$$\hat{\xi}_j = \gamma_j^T X_c,$$

is the best discriminator between the K classes among all those linear combinations of X_c that are also uncorrelated with $\hat{\xi}_1, \hat{\xi}_2, \ldots, \hat{\xi}_{j-1}$.

There are at most $\min(r, K-1)$ such linear discriminant functions. One problem is to determine the smallest number $t < \min(r, s)$ of linear discriminant functions that discriminates most efficiently between the K classes. In practice, it is usual to take $t = 2$, so that only $\hat{\xi}_1$ and $\hat{\xi}_2$ are used in deciding whether sufficient discrimination has been obtained.

Graphical Display

Consider the kth observation X_{ik} (in Π_i) and its associated indicator response vector Y_{ik}. We evaluate $\hat{\xi}_j$ and $\hat{\omega}_j$ at $X = X_{ik}$ and $Y = Y_{ik}$, respectively. Set

$$\hat{\xi}_{jk}^{(i)} = \gamma_j^T (X_{ik} - \bar{X}),$$

$$\hat{\omega}_{jk}^{(i)} = \gamma_j^T S_{XY} S^{-1}_{YY} (Y_{ik} - \bar{Y}),$$

$k = 1, 2, \ldots, n_i, i = 1, 2, \ldots, s + 1$. Then, we form the row vectors

$$\xi_j^T = (\hat{\xi}_{j1}^{(1)}, \ldots, \hat{\xi}_{j1}^{(r+1)}, \ldots, \hat{\xi}_{j1}^{(r+1)}),$$

$$\omega_j^T = (\hat{\omega}_{j1}^{(1)}, \ldots, \hat{\omega}_{j1}^{(r+1)}, \ldots, \hat{\omega}_{j1}^{(r+1)}),$$

of jth discriminant scores, $j = 1, 2, \ldots, \min(r, s)$. From (8.117) and (8.119), we have that

$$S_{XY} S^{-1}_{YY} = (\bar{X}_1 - \bar{X}_{s+1}, \ldots, \bar{X}_s - \bar{X}_{s+1}),$$

whence, from (8.138) and (8.139),

$$\hat{\xi}_{jk}^{(i)} = \gamma_j^T (X_{ik} - \bar{X}), \quad \hat{\omega}_{jk}^{(i)} = \gamma_j^T (\bar{X}_i - \bar{X}),$$

$$\left(\right.$$
are the kth components of the jth pair of canonical variates evaluated for Π_i. But,

$$\bar{X}_i - \bar{X} = n_i^{-1} \sum_{k=1}^{n_i} (X_{ik} - \bar{X}), \quad (8.144)$$

so that

$$\hat{\omega}_{jk}^{(i)} = n_i^{-1} \sum_{a=1}^{n_i} \hat{\xi}_{ja}^{(i)} = \hat{\xi}_j^{(i)}, \quad k = 1, 2, \ldots, n_i. \quad (8.145)$$

In other words, the canonical variates evaluated at the indicator response variables are the class averages of the canonical variates for the discriminating variables. The $\{\hat{\xi}_j^{(i)}\}$ are called discriminant coordinates and the space generated by these coordinates is called the discriminant space. To visualize graphically whether the discriminant coordinates emphasize differences in class means, it is customary to plot the n points

$$(\hat{\xi}_{1k}^{(i)}, \hat{\xi}_{2k}^{(i)}), \quad k = 1, 2, \ldots, n_i, \quad i = 1, 2, \ldots, s + 1, \quad (8.146)$$

on a scatterplot and, taking note of (8.145), we also plot a point representing the respective mean of each class,

$$(\hat{\omega}_{1k}^{(i)}, \hat{\omega}_{2k}^{(i)}), \quad k = 1, 2, \ldots, n_i, \quad i = 1, 2, \ldots, s + 1, \quad (8.147)$$

superimposed on the same scatterplot.

8.6 Example: Gilgaied Soil

These data3 were collected in a study of gilgaied soil at Meandarra, Queensland, Australia (Horton, Russell, and Moore, 1968). Three microtopographic classes based upon relative contours were classified as follows: top (>60 cm); slope (30–60 cm); and depression (<30 cm). The area was divided into four blocks, and soil samples were taken randomly within each microtopographic class at depths of 0–10, 10–30, 30–60, and 60–90 cm. See Table 8.9.

Chemical analyses on nine variables were carried out for each soil sample in the four blocks of the (3×4) groups, yielding a total of 48 soil samples. The variables are pH; total nitrogen (N); bulk-density (BD); total phosphorus (P); exchangeable + soluble calcium (Ca); exchangeable + soluble magnesium (Mg); exchangeable + soluble potassium (K); exchangeable + soluble sodium (Na); and conductivity of the saturation extract ($cond$).

3These data can be found in the file gilgaied.soil on the book’s website.
TABLE 8.9. Group numbers by depth and microtopographic position (T.P.) of gilgaied soil.

<table>
<thead>
<tr>
<th>T.P.</th>
<th>Soil Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–10 cm</td>
</tr>
<tr>
<td>Top</td>
<td>A</td>
</tr>
<tr>
<td>Slope</td>
<td>E</td>
</tr>
<tr>
<td>Depression</td>
<td>I</td>
</tr>
</tbody>
</table>

The first two LDF scores are computed using (8.143) and plotted in Figure 8.5. Also plotted on the same graph are the projected class averages (i.e., the letters A–L) of the 12 classes. We see that the projected class averages are plotted in roughly the same two-way position as given in Table 8.9 (with curvature). There is quite a bit of overlap of class points in this 2D discriminant space. In fact, the apparent error rate is $7/48 = 0.146$, and the leave-one-out CV misclassification rate is $31/48 = 0.646$. The curvature in the plot suggests that QDA may be more appropriate than LDA, but with only four observations in each class, QDA would fail. Another possible explanation is that the soil depths are not uniformly spaced; see Exercise 8.1.

8.7 Examples of Multiclass Misclassification Rates

In this section, we summarize how well LDA and QDA perform when applied to a wide variety of well-known multiclass data sets. These data sets, which are listed in Table 8.10, are

Diabetes These data resulted from a study conducted at the Stanford Clinical Research Center of the relationship between chemical subclinical and overt nonketotic diabetes in non-obese adult subjects. The three primary variables are glucose area (a measure of glucose intolerance), insulin area (a measurement of insulin response to oral glucose), and SSPG (steady-state plasma glucose, a measure of insulin resistance). In addition, the relative weight and fasting plasma glucose were measured for each individual in the study. The three clinical classifications are overt diabetic (Class 1, 33 individuals), chemical diabetic (Class 2, 36), and normal (Class 3, 76).

4These data sets can be found at the book’s website. The data and descriptions are taken from the UCI website, with the exception of diabetes, which originated from Andrews and Herzberg (1985, Table 36.1, pp. 215–219) and can be found in the Andrews subdirectory at the StatLib website, and primate scapulae, details of which can be found in Section 12.3.6.
FIGURE 8.5. LDA plot of the gilgaied soil data. There are 12 classes, A–L, and each class has four points. The projected class means are overplotted as letters and appear in roughly the same two-way position as given in Table 8.7, albeit with some curvature.

E-coli These data were obtained in a study of protein localization sites for 336 examples of *E. coli*. The variables are mvg (McGeoch's method for signal sequence recognition), gvh (von Heijne’s method for signal sequence recognition), lip (von Heijne’s Signal Peptidase II consensus sequence score), chg (presence of charge on N-terminus of predicted lipoproteins), aac (score of discriminant analysis of the amino-acid content of outer membrane and periplasmic proteins), alm1 (score of the ALOM membrane spanning region prediction program), and alm2 (score of the ALOM program after excluding putative cleavable signal regions from the sequence). There are 8 localization sites (classes): cp (cytoplasm, 143 examples), im (inner membrane without signal sequence, 77), pp (periplasm, 52), imU (inner membrane, uncleavable signal sequence, 35), om (outer membrane, 20), omL (outer membrane lipoprotein, 5), imL (inner membrane lipoprotein, 2), and imS (inner membrane, cleavable signal sequence, 2).

Forensic glass These data were collected for forensic purposes to determine whether a sample of glass is a type of “float” glass or not. There are 6 types of glass used in this data set: building windows float processed (70 examples), building windows non–float processed
(76), vehicle windows float processed (17), containers (13), tableware (9), and headlamps (29). The variables are RI (refractive index), Na (sodium), Mg (magnesium), Al (aluminum), Si (silicon), K (potassium), Ca (calcium), Ba (barium), and Fe (iron).

Iris These are Edgar Anderson's iris data made famous by R.A. Fisher. There are 150 observations made on three classes of the iris flower. The classes are Iris setosa, Iris versicolour, and Iris virginica, with 50 observations on each class. Four measurements (in cm) are made on each iris: sepal length, sepal width, petal length, and petal width.

Letter recognition The 26 capital letters of the English alphabet were converted into black-and-white rectangular pixel displays by using 20 different fonts, and each letter with these 20 fonts was randomly distorted to produce a file of 20,000 unique observations. Each observation was converted into 16 primitive numerical variables, which were then scaled to fit into a range of integer values of 0–15. The number of observations for each letter ranged from 734 to 813.

Pendigits These data were obtained from 44 writers, each of whom handwrote 250 examples of the digits 0, 1, 2, ..., 9 in a random order. See Section 7.2.1 for a detailed description.

Primate scapulae These data consist of measurements of indices and angles on the scapulae (shoulder bones) of five genera of adult primates representing Hominoidae: gibbons (Hylobates), orangutangs (Pongo), chimpanzees (Pan), gorillas (Gorilla), and man (Homo). The variables are 5 indices (AD.BD, AD.CD, EA.CD, Dx.CD, and SH.ACR) and 2 angles (EAD, β). Of the 105 measurements on each variable, 16 were from Hylobates, 15 from Pongo, 20 from Pan, 14 from Gorilla, and 40 from Homo.

Shuttle These space-shuttle data contain 43,500 observations on 8 unidentified variables, and the observations are divided into 7 classes: Rad Flow (1), Fpv Close (2), Fpv Open (3), High (4), Bypass (5), Bpv Close (6), and Bpv Open (7). Class 1 contains about 78% of the data.

Vehicle This data set was collected by the Turing Institute, Glasgow, Scotland, in a study of how to distinguish 3D objects from a 2D image. The classes in this data set are the silhouettes of four types of Corgi model vehicles, an Opel Manta car (240 images), a Saab 9000 car (240), a double-decker bus (240), and a Chevrolet van (226), as viewed by a camera from many different angles and elevations. The variables are scaled variance, skewness, and kurtosis about the major/minor axes, and heuristic measures such as hollows ratio, circularity, elongatedness, rectangularity, and compactness of the silhouettes.
Wine These data are the results of a chemical analysis of 178 wines grown over the decade 1970–1979 in the same region of Italy, but derived from three different cultivars (Barolo, Grignolino, Barbera). The Barbera wines were predominately from a period that was much later than that of the Barolo and Grignolino wines. The analysis determined the quantities of 13 constituents found in each of the three types of wines: Alcohol, Malic Acid, Ash, AlcAsh (Alcalinity of Ash), Mg (Magnesium), Phenols (Total Phenols), Flav (Flavanoids), NonFlavPhenols (Non-Flavanoid Phenols) Proa (Proanthocyanins), Color (Color Intensity), Hue, OD (OD280/OD315 of Diluted Wines), and Proline. There are 59 Barolo wines, 71 Grignolino wines, and 48 Barbera wines.

Yeast These data were obtained in a study of protein localization sites for 1,484 examples of yeast. The variables are mcg, gvh, alm (see E-coli), mit (score of discriminant analysis of the amino-acid content of the N-terminal region, 20 residues long, of mitochondrial and non-mitochondrial proteins), erl (presence of HDEL substring, thought to act as a signal for retention in the endoplasmic reticulum lumen), pox (peroxisomal targeting signal in the C-terminus), vac (score of discriminant analysis of the amino-acid content of vacuolar and extracellular proteins), and nuc (score of discriminant analysis of nuclear localization signals of nuclear and non-nuclear proteins). There are 10 localization sites (classes): cyt (cytosolic or cytoskeletal, 463 examples), nuc (nuclear, 429), mit (mitochondrial, 244), me3 (membrane protein, no N-terminal signal, 163), me2 (membrane protein, uncleaved signal, 51), me1 (membrane protein, cleaved signal, 44), exc (extracellular, 37), vac (vacuolar, 30), pox (peroxisomal, 20), and erl (endoplasmic reticulum lumen, 5).

Table 8.10 lists the leave-one-out CV misclassification rates for LDA and QDA for each data set. The prior \(\pi_i \) was estimated using the proportionality estimate, \(\hat{\pi}_i = n_i/n, i = 1, 2, \ldots, K \). These multiclass data sets have quite varied CV misclassification rates. For the diabetes, glass, letter recognition, pendigits, vehicle, and wine data sets, the QDA misclassification rate is smaller than the LDA rate, whereas the reverse happens for the iris and primate scapulae data sets. Note that if any data set has a class with fewer observations than \(r \), then that class’s estimated covariance matrix is singular, and QDA fails.

In Figure 8.6, we display the LDA plots corresponding to the six data sets iris, primate.scapulae, shuttle, pendigits, vehicle, and glass. They are arranged according to their estimated misclassification rates, as listed in Table 8.10.

We will be comparing these methods with other classification methods using the same data sets in later chapters.
FIGURE 8.6. LDA plot of Fisher’s iris data, primate.scapulae data, shuttle data, pendigits data, vehicle data, and glass data.
TABLE 8.10. Summary of multiclass data sets. Listed are the sample size \((n)\), number of variables \((r)\), and number of classes \((K)\). Also listed for each data set are leave-one-out cross-validation \((CV/n)\) misclassification rates for linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). The data sets are ordered by size of the LDA misclassification rate. For each data set, the proportionality estimate was used for the priors. If a class has fewer than \(r\) members, QDA will fail.

<table>
<thead>
<tr>
<th>Data Set</th>
<th>(n)</th>
<th>(r)</th>
<th>(K)</th>
<th>LDA</th>
<th>QDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine</td>
<td>178</td>
<td>13</td>
<td>3</td>
<td>0.011</td>
<td>0.006</td>
</tr>
<tr>
<td>Iris</td>
<td>150</td>
<td>4</td>
<td>3</td>
<td>0.020</td>
<td>0.027</td>
</tr>
<tr>
<td>Primate scapulae</td>
<td>105</td>
<td>7</td>
<td>5</td>
<td>0.029</td>
<td>0.057</td>
</tr>
<tr>
<td>Shuttle</td>
<td>43,500</td>
<td>8</td>
<td>7</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>145</td>
<td>5</td>
<td>3</td>
<td>0.110</td>
<td>0.097</td>
</tr>
<tr>
<td>Pendigits</td>
<td>10,992</td>
<td>16</td>
<td>10</td>
<td>0.124</td>
<td>0.017</td>
</tr>
<tr>
<td>E-coli</td>
<td>336</td>
<td>7</td>
<td>8</td>
<td>0.128</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>846</td>
<td>18</td>
<td>4</td>
<td>0.221</td>
<td>0.144</td>
</tr>
<tr>
<td>Letter recognition</td>
<td>20,000</td>
<td>16</td>
<td>26</td>
<td>0.298</td>
<td>0.114</td>
</tr>
<tr>
<td>Glass</td>
<td>214</td>
<td>9</td>
<td>6</td>
<td>0.350</td>
<td>0.140</td>
</tr>
<tr>
<td>Yeast</td>
<td>1,484</td>
<td>8</td>
<td>10</td>
<td>0.411</td>
<td></td>
</tr>
</tbody>
</table>

8.8 Software Packages

All the major statistical software packages contain routines for carrying out LDA and QDA. Misclassification rates are computed in these packages by a number of methods, including the apparent error rate and cross-validation. Logistic regression is usually included within the regression methods in the packages. LDA is included as a special case of multivariate reduced-rank regression in the RRR+MULTANL package, which can be downloaded from the book’s website.

Bibliographical Notes

Since Fisher (1936), LDA has seen applications in many different areas. Theoretical accounts of linear discriminant analysis may be found in Anderson (1984, Chapter 6) and Seber (1984, Chapter 6). More recent accounts are given in Ripley (1996, Chapter 3), Johnson and Wichern (1998, Chapter 11), Hastie, Tibshirani, and Friedman (2001, Chapter 4), Rencher (2002, Chapters 8, 9), and Bishop (2006, Chapter 4). A Bayesian approach is outlined in Press (1989, Chapter 7) and a nonparametric (kernel) approach in Hand (1982). The idea of using a regression model to carry out LDA can be found in Fisher (1936).
Exercises

8.1 How would you use the information in Table 8.9 to carry out a two-way LDA on the gilgaied soil data? Would your results change if you took into account the fact that the soil depths are not equally spaced?

8.2 Consider the wine data. Compute a LDA, draw a 2D-scatterplot of the first two LDF coordinates, and color-code the points by wine type. What do you notice?

8.3 Suppose $X_1 \sim \mathcal{N}_r(\mu_1, \Sigma_{XX})$ and $X_2 \sim \mathcal{N}_r(\mu_2, \Sigma_{XX})$ are independently distributed. Consider the statistic

$$\frac{\{E(a^\tau X_1) - E(a^\tau X_2)\}^2}{\text{var}(a^\tau X_1 - a^\tau X_2)}$$

as a function of a. Show that $a \propto \Sigma_{XX}^{-1}(\mu_1 - \mu_2)$ maximizes the statistic by using a Lagrange multiplier approach.

8.4 Consider the following alternative to QDA. Suppose you start with two variables, X_1 and X_2. Now, expand the data set by adding squares, $X_3 = X_1^2$ and $X_4 = X_2^2$, and cross-product, $X_5 = X_1 X_2$. These five variables are to be used as input to an LDA procedure. Derive the LDA boundaries from this procedure and compare them to the QDA procedure. Generalize to $r > 2$. Try this alternative procedure out on a data set of your choice.

8.5 Consider the diabetes data. Draw a scatterplot matrix of all five variables with different colors or symbols representing the three classes of diabetes. Do these pairwise plots suggest multivariate Gaussian distributions for each class with equal covariance matrices? Carry out an LDA and draw the 2D-scatterplot of the first two discriminating functions. Using the leave-one-out CV procedure, find the confusion table and identify those observations that are incorrectly classified based upon the LDA classification rule. Do the same for the QDA procedure.

8.6 Try the following transformation on the iris data. Set $X_5 = X_1/X_2$ and $X_6 = X_3/X_4$. Then, X_5 is a measure of sepal shape and X_6 is a measure of petal shape. Take logarithms of X_5 and of X_6. Plot the transformed data, and carry out an LDA on X_5 and X_6 alone. Estimate the misclassification rate for the transformed data. Do the same for the QDA procedure.

8.7 Carry out a stepwise logistic regression of the spambase data. Which variables are chosen to be in the final subset?

8.8 Consider The Insurance Company Benchmark data, which can be downloaded from kdd.ics.uci.edu/databases/tic. There are 86 variables on product-usage data and socio-demographic data derived from zip
area codes of customers of an insurance company. There is a learning set ticdata2000.txt of 5,822 customers and a test set ticeval2000.txt of 4,000 customers. Customers in the learning set are classified into two classes, depending upon whether they bought a caravan insurance policy. The problem is to predict who in the test set would be interested in buying a caravan insurance policy. Use any of the classification methods on the learning data and then apply them to the test data. Compare your predictions for the test set with those given in the file tictgts2000.txt and estimate the test set error rate. Which variables are most useful in predicting the purchase of a caravan insurance policy?

8.9 These data (covertype) were obtained from the U.S. Forest Service and are concerned with seven different types of forest cover. The data can be downloaded from kdd.ics.uci.edu/databases/covertype. There are 581,012 observations (each a 30 × 30 meter cell) on 54 input variables (10 quantitative variables, 4 binary wilderness areas, and 40 binary soil type variables). Divide these data randomly into a learning set and a test set. Use any of the methods of this chapter on the learning set to predict the forest cover type for the test set. Estimate the test set error rate.

8.10 Consider the Wisconsin diagnostic breast cancer data. Regress \(Y \) on each of the 30 variables, one at a time. How many coefficients are significant? Which are they? (A coefficient is declared to be “significantly different from zero” at the 5% level if its absolute \(t \)-ratio is greater than the value 2 and is nonsignificant otherwise.) Now, regress \(Y \) on all 30 variables. How many coefficients are significant? Which are they? Next, run the BE and FS stepwise procedures, and the LAR and LARS-Lasso algorithms on these data, and compare the variable subsets you obtain from these methods.

8.11 Consider the E coli data. Draw a scatterplot matrix of the variables. What do you notice? Do they look Gaussian? Carry out an LDA of the e coli data by using the reduced-rank regression approach. Find the estimated coefficients of the first two linear discriminant functions. Compute the LD scores and plot them in a scatterplot.

8.12 Consider the yeast data. Draw a scatterplot matrix of the data and, if possible, draw 3D plots of various subsets of the variables and rotate the plot (“brush and spin” in S-PLUS). What do you notice about the data? Do they look Gaussian? Carry out an LDA of the yeast data by using the reduced-rank regression approach. Find the estimated coefficients of the first two linear discriminant functions. Compute the LD scores and plot them in a scatterplot.

8.13 Consider the primate.scapulae data. Carry out five linear discriminant analyses (one for each primate species), where each analysis is of the “one class versus the rest” type. Find the spatial zone (known as an ambiguous region) that does not correspond to any LDA assignment of a class
of primate (out of the five considered). Are the results consistent with the multiclass classification results?

8.14 Suppose LDA boundaries are found for the `primate.scapulae` data by carrying out a sequence of \(\binom{5}{2} = 10 \) LDA problems, each involving a distinct pair of primate species (`Hylobates` versus `Pongo`, `Gorilla` versus `Homo`, etc.). Find the ambiguous region that does not correspond to any LDA assignment of a class of primate (out of the five considered). Suppose we classify each primate in the data set by taking a vote based upon those boundaries. Estimate the resulting misclassification rate and compare it with the rate from the multiclass classification procedure.
9

Recursive Partitioning and Tree-Based Methods

9.1 Introduction

An algorithm known as recursive partitioning is the key to the nonparametric statistical method of classification and regression trees (CART) (Breiman, Friedman, Olshen, and Stone, 1984). Recursive partitioning is the step-by-step process by which a decision tree is constructed by either splitting or not splitting each node on the tree into two daughter nodes. An attractive feature of the CART methodology (or the related C4.5 methodology; Quinlan, 1993) is that because the algorithm asks a sequence of hierarchical Boolean questions (e.g., is $X_i \leq \theta_j$?, where θ_j is a threshold value), it is relatively simple to understand and interpret the results.

As we described in previous chapters, classification and regression are both supervised learning techniques, but they differ in the way their output variables are defined. For binary classification problems, the output variable, Y, is binary-valued, whereas for regression problems, Y is a continuous variable. Such a formulation is particularly useful when assessing how well a classification or regression methodology does in predicting Y from a given set of input variables X_1, X_2, \ldots, X_r.

In the CART methodology, the input space, \mathbb{R}^r, is partitioned into a number of nonoverlapping rectangular ($r = 2$) or cuboid ($r > 2$) regions,
each of which is viewed as homogeneous for the purpose of predicting Y. Each region, which has sides parallel to the axes of input space, is assigned a class (in a classification problem) or a constant value (in a regression problem). Such a partition corresponds to a classification or regression tree (as appropriate).

Tree-based methods, such as CART and C4.5, have been used extensively in a wide variety of fields. They have been found especially useful in biomedical and genetic research, marketing, political science, speech recognition, and other applied sciences.

9.2 Classification Trees

A classification tree is the result of asking an ordered sequence of questions, and the type of question asked at each step in the sequence depends upon the answers to the previous questions of the sequence. The sequence terminates in a prediction of the class.

The unique starting point of a classification tree is called the root node and consists of the entire learning set L at the top of the tree. A node is a subset of the set of variables, and it can be a terminal or nonterminal node. A nonterminal (or parent) node is a node that splits into two daughter nodes (a binary split). Such a binary split is determined by a Boolean condition on the value of a single variable, where the condition is either satisfied ("yes") or not satisfied ("no") by the observed value of that variable. All observations in L that have reached a particular (parent) node and satisfy the condition for that variable drop down to one of the two daughter nodes; the remaining observations at that (parent) node that do not satisfy the condition drop down to the other daughter node.

A node that does not split is called a terminal node and is assigned a class label. Each observation in L falls into one of the terminal nodes. When an observation of unknown class is "dropped down" the tree and ends up at a terminal node, it is assigned the class corresponding to the class label attached to that node. There may be more than one terminal node with the same class label. A single-split tree with only two terminal nodes is called a stump. The set of all terminal nodes is called a partition of the data.

Consider a simple example of recursive partitioning involving two input variables, X_1 and X_2. Suppose the tree diagram is given in the top panel of Figure 9.1. The possible stages of this tree are as follows: (1) Is $X_2 \leq \theta_1$? If the answer is yes, follow the left branch; if no, follow the right branch. (2) If the answer to (1) is yes, then we ask the next question: Is $X_1 \leq \theta_2$? An answer of yes yields terminal node τ_1 with corresponding region $R_1 = \{X_1 \leq \theta_2, X_2 \leq \theta_1\}$; an answer of no yields terminal node τ_2 with corresponding region $R_2 = \{X_1 > \theta_2, X_2 \leq \theta_1\}$. (3) If the answer to (1) is
FIGURE 9.1. Example of recursive partitioning with two input variables X_1 and X_2. Top panel shows a decision tree with five terminal nodes, $\tau_1 - \tau_5$, and four splits. Bottom panel shows the partitioning of $\mathbb{R^2}$ into five regions, $R_1 - R_5$, corresponding to the five terminal nodes.
284 9. Recursive Partitioning and Tree-Based Methods

no, we ask the next question: Is $X_2 \leq \theta_3$? If the answer to (3) is yes, then we ask the next question: Is $X_1 \leq \theta_4$? An answer of yes yields terminal node τ_3 with corresponding region $R_3 = \{X_1 \leq \theta_4, \theta_1 < X_2 \leq \theta_3\}$; if no, follow the right branch to terminal node τ_4 with corresponding region $R_4 = \{X_1 > \theta_4, \theta_1 < X_2 \leq \theta_3\}$. (4) If the answer to (3) is no, we arrive at terminal node τ_5 with corresponding region $R_5 = \{X_2 > \theta_3\}$. We have assumed that $\theta_2 < \theta_4$ and $\theta_1 < \theta_3$. The resulting 5-region partition of \mathbb{R}^2 is given in the bottom panel of Figure 9.1. For a classification tree, each terminal node and corresponding region is assigned a class label.

9.2.1 Example: Cleveland Heart-Disease Data

These data\(^1\) were obtained from a heart-disease study conducted by the Cleveland Clinic Foundation (Robert Detrano, principal investigator). For the study, the response variable is diag (diagnosis of heart disease: buff = healthy, sick = heart disease). There were 303 patients in the study, 164 of them healthy and 139 with heart disease.

The 13 input variables are age (age in years), gender (male, fem), cp (chest-pain type: angina=typical angina, abnang=atypical angina, notang =non-anginal pain, asympt=asymptomatic), trestbps (resting blood pressure), chol (serum cholesterol in mg/dl), fbs (fasting blood sugar < 120 mg/dl: true, false), restecg (resting electrocardiographic results: norm =normal, abn=having ST-T wave abnormality, hyp=showing probable or definite left ventricular hypertrophy by Estes’s criteria), thatach (maximum heart rate achieved), exang (exercise-induced angina: true, false), oldpeak (ST depression induced by exercise relative to rest), slope (the slope of the peak exercise ST segment: up, flat, down), ca (number of major vessels (0–3) colored by flouroscopy), and thal (no description given: norm=normal, fix=fixed defect, rev=reversable effect). Of the 303 patients in the original data set, seven had missing data, and so we reduced the number of patients to 296 (160 healthy, 136 with heart disease).

The classification tree is displayed in Figure 9.2 (where we used the entropy measure as the impurity function for splitting). The root node with 296 patients is split according to whether thal = norm (163 patients) or thal = fix or rev (133 patients). The node with the 163 patients, which consists of 127 healthy patients and 36 patients with heart disease, is then split by whether ca < 0.5 (114 patients), or ca > 0.5 (49 patients). The node with 114 patients is declared a terminal node for buff because of the 102–12 majority in favor of buff. The node with 49 patients, which consists

\(^1\)The data can be downloaded from file cleveland.data in the UCI repository www.ics.uci.edu/mllearn/databases/heart-disease.
of 25 healthy patients and 24 with heart disease, is split by whether $cp = abnang$, $angina$, $notang$ (29 patients) or $cp = asympt$ (20 patients). The node with 29 patients, which consists of 22 healthy patients and 7 with heart disease, is split by whether $age \leq 65.5$ (7 patients) or $age < 65.5$ (22 patients). The node with 7 patients is declared a terminal node for $buff$ because of the 7–0 majority in favor of $buff$, and the node with 22 patients, which consists of 15 healthy patients and 7 with heart disease, is split by whether $age < 55.5$ (13 patients) or $age \leq 55.5$ (9 patients). The node with 13 patients is declared a terminal node for $buff$ because of the 12–1 majority in favor of $buff$, and the node with 9 patients is declared a terminal node for $sick$ because of the 6–3 majority in favor of $sick$. And so on.

Thus, we see that there are four paths (sequence of splits) through this tree for a patient to be declared healthy ($buff$) and five other paths for a patient to be diagnosed with heart disease ($sick$). In fact, there are 10 splits (and 11 terminal nodes) in this tree. The variables used in the tree construction are $thal$, ca, cp, age, $oldpeak$, $thatach$, and $exang$. The resubstitution (or apparent) error rate (i.e., the error rate obtained directly from the classification tree) is $37/296 = 0.125$ (12 $sick$ patients who are classified as $buff$ and 25 $buff$ patients who are classified as $sick$).

9.2.2 Tree-Growing Procedure

In order to grow a classification tree, we need to answer four basic questions: (1) How do we choose the Boolean conditions for splitting at each node? (2) Which criterion should we use to split a parent node into its two daughter nodes? (3) How do we decide when a node become a terminal node (i.e., stop splitting)? (4) How do we assign a class to a terminal node?

9.2.3 Splitting Strategies

At each node, the tree-growing algorithm has to decide on which variable it is “best” to split. We need to consider every possible split over all variables present at that node, then enumerate all possible splits, evaluate each one, and decide which is best in some sense.

For a description of splitting rules, we need to make a distinction between ordinal (or continuous) and nominal (or categorical) variables.

Ordinal or Continuous Variable

For a continuous or ordinal variable, the number of possible splits at a given node is one fewer than the number of its distinctly observed values.
FIGURE 9.2. Classification tree for the Cleveland heart-disease data, where the entropy measure has been used as the impurity function. The nodes (internal and terminal) are classified as buff (terminal nodes are colored green) or sick (terminal nodes are colored pink) according to the majority diagnosis of patients falling into that node. The splitting variables are displayed along the branches.

In the Cleveland heart-disease data, we have six continuous or ordinal variables: age (40 possible splits), treatbps (48 possible splits), chol (151 possible splits), thatach (91 possible splits), ca (3 possible splits), and oldpeak (39 possible splits). The total number of possible splits from these continuous variables is, therefore, 372.

Nominal or Categorical Variable

Suppose that a particular categorical variable is defined by M distinct categories, ℓ_1, \ldots, ℓ_M. The set \mathcal{S} of possible splits at that node for that variable is the set of all subsets of $\{\ell_1, \ldots, \ell_M\}$. Denote by τ_L and τ_R the left daughter-node and right daughter-node, respectively, emanating from
9.2 Classification Trees

If we let \(M = 4 \), then there are \(2^M - 2 = 14 \) possible splits (ignoring splits where one of the daughter-nodes is empty). However, half of those splits are redundant; for example, the split \(\tau_L = \{ \ell_1 \} \) and \(\tau_R = \{ \ell_2, \ell_3, \ell_4 \} \) is the reverse of the split \(\tau_L = \{ \ell_2, \ell_3, \ell_4 \} \) and \(\tau_R = \{ \ell_1 \} \). So, the set \(S \) of seven distinct splits is given by the following table:

<table>
<thead>
<tr>
<th>(\tau_L)</th>
<th>(\tau_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ell_1)</td>
<td>(\ell_2, \ell_3, \ell_4)</td>
</tr>
<tr>
<td>(\ell_2)</td>
<td>(\ell_1, \ell_3, \ell_4)</td>
</tr>
<tr>
<td>(\ell_3)</td>
<td>(\ell_1, \ell_2, \ell_4)</td>
</tr>
<tr>
<td>(\ell_4)</td>
<td>(\ell_1, \ell_2, \ell_3)</td>
</tr>
<tr>
<td>(\ell_1, \ell_2)</td>
<td>(\ell_3, \ell_4)</td>
</tr>
<tr>
<td>(\ell_1, \ell_3)</td>
<td>(\ell_2, \ell_4)</td>
</tr>
<tr>
<td>(\ell_1, \ell_4)</td>
<td>(\ell_2, \ell_3)</td>
</tr>
</tbody>
</table>

In general, there are \(2^{M-1} - 1 \) distinct splits in \(S \) for an \(M \)-categorical variable.

In the Cleveland heart-disease data, there are seven categorical variables: gender (1 possible split), cp (7 possible splits), fbs (1 possible split), restecg (3 possible splits), exang (1 possible split), slope (3 possible splits), and thal (3 possible splits). The total number of possible splits from these categorical variables is, therefore, 19.

Total Number of Possible Splits

We now add the number of possible splits from categorical variables (19) to the total number of possible splits from continuous variables (372) to get 391 possible splits over all 13 variables at the root node. In other words, there are 391 possible splits of the root node into two daughter nodes. So, which split is “best”?

Node Impurity Functions

To choose the best split over all variables, we first need to choose the best split for a given variable. Accordingly, we define a measure of goodness of a split.

Let \(\Pi_1, \ldots, \Pi_K \) be the \(K \geq 2 \) classes. For node \(\tau \), we define the node impurity function \(i(\tau) \) as

\[
i(\tau) = \phi(p(1|\tau), \ldots, p(K|\tau)),
\]

where \(p(k|\tau) \) is an estimate of \(P(X \in \Pi_k|\tau) \), the conditional probability that an observation \(X \) is in \(\Pi_k \) given that it falls into node \(\tau \). In (9.1),
we require \(\phi \) to be a symmetric function, defined on the set of all \(K \)-tuples of probabilities \((p_1, \cdots, p_K) \) with unit sum, minimized at the points \((1, 0, \cdots, 0), (0, 1, 0, \cdots, 0), \ldots, (0, 0, \cdots, 0, 1) \) and maximized at the point \((\frac{1}{K}, \cdots, \frac{1}{K}) \). In the two-class case \((K = 2) \), these conditions reduce to a symmetric \(\phi(p) \) maximized at the point \(p = 1/2 \) with \(\phi(0) = \phi(1) = 0 \).

One such function \(\phi \) is the \textit{entropy function},

\[
i(\tau) = - \sum_{k=1}^{K} p(k|\tau) \log p(k|\tau),
\]

which is a discrete version of (7.113). When there are two classes, the entropy function reduces to

\[
i(\tau) = - p \log p - (1 - p) \log(1 - p),
\]

where we set \(p = p(1|\tau) \). Several other \(\phi \)-functions have also been suggested, including the \textit{Gini diversity index},

\[
i(\tau) = \sum_{k \neq k'} p(k|\tau)p(k'|\tau) = 1 - \sum_k \{p(k|\tau)\}^2.
\]

In the two-class case, the Gini index reduces to

\[
i(\tau) = 2p(1 - p).
\]

This function can be motivated by considering which quadratic polynomial satisfies the above conditions for the two-class case.

In Figure 9.3, the entropy function and the Gini index are graphed for the two-class case. For practical purposes, there is not much difference between these two types of node impurity functions. The usual default in tree-growing software is the Gini index.

Choosing the Best Split for a Variable

Suppose, at node \(\tau \), we apply split \(s \) so that a proportion \(p_L \) of the observations drops down to the left daughter-node \(\tau_L \) and the remaining proportion \(p_R \) drops down to the right daughter-node \(\tau_R \). For example, suppose we have a data set in which the response variable \(Y \) has two possible values, 0 and 1. Suppose that one of the possible splits of the input variable \(X_j \) is \(X_j \leq c \) vs. \(X_j > c \), where \(c \) is some value of \(X_j \). We can write down the \(2 \times 2 \) table in Table 9.1.

Consider, first, the parent node \(\tau \). We use the entropy function (9.3) as our impurity measure. Estimate \(p_L \) by \(\frac{n+1}{n++} \) and \(p_R \) by \(\frac{n+2}{n++} \), and then the estimated impurity function is

\[
i(\tau) = - \left(\frac{n+1}{n++} \right) \log_e \left(\frac{n+1}{n++} \right) - \left(\frac{n+2}{n++} \right) \log_e \left(\frac{n+2}{n++} \right).
\]
FIGURE 9.3. Node impurity functions for the two-class case. The entropy function (rescaled) is the red curve, the Gini index is the green curve, and the resubstitution estimate of the misclassification rate is the blue curve.

Note that \(i(\tau) \) is completely independent of the type of proposed split. Now, for the daughter nodes, \(\tau_L \) and \(\tau_R \). For \(X_j \leq c \), we estimate \(p_L \) by \(\frac{n_{11}}{n_{1+}} \) and \(p_R \) by \(\frac{n_{12}}{n_{1+}} \), and for \(X_j > c \), we estimate \(p_L \) by \(\frac{n_{21}}{n_{2+}} \) and \(p_R \) by \(\frac{n_{22}}{n_{2+}} \). We then compute

\[
\begin{align*}
 i(\tau_L) &= - \left(\frac{n_{11}}{n_{1+}} \right) \log_e \left(\frac{n_{11}}{n_{1+}} \right) - \left(\frac{n_{12}}{n_{1+}} \right) \log_e \left(\frac{n_{12}}{n_{1+}} \right) \quad (9.7) \\
 i(\tau_R) &= - \left(\frac{n_{21}}{n_{2+}} \right) \log_e \left(\frac{n_{11}}{n_{1+}} \right) - \left(\frac{n_{22}}{n_{2+}} \right) \log_e \left(\frac{n_{22}}{n_{2+}} \right). \quad (9.8)
\end{align*}
\]

The goodness of split \(s \) at node \(\tau \) is given by the reduction in impurity gained by splitting the parent node \(\tau \) into its daughter nodes, \(\tau_R \) and \(\tau_L \),

\[
\Delta i(s, \tau) = i(\tau) - p_L i(\tau_L) - p_R i(\tau_R). \quad (9.9)
\]

The best split for the single variable \(X_j \) is the one that has the largest value of \(\Delta i(s, \tau) \) over all \(s \in S_j \), the set of possible distinct splits for \(X_j \).

Example: Cleveland Heart-Disease Data (Continued)

Consider the first variable \(\text{age} \) as a possible splitting variable at the root node. There are 41 different values for \(\text{age} \), and so there are 40 possible

TABLE 9.1. Two-by-two table for a split on the variable \(X_j \), where the response variable has value 1 or 0.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_j \leq c)</td>
<td>(n_{11})</td>
<td>(n_{12})</td>
<td>(n_{1+})</td>
</tr>
<tr>
<td>(X_j > c)</td>
<td>(n_{21})</td>
<td>(n_{22})</td>
<td>(n_{2+})</td>
</tr>
<tr>
<td>Column Total</td>
<td>(n_{+1})</td>
<td>(n_{+2})</td>
<td>(n_{++})</td>
</tr>
</tbody>
</table>
TABLE 9.2. Two-by-two table for the split on the variable age in the Cleveland heart disease data: the left branch would be age \(\leq 65 \) and the right branch would be age \(> 65 \).

<table>
<thead>
<tr>
<th></th>
<th>Buff</th>
<th>Sick</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>age (\leq 65)</td>
<td>143</td>
<td>120</td>
<td>263</td>
</tr>
<tr>
<td>age (> 65)</td>
<td>17</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>Column Total</td>
<td>160</td>
<td>136</td>
<td>296</td>
</tr>
</tbody>
</table>

splits. We set up the 2 × 2 table, Table 9.2, in which age is split, for example, at 65.

Using the two-class entropy function as the impurity measure, we compute (9.7) and (9.8), respectively, for the two possible daughter nodes:

\[
i(\tau_L) = -\frac{143}{263}\log_e\left(\frac{143}{263}\right) - \frac{120}{263}\log_e\left(\frac{120}{263}\right), \quad (9.10)\\
i(\tau_R) = -\frac{17}{33}\log_e\left(\frac{17}{33}\right) - \frac{16}{33}\log_e\left(\frac{16}{33}\right), \quad (9.11)
\]

whence, \(i(\tau_L) = 0.6893 \) and \(i(\tau_R) = 0.6927 \). Furthermore, from (9.6),

\[
i(\tau) = -\frac{160}{296}\log_e\left(\frac{160}{296}\right) - \frac{136}{296}\log_e\left(\frac{136}{296}\right) = 0.6899. \quad (9.12)
\]

Using (9.9), the goodness of this split is given by:

\[
\Delta i(s, \tau) = 0.6899 - \frac{263}{296}(0.6893) - \frac{33}{296}(0.6927) = 0.000162. \quad (9.13)
\]

If we repeat these computations for all 40 possible splits for the variable age, we arrive at Figure 9.4. In the left panel, we plot \(i(\tau_L) \) (blue curve) and \(i(\tau_R) \) (red curve) against each of the 40 splits; for comparison, we have the constant value of \(i(\tau) = 0.6899 \). Note the large drop in the plot of \(i(\tau_R) \) at the split age \(> 70 \). In the right panel, we plot \(\Delta i(s, \tau) \) against each of the 40 splits \(s \). The largest value of \(\Delta i(s, \tau) \) is 0.04305, which corresponds to the split age \(\leq 54 \).

Recursive Partitioning

In order to grow a tree, we start with the root node, which consists of the learning set \(\mathcal{L} \). Using the “goodness-of-split” criterion for a single variable, the tree algorithm finds the best split at the root node for each of the variables, \(X_1 \) to \(X_r \). The best split \(s \) at the root node is then defined as the one that has the largest value of (9.9) over all \(r \) single-variable best splits at that node.

In the case of the Cleveland heart-disease data, the best split at the root node (and corresponding value of \(\Delta i(s, \tau) \)) for each of the 13 variables is listed in Table 9.3. The largest value is 0.147 corresponding to the variable thal. So, for these data, the best split at the root node is to split the
variable \texttt{thal} according to \texttt{norm} vs. (\texttt{fix}, \texttt{rev}); that is, first separate the 163 normal patients from the 133 patients who have (either fixed or reversible) defects for the variable \texttt{thal}.

We next split each of the daughter nodes of the root node in the same way. We repeat the above computations for the left daughter node, except that we consider only those 163 patients having \texttt{thal} = \texttt{norm}, and then consider the right daughter node, except we consider only those 133 patients having \texttt{thal} = \texttt{fix} or \texttt{rev}. When those splits are completed, we continue to split each of the subsequent nodes. This sequential splitting process of building a tree layer-by-layer is called recursive partitioning. If every parent node splits into two daughter nodes, the result is called a binary tree. If the binary tree is grown until none of the nodes can be split any further, we say the tree is saturated. It is very easy in a high-dimensional classification problem to let the tree get overwhelmingly large, especially if the tree is allowed to grow until saturation.

TABLE 9.3. Determination of the best split at the root node for the Cleveland heart-disease data. The impurity measure is the entropy function. Each input variable is listed together with its maximum value of $\Delta i(s, \tau)$ over all possible splits of that variable.

<table>
<thead>
<tr>
<th>age</th>
<th>gender</th>
<th>cp</th>
<th>trestbps</th>
<th>chol</th>
<th>fbs</th>
<th>restecg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.043</td>
<td>0.042</td>
<td>0.133</td>
<td>0.011</td>
<td>0.011</td>
<td>0.00001</td>
<td>0.015</td>
</tr>
<tr>
<td>thatach</td>
<td>exang</td>
<td>oldpeak</td>
<td>slope</td>
<td>ca</td>
<td>thal</td>
<td></td>
</tr>
<tr>
<td>0.093</td>
<td>0.093</td>
<td>0.087</td>
<td>0.077</td>
<td>0.124</td>
<td>0.147</td>
<td></td>
</tr>
</tbody>
</table>
One way to counter this type of situation is to restrict the growth of the tree. This was the philosophy of early tree-growers. For example, we can declare a node to be terminal if it fails to be larger than a certain critical size; that is, if \(n(\tau) \leq n_{\min} \), where \(n(\tau) \) is the number of observations in node \(\tau \) and \(n_{\min} \) is some previously declared minimum size of a node. Because a terminal node cannot be split into daughter nodes, it acts as a brake on tree growth; the larger the value of \(n_{\min} \), the more severe the brake. Another early action was to stop a node from splitting if the largest goodness-of-split value at that node is smaller than a certain predetermined limit. These stopping rules, however, do not turn out to be such good ideas. A better approach (Breiman et al., 1984) is to let the tree grow to saturation and then “prune” it back; see Section 9.2.6.

How do we associate a class with a terminal node? Suppose at terminal node \(\tau \) there are \(n(\tau) \) observations, of which \(n_k(\tau) \) are from class \(\Pi_k \), \(k = 1, 2, \ldots, K \). Then, the class which corresponds to the largest of the \(\{ n_k(\tau) \} \) is assigned to \(\tau \). This is called the plurality rule. This rule can be derived from the Bayes's rule classifier of Section 8.5.1, where we assign the node \(\tau \) to class \(\Pi_i \) if \(p(i|\tau) = \max_k p(k|\tau) \); if we estimate the prior probability \(\pi_k \) by \(n_k(\tau)/n(\tau) \), \(k = 1, 2, \ldots, K \), then this boils down to the plurality rule.

9.2.4 Example: Pima Indians Diabetes Study

This Indian population lives near Phoenix, Arizona. All patients listed in this data set\(^2\) are females at least 21 years old of Pima Indian heritage. There are two classes: diabetic, if the patient shows signs of diabetes according to World Health Organization criteria (i.e., if the 2-hour post-load plasma glucose was at least 200 mg/dl at any survey examination, or if found during routine medical care), and normal. In the original data, there were 500 normal subjects and 268 diabetic subjects.

There are eight input variables: npregnant (number of times pregnant), bmi (body mass index, (weight in kg)/(height in m)^2), glucose (plasma glucose concentration at 2 hours in an oral glucose tolerance test), pedigree (diabetes pedigree function), diastolic.bp (diastolic blood pressure, mm Hg), skinfold.thickness (triceps skin fold thickness, mm), insulin (2-hour serum insulin, \(\mu U/ml \)), and age (age in years). We removed any subject with a nonsense value of zero for the variables glucose, bmi, diastolic.bp, skinfold.thickness; this reduced the data set to 532 patients (from 768), with 355 normal subjects and 177 diabetic subjects.

\(^2\)These data are available on the book’s website (file pima) and are also available from the UCI website.
A classification tree was grown for the Pima Indians diabetes data using Gini’s impurity measure (9.5). The classification tree appears in Figure 9.5, where nodes are declared to be terminal if they contain fewer than 10 patients. We see 14 splits and 15 terminal nodes; a patient is declared to be normal at 8 terminal nodes and diabetic at 7 terminal nodes. The assignment of each terminal node into “normal” or “diabetic” depends upon the majority rule at that node; the numbers of normal and diabetic patients in the learning set that fall into each terminal node are displayed at that node.

We also did not use the variable insulin because it had so many zeros (374 in the original data).
9. Recursive Partitioning and Tree-Based Methods

9.2.5 Estimating the Misclassification Rate

Next, we compute an estimate of the within-node misclassification rate. The resubstitution estimate of the misclassification rate \(R(\tau) \) of an observation in node \(\tau \) is

\[
r(\tau) = 1 - \max_k p(k|\tau),
\]

which, for the two-class case, reduces to

\[
r(\tau) = 1 - \max(p, 1 - p) = \min(p, 1 - p).
\]

The resubstitution estimate (9.15) in the two-class case is graphed in Figure 9.3 (the blue curve). If \(p < 1/2 \), the resubstitution estimate increases linearly in \(p \), and if \(p > 1/2 \), it decreases linearly in \(p \). Because of its poor properties (e.g., nondifferentiability), (9.15) is not used much in practice.

Let \(T \) be the tree classifier and let \(\tilde{T} = \{\tau_1, \tau_2, \ldots, \tau_L\} \) denote the set of all terminal nodes of \(T \). We can now estimate the true misclassification rate,

\[
R(T) = \sum_{\tau \in \tilde{T}} R(\tau)P(\tau) = \sum_{\ell=1}^{L} R(\tau_\ell)P(\tau_\ell)
\]

for \(T \), where \(P(\tau) \) is the probability that an observation falls into node \(\tau \). If we estimate \(P(\tau_\ell) \) by the proportion \(p(\tau_\ell) \) of all observations that fall into node \(\tau_\ell \), then, the resubstitution estimate of \(R(T) \) is

\[
R^{re}(T) = \sum_{\ell=1}^{L} r(\tau_\ell)p(\tau_\ell) = \sum_{\ell=1}^{L} R^{re}(\tau_\ell),
\]

where \(R^{re}(\tau_\ell) = r(\tau_\ell)p(\tau_\ell) \).

Of the 532 subjects in the Pima Indians diabetes study, the classification tree in Figure 9.5 misclassifies 29 of the 355 normal subjects as diabetic, whereas of the 177 diabetic patients, 46 are misclassified as normal. So, the resubstitution estimate is \(R^{re}(T) = 75/532 = 0.141 \).

The resubstitution estimate \(R^{re}(T) \), however, leaves much to be desired as an estimate of \(R(T) \). First, bigger trees (i.e., more splitting) have smaller values of \(R^{re}(T) \); that is, \(R^{re}(T') \leq R^{re}(T) \), where \(T' \) is formed by splitting a terminal node of \(T \). For example, if a tree is allowed to grow until every terminal node contains only a single observation, then that node is classified by the class of that observation and \(R^{re}(T) = 0 \). Second, using only the resubstitution estimate tends to generate trees that are too big for the given data. Third, the resubstitution estimate \(R^{re}(T) \) is a much-too-optimistic estimate of \(R(T) \). More realistic estimates of \(R(T) \) are given below.
9.2.6 Pruning the Tree

The Breiman et al. (1984) philosophy of growing trees is to grow the tree “large” and then prune off branches (from the bottom up) until the tree is the “right size.” A pruned tree is a subtree of the original large tree. How to prune a tree, then, is the crucial part of the process. Because there are many different ways to prune a large tree, we decide which is the “best” of those subtrees by using an estimate of $R(T)$.

The pruning algorithm is as follows:

1. Grow a large tree, say, T_{max}, where we keep splitting until the nodes each contain fewer than n_{min} observations;
2. Compute an estimate of $R(\tau)$ at each node $\tau \in T_{\text{max}}$;
3. Prune T_{max} upwards toward its root node so that at each stage of pruning, the estimate of $R(T)$ is minimized.

Instead of using the resubstitution measure $R^{re}(T)$ as our estimate of $R(T)$, we modify it for tree pruning by adopting a regularization approach. Let $\alpha \geq 0$ be a complexity parameter. For any node $\tau \in T$, set

$$R_\alpha(\tau) = R^{re}(\tau) + \alpha.$$ \hfill (9.18)

From (9.18), we define a cost-complexity pruning measure for a tree as follows:

$$R_\alpha(T) = \sum_{\ell=1}^{L} R_\alpha(\tau_\ell) = R^{re}(T) + \alpha |\tilde{T}|,$$ \hfill (9.19)

where $|\tilde{T}| = L$ is the number of terminal nodes in the subtree T of T_{max}. Think of $\alpha |\tilde{T}|$ as a penalty term for tree size, so that $R_\alpha(T)$ penalizes $R^{re}(T)$ for generating too large a tree. For each α, we then choose that subtree $T(\alpha)$ of T_{max} that minimizes $R_\alpha(T)$:

$$R_\alpha(T(\alpha)) = \min_{T} R_\alpha(T).$$ \hfill (9.20)

If $T(\alpha)$ satisfies (9.20), then it is called a minimizing subtree (or an optimally-pruned subtree) of T_{max}. For any α, there may be more than one minimizing subtree of T_{max}.

The value of α determines the tree size. When α is very small, the penalty term will be small, and so the size of the minimizing subtree $T(\alpha)$, which will essentially be determined by $R^{re}(T(\alpha))$, will be large. For example, suppose we set $\alpha = 0$ and grow the tree T_{max} so large that each terminal node contains only a single observation; then, each terminal node takes on the class of its solitary observation, every observation is classified correctly, and $R^{re}(T_{\text{max}}) = 0$. So, T_{max} minimizes $R_0(T)$. As we increase α, the
minimizing subtrees $T(\alpha)$ will have fewer and fewer terminal nodes. When α is very large, we will have pruned the entire tree T_{max}, leaving only the root node.

Note that although α is defined on the interval $[0, \infty)$, the number of subtrees of T is finite. Suppose that, for $\alpha = \alpha_1$, the minimizing subtree is $T_1 = T(\alpha_1)$. As we increase the value of α, T_1 continues to be the minimizing subtree until a certain point, say, $\alpha = \alpha_2$, is reached, and a new subtree, $T_2 = T(\alpha_2)$, becomes the minimizing subtree. As we increase α further, the subtree T_2 continues to be the minimizing subtree until a value of α is reached, $\alpha = \alpha_3$, say, when a new subtree $T_3 = T(\alpha_3)$ becomes the minimizing subtree. This argument is repeated a finite number of times to produce a sequence of minimizing subtrees T_1, T_2, T_3, \ldots.

How do we get from T_{max} to T_1? Suppose the node τ in the tree T_{max} has daughter nodes τ_L and τ_R, both of which are terminal nodes. Then,

$$R^{re}(\tau) \geq R^{re}(\tau_L) + R^{re}(\tau_R)$$ \hspace{1cm} (9.21)

(Breiman et al., 1984, Proposition 4.2). For example, in the classification tree for the Pima Indians diabetes study (Figure 9.5), the lowest subtree has a root node with 13 normals and 8 diabetics, whereas its left daughter node has 10 normals and 3 diabetics and its right daughter node has 3 normals and 5 diabetics. Thus, $R^{re}(\tau) = 8/532 > R^{re}(\tau_L) + R^{re}(\tau_R) = (3 + 3)/532 = 6/532$. If equality occurs in (9.21) at node τ, then prune the terminal nodes τ_L and τ_R from the tree. Continue this pruning strategy until no further pruning of this type is possible. The resulting tree is T_1.

Next, we find T_2. Let τ be any nonterminal node of T_1, let T_τ be the subtree whose root node is τ, and let $\tilde{T}_\tau = \{\tau'_1, \tau'_2, \ldots, \tau'_{L_\tau}\}$ be the set of terminal nodes of T_τ. Let

$$R^{re}(T_\tau) = \sum_{\tau' \in \tilde{T}_\tau} R^{re}(\tau') = \sum_{\ell' = 1}^{L_\tau} R^{re}(\tau'_{\ell'}).$$ \hspace{1cm} (9.22)

Then, $R^{re}(\tau) > R^{re}(T_\tau)$ (Breiman et al., 1984, Proposition 3.8). For example, from Figure 9.5, let τ be the nonterminal node on the right-hand side of the tree near the center of the tree having 18 normals and 26 diabetics, and let T_τ be the subtree with τ as its root node. Then, $R^{re}(\tau) = 18/532 > R^{re}(T_\tau) = (3 + 3 + 3 + 2)/532 = 11/532$. Now, set

$$R_\alpha(T_\tau) = R^{re}(T_\tau) + \alpha|\tilde{T}_\tau|.$$ \hspace{1cm} (9.23)

As long as $R_\alpha(\tau) > R_\alpha(T_\tau)$, the subtree T_τ has a smaller cost-complexity than its root node τ, and, therefore, it pays to retain T_τ. For the previous example, we retain T_τ as long as $R^{re}_\alpha(\tau) = 18/532 + \alpha > 11/532 + 4\alpha = R^{re}_\alpha(T_\tau)$, or $\alpha < 7/(3 \cdot 532) = 0.0044$.

Substituting (9.18) and (9.23) into this condition and solving for \(\alpha \) yields
\[
\alpha < \frac{R_{re}(\tau) - R_{re}(T_\tau)}{|T_\tau| - 1}.
\] (9.24)

So, the right-hand side of (9.24), which is positive, computes the reduction in \(R_{re} \) (due to going from a single node to the subtree with that node as root) relative to the increase in the number of terminal nodes. For \(\tau \in T_1 \), define
\[
g_1(\tau) = \frac{R_{re}(\tau) - R_{re}(T_{1,\tau})}{|T_{1,\tau}| - 1}, \quad \tau \notin \tilde{T}(\alpha_1),
\] (9.25)
where \(T_{1,\tau} \) is the same as \(T_\tau \). Then, \(g_1(\tau) \) can be regarded as a critical value for \(\alpha \): as long as \(g_1(\tau) > \alpha_1 \), we do not prune the nonterminal nodes \(\tau \in T_1 \).

We define the weakest-link node \(\tilde{\tau}_1 \) as the node in \(T_1 \) that satisfies
\[
g_1(\tilde{\tau}_1) = \min_{\tau \in T_1} g_1(\tau).
\] (9.26)

As \(\alpha \) increases, \(\tilde{\tau}_1 \) is the first node for which \(R_{\alpha}(\tau) = R_{\alpha}(T_\tau) \), so that \(\tilde{\tau}_1 \) is preferred to \(T_{\tilde{\tau}_1} \). Set \(\alpha_2 = g_1(\tilde{\tau}_1) \) and define the subtree \(T_2 = T(\alpha_2) \) of \(T_1 \) by pruning away the subtree \(T_{\tilde{\tau}_1} \) (so that \(\tilde{\tau}_1 \) becomes a terminal node) from \(T_1 \).

To find \(T_3 \), we find the weakest-link node \(\tilde{\tau}_2 \in T_2 \) through the critical value
\[
g_2(\tau) = \frac{R_{re}(\tau) - R_{re}(T_{2,\tau})}{|T_{2,\tau}| - 1}, \quad \tau \in T(\alpha_2), \quad \tau \notin \tilde{T}(\alpha_2),
\] (9.27)
where \(T_{2,\tau} \) is that part of \(T_\tau \) which is contained in \(T_2 \). We set
\[
\alpha_3 = g_2(\tilde{\tau}_2) = \min_{\tau \in T_2} g_2(\tau),
\] (9.28)
and define the subtree \(T_3 \) of \(T_2 \) by pruning away the subtree \(T_{\tilde{\tau}_2} \) (so that \(\tilde{\tau}_2 \) becomes a terminal node) from \(T_2 \). And so on for a finite number of steps.

As we noted above, there may be several minimizing subtrees for each \(\alpha \). How do we choose between them? For a given value of \(\alpha \), we call \(T(\alpha) \) the smallest minimizing subtree if it is a minimizing subtree (i.e., satifies (9.20)) and satisfies the following condition:
\[
\text{if } R_{\alpha}(T) = R_{\alpha}(T(\alpha)), \text{ then } T \succ T(\alpha).
\] (9.29)

In (9.29), \(T \succ T(\alpha) \) means that \(T(\alpha) \) is a subtree of \(T \) and, hence, has fewer terminal nodes than \(T \). This condition says that, in the event of any ties, \(T(\alpha) \) is taken to be the smallest tree out of all those trees that minimize
Breiman et al. (1984, Proposition 3.7) showed that for every α, there exists a unique smallest minimizing subtree.

The above construction gives us a finite increasing sequence of complexity parameters,

$$0 = \alpha_0 < \alpha_1 < \alpha_2 < \alpha_3 < \cdots < \alpha_M,$$

which corresponds to a finite sequence of nested subtrees of T_{max},

$$T_{\text{max}} = T_0 > T_1 > T_2 > T_3 > \cdots > T_M,$$

where $T_k = T(\alpha_k)$ is the unique smallest minimizing subtree for $\alpha \in [\alpha_k, \alpha_{k+1})$, and T_M is the root-node subtree. We start with T_1 and increase α until $\alpha = \alpha_2$ determines the weakest-link node $\tilde{\tau}_1$; we then prune the subtree $T_{\tilde{\tau}_1}$ with that node as root. This gives us T_2. We repeat this procedure by finding $\alpha = \alpha_3$ and the weakest-link node $\tilde{\tau}_2$ in T_2 and prune the subtree $T_{\tilde{\tau}_2}$ with that node as root. This gives us T_3. This pruning process is repeated until we arrive at T_M.

Example: Pima Indians Diabetes Study (Continued)

The sequence of seven pruned classification trees, T_k, corresponding to their critical values, α_k, are listed in Table 9.4. The tree displayed in Figure 9.5 has 14 splits (and, hence, 15 terminal nodes).

Any value of $\alpha < 0.0038$ will produce a tree with 15 terminal nodes. When $\alpha = 0.0038$, the classification tree is pruned to have 11 splits (and 12 terminal nodes), which will remain the same for all $0.0038 \leq \alpha < 0.0047$. Increasing α to 0.0047 prunes the tree to 9 splits (and 10 terminal nodes). And so on, until α is increased above 0.0883 when the tree consists only of the root node.

9.2.7 Choosing the Best Pruned Subtree

Thus far, we have constructed a finite sequence of decreasing-size subtrees $T_1, T_2, T_3, \ldots, T_M$ by pruning more and more nodes from T_{max}. When do we stop pruning? Which subtree of the sequence do we choose as the “best” pruned subtree?

Choice of the best subtree depends upon having a good estimate of the misclassification rate $R(T_k)$ corresponding to the subtree T_k. Breiman et al. (1984) offered two estimation methods: use an independent test sample or use cross-validation. When the data set is very large, use of an independent test set is straightforward and computationally efficient, and is, generally, the preferred estimation method. For smaller data sets, cross-validation is preferred.
TABLE 9.4. Pruned classification trees for the Pima Indians diabetes study. The impurity function is the Gini index. By increasing the complexity parameter α, seven classification trees, T_k, $k = 1, 2, \ldots, 6$, are derived, where the tree details are listed so that $T_k \succ T_{k+1}$; i.e., largest tree to smallest tree. Also listed for each tree are the number of terminal nodes ($|\tilde{T}_k|$), resubstitution error (R^{re}), and 10-fold cross-validation (CV) error ($R^{CV/10}$). The \pm values on the CV error are the CV standard errors (\hat{SE}). The CV error estimate and its estimated standard error produce random values according to the random CV-partition of the data.

| k | α_k | $|T_k|$ | $R^{re}(T_k)$ | $R^{CV/10}(T_k)$ |
|-----|-----------|-------|-------------|-----------------|
| 1 | 1 | 15 | 0.141 | 0.258 ± 0.019 |
| 2 | 0.0038 | 12 | 0.152 | 0.233 ± 0.018 |
| 3 | 0.0047 | 10 | 0.162 | 0.233 ± 0.018 |
| 4 | 0.0069 | 6 | 0.190 | 0.235 ± 0.018 |
| 5 | 0.0085 | 4 | 0.207 | 0.256 ± 0.019 |
| 6 | 0.0188 | 2 | 0.244 | 0.256 ± 0.019 |
| 7 | 0.0883 | 1 | 0.333 | 0.333 ± 0.020 |

Independent Test Set

Randomly assign the observations in the data set \mathcal{D} into a learning set \mathcal{L} and a test set \mathcal{T}, where $\mathcal{D} = \mathcal{L} \cup \mathcal{T}$ and $\mathcal{L} \cap \mathcal{T} = \emptyset$. Suppose there are n_T observations in the test set and that they are drawn independently from the same underlying distribution as the observations in \mathcal{L}. Grow the tree T_{max} from the learning set only, prune it from the bottom up to give the sequence of subtrees $T_1 \succ T_2 \succ T_3 \succ \cdots \succ T_M$, and assign a class to each terminal node.

Take each of the n_T test-set observations and drop it down the subtree T_k. Each observation in \mathcal{T} is then classified into one of the different classes. Because the true class of each observation in \mathcal{T} is known, we estimate $R(T_k)$ by $R^{ts}(T_k)$, which is (9.19) with $\alpha = 0$; that is, $R^{ts}(T_k) = R^{re}(T_k)$, the resubstitution estimate computed using the independent test set. When the costs of misclassification are identical for each class, $R^{ts}(T_k)$ is the proportion of all test set observations that are misclassified by T_k. These estimates are then used to select the best-pruned subtree T_* by the rule

$$R^{ts}(T_*) = \min_k R^{ts}(T_k),$$

(9.32)

and $R^{ts}(T_*)$ is its estimated misclassification rate.

We estimate the standard error of $R^{ts}(T)$ as follows. When we drop the test set \mathcal{T} down a tree T, the chance that we misclassify any one of those observations is $p^* = R(T)$. Thus, we have a binomial sampling situation with n_T Bernoulli trials and probability of success p^*. If $p = R^{ts}(T)$ is
the proportion of misclassified observations in T, then, p is unbiased for p^* and the variance of p is $p^*(1 - p^*)/n_T$. The standard error of $R^{ts}(T)$ is, therefore, estimated by
\[
\hat{SE}(R^{ts}(T)) = \left\{ \frac{R^{ts}(T)(1 - R^{ts}(T))}{n_T} \right\}^{1/2}.
\] (9.33)

Cross-Validation

In V-fold cross-validation (CV/V), we randomly divide the data D into V roughly equal-size, disjoint subsets, $D = \bigcup_{v=1}^{V} D_v$, where $D_v \cap D_{v'} = \emptyset$, $v \neq v'$, and V is usually taken to be 5 or 10. We next create V different data sets from the $\{D_v\}$ by taking $L_v = D - D_v$ as the vth learning set and $T_v = D_v$ as the vth test set, $v = 1, 2, \ldots, V$. If the $\{D_v\}$ each have the same number of observations, then each learning set will have $(\frac{V-1}{V}) \times 100$ percent of the original data set.

Grow the vth “auxiliary” tree $T_{\text{max}}^{(v)}$ using the vth learning set L_v, $v = 1, 2, \ldots, V$. Fix the value of the complexity parameter α. Let $T^{(v)}(\alpha)$ be the best pruned subtree of $T_{\text{max}}^{(v)}$, $v = 1, 2, \ldots, V$. Now, drop each observation in the vth test set T_v down the tree $T^{(v)}(\alpha)$, $v = 1, 2, \ldots, V$. Let $n_{ij}^{(v)}(\alpha)$ denote the number of jth class observations in T_v that are classified as being from the ith class, $i, j = 1, 2, \ldots, K$, $v = 1, 2, \ldots, V$. Because $D = \bigcup_{v=1}^{V} T_v$ is a disjoint sum, the total number of jth class observations that are classified as being from the ith class is $n_{ij}(\alpha) = \sum_{v=1}^{V} n_{ij}^{(v)}(\alpha)$, $i, j = 1, 2, \ldots, K$. If we set n_j to be the number of observations in D that belong to the jth class, $j = 1, 2, \ldots, K$, and assume that misclassification costs are equal for all classes, then, for a given α,
\[
R^{CV/V}(T(\alpha)) = n^{-1} \sum_{i=1}^{K} \sum_{j=1}^{K} n_{ij}(\alpha)
\] (9.34)
is the estimated misclassification rate over D, where $T(\alpha)$ is a minimizing subtree of T_{max}.

The final step in this process is to find the right-sized subtree. Breiman et al. (1984, p. 77) recommend evaluating (9.24) at the sequence of values $\alpha'_k = \sqrt{\alpha_k \alpha_{k+1}}$, where α'_k is the geometric midpoint of the interval $[\alpha_k, \alpha_{k+1}]$ in which $T(\alpha) = T_k$. Set
\[
R^{CV/V}(T_k) = R^{CV/V}(T(\alpha'_k)).
\] (9.35)

Then, select the best-pruned subtree T_* by the rule:
\[
R^{CV/V}(T_{*}) = \min_k R^{CV/V}(T_k),
\] (9.36)
and use $R^{CV/V}(T_*)$ as its estimated misclassification rate.

Deriving an estimated standard error of the cross-validated estimate of the misclassification rate is more complicated than using a test set. The usual way of sidestepping issues of non-independence of the summands in (9.29) is to ignore them and pretend instead that independence holds. Actually, this approximation appears to work well in practice. See Breiman et al. (1984, Section 11.5) for details.

It is usual to take $V = 10$ for 10-fold CV. The leave-one-out CV method (i.e., $V = n$) is not recommended because the resulting auxiliary trees will be almost identical to the tree constructed from the full data set, and so nothing would be gained from this procedure.

The One-SE Rule

To overcome possible instability in selecting the best-pruned subtree, Breiman et al. (1984, Section 3.4.3) propose an alternative rule.

Let $\hat{R}(T_*) = \min_k R(T_k)$ denote the estimated misclassification rate, calculated from either a test set (i.e., $R^{ts}(T_*)$) or cross-validation (i.e., $R^{CV/V}(T_*)$). Then, we choose the smallest tree T_{**} that satisfies the “1-SE rule,” namely,

$$\hat{R}(T_{**}) \leq \hat{R}(T_*) + \hat{SE}(\hat{R}(T_*)).$$

(9.37)

This rule appears to produce a better subtree than using T_* because it responds to the variability (through the standard error) of the cross-validation estimates.

Example: Pima Indians Diabetes Study (Continued)

For example, we apply the 1-SE rule to the Pima Indians diabetes study. From Table 9.4, the 1-SE rule yields a minimum of CV error + SE = 0.233 + 0.018 = 0.251, which leads to the choice of a classification tree with 9 splits (10 terminal nodes) based upon cross-validation. The corresponding pruned classification tree is displayed in Figure 9.6.

A diagnosis of diabetes is given to those subjects who have one of the following symptoms:

1. plasma glucose level at least 157.5;

2. plasma glucose level between 127.5 and 157.5, bmi at least 30.2, and age at least 42.5 years;

3. plasma glucose level between 127.5 and 157.6, bmi at least 30.2, age less than 42.5 years, and a pedigree at least 0.285;

4. plasma glucose level between 96.5 and 127.5, age at least 28.5 years, a pedigree at least 0.62, and bmi at least 26.5.
FIGURE 9.6. A pruned classification tree for the Pima Indians diabetes data, with 9 splits and 10 terminal nodes, where the impurity measure is the Gini index. The terminal nodes are colored green for normal and pink for diabetic.

This tree has a resubstitution error rate of $86/532 = 0.162$ and 10-fold CV misclassification rate of 0.233 ± 0.018.

9.2.8 Example: Vehicle Silhouettes

Consider the vehicle data\(^3\) of Section 8.7, which were collected to study how well 3D objects could be distinguished by their 2D silhouette images. There are four classes of objects, each of which was a Corgi model vehicle: an Opel Manta car (opel, 212 images), a Saab 9000 car (saab, 217 images), a double-decker bus (bus, 218 images), and a Chevrolet van (van, 199 images), giving a total of 846 images. Each object was viewed by a camera from many different angles and elevations. The variables are scaled variance, skewness, and kurtosis about the major/minor axes, and

\(^3\)These data can be found in the UCI Machine Learning Repository.
heuristic measures such as hollows ratio, circularity, elongatedness, rectangularity, and compactness of the silhouettes.

Based upon the One–SE rule, and the resulting complexity-parameter plot in Figure 9.7, the most appropriate classification tree has 10 splits with 11 terminal nodes, with a resubstitution error rate of 0.3535 × 0.7423 = 0.262, and CV error rate of 0.299 ± 0.0157. In Figure 9.8, we have displayed the pruned classification tree with 10 splits and 11 terminal nodes.

9.3 Regression Trees

Suppose the data are given by $D = \{(X_i, Y_i), i = 1, 2, \ldots, n\}$, where the Y_i are measurements made on a continuous response variable Y, and
FIGURE 9.8. A pruned classification tree for the vehicle data. There are 12 input variables, 846 observations, and four classes of vehicle models: opel (pink), saab (yellow), bus (green), and van (blue), whose numbers at each node are given by a/b/c/d, respectively. There are 10 splits and 11 terminal nodes in this tree. The resubstitution error rate is 0.262.

the X_i are measurements on an input r-vector X. We assume that Y is related to X as in multiple regression (see Chapter 5), and we wish to use a tree-based method to predict Y from X.

Regression trees are constructed similarly to classification trees, and the method is generally referred to as recursive-partitioning regression. In a classification tree, the class of a terminal node is defined as that class that commands a plurality (a majority in the two-class case) of all the observations in that node, where ties are decided at random. In a regression tree, the output variable is set to have the constant value $Y(\tau)$ at terminal node τ. Hence, the tree can be represented as an r-dimensional histogram estimate of the regression surface, where r is the number of input variables, X_1, X_2, \ldots, X_r.
9.3 Regression Trees

9.3.1 The Terminal-Node Value

How do we find \(Y(\tau) \)? Recall (from Chapter 5) that the resubstitution estimate of prediction error is

\[
R^{re}(\hat{\mu}) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2,
\]

(9.38)

where \(\hat{Y}_i = \hat{\mu}(X_i) \) is the estimated value of the predictor at \(X_i \). For \(\hat{Y}_i \) to be constant at each node, the predictor has to have the form

\[
\hat{\mu}(X) = \sum_{\tau \in \tilde{T}} Y(\tau) I_{[X \in \tau]} = \sum_{\ell=1}^{L} Y(\tau_\ell) I_{[X \in \tau_\ell]},
\]

(9.39)

where \(I_{[X \in \tau_\ell]} \) is equal to one if \(X \in \tau_\ell \) and zero otherwise. For \(X_i \in \tau_\ell \), \(R^{re}(\hat{\mu}) \) is minimized by taking \(\hat{Y}_i = \hat{Y}(\tau_\ell) \) as the constant value \(Y(\tau_\ell) \), where \(\hat{Y}(\tau_\ell) \) is the average of the \(\{Y_i\} \) for all observations assigned to node \(\tau_\ell \); that is,

\[
\hat{Y}(\tau_\ell) = \frac{1}{n(\tau_\ell)} \sum_{X_i \in \tau_\ell} Y_i,
\]

(9.40)

where \(n(\tau_\ell) \) is the total number of observations in node \(\tau_\ell \). Changing notation slightly to reflect the tree structure, the resubstitution estimate is

\[
R^{re}(T) = \frac{1}{n} \sum_{\ell=1}^{L} \sum_{X_i \in \tau_\ell} (Y_i - \hat{Y}(\tau_\ell))^2 = \sum_{\ell=1}^{L} R^{re}(\tau_\ell),
\]

(9.41)

where

\[
R^{re}(\tau_\ell) = \frac{1}{n} \sum_{X_i \in \tau_\ell} (Y_i - \hat{Y}(\tau_\ell))^2 = p(\tau_\ell) s^2(\tau_\ell),
\]

(9.42)

\(s^2(\tau_\ell) \) is the (biased) sample variance of all the \(Y_i \) values in node \(\tau_\ell \), and \(p(\tau_\ell) = n(\tau_\ell)/n \) is the proportion of observations in node \(\tau_\ell \). Hence, \(R^{re}(T) = \sum_{\ell=1}^{L} p(\tau_\ell) s^2(\tau_\ell) \).

9.3.2 Splitting Strategy

How do we determine the type of split at any given node of the tree? We take as our splitting strategy at node \(\tau \in \tilde{T} \) the split that provides the biggest reduction in the value of \(R^{re}(T) \). The reduction in \(R^{re}(\tau) \) due to a split into \(\tau_L \) and \(\tau_R \) is given by

\[
\Delta R^{re}(\tau) = R^{re}(\tau) - R^{re}(\tau_L) - R^{re}(\tau_R);
\]

(9.43)
the best split at τ is then the one that maximizes $\Delta R^c(\tau)$. The result of employing such a splitting strategy is that the best split will divide up observations according to whether Y has a small or large value; in general, where splits occur, we see either $\bar{y}(\tau_L) < \bar{y}(\tau) < \bar{y}(\tau_R)$ or its reverse with $\bar{y}(\tau_L)$ and $\bar{y}(\tau_R)$ interchanged.

We note that finding τ_L and τ_R to maximize $\Delta R^c(\tau)$ is equivalent to minimizing $R^c(\tau_L) + R^c(\tau_R)$. From (9.42), this boils down to finding τ_L and τ_R to solve

$$\min_{\tau_L, \tau_R} \{p(\tau_L)s^2(\tau_L) + p(\tau_R)s^2(\tau_R)\},$$

(9.44)

where $p(\tau_L)$ and $p(\tau_R)$ are the proportions of observations in τ that split to τ_L and τ_R, respectively.

9.3.3 Pruning the Tree

The method for pruning a regression tree incorporates the same ideas as is used to prune a classification tree.

As before, we first grow a large tree, T_{max}, by splitting nodes repeatedly until each node contains fewer than a given number of observations; that is, until $n(\tau) \leq n_{\text{min}}$ for each $\tau \in \tilde{T}$, where we typically set $n_{\text{min}} = 5$.

Next, we set up an error-complexity measure,

$$R_\alpha(T) = R^c(T) + \alpha |\tilde{T}|,$$

(9.45)

where $\alpha \geq 0$ is a complexity parameter. Use $R_\alpha(T)$ as the criterion for deciding when and how to split, just as we did in pruning classification trees. The result is a sequence of subtrees,

$$T_{\text{max}} = T_0 \succ T_1 \succ T_2 \succ T_3 \succ \cdots \succ T_M,$$

(9.46)

and an associated sequence of complexity parameters,

$$0 = \alpha_0 < \alpha_1 < \alpha_2 < \alpha_3 < \cdots < \alpha_M,$$

(9.47)

such that for $\alpha \in [\alpha_k, \alpha_{k+1})$, T_k is the smallest minimizing subtree of T_{max}.

9.3.4 Selecting the Best Pruned Subtree

We estimate $R(T_k)$ by using an independent test set or by cross-validation. The details follow those in Section 9.2.6.

For an independent test set, T, an estimate of $R(T_k)$ is given by

$$R^{ts}(T_k) = \frac{1}{n_T} \sum_{(X_i, Y_i) \in T} (Y_i - \hat{\mu}_k(X_i))^2,$$

(9.48)
where n_T is the number of observations in the test set and $\hat{\mu}_k(X)$ is the estimated prediction function associated with subtree T_k.

For a V-fold cross-validated estimate of $R(T_k)$, we first construct the minimal error-complexity subtrees $T^{(v)}(\alpha)$, $v = 1, 2, \ldots, V$, parameterized by α. Set $\alpha'_k = \sqrt{\alpha_k \alpha_{k+1}}$ and let $\hat{\mu}_k^{(v)}(x)$ denote the estimated prediction function associated with the subtree $T^{(v)}(\alpha'_k)$. The V-fold CV estimate of $R(T_k)$ is given by

$$R^{CV/V}(T_k) = n^{-1} \sum_{v=1}^{V} \sum_{(X_i, Y_i) \in T_v} (Y_i - \hat{\mu}_k^{(v)}(X_i))^2.$$ (9.49)

We usually select $V = 10$ for a 10-fold CV estimate in which we split the learning set into 10 subsets, use 9 of those 10 subsets to grow and prune the tree, and then use the omitted subset to test the results of the tree.

Given the sequence of subtrees $\{T_k\}$, we select the smallest subtree T_{**} for which

$$\hat{R}(T_{**}) \leq \hat{R}(T_*) + \hat{SE}(\hat{R}(T_*)), \quad (9.50)$$

where $\hat{R}(T_*) = \min_k \hat{R}(T_k)$ is the estimated prediction error calculated using either an independent test set (i.e., $R^{ts}(T_*)$) or cross-validation (i.e., $R^{CV/V}(T_*)$).

9.3.5 Example: 1992 Major League Baseball Salaries

As an example of a regression tree, we use data on the salaries of Major League Baseball (MLB) players for 1992 (Watkink, 1998). The data consist of $n = 337$ MLB players who played at least one game in both the 1991 and 1992 seasons, excluding pitchers. The interesting aspect of these data is that a player’s “value” is judged by his performance measures, which in turn could be used to determine his salary the next year or possibly to enable him to change his employer.

The output variable is the 1992 salaries (in thousands of dollars) of these players, and the input variables are the following performance measures from 1991: BA (batting average), OBP (on-base percentage), $Runs$ (number of runs scored), $Hits$ (number of hits), $2B$ (number of doubles), $3B$ (number of triples), HR (number of home runs), RBI (number of runs batted in), BB (number of bases on balls or walks), SO (number of strikeouts), SB (number of stolen bases), and E (number of errors made). Also included as input

308 9. Recursive Partitioning and Tree-Based Methods

variables are the following four indicator variables: FAE (indicator of free-agent eligibility), FA (indicator of free agent in 1991/92), AE (indicator of arbitration eligibility), A (indicator of arbitration in 1991/92). These four variables indicated how free each player was to move to other teams. A player’s BA is the ratio of number of hits to the total number of “at-bats” for that player (whether resulting in a hit or an out). The OBP is the ratio of number of hits plus the number of walks to the number of hits plus the number of walks plus the number of outs. For reference, a BA above 0.3 is very good, and an OBP above 0.4 is excellent. An RBI occurs when a runner scores as a direct result of a player’s at-bat.

The plot of the CV results for this example is given in Figure 9.9, where the minimum value of the CV error occurs for a tree size of 10 terminal nodes. The pruned regression tree with 10 splits and 11 terminal nodes corresponding to the minimum 1–SE rule is given in Figure 9.10. We see from the terminal node on the right-hand side of the tree that the 14 players who score at least 46.5 runs have at least 94.5 RBIs, and are eligible for free-agency to earn the highest average salary ($3,897,214). The lowest average salary ($232,898), which is made by 108 players, is located at the terminal node on the left-hand side of the tree. We also see that performing well on at least one measure produces substantial differences in average salary. The resubstitution estimate (9.41) of prediction error for

FIGURE 9.9. Plot of 10-fold CV results of different size regression trees for 1992 baseball salary data. The cp-value is α divided by the resubstitution estimate, $R^e(T_0)$, for the root tree, and the vertical axis is the CV error also divided by $R^e(T_0)$. The vertical lines indicate ± two SE for each CV error estimate. The recommended amount of pruning is to set cp equal to the smallest tree with the minimum CV error; in this case, 11 terminal nodes.
FIGURE 9.10. Pruned regression tree for 1992 baseball salary data. The label of each node indicates the mean salary, in thousands of dollars, for the number n of players who fall into that node.

this regression tree is \(R^{ve}(T) = 341,841 \), the cross-validation estimate of prediction error is $549,217, and the cross-validation standard deviation is $74,928. By comparison, regressing Salary on the 15 input variables in a multiple regression yields a residual sum of squares of $155,032,181 and a residual mean square of $482,966 based upon 321 df.

9.4 Extensions and Adjustments

9.4.1 Multivariate Responses

Some work has been carried out on constructing classification trees for multivariate responses, especially where each response is binary (Zhang, 1998). In such cases, the measure of within-node homogeneity at node \(\tau \) for a single binary variable is generalized to a scalar-valued function of a matrix argument. Examples include \(-\log |V_\tau|\), where \(V_\tau \) is the within-node sample covariance matrix of the \(s \) binary responses at node \(\tau \), and
a node-based quadratic form in V, the covariance matrix derived from the root node. The cost-complexity of tree T is then defined as $R_0(T)$ in (9.19), where $R^{re}(T)$ is a within-node homogeneity measure summed over all terminal nodes. When dealing with multivariate responses, it is clear from an applied point of view that the amount of data available for tree construction has to be very large.

9.4.2 Survival Trees

Tree-based methods for analyzing censored survival data have become very useful tools in biomedical research, where they can identify prognostic factors for predicting survival (see, e.g., Intrator and Kooperberg, 1995). The resulting trees are called survival trees (or conditional inference trees). Survival data usually take the form of time-to-death but can be more general than that, such as time to a particular event to occur. Censored survival data occur when patients live past the conclusion of the study, leave the study prematurely, or die during the period of the study from a disease not connected to the one being studied, and survival analysis has to take such conditions into account in the inference process.

When using tree-based methods to analyze censored survival data, it is necessary to choose a criterion for making splitting decisions. There are several splitting criteria, which can be divided into two types depending upon whether one prefers to use a “within-node homogeneity” measure or a “between-node heterogeneity” measure. Most applications of the former method (see, e.g., Davis and Anderson, 1989) are parametrically based; they typically incorporate a version of minus the log-likelihood loss function, where the versions differ in the loss function used and, thus, how they represent the model for the observed data likelihood within the nodes.

The first application of recursive partitioning to the analysis of censored survival data (Gordon and Olshen, 1985) used a more nonparametric approach, basing their tree-construction on within-node Kaplan-Meier estimates of the survival distribution, and then comparing those curve estimates to within-node Kaplan-Meier estimates of truly homogeneous nodes. An example of the latter method (Segal, 1988) computes the within-node Kaplan-Meier curves for the censored survival data corresponding to each of the two daughter nodes of a possible split and then applies the two-sample log-rank statistic to the Kaplan-Meier curves to measure the goodness of that split; the largest value of the log-rank statistic over all possible splits determines which split is best.

Data that fall into a particular terminal node tend to have similar experiences of survival (based upon a measure of within-node homogeneity). Survival trees can be used to partition patients into groups having similar survival results and, hence, identify common characteristics within these
groups. At each terminal node of a survival tree, we compute a Kaplan-Meier estimate of the survival curve using the survival information for all patients who are members of that node and then compare the survival curves from different terminal nodes.

9.4.3 MARS

Recursive partitioning used in constructing regression trees has been generalized to a flexible class of nonparametric regression models called *multivariate adaptive regression splines (MARS)* (Friedman, 1991).

In the MARS approach, Y is related to X via the model $Y = \mu(X) + \epsilon$, where the error term ϵ has mean zero. The regression function, $\mu(X)$, is taken to be a weighted sum of L basis functions,

$$\mu(X) = \beta_0 + \sum_{\ell=1}^{L} \beta_\ell B_\ell(X). \tag{9.51}$$

The ℓth basis function,

$$B_\ell(X) = \prod_{m=1}^{M_\ell} \phi_{\ell m}(X_{q(\ell, m)}), \tag{9.52}$$

is the product of M_ℓ univariate spline functions $\{\phi_{\ell m}(X)\}$, where M_ℓ is a finite number and $q(\ell, m)$ is an index depending upon the ℓth basis function and the mth spline function. Thus, for each ℓ, $B_\ell(X)$ can consist of a single spline function or a product of two or more spline functions, and no input variable can appear more than once in the product. These spline functions (for ℓ odd) are often taken to be linear of the form,

$$\phi_{\ell m}(X) = (X - t_{\ell m})_+ , \quad \phi_{\ell + 1, m}(X) = (t_{\ell m} - X)_+, \tag{9.53}$$

where $t_{\ell m}$ is a knot of $\phi_{\ell m}(X)$ occurring at one of the observed values of $X_{q(\ell, m)}$, $m = 1, 2, \ldots, M_\ell$, $\ell = 1, 2, \ldots, L$. In (9.53), $(x)_+ = \max(0, x)$. If $B_\ell(X) = I_{[X \in \tau_\ell]}$ and $\beta_\ell = Y(\tau_\ell)$, then the regression function (9.51) is equivalent to the regression-tree predictor (9.39). Thus, whereas regression trees fit a constant at each terminal node, MARS fits more complicated piecewise linear basis functions.

Basis function are first introduced into the model (9.51) in a forwards-stepwise manner. The process starts by entering the intercept β_0 (i.e., $B_0(X) = 1$) into the model, and then at each step adding one pair of terms of the form (9.53) (i.e., choosing an input variable and a knot) by minimizing an error sum of squares criterion,

$$ESS(L) = \sum_{i=1}^{n} (y_i - \mu_L(x_i))^2, \tag{9.54}$$
where, for a given L, $\mu_L(x_i)$ is (9.51) evaluated at $X = x_i$. Suppose the forwards-stepwise procedure terminates at M terms. This model is then “pruned back” by using a backwards-stepwise procedure to prevent possibly overfitting the data. At each step in the backwards-stepwise procedure, we remove one term from the model. This yields M different nested models. To choose between these M models, MARS uses a version of generalized cross-validation (GCV),

$$GCV(m) = \frac{n^{-1} \sum_{i=1}^{n} (y_i - \hat{\mu}_m(x_i))^2}{\left(1 - \frac{C(m)}{n}\right)^2}, \quad m = 1, 2, \ldots, M,$$

(9.55)

where $\hat{\mu}_m(x)$ is the fitted value of $\mu(x)$ based upon m terms, the numerator is the apparent error rate (or resubstitution error rate), and $C(m)$ is a complexity cost function that represents the effective number of parameters in the model (Craven and Wahba, 1979). The best choice of model has $m^* = \arg\min_m GCV(m)$ terms.

9.4.4 Missing Data

In some classification and regression problems, there may be missing values in the test set. Fortunately, there are a number of ways of dealing with missing data when using tree-based methods.

One obvious way is to drop a future observation with a missing data value (or values) down the tree constructed using only complete-data observations and see how far it goes. If the variable with the missing value is not involved in the construction of the tree, then the observation will drop to its appropriate terminal node, and we can then classify the observation or predict its Y value. If, on the other hand, the observation cannot drop any further than a particular internal node τ (because the next split at τ involves the variable with the missing value), we can either stop the observation at τ (Clark and Pregibon, 1992, Section 9.4.1) or force all the observations with a missing value for that variable to drop down to the same daughter node (Zhang and Singer, 1999, Section 4.8).

A method of surrogate splits has been proposed (Breiman et al., 1984, Section 5.3) to deal with missing data. The idea of a surrogate split at a given node τ is that we use a variable that best predicts the desired split as a substitute variable on which to split at node τ. If the best-splitting variable for a future observation at τ has a missing value at that split, we use a surrogate split at τ to force that observation further down the tree, assuming, of course, that the variable defining the surrogate split has complete data.
If the missing data occur for a nominal input variable with L levels, then we could introduce an additional level of “missing” or “NA” so that the variable now has $L + 1$ levels (Kass, 1980).

9.5 Software Packages

The original CART software is commercially available from Salford Systems. S-PLUS and R commands for classification and regression trees are discussed in Venables and Ripley (2002, Chapter 9). For the rpart library manual, which we used for the examples in this chapter, see Therneau and Atkinson (1997). Alternative software packages for carrying out tree-based classification and regression are available; they have been implemented in SAS DATA MINING, SPSS CLASSIFICATION TREES, STATISTICA, and SYSTAT, version 7. These versions differ in several aspects, including the impurity measure (typical default is the entropy function), splitting criterion, and the stopping rule.

The original MARS software is also commercially available from Salford Systems. The mars command in the mda library (Venables and Ripley, 2002, Section 8.8) in S-PLUS and R is available for fitting MARS models.

Bibliographical Notes

This chapter follows the pioneering development of CART (Classification and Regression Trees) by Breiman, Friedman, Olshen, and Stone (1984). Other treatments of the same material can be found in Clark and Pregibon (1992, Chapter 9), Ripley (1996, Chapter 7), Zhang and Singer (1999), and Hastie, Tibshirani, and Friedman (2001, Section 9.2).

Regression trees were introduced by Morgan and Sonquist (1963) using a computer program they named Automatic Interaction Detection (AID). Versions of AID followed: THAID in 1973 and CHAID in 1980; CHAID is used in several computer packages that carry out tree-based methods. Comments and references on the historical development of tree-based methods are given in Ripley (1996, Section 7.4). An excellent discussion of survival trees is given by Zhang and Singer (1999). For discussions of MARS, see Hastie, Tibshirani, and Friedman (2001, Section 9.4) and Zhang and Singer (1999, Chapter 9).

Exercises

9.1 The development of classification trees in this chapter assumes that misclassifying any observation has a cost independent of the classes involved.
In many circumstances, this may be unrealistic. For example, a civilized society usually considers convicting an innocent person to be more egregious than finding a guilty person to be not guilty. Define the *misclassification cost* $c(i|j)$ as the cost of misclassifying an observation from the jth class into the ith class. Assume that $c(i|j)$ is nonnegative for $i \neq j$ and zero when $i = j$. Rewrite Sections 9.2.4, 9.2.5, and 9.2.6, taking into account the costs of misclassification.

9.2 The discussion of the way to choose the best split for a classification tree in Section 9.2 used the entropy function as the impurity measure. Use the Gini index as an impurity measure on the Cleveland heart-disease data and determine the best split for the age variable (see Table 9.2); draw the graphs of $i(\tau_l)$ and $i(\tau_R)$ for the age variable and the goodness of split (see Figure 9.3). Determine the best split for all the variables in the data set (see Table 9.3).

9.3 The full Pima Indians data (768 subjects) has a large number of missing data. In the data set, missing values are designated by zero values. How could you use those subjects having missing values for one or more variables to enhance the classification results discussed in the text?

9.4 Consider the following two examples. Both examples start out with a root node with 800 subjects of which 400 have a given disease and the other 400 do not. The first example splits the root node as follows: the left node has 300 with the disease and 100 without, and the right node has 100 with the disease and 300 without. The second example splits the root node as follows: the left node has 200 with the disease and 400 without, and the right node has 200 with the disease and 0 without. Compute the resubstitution error rate for both examples and show they are equal. Which example do you view as more useful for the future growth of the tree?

9.5 Construct the appropriate-size classification tree for the BUPA liver disorders data (see Section 8.4).

9.6 Construct the appropriate-size classification tree for the spambase data (see Section 8.4).

9.7 Construct the appropriate-size classification tree for the forensic glass data (see Section 8.7).

9.8 Construct the appropriate-size classification tree for the vehicle data (see Section 8.7).

9.9 Construct the appropriate-size classification tree for the wine data (see Section 8.7).
10
Artificial Neural Networks

10.1 Introduction

The learning technique of artificial neural networks (ANNs, or just neural networks or NNs) is the focus of this chapter. The development of ANNs evolved in periodic “waves” of research activity. ANNs were influenced by the fortunes of the fields of artificial intelligence and expert systems, which sought to answer questions such as: What makes the human brain such a formidable machine in processing cognitive thought? What is the nature of this thing called “intelligence”? And, how do humans solve problems?

These questions of “mind” and “intelligence” form the essence of cognitive science, a discipline that focuses on the study of interpretation and learning. “Interpretation” deals with the thought process resulting from exposure to the senses of some type of input (e.g., music, poem, speech, scientific manuscript, computer program, architectural blueprint), and “learning” deals with questions of how to learn from knowledge accumulated by studying examples having certain characteristics.

There are many different theories and models for how the mind and brain work. One such theory, called connectionism, uses analogues of neurons and their connections — together with the concepts of neuron firing, activation functions, and the ability to modify those connections — to form
algorithms for artificial neural networks. This formulation introduces a relationship between the three notions of mind, brain, and computation, where information is processed by the brain through massively parallel computations (i.e., huge numbers of instructions processed simultaneously), unlike standard serial computations, which carry out one instruction at a time in sequential fashion.

Sophisticated types of ANNs have been used to model human intelligence, especially the ability to learn a language. These efforts include prediction of past tenses of regular and irregular English verbs (Rumelhart and McClelland, 1986b; Pinsker and Prince, 1988) and synthesis of the pronunciation of English text (Sejnowski and Rosenberg, 1987). A study involving ANNs of how the brain transforms a string of letter shapes into the meaning of a word (Hinton, Plaut, and Shallice, 1993) was instrumental in understanding the capabilities of the human brain, shedding light on specific types of impairments of the neural circuitry (e.g., surface and deep dyslexia), and in training ANNs to simulate brain damage resulting from injury or disease.

As an overly simplified model of the neuron activity in the brain, “artificial” neural networks were originally designed to mimic brain activity. Now, ANNs are treated more abstractly, as a network of highly interconnected nonlinear computing elements. The largest group of users of ANNs try to resolve problems involving machine learning, especially pattern classification and prediction. For example, problems of speech recognition, handwritten character recognition, face recognition, and robotics are important applications of ANNs. The common features to all of these types of problems are high-dimensional data and large sample sizes.

10.2 The Brain as a Neural Network

To understand how an artificial neural system can be developed, we first provide a brief description of the structure of the brain.

The largest part of the brain is the cerebral cortex, which consists of a vast network of interconnected cells called neurons. Neurons are elementary nerve cells which form the building blocks of the nervous system. In the human brain, for example, there are about 10 billion neurons of more than a hundred different types, as defined by their size and shape and by the kinds of neurochemicals they produce. A schematic diagram of a biological neuron is displayed in Figure 10.1.

The cell body (or soma) of a typical neuron contains its nucleus and two types of processes (or projections): dendrites and axons. The neuron receives signals from other neurons via its many dendrites, which operate as input devices. Each neuron has a single axon, a long fiber that operates as an output device; the end of the axon branches into strands, and each
FIGURE 10.1. Schematic view of a biological neuron.

strand terminates in a *synapse*. Each synapse may either connect to a synapse on a dendrite or cell body of another neuron or terminate into muscle tissue. Because a neuron maintains, on average, about a thousand synaptic connections with other neurons (whereas some may have 10–20 thousand such connections), the entire collection of neurons in the brain yields an incredibly rich network of neural connections.

Neurons send signals to each other via an electrochemical process. All neurons are electrically charged due to ion concentrations inside and outside the cell. Under appropriate conditions, an activated neuron fires an electrical pulse (called an *action potential* or *spike*) of fixed amplitude and duration. The action potential travels down the axon to its endings. Each ending is swollen to form a *synaptic knob*, in which neurotransmitters (glutamic acid, glu) are stored. Neurons do not join with each other, even though they may be connected; there is a tiny gap (called the *synaptic cleft*) between the axon of the sending (or *presynaptic*) neuron and a dendrite of the receiving (or *postsynaptic*) neuron.

To send a signal to another neuron, the presynaptic neuron releases neurotransmitters across the gap to a cluster of *receptor molecules* on the dendrites of the postsynaptic neuron; these receptors act like electrical switches. When a neurotransmitter binds to one of these receptors (called an AMPA receptor), it opens up a channel into the postsynaptic neuron. Although that channel remains open for a split second, electrically charged sodium ions flood the channel, producing a local electrical disturbance (i.e., a depolarization), and start a chain reaction in which neighboring channels open up. This, in turn, sends an action potential shooting along the surface of the postsynaptic neuron toward the next neuron.

There is at least one other type of postsynaptic channel, called an NMDA glutamic acid receptor. This receptor is unusual in that it will not open unless it receives two simultaneous signals, one of which is either an electrical discharge from the postsynaptic neuron or a depolarization of its AMPA synapses, and the other is emitted by the axon from a presynaptic neuron.
When both signals arrive together, calcium ions also enter the dendrite, strengthen the synapse, and provide a mechanism for both short-term and long-term changes in the synapse. A high level of calcium released into the NMDA receptor induces long-term potentiation (LTP), a form of long-term memory (lasting minutes to hours, in vitro, and hours to days and months in vivo, after which decay sets in). LTP enlarges synapses and makes them stronger, and, over time, can also change brain structure.

Note that the postsynaptic neuron may or may not fire as a result of receiving the pulse. Then, the axon shuts down for a certain amount of time (a refractory period) before it can fire again. To prepare the synapse for the next action potential, the synaptic cleft is cleared by active transport by returning the neurotransmitter to the synaptic knob of the presynaptic neuron.

Firing tends to occur randomly, but the actual rate of firing depends upon many factors. One of those factors is the status of the total input signal; this is derived from the relative strengths of the two types of synapses, namely, the inhibitory synapses, which prevent the neuron from firing, and the excitatory synapses, which push the neuron closer to firing. Depending upon whether or not the total input signal received at the synapses of a neuron exceeds some threshold limit, the neuron may fire, be in a resting state, or be in an electrically neutral state.

The brain “learns” by changing the strengths of the connections between neurons or by adding or removing such connections. Learning itself is accomplished sequentially from increasing amounts of experience.

10.3 The McCulloch–Pitts Neuron

The idea of an “artificial” neural network is usually traced back to the “computing machine” model of McCullogh and Pitts (1943), who constructed a simplified abstraction of the process of neuron activity in the human brain.

The McCulloch–Pitts neuron consists of multiple inputs (the dendrites) and a single output (the axon). The inputs are denoted by X_1, X_2, \ldots, X_r, and each has a value of either 0 (“off”) or 1 (“on”). The signal at each input connection depends upon whether the synapse in question is excitatory or inhibitory. If any one of the synapses is inhibitory and transmits the value 1, the neuron is prevented from firing (i.e., the output is 0). If no inhibitory synapse is present, the inputs are summed to produce the total excitation $U = \sum_j X_j$, and then U is compared with a threshold value θ: if $U \geq \theta$, the output Y is 1 and the neuron fires (i.e., transmits a new signal); otherwise, Y is 0 and the neuron does not fire.
An equivalent formulation is to say that the value of Y is determined by the indicator function $I_{[U - \theta \geq 0]}$. Note that if $\theta > r$, the number of inputs, the neuron will never fire. Also, if $\theta = 0$ and there are no inhibitory synapses, the output will always have the constant value 1.

Geometrically, the input space is an r-dimensional unit hypercube, and each of the 2^r vertices of the hypercube is associated with a specific Y-value (either 0 or 1). For a given value of θ, the McCulloch–Pitts neuron divides the hypercube into two half-spaces according to the hyperplane $\sum_j X_j = \theta$; those vertices with $Y = 1$ lie on one side of the hyperplane, whereas those with $Y = 0$ lie on the other side.

The McCulloch–Pitts neuron is usually referred to as a threshold logic unit (TLU) and is displayed in Figure 10.2. It is designed to compute simple logical functions of r arguments, where $Y = 1$ is translated as the logical value “true” and $Y = 0$ as “false.” For example, the logical functions AND and OR for three inputs are displayed in Figure 10.3. For the logical function AND, the neuron will fire only if all three inputs have the value 1, whereas, for the logical function OR, the neuron will fire only if at least one of the three inputs have the value 1. The AND and OR functions form a basis set of logical functions. All other logical functions can be computed by building up large networks consisting of several layers of McCulloch–Pitts
neurons. At the time, it appeared that networks of TLUs could be used to create an intelligent machine.

Although this model of a neuron was studied by many people, it is not really a good approximation of how a biological system learns. There are no adjustable parameters or weights in the network, which means that different problems can only be solved by repeatedly changing the input structure or the threshold value. Such manipulations are more complicated than adopting a flexible weighting system for the network.

10.4 Hebbian Learning Theory

At the time of the introduction of the McCulloch–Pitts neuron, little was known about how the “strength” of signals sent between neurons in the brain are changed by activity and, therefore, how learning takes place.

The next advance occurred when Donald O. Hebb, in his 1949 book *The Organization of Behavior*, summarized everything then known about how the central nervous system affects behavior and vice versa. He started out by assuming that all the neurons one needs in life are present at birth, that initial neural connections are randomly distributed, and that as we get older our neural connections multiply and become stronger. He also believed that one’s perceptions, thoughts, emotions, memory, and sensations are strongly influenced by life experiences, and that such experiences leave behind a “memory trace” — via sets of interconnected neurons — which helps determine future behavior.

Using results derived from published neurophysiological experiments involving animals and humans, and from his own life observations, Hebb gave a detailed presentation of biological neurons. In particular, he formulated two new theories as to how the brain works. Building upon the ideas of Santiago Ramón y Cajal, the 1906 Nobel Laureate, Hebb’s first theory focused on the nature of synaptic change and is referred to as the **Hebb learning rule** (Hebb, 1949, p. 62):

When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells so that A’s efficiency, as one of the cells firing B, is increased.

In other words, the strength of a synaptic connection between two neurons depends upon their associated firing history: the more often the two neurons fire together, the stronger their connection (and, by implication, the less often, the weaker their connection). The Hebb rule is time-dependent (there is an implicit ordering of events when neuron A helps to fire neuron B)
and governs only what happens locally at the synapse. Any synapse that behaves according to the Hebb rule is known as a Hebb synapse.

The Hebb rule of neural excitation was later expanded (Milner, 1957) by adding the following rule of neural inhibition: if neuron A repeatedly or persistently sends a signal to neuron B, but B does not fire, this reduces the chance that future signals from A will entice B to fire. This inhibitory rule is necessary because otherwise the system of synaptic connections throughout the cerebral cortex would grow without limit as soon as one such connection is activated. Hebb had previously (in his 1932 M.A. thesis) incorporated the inhibitory rule into his theory but did not include it in his book.

His second theory is probably the more important idea. It was derived from a discovery by Lorente de Nó in 1944 that the brain contained closed circuits of neurons. Hebb then speculated that memory resides in the cerebral cortex in the form of overlapping clusters of thousands of highly interconnected neurons, which he called cell assemblies. The clusters overlap because a neuron, which has branch-like links to other neurons, can be a member of many different cell assemblies.

In Hebb’s theory, a cell assembly is organized with reference to a particular sensory input and briefly acts as a closed neural circuit; sensations, thoughts, perceptions, etc., are considered different from each other if different cell assemblies are involved in the activity; and the cell assembly also retains a memory of its defining activity even after the triggering event has ceased (e.g., the memory of stubbing one’s toe can remain well after the pain has subsided). Cell assemblies are thought to play an essential role in the learning process. Hebb also defined a phase sequence as a combination of cell assemblies that are simultaneously excited when repeatedly presented with the same sequence of stimuli.

Hebb’s 1949 book was an international success; it was considered by some as ground-breaking and sensational and a starting point to build a theory of the brain. Yet it took several years before these contributions were fully recognized in the fledgling field of behavioral neuroscience. Subsequently, in the fields of psychology and neuroscience, it inspired a huge amount of research into theories of brain function and behavior. Some of Hebb’s work was speculative and has since been overturned by scientific experiment and discovery. But much of it is still relevant today.

10.5 Single-Layer Perceptrons

Hebb’s pioneering work on the brain led to a second wave of interest in ANNs. Frank Rosenblatt, a psychologist, had read Hebb (1949) but was not convinced that most neural connections were random and that cell assemblies could self-generate within a purely homogeneous mass of neurons. He believed that he could improve upon Hebb’s work and, toward
that end, he constructed a “minimally constrained” system that he called a “perceptron” (Rosenblatt, 1958, 1962).

A perceptron is essentially a McCulloch–Pitts neuron, but now input X_i comes equipped with a real-valued connection weight $\beta_i, i = 1, 2, \ldots, r$. The inputs, X_1, X_2, \ldots, X_r can each be binary or real-valued. Positive weights ($\beta_j > 0$) reflect excitatory synapses, and negative weights ($\beta_j < 0$) reflect inhibitory synapses. The magnitude of a weight shows the strength of the connection.

The perceptron, which is more flexible than the McCulloch–Pitts neuron for mimicking neural connections, is displayed in Figure 10.4. A weighted sum of input values, $U = \sum_j \beta_j X_j$, is computed, and the output is $Y = 1$ only if $U \geq \theta$, where θ is the threshold value; otherwise, $Y = 0$. Note that we can convert a threshold θ to 0 by introducing a bias element $\beta_0 = -\theta$, so that $U - \theta = \beta_0 + U$, and then comparing $U = \sum_{j=0}^r \beta_j X_j$ to 0, where $X_0 = 1$. If $U \geq 0$, then $Y = 1$; otherwise, $Y = 0$.

We call a function $Y \in \{0, 1\}$ perceptron-computable if, for a given value of θ, there exists a hyperplane that divides the input space into two half-spaces, R_1 and R_0, where R_1 corresponds to points having $Y = 1$ and R_0 to points having $Y = 0$. If the points in R_1 can be separated without error from those in R_0 by a hyperplane, we say that the two sets of points are linearly separable. This binary partition of input space (obtained by comparing U to the threshold value θ) enables a perceptron to predict class membership.

10.5.1 Feedforward Single-Layer Networks

One way of representing a network of neural interconnections is as a directed acyclic graph (DAG). A graph is a set of vertices or nodes (representing basic computing elements) and a set of edges (representing the connections between the nodes), where we assume that both sets are of
finite size. In a directed graph (or digraph), the edges are assigned an orientation so that numerical information flows along each edge in a particular direction. In a feedforward network, information flows in one direction only, from input nodes to output nodes. An acyclic graph is one in which no loops or feedback are allowed.

The simplest type of DAG organizes the network nodes into two separate groups: r input nodes, X_1, \ldots, X_r, and s output nodes, Y_1, \ldots, Y_s. Input nodes are also referred to as source nodes, input units, or input variables. No computation is carried out at these nodes. The input nodes take on values introduced by some feature external to the network. The output nodes are variously known as sink nodes, neurons, output units, or output variables. These input and output nodes can be real-valued or discrete-valued (usually, binary). Real-valued output nodes are typically scaled so that their values lie in the unit interval $[0, 1]$. Binary input and output nodes are used in the design of switching circuits; real input nodes with binary output nodes are used primarily in classification applications; and real input and output nodes are used mostly in optimization and control applications.

Despite appearances, this particular type of network is commonly called a single-layer network because only the output nodes involve significant amounts of computation; the input nodes, which are said to constitute a “zeroth” layer of fixed functions, involve no computation, and, hence, do not count as a layer of learnable nodes.

Every connection $X_j \rightarrow Y_\ell$ between the input nodes and the output nodes carries a connection weight, $\beta_{j\ell}$, which identifies the “strength” of that connection. These weights may be positive, negative, or zero; positive weights represent excitatory signals, negative weights represent inhibitory signals, and zero weights represent connections that do not exist in the network.

The architecture (or topology) of the network consists of the nodes, the directed edges (with the direction of signal flow indicated by an arrow along each edge), and the connection weights.

10.5.2 Activation Functions

In the following, $X = (X_1, \ldots, X_r)^\tau$ represents a random r-vector of inputs. Given X, each output node computes an activation value using a linear combination of the inputs to it plus a constant; that is, for the ℓth output node or neuron, we compute the ℓth linear activation function,

$$U_\ell = \beta_{0\ell} + \sum_{j=1}^{r} \beta_{j\ell} X_j = \beta_{0\ell} + X^\tau \beta_\ell, \quad (10.1)$$
FIGURE 10.5. Rosenblatt’s single-layer perceptron with r inputs, bias element β_0, connection weights $\{\beta_j\}$, activation function f, and binary output Y. The left panel shows the perceptron with a separate computing unit for f, and the right panel shows the equivalent perceptron with a single computing unit divided into two functional parts: the addition function is written on the left and the activation function f applied to the result U of the addition is written on the right.

where $\beta_{0\ell}$ is a constant (or bias) related to the threshold for the neuron to fire, and $\beta_{\ell} = (\beta_{1\ell}, \ldots, \beta_{r\ell})^{\tau}$ is an r-vector of connection weights, $\ell = 1, 2, \ldots, s$.

In matrix notation, we can rewrite the collection of s linear activation functions (10.1) as

$$U = \beta_0 + BX, \quad (10.2)$$

where $U = (U_1, \ldots, U_s)^{\tau}$, $\beta_0 = (\beta_{01}, \ldots, \beta_{0s})^{\tau}$ is an s-vector of biases, and $B = (\beta_1, \ldots, \beta_s)^{\tau}$ is an $(s \times r)$-matrix of connection weights. The activation values are then each filtered through a nonlinear threshold activation function $f(U_{\ell})$ to form the value of the ℓth output node, $\ell = 1, 2, \ldots, s$. In matrix notation,

$$f(U) = f(\beta_0 + BX), \quad (10.3)$$

where $f = (f, \ldots, f)^{\tau}$ is an s-vector function each of whose elements is the function f, and $f(U) = (f(U_1), \ldots, f(U_s))^{\tau}$. The simplest form of f is the identity function, $f(u) = u$. See Figure 10.5.

A partial list of activation functions is given in Table 10.1. The most interesting of these functions are the sigmoidal ("S-shaped") functions, such as the logistic and hyperbolic tangent; see Figure 8.2 for a graph of the logistic sigmoidal activation function. A sigmoidal function is a function $\sigma(\cdot)$ that has the following properties: $\sigma(u) \to 0$ as $u \to -\infty$ and $\sigma(u) \to 1$ as $u \to +\infty$. A sigmoidal function $\sigma(\cdot)$ is symmetric if $\sigma(u) + \sigma(-u) = 1$ and asymmetric if $\sigma(u) + \sigma(-u) = 0$. The logistic function is symmetric, whereas the tanh function is asymmetric. Note that if $f(u) = (1 + e^{-u})^{-1}$, then its derivative wrt u is $df(u)/du = e^{-u}(1 + e^{-u})^{-2} = f(u)(1 - f(u))$. The hyperbolic tangent function, $f(u) = \tanh(u)$, is a linear transformation of the logistic function (see Exercise 10.1). There is empirical evidence that
10.5 Single-Layer Perceptrons

TABLE 10.1. Examples of activation functions.

<table>
<thead>
<tr>
<th>Activation Function</th>
<th>(f(u))</th>
<th>Range of Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity, linear</td>
<td>(u)</td>
<td>(\mathbb{R})</td>
</tr>
<tr>
<td>Hard-limiter</td>
<td>\text{sign}(u)</td>
<td>{-1, +1}</td>
</tr>
<tr>
<td>Heaviside, step, threshold</td>
<td>(I_{[u \geq 0]})</td>
<td>{0, 1}</td>
</tr>
<tr>
<td>Gaussian radial basis function</td>
<td>((2\pi)^{-1/2}e^{-u^2/2})</td>
<td>(\mathbb{R})</td>
</tr>
<tr>
<td>Cumulative Gaussian (sigmoid)</td>
<td>(\sqrt{2/\pi} \int_0^u e^{-z^2/2}dz)</td>
<td>(0, 1)</td>
</tr>
<tr>
<td>Logistic (sigmoid)</td>
<td>((1 + e^{-u})^{-1})</td>
<td>(0, 1)</td>
</tr>
<tr>
<td>Hyperbolic tangent (sigmoid)</td>
<td>((e^u - e^{-u})/(e^u + e^{-u}))</td>
<td>((-1, +1))</td>
</tr>
</tbody>
</table>

ANN algorithms that use the tanh function converge faster than those that use the logistic function.

10.5.3 Rosenblatt’s Single-Unit Perceptron

In binary classification problems, each of the \(n \) input vectors \(\mathbf{X}_1, \ldots, \mathbf{X}_n \) is to be classified as a member of one of two classes, \(\Pi_1 \) or \(\Pi_2 \). For this type of application, a single-layer feedforward neural network consists of only a single output node or unit (i.e., \(s = 1 \)).

A single-unit perceptron (Rosenblatt, 1958, 1962) is a single-layer feedforward network with a single output node that computes a linear combination of the input variables (e.g., \(\beta_0 + \mathbf{X}^\top \mathbf{\beta} \)) and delivers its sign,

\[
\text{sign}\{\beta_0 + \mathbf{X}^\top \mathbf{\beta}\},
\]

as output, where \(\text{sign}(u) = -1 \) if \(u < 0 \), and \(+1 \) if \(u \geq 0 \). The activation function used here is the “hard-limiter” function. The output node is generally known as a linear threshold unit. Rosenblatt’s perceptron is essentially the threshold logic unit of McCulloh and Pitts (1943) with weights.

A generalized version of the single-unit perceptron can be written as

\[
f(\beta_0 + \mathbf{X}^\top \mathbf{\beta})
\]

where \(f(\cdot) \) is an activation function, which is usually taken to be sigmoidal.
10.5.4 The Perceptron Learning Rule

For convenience in this subsection, we make the following notational changes: $\beta \leftarrow (\beta_0, \beta^\tau)\tau$ and $X \leftarrow (1, X^\tau)\tau$, where both X and β are now $(r + 1)$-vectors. Then, we can write $\beta_0 + X^\tau \beta$ as $X^\tau \beta$.

In the binary classification case, the single output variable takes on values $Y = \pm 1$ depending upon whether the neuron fires ($Y = +1$ if $X \in \Pi_1$) or does not fire ($Y = -1$ if $X \in \Pi_2$). Thus, the neuron will fire if $X^\tau \beta \geq 0$ and will not fire if $X^\tau \beta < 0$.

Suppose X_1, \ldots, X_n are independent copies of X, and that they are drawn from the two classes Π_1 and Π_2. Suppose, further, that these observations are linearly separable. That is, there exists a vector β^* of connection weights such that the observation vectors that belong to class Π_1 fall on one side of the hyperplane $X^\tau \beta^* = 0$, whereas the observation vectors from class Π_2 fall on the other side of the hyperplane.

As our update rule, we use a gradient-descent algorithm, which operates sequentially on each input vector. Such an algorithm is referred to as on-line learning, whereby the learning mechanism adapts quickly to correct classification errors as they occur. The input vectors are examined one at a time and classified to one of the two classes. The true class is then revealed, and the classification procedure is updated accordingly.

The algorithm proceeds by relabeling the $\{X_i\}$, one at a time, so that at the hth iteration we are dealing with X_h, $h = 1, \ldots$. Set $X_0 = 0$. The algorithm computes a sequence $\{\beta_h\}$ of connection weights using as initial value $\beta_0 = 0$. The update rule is the following:

1. If, at the hth iteration of the algorithm, the current version, β_h, correctly classifies X_h, we do not change β_h in the next iteration; that is, set $\beta_{h+1} = \beta_h$ if either $X_h^\tau \beta_h \geq 0$ and $X_h \in \Pi_1$, or $X_h^\tau \beta_h < 0$ and $X_h \in \Pi_2$.

2. If, on the other hand, the current version, β_h, misclassifies X_h, then we update the connection weight vector as follows: if $X_h^\tau \beta_h \geq 0$ but $X_h \in \Pi_2$, then set $\beta_{h+1} = \beta_h - \eta X_h$; if $X_h^\tau \beta_h < 0$ but $X_h \in \Pi_1$, then set $\beta_{h+1} = \beta_h + \eta X_h$, where $\eta > 0$ is the learning-rate parameter whose value is taken to be independent of the iteration number h.

This algorithm is popularly known as the perceptron learning rule. Because the value of η is irrelevant (we can always rescale X_h and β_h), we set $\eta = 1$ without loss of generality.

10.5.5 Perceptron Convergence Theorem

From the update rule, it follows that $\beta_{h+1} = \sum_{i=1}^{h} X_i$. Assume that we have linear separability of the two classes. Suppose also that a solution
In this section, we will derive the squared-norm of the weight vector $\mathbf{\beta}$ as a function of the number of iterations h. Let $\mathbf{\beta}^*$ be the optimal weight vector for a given problem. We define:

$$A = \min_{\mathbf{X}_i \in \Pi_1} \mathbf{X}_i^T \mathbf{\beta}^*, \quad B = \max_{\mathbf{X}_i \in \Pi_1} \| \mathbf{X}_i \|^2.$$ \hspace{1cm} (10.6)

Transposing $\mathbf{\beta}_{h+1}$ and postmultiplying the result though by $\mathbf{\beta}^*$ yields

$$\mathbf{\beta}_{h+1}^T \mathbf{\beta}^* = \sum_{i=1}^{h} \mathbf{X}_i^T \mathbf{\beta}^* \geq hA.$$ \hspace{1cm} (10.7)

From the Cauchy–Schwarz inequality,

$$(\mathbf{\beta}_{h+1}^T \mathbf{\beta}^*)^2 \leq \| \mathbf{\beta}_{h+1}^T \|^2 \| \mathbf{\beta}^* \|^2.$$ \hspace{1cm} (10.8)

Substituting (10.7) into (10.8) yields

$$\| \mathbf{\beta}_{h+1} \|^2 \geq \frac{h^2 A^2}{\| \mathbf{\beta}^* \|^2}. \quad (10.9)$$

Thus, the squared-norm of the weight vector grows at least quadratically with the number, h, of iterations.

Next, consider again the update rule, $\mathbf{\beta}_{k+1} = \mathbf{\beta}_k + \mathbf{X}_k$, at the kth iteration, where $\mathbf{X}_k \in \Pi_1$, $k = 1, 2, \ldots, h$. Then,

$$\| \mathbf{\beta}_{k+1} \|^2 = \| \mathbf{\beta}_k \|^2 + \| \mathbf{X}_k \|^2 + 2\mathbf{X}_k^T \mathbf{\beta}_k.$$ \hspace{1cm} (10.10)

Because \mathbf{X}_k has been incorrectly classified, $\mathbf{X}_k^T \mathbf{\beta}_k < 0$. It follows that,

$$\| \mathbf{\beta}_{k+1} \|^2 \leq \| \mathbf{\beta}_k \|^2 + \| \mathbf{X}_k \|^2,$$ \hspace{1cm} (10.11)

whence,

$$\| \mathbf{\beta}_{k+1} \|^2 - \| \mathbf{\beta}_k \|^2 \leq \| \mathbf{X}_k \|^2.$$ \hspace{1cm} (10.12)

Summing (10.12) over $k = 1, 2, \ldots, h$ yields

$$\| \mathbf{\beta}_{h+1} \|^2 \leq \sum_{k=1}^{h} \| \mathbf{X}_k \|^2 \leq hB.$$ \hspace{1cm} (10.13)

Hence, the squared-norm of the weight vector grows at most linearly with the number, h, of iterations.

For large values of h, the inequalities (10.9) and (10.13) contradict each other. Thus, h cannot grow without bound. We need to find an h_{max} such that (10.9) and (10.13) both hold with equalities. In other words, h_{max} has to satisfy

$$\frac{h_{\text{max}}^2 A^2}{\| \mathbf{\beta}^* \|^2} = h_{\text{max}}B.$$ \hspace{1cm} (10.14)
whence,

\[h_{\text{max}} = \frac{B \| \beta^* \|^2}{A^2}. \]

(10.15)

We have shown the following result. Set \(\eta = 1 \) and \(\beta_0 = 0 \). Then:

For a binary classification problem with linearly separable classes, if a solution vector \(\beta^* \) exists, the algorithm will find that solution in a finite number, \(h_{\text{max}} \), of iterations.

This is the perceptron convergence theorem. At the time, it was regarded as a very appealing result.

There are two difficulties implicit in this result. First, the existence of a solution vector \(\beta^* \) turns out to be crucial for the result to hold; this was made clear by Minsky and Papert (1969), who showed that there are many problems for which no perceptron solution exists.

The second difficulty derives from the fact that, even though the algorithm converges, computing \(h_{\text{max}} \) is impossible because it depends upon the solution vector \(\beta^* \), which is unknown. If the algorithm stops, we clearly have a solution. If the two classes are not linearly separable, then the algorithm will not terminate. In fact, after some large (unknown) number of iterations, the algorithm will start cycling with unknown period length. In general, if we do not know whether or not linear separability holds, we cannot reliably determine when to stop running the algorithm. If we stop the algorithm prematurely, the resulting perceptron weight vector may not generalize well for test data.

One suggested approach to this problem is to adopt a specific stopping rule whereby the algorithm is stopped after a fixed number of iterations; another approach is to make the learning-rate parameter \(\eta \) depend upon the iteration number (i.e., \(\eta_h \)) so that as the iterations proceed, the adjustments decrease in size.

10.5.6 Limitations of the Perceptron

Despite high initial expectations, perceptrons were found to have very limited capabilities. It was shown (Minsky and Papert, 1969) that a perceptron can learn to distinguish two classes only if the classes are linearly separable. This is not always possible as can be seen from the XOR function, which is not perceptron-computable because its input space is not linearly separable (see Exercise 10.6).

As a result, during the 1970s, research in this area was abandoned by almost everyone in that community. An additional factor to explain the absence of work on neural networks is that hardware to support neural computation did not become available until the 1980s.
The downfall of the perceptron led to the introduction of artificial intelligence (AI) and rule-based expert systems as the main areas of research into machine intelligence. AI was viewed, first, as the study of how a human brain (or any natural intelligence) functions, and, second, as the study of how to construct an artificial intelligence (i.e., a machine that could solve problems requiring “cognition” when performed by humans). In early AI systems, problems were solved in a sequential, step-by-step fashion, by manipulating a dictionary of symbolic representations of the available knowledge on a particular subject of interest. An AI system had to store information specific to a domain of interest, use that information to solve a broad range of problems in that domain, and acquire new information from experience by solving problems in that domain.

A typical AI application was of the following type. Suppose we would like to predict the intuitive decisions made by an experienced loan officer of a bank based only on the answers given to questions on a loan application. One might first ask the loan officer to explain the value (e.g., on a 5-point scale) he or she places on the answers to each question. The points scored by an applicant on each question could be totalled and compared with some given threshold; the loan officer’s decision on the loan could then be predicted based upon whether or not the applicant’s total score surpassed the threshold.

This approach to predicting the decisions of a loan officer ignores possible nonlinearities in the decision-making process. For example, if the loan applicant scores high on a few specific questions, the loan officer may ignore the responses to all other questions in making a positive decision, whereas if a particular question scores low, this by itself may be sufficient to render the application unsuccessful, even though all other variables score high. Listing all the rules the loan officer can possibly use in the decision process constitutes a rule-based expert system.

Expert systems are knowledge-based systems, where “knowledge” represents a repository of data, well-known facts, specialized information, and heuristics, which experts in a field (e.g., medicine) would agree upon. Such expert systems are interactive computer programs that provide users (e.g., physicians) with computer-based consultative advice.

The earliest example of a rule-based expert system was DENDRAL, a system for identifying chemical structures from mass spectrograms. This was followed in the mid-1970s by MYCIN, which was designed to aid physicians in the diagnosis and treatment of meningitis and bacterial infections. MYCIN was made up of a “knowledge base” and an “inference engine”; the knowledge base contained information specific to the area of medical diagnosis, and the inference engine would recommend treatments to physicians...
who consulted the knowledge base. A generic version, known as EMYCIN ("empty" MYCIN), was then built using only the inference engine and shell, not the knowledge base. (Although never regarded by mathematicians as an AI or expert system as such, the symbolic mathematics system MACSYMA also emerged from the early AI world.) In the 1980s, expert systems were popularly regarded as the future of AI.

During this time, there were also ambitious attempts at AT&T Bell Laboratories to create an expert system to help users carry out statistical analyses of data. One such expert system was REX (Pregibon and Gale, 1984), which was written in the LISP language and provided rule-based guidance for simple linear regression problems. REX (short for Regression EXpert) acted as an interface between the user and a statistical software package through a flexible interactive dialogue, which only requested help when it encountered problems with the data. REX did not survive long for many reasons, including apathy due to constantly changing computational environments (Pregibon, 1991).

Despite all this activity, expert systems never lived up to their hype; they proved to be expensive, were successful only in specialized situations, and were not able to learn from their own experiences. In short, expert systems never truly possessed “cognition,” which was the primary goal of AI.

The failure of AI and expert systems to come to grips with these aspects of “cognition” has been attributed to the fact that traditional computers and the human brain function very differently from each other. It was argued that AI was not providing the right environment for the emergence of a truly intelligent machine because it was not delivering a realistic model of the structure of the brain. Whereas human brains consisted of massively parallel systems of neurons, AI digital computers were serial machines; overall, the latter were incredibly slow by comparison. If one wanted to understand “cognition” (so the argument went), one should build a model based upon a detailed study of the architecture of the brain.

10.7 Multilayer Perceptrons

The most recent wave of research into ANNs arrived in the mid-1980s and has continued until the present time. Earlier suggestions of Minsky and Papert (1969) — that the limitations of the perceptron could be overcome by “layering” the perceptrons and applying nonlinear transformations prior to combining the transformed weighted inputs — were not adopted at that time due to computational limitations. Minsky and Papert’s suggestions because more meaningful when high-speed computers became readily available and with the discovery of the “backpropagation” algorithm.
Multilayer Perceptrons

Multilayer perceptrons have the following architecture: r input nodes X_1, \ldots, X_r; one or more layers of “hidden” nodes; and s output nodes Y_1, \ldots, Y_s. It is usual to call each layer of hidden nodes a “hidden layer”; these nodes are not part of either the input or output of the network. If there is a single hidden layer, then the network can be described as being...
a “two-layer network” (the output layer being the second computational layer); in general, if there are \(L \) hidden layers, the network is described as being an \((L + 1)\)-layer network.

A fully connected network has all \(r \) input nodes connected to the nodes in the first hidden layer, all nodes in the first hidden layer connected to all nodes in the second hidden layer, \(\ldots \), and all nodes in the last (\(L \)th) hidden layer connected to all \(s \) output nodes. If some of the connections are missing, we have a partially connected network. We can always represent a partially connected network as a fully connected network by setting the weights of the missing connections to zero.

Given the input values, each hidden node computes an activation value by taking a weighted average of its input values and adding a constant. Similarly, each output node computes an activation value from a weighted average of the inputs to it from the hidden nodes plus a constant. The activation values are then each filtered through an activation function to form the output value of the neuron.

10.7.2 A Single Hidden Layer

Suppose we have a two-layer network with \(r \) input nodes \((X_m, m = 1, 2, \ldots, r)\), a single layer \((L = 1)\) of \(t \) hidden nodes \((Z_j, j = 1, 2, \ldots, t)\), and \(s \) output nodes \((Y_k, k = 1, 2, \ldots, s)\). Let \(\beta_{mj} \) be the weight of the connection \(X_m \rightarrow Z_j \) with bias \(\beta_{0j} \) and let \(\alpha_{jk} \) be the weight of the connection \(Z_j \rightarrow Y_k \) with bias \(\alpha_{0k} \). See Figure 10.6 for a schematic diagram of a single hidden layer network with \(r = 3, s = 2, \) and \(t = 2 \).

Let \(X = (X_1, \ldots, X_r)^\tau \) and \(Z = (Z_1, \ldots, Z_t)^\tau \). Let \(U_j = \beta_{0j} + X^\tau \beta_j \) and \(V_k = \alpha_{0k} + Z^\tau \alpha_k \). Then,

\[
Z_j = f_j(U_j), \quad j = 1, 2, \ldots, t,
\]
\[
\mu_k(X) = g_k(V_k), \quad k = 1, 2, \ldots, s,
\]

(10.16)
(10.17)

where \(\beta_j = (\beta_{1j}, \ldots, \beta_{rj})^\tau \) and \(\alpha_k = (\alpha_{1k}, \ldots, \alpha_{tk})^\tau \). Putting these equations together, the value of the \(k \)th output node can be expressed as

\[
Y_k = \mu_k(X) + \epsilon_k,
\]

(10.18)

where

\[
\mu_k(X) = g_k \left(\alpha_{0k} + \sum_{j=1}^t \alpha_{jk} f_j \left(\beta_{0j} + \sum_{m=1}^r \beta_{mj} X_m \right) \right),
\]

(10.19)

\(k = 1, 2, \ldots, s \), and the \(f_j(\cdot), \quad j = 1, 2, \ldots, t \), and the \(g_k(\cdot), \quad k = 1, 2, \ldots, s \), are activation functions for the hidden and output layers of nodes, respectively.

The activation functions, \(\{f_j(\cdot)\} \), are usually taken to be nonlinear continuous functions with sigmoidal shape (e.g., logistic or tanh functions).
The functions \(\{g_k(\cdot)\}\) are often taken to be linear (in regression problems) or sigmoidal (in classification problems). The error term, \(\epsilon_k\), can be taken as Gaussian with mean zero and variance \(\sigma^2_k\).

Let \(s = 1\), so that we have a single output node. Suppose also that all hidden nodes in the single hidden layer have the same sigmoidal activation function \(\sigma(\cdot)\). We further take the output activation function \(g(\cdot)\) to be linear. Then, (10.18) reduces to \(Y = \mu(X) + \epsilon\), where

\[
\mu(X) = \alpha_0 + \sum_{j=1}^{t} \alpha_j \sigma \left(\beta_{0j} + \sum_{m=1}^{r} \beta_{mj}X_m \right),
\]

(10.20)

and the network is equivalent to a single-layer perceptron. If, alternatively, both \(f(\cdot)\) and \(g(\cdot)\) are linear, then (10.19) is just a linear combination of the inputs.

Note that sigmoidal functions play an important role in network design. They are quite flexible as activation functions and can approximate different types of other functions. For example, a sigmoidal function, \(\sigma(u)\), is very close to linear when \(u\) is close to zero. Thus, we can substitute a sigmoidal function for a linear function at any hidden node while, at the same time, making the weights and bias that feed into that node very small; to compensate for the resulting scaling problem, the weights corresponding to connections emanating from that hidden node to the output node(s) are usually made much larger. Sigmoidal functions, which are smooth, monotonic functions, are especially useful for approximating discontinuous threshold functions (e.g., \(I_{[u \geq 0]}\)) when evaluating the gradient for a loss function of a multilayer perceptron.

We also mention the skip-level connection, which refers to a direct connection from input node to output node, without first passing through a hidden node. Skip-level connections can be included in the model either explicitly or through an implicit arrangement of connection weights — from input node to hidden node and then from hidden node to output node — which approximates the skip-level connection.

10.7.3 ANNs Can Approximate Continuous Functions

An important result used to motivate the use of neural networks is given by Kolmogorov’s universal approximation theorem, which states that:

> Any continuous function defined on a compact subset of \(\mathbb{R}^r\) can be uniformly approximated (in an appropriate metric) by a function of the form (10.20).

In other words, we can approximate a continuous function by a two-layer network incorporating a single hidden layer, with a large number of hidden nodes of continuous sigmoidal nonlinearities, linear output units, and
suitable connection weights. Furthermore, the closer the approximation desired, the larger the number of hidden nodes required.

Consider, for example, the Fourier series representation of the real-valued function F,

$$
F(x) = \sum_{k=0}^{\infty} \{a_k \cos(kx) + b_k \sin(kx)\}, \quad x \in \mathbb{R}.
$$

(10.21)

where the $\{a_k, b_k\}$ are Fourier coefficients. The function F can be approximated by a neural network (see Exercise 10.14), which produces the approximation,

$$
\hat{F}(x) = \sum_{j=0}^{t} \alpha_j \beta_j \sin(x + \beta_{0j}).
$$

(10.22)

The weights $\{\beta_j\}$ yield the amplitudes of the sine functions, and the constants $\{\beta_{0j}\}$ yield the phases; if, for example, we set $\beta_{0j} = \pi/2$, then $\sin(x + \beta_{0j}) = \cos(x)$, and so we do not need to include explicit cosine terms in the network. The weights $\{\alpha_j\}$ are the amplitudes of the individual Fourier terms.

The universal approximation theorem is an existence theorem: it shows, theoretically, that one can approximate an arbitrary continuous function by a single hidden-layer network. Unfortunately, it does not specify how to find that approximation; that is, how to determine the weights and the number, t, of nodes in the hidden layer (a problem known as network complexity). It also assumes that we know the continuous function being approximated and that the available set of hidden nodes is of unlimited size. Furthermore, the theorem is not an optimality result: it does not show that a single hidden layer is the best-possible multilayer network for carrying out the approximation.

10.7.4 More than One Hidden Layer

We can express (10.19) in matrix notation as follows:

$$
\mu(X) = g(\alpha_0 + Af(\beta_0 + BX)),
$$

(10.23)

where $B = (\beta_{ij})$ is a $(t \times r)$-matrix of weights between the input nodes and the hidden layer, $A = (\alpha_{jk})$ is an $(s \times t)$-matrix of weights between the hidden layer and the output layer, $\beta_0 = (\beta_{01}, \ldots, \beta_{0t})^\tau$, and $\alpha_0 = (\alpha_{01}, \ldots, \alpha_{0s})^\tau$; also, $f = (f_1, \ldots, f_t)^\tau$ and $g = (g_1, \ldots, g_s)^\tau$ are the vectors of nonlinear activation functions. In (10.23), the notation $h(U)$ represents the vector $(h_1(U_1), \ldots, h_t(U_t))^\tau$, where $h = (h_1, \ldots, h_t)^\tau$ is a vector of functions and $U = (U_1, U_2, \ldots, U_t)^\tau$ is a random vector. Note,
however, that $\mu(X) = (\mu_1(X), \ldots, \mu_s(X))^\tau$. Clearly, this representation permits straightforward extensions to more than one hidden layer.

An important special case of (10.23) occurs when the $\{f_j\}$ and the $\{g_k\}$ are each taken to be identity functions. In that case, (10.23) reduces to the multivariate reduced-rank regression model, $\mu(X) = \mu + AX$, where $\mu = \alpha_0 + A\beta_0$. We could use the $(s \times r)$ weight-matrix $C = AB$ for a single-layer network (i.e., no hidden layer) and the results would be identical. The results change only when we use nonlinear activation functions at the hidden nodes.

Thus, a neural network with r input nodes, a single hidden layer with t nodes, s output nodes, and sigmoidal activation functions at the hidden nodes can be viewed as a nonlinear generalization of multivariate reduced-rank regression.

10.7.5 Optimality Criteria

Let the $(st + rt + t + s)$-vector ω consist of the parameters of a fully connected network — the connection weights (elements of the matrices A and B) and the biases (the vectors α_0 and β_0). To estimate ω in either binary classification (where outputs are either 0 or 1) or multivariate regression problems (where outputs are real-valued), it is customary to minimize the error sum of squares (ESS):

$$ESS(\omega) = \sum_{i=1}^{n} \| Y_i - \tilde{Y}_i \|^2,$$

with respect to the elements of ω, where

$$\| Y_i - \tilde{Y}_i \|^2 = (Y_i - \tilde{Y}_i)^\tau(Y_i - \tilde{Y}_i) = \sum_{k \in \mathcal{K}} (Y_{i,k} - \tilde{Y}_{i,k})^2,$$

and \mathcal{K} is the set of output nodes. In binary classification problems, there is a single output node. In (10.25), $Y_i = (Y_{i,k})$ is the value of the true (or “target”) output s-vector, $\tilde{Y}_i = (\tilde{Y}_{i,k})$ is the value of the fitted output s-vector, and $\tilde{Y}_{i,k} = \mu_k(X_i) = \mu_k(X_i, \omega)$ is the fitted value at the kth output node corresponding to the ith input r-vector X_i, $k \in \mathcal{K}$, $i = 1, 2, \ldots, n$.

For multiclass classification problems, where each observation belongs to one of $K > 2$ possible classes, there are usually K output nodes, one for each class. In this case, an error criterion is minus the logarithm of the conditional-likelihood function,

$$E(\omega) = -\sum_{i=1}^{n} \sum_{k \in \mathcal{K}} Y_{i,k} \log \tilde{Y}_{i,k}, \quad \tilde{Y}_{i,k} = \frac{e^{V_{i,k}}}{\sum_{\ell \in \mathcal{K}} e^{V_{i,\ell}}},$$

where $Y_{i,k} = 1$ if $X_i \in \Pi_k$ and zero otherwise, and $V_{i,k} = \alpha_{0,k} + Z_i^\tau \alpha_k$ is the value of V_k for the ith input vector X_i. This criterion is equivalent to the
Kullback–Leibler deviance (or cross-entropy), and \(\tilde{Y}_{i,k} \), which is known as the softmax function, is the multiclass generalization of the logistic function.

Because the fitted value, \(\tilde{Y}_{i,k} \), is a nonlinear function of \(\omega \), it follows that both the ESS and \(E \) criteria are nonlinear functions of \(\omega \). The \(\omega \) that minimizes \(ESS(\omega) \) or \(E(\omega) \) is not available in explicit form and, therefore, has to be found using a nonlinear optimization algorithm. The most popular numerical method for estimating the network parameters is the “backpropagation” of errors algorithm.

10.7.6 The Backpropagation of Errors Algorithm

The backpropagation algorithm (Werbos, 1974) efficiently computes the first derivatives of an error function wrt the network weights \(\{\alpha_{kj}\} \) and \(\{\beta_{jm}\} \). These derivatives are then used to estimate the weights by minimizing the error function through an iterative gradient-descent method.

To simplify the description of the algorithm, we treat the network as a single-hidden-layer network. All the details we present here can be generalized to a network having more than one hidden node. We denote by \(\mathcal{M} \) the set of \(r \) input nodes, \(\mathcal{J} \) the set of \(t \) hidden nodes, and \(\mathcal{K} \) the set of \(s \) output nodes, so that \(m \in \mathcal{M} \) indexes an input node, \(j \in \mathcal{J} \) indexes a hidden node, and \(k \in \mathcal{K} \) indexes an output node. In other words, \(m \to j \to k \). As before, the input \(r \)-vectors are indexed by \(i = 1, 2, \ldots, n \).

We start at the \(k \)th output node. Denote the error signal at that node by

\[
e_{i,k} = Y_{i,k} - \tilde{Y}_{i,k}, \quad k \in \mathcal{K},
\]

and the error sum of squares (usually referred to as the error function) at that node by

\[
E_i = \frac{1}{2} \sum_{k \in \mathcal{K}} e_{i,k}^2 = \frac{1}{2} \sum_{k \in \mathcal{K}} (Y_{i,k} - \tilde{Y}_{i,k})^2, \quad i = 1, 2, \ldots, n. \tag{10.28}
\]

The optimizing criterion is the error sum of squares (ESS) for the entire data set; that is, the error function (10.28) averaged over all data in the learning set:

\[
ESS = \frac{1}{n} \sum_{i=1}^{n} E_i = \frac{1}{2n} \sum_{i=1}^{n} \sum_{k \in \mathcal{K}} e_{i,k}^2. \tag{10.29}
\]

The learning problem is to minimize \(ESS \) wrt the connection weights, \(\{\alpha_{i,kj}\} \) and \(\{\beta_{i,jm}\} \). Because each derivative of \(ESS \) wrt those weights is a sum over the learning set of data of the derivatives of \(E_i, i = 1, 2, \ldots, n \), it suffices to minimize each \(E_i \) separately.

In the following description of the backpropagation algorithm, it may be helpful to refer to Figure 10.7.
For the ith input vector, let
\[V_{i,k} = \sum_{j \in J} \alpha_{kj} Z_{i,j} = \alpha_{k0} + Z_i^\top \alpha_k, \quad k \in \mathcal{K}, \tag{10.30} \]
be a weighted sum of inputs from the set of hidden units to the kth output node, where
\[Z_i = (Z_{i,1}, \ldots, Z_{i,t})^\top, \quad \alpha_k = (\alpha_{k1}, \ldots, \alpha_{kt})^\top, \tag{10.31} \]
and $Z_{i,0} = 1$. Then, the corresponding output is
\[\tilde{Y}_{i,k} = g_k(V_{i,k}), \quad k \in \mathcal{K}, \tag{10.32} \]
where $g_k(\cdot)$ is an output activation function, which we assume is differentiable.

The backpropagation algorithm is an iterative gradient-descent-based algorithm. Using randomly chosen initial values for the weights, we search for that direction that makes the error function smaller.

Consider the weights $\alpha_{i,kj}$ from the jth hidden node to the kth output node. Let $\alpha_i = (\alpha_{i,1}^\top, \cdots, \alpha_{i,t}^\top)^\top = (\alpha_{i,kj})$ to be the ts-vector of all the hidden-layer-to-output-layer weights at the ith iteration. Then, the update rule is
\[\alpha_{i+1} = \alpha_i + \Delta \alpha_i, \quad (10.33) \]

where
\[\Delta \alpha_i = -\eta \frac{\partial E_i}{\partial \alpha_i} = \left(-\eta \frac{\partial E_i}{\partial \alpha_{i,jh}} \right) = (\Delta \alpha_{i,kj}). \quad (10.34) \]

Similar update equations hold also for \(\alpha_{i,k_0} \). In (10.34), the learning parameter \(\eta \) specifies how large each step should be in the iterative process. If \(\eta \) is too large, the iterations will move rapidly toward a local minimum, but may possibly overshoot it, whereas if \(\eta \) is too small, the iterations may take a long time to get anywhere near a local minimum.

Using the chain rule for differentiation, we have that
\[\frac{\partial E_i}{\partial \alpha_{i,kj}} = \frac{\partial E_i}{\partial e_{i,k}} \cdot \frac{\partial e_{i,k}}{\partial \tilde{Y}_{i,k}} \cdot \frac{\partial \tilde{Y}_{i,k}}{\partial V_{i,k}} \cdot \frac{\partial V_{i,k}}{\partial \alpha_{i,kj}} = e_{i,k} \cdot (-1) \cdot g^t_k(V_{i,k}) \cdot Z_{i,j} \]

\[= -e_{i,k} g^t_k(\alpha_{i,k0} + Z_i^t \alpha_{i,k})Z_{i,j}. \quad (10.35) \]

This can also be expressed as
\[\frac{\partial E_i}{\partial \alpha_{i,jh}} = -\delta_{i,k} Z_{i,j}, \quad (10.36) \]

where
\[\delta_{i,k} = -\frac{\partial E_i}{\partial \tilde{Y}_{i,k}} \cdot \frac{\partial \tilde{Y}_{i,k}}{\partial V_{i,k}} = e_{i,k} g^t_k(V_{i,k}) \quad (10.37) \]

is the sensitivity (or local gradient) of the \(i \)th observation at the \(k \)th output node. The expression for \(\delta_{i,k} \) is the product of two terms associated with the \(k \)th node: the error signal \(e_{i,k} \) and the derivative, \(g^t_k(V_{i,k}) \), of the activation function. The gradient-descent update to \(\alpha_{i,kj} \) is given by
\[\alpha_{i+1,kj} = \alpha_{i,kj} - \eta \frac{\partial E_i}{\partial \alpha_{i,kj}} = \alpha_{i,kj} + \eta \delta_{i,k} Z_{i,j}, \quad (10.38) \]

where \(\eta \) is the learning rate parameter of the backpropagation algorithm.

The next part of the backpropagation algorithm is to derive an update rule for the connection from the \(m \)th input node to the \(j \)th hidden node. At the \(i \)th iteration, let
\[U_{i,j} = \sum_{m \in M} \beta_{i,jm} X_{i,m} = \beta_{i,j0} + X_i^\tau \beta_{i,j}, \quad j \in J, \quad (10.39) \]

be the weighted sum of inputs to the \(j \)th hidden node, where
\[X_i = (X_{i,1}, \cdots, X_{i,r})^\tau, \quad \beta_{i,j} = (\beta_{i,j1}, \cdots, \beta_{i,jr})^\tau, \quad (10.40) \]
and $X_{i,0} = 1$. The corresponding output is

$$Z_{i,j} = f_j(U_{i,j}),$$

(10.41)

where $f_j(\cdot)$ is the activation function, which we assume is differentiable, at the jth hidden node. Let $\beta_i = (\beta_{i,1}^T, \ldots, \beta_{i,t}^T)^T = (\beta_{i,jm})$ be the ith iteration of the $(r+1)t$-vector of all the input-layer-to-hidden-layer weights. Then, the update rule is

$$\beta_{i+1} = \beta_i + \Delta \beta_i,$$

(10.42)

where

$$\Delta \beta_i = -\eta \frac{\partial E_i}{\partial \beta_i} = (-\eta \frac{\partial E_i}{\partial \beta_{i,jm}}) = (\Delta \beta_{i,jm}).$$

(10.43)

Again, similar update formulas hold for the bias terms $\beta_{i,j0}$. Using the chain rule, we have that

$$\frac{\partial E_i}{\partial \beta_{i,kj}} = \frac{\partial E_i}{\partial Z_{i,j}} \cdot \frac{\partial Z_{i,j}}{\partial U_{i,j}} \cdot \frac{\partial U_{i,j}}{\partial \beta_{i,kj}}.$$

(10.44)

The first term on the rhs is

$$\frac{\partial E_i}{\partial Z_{i,j}} = \sum_{k \in K} e_{i,k} \cdot \frac{\partial e_{i,k}}{\partial Z_{i,j}}$$

$$= \sum_{k \in K} e_{i,k} \cdot \frac{\partial e_{i,k}}{\partial V_{i,k}} \cdot \frac{\partial V_{i,k}}{\partial Z_{i,j}}$$

$$= -\sum_{k \in K} e_{i,k} \cdot g_k'(V_{ij}) \cdot \alpha_{i,kj}$$

$$= -\sum_{k \in K} \delta_{i,k} \alpha_{i,kj},$$

(10.45)

whence, from (10.44),

$$\frac{\partial E_i}{\partial \beta_{i,kj}} = -\sum_{k \in K} e_{i,k} g_k'(\alpha_{i,k0} + Z_{i,j} \alpha_{i,k}) \alpha_{i,kj} f_j'(\beta_{i,j0} + X_{i,m} \beta_{i,j}) X_{i,m}$$

(10.46)

Putting (10.37) and (10.45) together, we have that

$$\delta_{i,j} = f_j'(U_{i,j}) \sum_{k \in K} \delta_{i,k} \alpha_{i,kj}.$$

(10.47)

This expression for $\delta_{i,j}$ is the product of two terms: the first term, $f_j'(U_{i,j})$, is the derivative of the activation function $f_j(\cdot)$ evaluated at the jth hidden node; the second term is a weighted sum of the $\delta_{i,k}$ (which requires knowledge of the error $e_{i,k}$ at the kth output node) over all output nodes, where
the kth weight, $\alpha_{i,kj}$, is the connection weight of the jth hidden node to the kth output node. Thus, $\delta_{i,j}$ at the jth hidden node depends upon the $\{\delta_{i,k}\}$ from all the output nodes.

The gradient-descent update to $\beta_{i,jm}$ is given by

$$\beta_{i+1,jm} = \beta_{i,jm} - \eta \frac{\partial E_i}{\partial \beta_{i,jm}} = \beta_{i,jm} + \eta \delta_{i,j} X_{i,m},$$ (10.48)

where η is the learning rate parameter of the backpropagation algorithm.

The backpropagation algorithm is defined by (10.38) and (10.48). These update formulas identify two stages of computation in this algorithm: a “feedforward pass” stage and a “backpropagation pass” stage. After an initialization step in which all connection weights are assigned values, we have the following stages in the algorithm:

Feedforward pass Inputs enter the node from the left and emerge from the right of the node; the output from the node is computed as (10.30) and (10.31), and the results are passed, from left to right, through the layers of the network.

Backpropagation pass The network is run in reverse order, layer by layer, starting at the output layer:

1. The error (10.27) is computed at the kth output node and then multiplied by the derivative of the activation function to give the sensitivity $\delta_{i,k}$ at that output node (10.37); the weights, $\{\alpha_{i,kj}\}$, feeding into the output nodes are updated by using (10.38).

2. We use (10.47) to compute the sensitivity $\delta_{i,j}$ at the jth hidden node; and, then, we use (10.48) to update the weights, $\{\beta_{i,jm}\}$, feeding into the hidden nodes.

This iterative process is repeated until some suitable stopping time.

10.7.7 Convergence and Stopping

There is no proof that the backpropagation algorithm always converges. In fact, experience has shown that the algorithm is a slow learner, the estimates may be unstable, there may exist many local minima, and convergence is not assured in practice. There have been many explanations of why this should happen.

One possible reason is that the backpropagation algorithm is a first-order approximation to the method of steepest-descent and, hence, is a version of *stochastic approximation*. As the algorithm tries to find the minimum along fairly flat regions of the surface of the error criterion, it takes many iterations to significantly reduce the error criterion; in other, highly curved
regions, the algorithm may miss the minimum entirely. Another possible reason (Hwang and Ding, 1997) is that, for any ANN, instability and convergence problems may be partly caused by the “unidentifiability” of the parameter vector ω; for example, certain elements of ω can be permuted without changing the value of $\mu(X)$ in (10.20).

Because of the slow progression of the backpropagation algorithm, which is both frustrating and expensive, overfitting the network has been (according to ANN folklore) accidentally avoided by stopping the algorithm prior to convergence (usually referred to as early stopping). Other researchers prefer to continue running the algorithm until the weights stabilize (e.g., the normed difference between successive iterates is smaller than some acceptable bound) or until the error criterion is at (or close to) a minimum. Another practical strategy is to increase the value of η to produce faster convergence, but that action could also result in oscillations.

10.8 Network Design Considerations

When fitting an ANN, the user is faced with a number of algorithmic details that need to be resolved as part of the design of the network. In this section, we discuss a collection of problems often referred to as network complexity.

10.8.1 Learning Modes

The most popular methods of running the backpropagation algorithm are the “on-line,” “stochastic,” and “batch” learning modes.

In on-line mode, each observation (x_i, y_i), $i = 1, 2, \ldots, n$, is dropped down the network in sequential fashion, one at a time, and adjustments are made to the estimates of the connection weights each time. The iteration steps (10.38) and (10.48) give an on-line update of the weights. Thus, (x_1, y_1) is dropped down the network first. The feedforward and backpropagation stages of the algorithm are immediately carried out, yielding updated initial values of the connection weights. Next, we drop (x_2, y_2) down the network, whence the feedforward and backpropagation stages are again carried out, resulting in further updated values of the connection weights. This procedure is repeated once and only once for every observation in the entire learning set, until the last observation (x_n, y_n) is dropped down the network and the connection weights are updated. The process then stops.

A variation on on-line learning is stochastic learning, where an observation is chosen at random from the learning set, dropped down the network, and the parameter values are updated using (10.38) and (10.48). As in
on-line learning, each observation is dropped down the network once and only once, but in random order.

In *batch mode*, all *n* observations in the learning set (referred to as an *epoch*) are dropped down the network in any order. After all the observations are entered, the weights are updated by summing the derivatives over the entire learning set; that is, for the *i*th epoch, the updates are

\[
\alpha_{i+1,jk} = \alpha_{i,jk} + \eta \sum_{h=1}^{n} \delta_{h,k} z_{h,j},
\]

\[
\beta_{i+1,jm} = \beta_{i,jm} + \eta \sum_{h=1}^{n} \delta_{h,j} x_{h,m},
\]

for *h* = 1, 2, This entire process is repeated, epoch by epoch, until *ESS* becomes smaller than some preset value.

On-line learning tends to be preferred to batch learning: on-line learning is generally faster, particularly when there are many similar data values (*redundancy*) in the learning set; it can adapt better to nonstandard conditions of the data (e.g., nonstationarity); and it can more easily escape from local minima. Moreover, batch learning in very high-dimensional situations can cause computational difficulties (e.g., memory problems, cost considerations), especially when it comes to deriving the matrices *A* and *B* in (10.23).

10.8.2 Input Scaling

Inputs are often measured in widely differing scales, which may affect the relative contribution of each input to the resulting analysis. This is a common concern in data analysis. The same problem occurs when fitting an ANN. In general, it is a good idea, prior to fitting an ANN to data, to scale each input variable. A number of ways have been suggested to accomplish this objective, including (1) scale the data to the interval [0, 1]; (2) scale the data to [−1, 1] or to [−2, 2]; or (3) standardize each input variable to have zero mean and unit standard deviation.

ANN theory does not require the input data to lie in [0, 1]; in fact, scaling to [0, 1] may not be a good choice and that it is better to center the input data around zero. This implies that options (2) and (3) should be preferred to option (1). These latter two scaling options may enable an ANN to be run more efficiently and may help to avoid getting bogged down in local extrema.

If a weight-decay penalty is to be incorporated as part of the optimization process (see Section 10.8.5), then it makes sense to scale or standardize each input variable. When the data are split into learning and test sets, then the same scaling or standardization transformation applied to the learning
set should also be applied to the test set. Note that the standardization transformation can only be used for stochastic or batch learning; it cannot be used for on-line learning, where the data are presented to the network one observation at a time.

10.8.3 How Many Hidden Nodes and Layers?

One of the main problems in designing a network is to determine how many hidden nodes and layers to include in the network; this, in turn, determines how many parameters are needed to model the data. The central principle here is that of Ockham's razor: keep the model as simple as possible while maintaining its ability to generalize well.

One way of choosing the number of hidden nodes is by employing cross-validation (CV). However, the presence of multiple local minima at each iteration, which result in quite different performances, can confuse the issue of deciding which solution should be used for each round of CV. Most applications of ANN determine the number of hidden nodes and layers either from the context of the problem or by trial-and-error.

10.8.4 Initializing the Weights

As with any numerical and iterative method, the backpropagation algorithm requires a choice of starting values to estimate the parameters (i.e., connection weights and biases) of the network. In general, we initialize the network by using small (close to zero), random-generated (uniformly distributed with small variance) starting values for the parameter estimates.

10.8.5 Overfitting and Network Pruning

Building a neural network can easily yield a model with a huge number of parameters. If we try to estimate all those parameters optimally by waiting for the algorithm to converge, this can lead to severe overfitting. We would like to reduce (as much as possible) the size of the network while retaining (as much as possible) its good performance characteristics.

Setting parameters to zero. One way to counter overfitting is to set some connection weights to zero, a method known as network pruning or, more delightfully, optimal brain surgery, because of the notion that ANNs try to approximate brain activity (Hassibi, Stork, Wolff, and Wanatabe, 1994). If, however, a parameter (connection weight) in the model is set to zero and the inputs are close to being collinear, then the standard errors for the remaining estimated parameters could be significantly affected; thus, it is not generally recommended to set more than one connection weight to
zero (Ripley, 1996, p. 169), a strategy that defeats the objective of reducing network size.

Shrinking parameters toward zero. Another approach is to “shrink” the magnitudes of network parameters toward zero by incorporating regularization into the criterion. In such a formulation, we minimize

\[
ESS_\lambda(\omega) = ESS(\omega) + \lambda p(\omega),
\]

(10.51)

where \(\lambda \geq 0 \) is a *regularization parameter* and \(p(\cdot) \) is the *penalty function*. The term \(\lambda p(\omega) \) is known as the *complexity term*. The regularization parameter \(\lambda \) measures the relative importance of \(ESS(\omega) \) to \(p(\omega) \), and is usually estimated by cross-validation.

There are two popular assignments of penalty functions in this ANN context. The simplest regularizer is *weight-decay*, whose penalty is defined by

\[
p(\omega) = \| \omega \|^2 = \sum_\ell \omega_\ell^2,
\]

(10.52)

where \(\omega_\ell \) is equal to \(\alpha_{jm} \) or \(\beta_{kj} \), as appropriate, and the summation is taken over all weight connections in the network (Hinton, 1987). In this case, \(\lambda \) is referred to as the *weight-decay parameter*. A more elaborate penalty function is the *weight-elimination penalty*, given by

\[
p(\omega) = \sum_\ell \frac{(\omega_\ell/W)^2}{1 + (\omega_\ell/W)^2},
\]

(10.53)

where \(W \) is a preassigned free parameter (Weigend, Rumelhart, and Huberman, 1991), such as \(W = \| \omega \|^2 \). If, for some \(\ell \), \(|\omega_\ell| \ll W \), the contribution of that connection weight to (10.53) is deemed negligible and the connection may be eliminated; if \(|\omega_\ell| \gg W \), then that connection weight contributes a significant amount to (10.53) and, hence, should be retained in the network. When using penalty function (10.52) or (10.53), it is usual to start with \(\lambda = 0 \), which allows the network weights to be unconstrained, and then adjust that solution by increasing the value of \(\lambda \) in small increments.

Reducing dimensionality of input data. The user can also apply principal component analysis to the input data, thereby reducing the number of inputs, and then estimate the parameters of the resulting reduced-size ANN.

10.9 Example: Detecting Hidden Messages in Digital Images

Steganography ("covered writing," from the Greek) is “the art and science of communicating in a way which hides the existence of the communication” (Kahn, 1996). It is a method for hiding messages in different types...
of media, such as webpage HTML text, Microsoft Word documents, executable and dynamic link library files, digital audio files, and digital image files (\texttt{bmp}, \texttt{gif}, \texttt{jpg}). Reasons for hiding messages include the need for copyright protection of digital media (audio, image, and video), for Internet security and privacy, and to provide “stealth” military and intelligence communication.

There are many ways in which information can be hidden in digital media, including least significant bit (lsb) embedding, digital watermarking, and wavelet decomposition algorithms. A major disadvantage to lsb insertion is that it is vulnerable to slight image manipulation, such as cropping and compression. See Petitcolas, Anderson, and Kuhn (1999) for a survey.

In this example, 1,000 color \texttt{jpeg} images consisting of a mixture of various science fiction environments (including indoors, outdoors, outer space), characters, and images with special effects, were obtained from the Star Trek website.\footnote{The Star Trek website is \url{www.startrek.com}. The author thanks Joseph Jupin for use of the data that formed the basis for his 2004 report Steganography at the website \url{astro.temple.edu/~joejupin/Steganography.pdf}.} These color images were converted into grayscale bitmap images to remove any existing digital watermarks or other hidden identifiers and cropped to a central 640×480 pixel area. These grayscale bitmap images were then duplicated to form two sets of the same 1,000 images. One set of grayscale images was decompressed to produce 1,000 “cover images.” The second set was used to hide messages of random strings of characters of sufficient length (2–3 KB). Using the software package Jsteg v4,\footnote{Derek Upham’s Jsteg v4 is available at \url{ftp.funet.fi/pub/crypt/steganography}.} 1,000

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chart.pdf}
\caption{Flow chart for the steganography example.}
\end{figure}
“stego images” were formed. A flow chart of the steganographic process is given in Figure 10.8.

The next step is to extract from the 1,000 cover images and the 1,000 stego images a common set of variables. To identify images that contain a hidden message, we use a methodology based upon the wavelet decomposition of digital images (Farid, 2001). First, we compute a multiresolution analysis of each set of 1,000 images using quadrature mirror filters. For each such set, this creates orthonormal basis functions that partition the frequency space into \(m \) resolution levels and three orientations — horizontal, vertical, and diagonal. At each resolution level, separable low-pass and high-pass filters are applied along the image axes, which generate low-pass, vertical, horizontal, and diagonal subbands. Additional resolution levels are created by recursively filtering the low-pass subband.

Hiding messages in a digital image often leads to a significant change in the statistical properties of the wavelet decomposition of that image. Given an image decomposition, we compute two sets of statistical moments: (1) the mean, variance, skewness, and kurtosis of the subband coefficients at each of the three orientations and at resolution levels 1, 2, \ldots, \(m - 1 \); (2) the same statistics, but computed from the residuals of the optimal linear predictor of coefficient magnitudes and the true coefficient magnitudes for each of the three orientation subbands at each level. This creates a total of \(24(m - 1) \) variables for each image decomposition. In our example, a four-level (\(m = 4 \)), three-orientation decomposition scheme results in a 72-dimensional vector of the moment statistics of estimated coefficients and residuals for each image.

From each set of 1,000 images, 500 images are randomly selected, but no duplicate images are taken. The resulting 1,000 images constitute our data set. The problem is to distinguish the stego images from the cover images.

We randomly divided the data from the 1,000 images into a learning set (650) and a test set (350). The learning set consists of 322 stego images and 328 cover images, and the test set consists of 178 stego images and 172 cover images. The learning set was standardized and an ANN was fit with a single hidden layer, varying the decay parameter \(\lambda \) between 0.0001 and 0.9, and varying the number of nodes in the hidden layer from 1 to 10. Each of these fitted models was used to predict the two classes (cover or stego) for the data in the test set, which had previously been standardized using the same scaling obtained from the learning set.

This fitting and prediction strategy is repeated 10 times using randomly generated starting values for each combination of \(\lambda \) and number of hidden nodes; the misclassification rates were averaged for each such combination. Figure 10.9 shows parallel boxplots of the individual results for \(\lambda = 0.01 \) (left panel) and 0.5 (right panel). Notice the high variability for \(\lambda = 0.01 \).
10.10 Examples of Fitting Neural Networks

In Table 10.2, we list the estimated misclassification rates of neural network models applied to data sets detailed in Chapter 8. The misclassification rates are estimated here by randomly dividing each data set into two subsets, a learning set (2/3) and a test set (1/3). With certain exceptions, each learning set was first standardized by subtracting the mean of each input variable and then dividing the result by the standard deviation of that variable. The same standardization was also applied to the input variables in the test set. The exceptions to this standardization are those data sets whose values fall in \([0, 1]\) (E-coli, Yeast), \([-1, 1]\) (Ionosphere), or \([0, 100]\) (Pendigits), where no transformations are made.

For each learning set, we set up a neural network model with a single hidden layer of between 0 and 10 nodes and decay parameter \(\lambda\) ranging from 0.00001 to 0.1. A set of initial weights is randomly generated to fit the ANN model to the learning set, the fitted ANN model is then applied to the test set, and the misclassification rate computed. This is repeated 10 times, and the resulting misclassification rates are averaged to produce the “TestSetER” in Table 10.2.

FIGURE 10.9. Steganography example: parallel boxplots for the misclassification rate of the test set for a neural network with a single hidden layer and number of hidden nodes as displayed, and decay parameter \(\lambda = 0.01\) (left panel) and 0.5 (right panel). A randomly generated start was used to fit each such model, and this was repeated 10 times for each number of hidden nodes.

compared with \(\lambda = 0.5\). The smallest average misclassification rate for the test set is 0.0463, which is obtained for \(\lambda = 0.5\) and seven hidden nodes.
TABLE 10.2. Summary of artificial neural network (ANN) models with a single hidden layer fitted to data sets for binary and multiclass classification. Listed are the sample size (\(n\)), number of variables (\(r\)), and number of classes (\(K\)). Also listed for each data set is the number of observations in the learning set (2/3) and in the test set (1/3) and the test-set error (misclassification) rate computed from the average of 10 random initial starts. Each learning set was standardized, and the same standardization was used for the test set (with the exception of Ionosphere, where the input values fall into \([-1, 1]\), and E-coli, Yeast, and Pendigits, whose values fall in \([0, 1]\)). The data sets are listed in increasing order of LDA misclassification rates (see Tables 8.5 and 8.7).

<table>
<thead>
<tr>
<th>Data Set</th>
<th>(n)</th>
<th>(r)</th>
<th>(K)</th>
<th>Learn</th>
<th>Test</th>
<th>TestSetER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer (logs)</td>
<td>569</td>
<td>30</td>
<td>2</td>
<td>379</td>
<td>190</td>
<td>0.0174</td>
</tr>
<tr>
<td>Spambase</td>
<td>4,601</td>
<td>57</td>
<td>2</td>
<td>3,067</td>
<td>1,534</td>
<td>0.0669</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>351</td>
<td>33</td>
<td>2</td>
<td>234</td>
<td>117</td>
<td>0.0863</td>
</tr>
<tr>
<td>Sonar</td>
<td>208</td>
<td>60</td>
<td>2</td>
<td>138</td>
<td>70</td>
<td>0.1571</td>
</tr>
<tr>
<td>BUPA liver disorders</td>
<td>345</td>
<td>6</td>
<td>2</td>
<td>230</td>
<td>115</td>
<td>0.3183</td>
</tr>
<tr>
<td>Wine</td>
<td>178</td>
<td>13</td>
<td>3</td>
<td>118</td>
<td>60</td>
<td>0.0167</td>
</tr>
<tr>
<td>Iris</td>
<td>150</td>
<td>4</td>
<td>3</td>
<td>100</td>
<td>50</td>
<td>0.0420</td>
</tr>
<tr>
<td>Primate scapulae</td>
<td>105</td>
<td>7</td>
<td>5</td>
<td>70</td>
<td>35</td>
<td>0.0114</td>
</tr>
<tr>
<td>Shuttle</td>
<td>58,000</td>
<td>8</td>
<td>7</td>
<td>43,500</td>
<td>14,500</td>
<td>0.0002</td>
</tr>
<tr>
<td>Diabetes</td>
<td>145</td>
<td>5</td>
<td>3</td>
<td>95</td>
<td>50</td>
<td>0.0020</td>
</tr>
<tr>
<td>Pendigits</td>
<td>10,992</td>
<td>16</td>
<td>10</td>
<td>7,328</td>
<td>3,664</td>
<td>0.0251</td>
</tr>
<tr>
<td>E-coli</td>
<td>336</td>
<td>7</td>
<td>8</td>
<td>224</td>
<td>112</td>
<td>0.1161</td>
</tr>
<tr>
<td>Vehicle</td>
<td>846</td>
<td>18</td>
<td>4</td>
<td>564</td>
<td>282</td>
<td>0.1897</td>
</tr>
<tr>
<td>Letter recognition</td>
<td>20,000</td>
<td>16</td>
<td>26</td>
<td>13,000</td>
<td>7,000</td>
<td>0.0987</td>
</tr>
<tr>
<td>Glass</td>
<td>214</td>
<td>9</td>
<td>6</td>
<td>143</td>
<td>71</td>
<td>0.2056</td>
</tr>
<tr>
<td>Yeast</td>
<td>1,484</td>
<td>8</td>
<td>10</td>
<td>989</td>
<td>495</td>
<td>0.4026</td>
</tr>
</tbody>
</table>

We see that a single hidden-layer ANN model fits some data sets better than others. Comparing Table 10.2 with Tables 8.5 and 8.7 (ANN misclassification rates are computed using an independent test set, whereas LDA and QDA used 10-fold CV), a single-hidden-layer ANN model fares better than LDA for the spambase, ionosphere, sonar, primate scapulae, shuttle, diabetes, pendigits, e coli, vehicle, glass, and yeast data, whereas LDA comes out ahead for the breast cancer, BUPA liver, wine, and iris data. The misclassification rate for the letter-recognition data is significantly reduced if there are a large number of hidden nodes (20 or more).

10.11 Related Statistical Methods

Alternative approaches to statistical curve-fitting, such as projection-pursuit regression and generalized additive models, try to address a more general functional form than linearity. Although these methods are closely
related in appearance to the ANN model, their computations are carried out in completely different ways.

10.11.1 Projection-Pursuit Regression

Consider the input r-vector X and a single output variable Y (i.e., $s = 1$). Suppose the model is

$$Y = \mu(X) + \epsilon,$$ \hspace{1cm} (10.54)

where $\mu(X) = \mathbb{E}\{Y|X\}$ is the regression function, and the errors ϵ are independent of X and have $\mathbb{E}(\epsilon) = 0$ and $\text{var}(\epsilon) = \sigma^2$. The goal is to estimate $\mu(X)$. For example, suppose $r = 2$ and $\mu(X) = X_1X_2$; we can write $\mu(X) = \frac{1}{4}(X_1 + X_2)^2 - \frac{1}{4}(X_1 - X_2)^2$, which is the sum of squares of the projections, $X^\tau \beta_1 = (X_1, X_2)(1, 1)^\tau$ and $X^\tau \beta_2 = (X_1, X_2)(1, -1)^\tau$. So, a regression surface can be approximated by a sum of nonlinear functions, $\{f_j\}$, of projections $X^\tau \beta_j$.

This idea is implemented in projection-pursuit regression (PPR) (Friedman and Stuetzle, 1981), where the regression function is taken to be

$$\mu(X) = \alpha_0 + \sum_{j=1}^{t} f_j(\beta_{0j} + X^\tau \beta_j),$$ \hspace{1cm} (10.55)

where α_0, $\{\beta_{0j}\}$, $\{\beta_j = (\beta_{1j}, \cdots, \beta_{rj})^\tau\}$, and the $\{f_j(\cdot)\}$ are the unknown parameters of the model. This is the sum of t nonlinearly transformed linear projections of the r input variables, where t is a user-chosen parameter, and has the same form as a two-layer feedforward perceptron for a single output variable (see (10.20)). Parallel to the discussion in Section 10.5.3, it has been shown that any smooth function of X can be well-approximated by (10.55), where the approximation improves as t gets large enough (Diaconis and Shahshahani, 1984). It is worth noting that as we increase t, it becomes more and more difficult to interpret the fitted functions and coefficients in the PPR solution.

The linear combinations, $\beta_{0j} + X^\tau \beta_j$, $j = 1, 2, \ldots, t$, are linear projections of the inputs X onto t different hyperplanes, and the activation functions $f_j(\cdot)$, $j = 1, 2, \ldots, t$, are (possibly, different) smooth but unknown functions; we assume that the $\{f_j(\cdot)\}$ are each normalized to have zero mean and unit variance. These t nonlinearly transformed projections are then linearly combined to produce $\mu(X)$ in (10.55). The components $f_j(\beta_{0j} + X^\tau \beta_j)$, $j = 1, 2, \ldots, t$, are often referred to as ridge functions in r dimensions; the name derives from the fact that, in two-dimensional input space (i.e., $r = 2$), a peaked $f_j(\cdot)$ produces output with a ridge in the graph.

When there is more than one output variable, the output can be represented as a multiresponse s-vector, $Y = (Y_1, \cdots, Y_s)^\tau$. Then, each component
of the regression function, $\mu(\mathbf{X}) = (\mu_1(\mathbf{X}), \ldots, \mu_s(\mathbf{X}))^\top$, where $\mu_k(\mathbf{X}) = \mathbb{E}\{Y_k|\mathbf{X}\}$, can be written in the form,

$$
\mu_k(\mathbf{X}) = \alpha_0 + \sum_{j=1}^t \alpha_{jk} f_j(\beta_{0j} + \mathbf{X}^\top \beta_j), \quad k = 1, 2, \ldots, s, \quad (10.56)
$$

where the $f_j(\cdot)$, $j = 1, 2, \ldots, t$, are taken to be a common set of arbitrarily smooth functions having zero mean and unit variance. Models such as (10.56) are referred to as SMART (smooth multiple additive regression technique) (Friedman, 1984).

Let $\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_t)^\top$ and $\beta_j = (\beta_{0j}, \beta_{1j}, \ldots, \beta_{rj})^\top$, $j = 1, 2, \ldots, t$, be each of unit length. Given data, $\{(\mathbf{X}_i, Y_i), i = 1, 2, \ldots, n\}$, the $(t(r+2)+1)$-vector $\omega = (\alpha^\top, \{\beta_j^\top\}_{j=1}^t)^\top$ of parameters of the PPR single-output model (10.55) can be estimated by minimizing the error sum-of-squares,

$$
\text{ESS}(\omega) = \sum_{i=1}^n \left\{Y_i - \alpha_0 - \sum_{j=1}^t \alpha_j f_j(\beta_{0j} + \mathbf{X}_i^\top \beta_j)\right\}^2, \quad (10.57)
$$

for nonlinear activation functions $\{f_j(\cdot)\}$, which are also determined from the data.

The function $\text{ESS}(\omega)$ is minimized in stages, and the parameters are estimated in sequential fashion: first, the $\{\alpha_j\}$ are fitted by linear least-squares; next, the $\{f_j(\cdot)\}$ are found using one-dimensional scatterplot smoothers, and finally, the $\{\beta_k\}$ are fitted by nonlinear least-squares (e.g., Gauss–Newton). Scatterplot smoothers used to estimate the PPR functions $\{f_j(\cdot)\}$ include supersmoother (or variable span smoother) (Friedman and Stuetzle, 1981), Hermitian polynomials (Hwang, Li, Maechler, Martin, and Schimert, 1992), and smoothing splines (Roosen and Hastie, 1994). These steps to minimizing (10.57) are then iterated until some stopping criterion is satisfied. Stopping too early produces an increased bias for the estimate, and waiting too long produces an enlarged variance. Typically, the process is stopped when successive iterative values of the residual sum of squares, $\text{RSS}(\hat{\omega})$, become small and stable. In certain examples, the amount of computation involved in finding a PPR solution could be quite large and expensive.

10.11.2 Generalized Additive Models

An additive model in $\mathbf{X} = (X_1, \ldots, X_r)^\top$ is a regression model that is additive in the inputs. Specifically, we assume that $Y = \mu(\mathbf{X}) + \epsilon$, where the regression function, $\mu(\mathbf{X}) = \mathbb{E}\{Y|\mathbf{X}\}$, has the form,

$$
\mu(\mathbf{X}) = \alpha_0 + \sum_{j=1}^r f_j(X_j), \quad (10.58)
$$
and the error ϵ is independent of X. If $f_j(X_j) = \beta_j X_j$, then the additive model reduces to the standard multiple regression model. The key aspect of an additive model is that interactions between input variables (e.g., $X_i X_j$) are not allowed as part of the model. If simple interactions are thought to be important, we can introduce into an additive model additional terms constructed as the products $X_i X_j$, $f_{ij}(X_i X_j)$, or $\hat{f}_i(X_i) \cdot \hat{f}_j(X_j)$, where $\hat{f}_i(\cdot)$ and $\hat{f}_j(\cdot)$ are the functions obtained from fitting the additive model.

The $\{f_j(\cdot)\}$ are typically taken to be nonlinear transformations of the input variables. For example, we could transform the input variables by using logarithmic, square-root, reciprocal, or power transformations, where the choice would depend upon what we know or suspect about each input variable. In general, it is more useful if we take the $\{f_j(\cdot)\}$ to be a set of smooth, but otherwise unspecified, functions, which are centered so that $E\{f_j(X_j)\} = 0$, $j = 1, 2, \ldots, r$.

To estimate $\mu(X)$, the strategy is to estimate each $f_j(\cdot)$ separately. Estimation is based upon a backfitting algorithm (Friedman and Stuetzle, 1981). The key is the identity, $E\{Y - \alpha_0 - \sum_{k \neq j} f_k(X_k) | X_j\} = f_j(X_j)$. Given observations $\{(x_i, y_i), i = 1, 2, \ldots, n\}$ on (X, Y), we estimate α_0 by $\hat{\alpha}_0 = \bar{y}$ and use the most current function estimates $\{\hat{f}_k, k \neq j\}$ to update \hat{f}_j by a curve obtained by smoothing the “partial residuals,” $y_i - \hat{\alpha}_0 - \sum_{k \neq j} \hat{f}_k(x_{ki})$, against x_{ji}, $i = 1, 2, \ldots, n$. This update procedure is applied by cycling through the $\{X_j\}$ until convergence of the smoothed partial residuals. The smoothing step uses a scatterplot smoother such as a cubic regression spline, which is a set of piecewise cubic polynomials joined together at a sequence of knots and which satisfy certain continuity conditions at the knots. There are many other possible smoothing techniques, including kernel estimates and spline smoothers. In practice, the choice of smoother used depends upon the degree of “smoothness” desired.

Generalized additive models (GAMs) (Hastie and Tibshirani, 1986) extend both the class of additive models (10.58) and the class of generalized linear models (McCullagh and Nelder, 1989). The generalized additive model is usually written in the form,

$$h(\mu) = \alpha_0 + \sum_{j=1}^r f_j(X_j), \quad (10.59)$$

where $\mu = \mu(X)$ and $h(\mu)$ is a specified link function. Maximum-likelihood estimates of the parameter α_0 and the functions f_1, f_2, \ldots, f_r are obtained in a nonparametric fashion by maximizing a penalized log-likelihood function using a local scoring procedure (a version of the IRLS algorithm described in Section 9.3.5, where we fit a weighted additive model rather than a weighted linear regression), which is equivalent to a version of the Newton–Raphson algorithm.
A popular example of $h(\mu)$ is the so-called logistic link function, $h(\mu) = \log\{\mu/(1-\mu)\}$, which is used to model binary output. If we apply the logistic link function to (10.59), then the GAM can be inverted and re-expressed as follows:

$$\mu(X) = g(\alpha_0 + \sum_{j=1}^{r} f_j(X_j)),$$

(10.60)

where $g(x) = (1 + e^{-x})^{-1}$. In this particular form, we see that the GAM is closely related to a neural network with logistic (sigmoid) activation function (see Exercise 10.6).

10.12 Bayesian Learning for ANN Models

Bayesian treatments of neural networks have been quite successful. As usual, $(X_1, Y_1), \ldots, (X_n, Y_n)$ is the learning set of data. We assume the inputs, X_1, \ldots, X_n, are given and so are omitted from any probability calculation, and the outputs, $D = \{Y_1, \ldots, Y_n\}$, constitute the data to be modeled. For this exposition, we assume a single output value Y; the results generalize to multiple outputs Y in a straightforward way.

An ANN model is specified by its network architecture A (i.e., the number of layers, number of nodes within each layer, and the activation functions) and the vector of all network parameters ω (i.e., all connection weights and biases). Let Q be the total number of elements in the vector ω. We assume that the architecture A is given and, hence, does not enter the probability calculations; if different architectures are to be compared, then the influence of A would have to be taken into account in the calculations. In some Bayesian models, A is included as part of the definition of ω.

Denote the likelihood function of the parameters given the data by $p(D|\omega)$ and let $p(\omega)$ denote the prior distribution of the parameters in the model. The likelihood function gives us an idea of the extent to which the observed data D can be predicted using the parameters ω. Note that it is a function of the parameters, not the data. The likelihood function of the parameters conditional upon the data is the probability of the data given the parameters, but where the data D are fixed and the parameters ω are variable. The prior distribution displays whatever knowledge and information we have about the parameters in the model before we observe the data.

The complexity of the model is governed by the use of a hyperprior, a joint distribution on the parameters of the prior distribution; the parameters of the hyperprior distribution are called hyperparameters. Much of Bayesian inference in ANNs uses vague (non-informative) priors for the
hyperparameters; such hyperpriors represent our lack of specific knowledge about any prior parameters needed to describe the model.

From Bayes’s theorem, the posterior distribution of the parameters given the data is given by

\[p(\omega | D) = \frac{p(D|\omega)p(\omega)}{p(D)}, \quad (10.61) \]

where \(p(D) = \int p(D|\omega')p(\omega')d\omega' \) operates as a normalization factor to ensure that \(\int p(\omega|D)d\omega = 1 \). Note that \(p(D) \) should be interpreted as \(p(D|A) \), not as the probability of obtaining that particular set of data \(D \). Usually, the best we can hope for is that inference based upon the posterior is robust (i.e., fairly insensitive) to the choice of prior.

In this section, we give brief descriptions of two popular techniques for estimating the parameters \(\omega \) in an ANN: Laplace’s method for deriving maximum \(\text{à posteriori} \) (MAP) estimates (MacKay, 1991) and Markov chain Monte Carlo (MCMC) methods (Neal, 1996). Exact analytical Bayesian computations are infeasible for neural networks, and so approximations offer the only way of obtaining a solution in practice.

10.12.1 Laplace’s Method

Predictions can be obtained by calculating the maximum (i.e., mode) of the posterior distribution (MAP estimation). As such, it is the Bayesian equivalent of maximum likelihood. In our discussion of this technique, we consider models for regression and classification networks separately.

Regression Networks

Suppose the output \(Y \) corresponding to input \(X = x \) is generated by a Gaussian distribution with mean \(y(x, \omega) \) and known variance \(\sigma^2 \). Then, assuming that \(\{Y_i\} \) are iid copies of \(Y \), the likelihood function, \(L_D(\omega) \), of the parameters given the data is given by

\[L_D(\omega) = p(D|\omega) = \frac{e^{-\kappa E_D(\omega)}}{c_D(\kappa)}, \quad (10.62) \]

where

\[E_D(\omega) = \frac{1}{2} \sum_{i=1}^{n} (y_i - y(x_i, \omega))^2 \quad (10.63) \]

is the error sum-of-squares, \(\kappa = 1/\sigma^2 \) is a (known) hyperparameter,

\[c_D(\kappa) = \int e^{-\kappa E_D(\omega)}dD = (2\pi/\kappa)^{n/2} \quad (10.64) \]
is the normalization factor, and \(\int dD = \int dy_1 \cdots dy_n \).

We take the prior distribution over the parameters to be the Gaussian density,

\[
p(\omega) = \frac{e^{-\lambda E_Q(\omega)}}{c_Q(\lambda)}, \tag{10.65}
\]

where

\[
E_Q(\omega) = \frac{1}{2} \| \omega \|^2 = \frac{1}{2} \sum_{q=1}^{Q} \omega_q^2, \tag{10.66}
\]

\(\omega_q \) is equal to \(\alpha_{jk}, \beta_{ij}, \alpha_{0k}, \) or \(\beta_{0j} \) as appropriate, \(\lambda \) is a hyperparameter (which we assume to be known), and \(c_Q(\lambda) = (2\pi/\lambda)^{Q/2} \) is the normalization factor. We note that other types of priors for ANN modeling have been used; these include the Laplacian prior (i.e., (10.65) with \(E_Q(\omega) = \sum_q |w_q| \)) and entropy-based priors (Buntine and Weigend, 1991).

Multiplying (10.62) by (10.65) and using (10.61), we get the posterior distribution of the parameters,

\[
p(\omega|D) = \frac{e^{-S(\omega)}}{c_S(\lambda, \kappa)}, \tag{10.67}
\]

where

\[
S(\omega) = \kappa E_D(\omega) + \lambda E_Q(\omega)
= \kappa \sum_{i=1}^{n} (y_i - y(x_i, \omega))^2 + \lambda \sum_{q=1}^{Q} \omega_q^2 \tag{10.68}
\]

and the normalization factor, \(c_S(\lambda, \kappa) = \int e^{-S(\omega)} d\omega \), is an integration that cannot be evaluated explicitly. To find the maximum of the posterior distribution, we can minimize \(-\log p(\omega|D) \) wrt \(\omega \). Because \(c_S \) is independent of \(\omega \), it suffices to minimize \(S(\omega) \). The value of \(\omega \) that maximizes the posterior probability \(p(\omega|D) \) (or, equivalently, minimizes \(S(\omega) \)) is regarded as the most probable value of \(\omega \) and is denoted by the MAP estimate \(\omega_{\text{MP}} \). It can be found by an appropriate gradient-based optimization algorithm. The network corresponding to the parameter values \(\omega_{\text{MP}} \) is referred to as the most-probable regression network.

From (10.68), we see that \(S(\omega) \) is a constant (\(\kappa \)) times the error sum-of-squares of learning-set predictions plus a complexity term composed of a weight-decay penalty and regularization parameter \(\lambda \). Because \(S(\omega) \) has a form very similar to (10.51) and (10.52), the MAP approach can be used to determine \(\lambda \) in the weight-decay penalty for network pruning. Some simple arguments lead to a suggested range of 0.001 to 0.1 for exploratory values of \(\lambda \) (Ripley, 1996, Section 5.5). It is for this reason that MAP estimation has
been characterized as “a form of maximum penalized likelihood estimation” (Neal, 1996, p. 6) rather than as a Bayesian method.

Rather than having to work with the form of the posterior density just derived, we can make the following useful approximation, known as *Laplace’s method* or approximation (Laplace, 1774/1986). Suppose that \(\omega_{\text{MP}} \) is the location of a mode of \(p(\omega|D) \). Consider the following Taylor-series expansion of \(S(\omega) \) around \(\omega_{\text{MP}} \):

\[
S(\omega) \approx S(\omega_{\text{MP}}) + \frac{1}{2}(\omega - \omega_{\text{MP}})^T A(\omega - \omega_{\text{MP}}),
\]

(10.69)

where \(A = \frac{\partial^2 S(\omega)}{\partial \omega^2} |_{\omega=\omega_{\text{MP}}} \) is the \((Q \times Q)\) Hessian matrix (assumed to be positive-definite) of second-order derivatives evaluated at \(\omega = \omega_{\text{MP}} \). Substituting (10.69) into the numerator of (10.67), we can approximate \(p(\omega|D) \) by

\[
\tilde{p}(\omega|D) = \frac{e^{-S(\omega_{\text{MP}})}}{c^*_S(\lambda)} e^{-\frac{1}{2} (\omega - \omega_{\text{MP}})^T A(\omega - \omega_{\text{MP}})},
\]

(10.70)

where \(\Delta \omega = \omega - \omega_{\text{MP}} \) and the denominator (i.e., the normalizing factor) is equal to

\[
c^*_S(\lambda) = (2\pi)^{Q/2} |A|^{-1/2} e^{-S(\omega_{\text{MP}})}.
\]

(10.71)

Thus, we can approximate \(p(\omega|D) \) by

\[
\tilde{p}(\omega|D) = (2\pi)^{-Q/2} |A|^{1/2} e^{-\frac{1}{2} (\omega - \omega_{\text{MP}})^T A(\omega - \omega_{\text{MP}})},
\]

(10.72)

which is the multivariate Gaussian density, \(N_Q(\omega_{\text{MP}}, A^{-1}) \), with mean vector \(\omega_{\text{MP}} \) and covariance matrix \(A^{-1} \). This approximation is reinforced by an asymptotic result that a posterior density converges (as \(n \to \infty \)) to a Gaussian density whose variance collapses to zero (Walker, 1969). Note that the Gaussian approximation \(\tilde{p}(\omega|D) \) is different from \(p(\omega_{\text{MP}}|D) \), the posterior density corresponding to the most-probable network.

For any new input vector \(x \), we can now write down an expression for the *predictive distribution* of a new output \(Y \) from a regression network using the learning data \(D \):

\[
p(y|x, D) = \int p(y|x, \omega)p(\omega|D) d\omega,
\]

(10.73)

where \(p(\omega|D) \) is the posterior density of the parameters derived above. This integral cannot be computed because of all the nonlinearties involved in the network.

To overcome this impass, we use the Gaussian approximation (10.72) to the posterior and assume that \(p(y|x, D) \) is a univariate Gaussian density with mean \(y(x, \omega) \) and variance \(1/\nu \). Then, (10.73) is approximated by

\[
\tilde{p}(y|x, D) \propto \int e^{-\frac{1}{2} (y - y(x, \omega))^2 - \frac{1}{2} (\omega - \omega_{\text{MP}})^T A(\omega - \omega_{\text{MP}})} d\omega.
\]

(10.74)
We next assume that $y(x, \omega)$ can be approximated by a Taylor-series expansion around ω_{MP},

$$y(x, \omega) \approx y(x, \omega_{MP}) + g^T \Delta \omega,$$

(10.75)

where $g = \partial y / \partial \omega|_{\omega_{MP}}$ is the gradient. Set $y_{MP} = y(x, \omega_{MP})$. Substituting (10.75) into (10.74) and evaluating the resulting integral, we find that $p(y|x, D)$ can be approximated by the Gaussian density,

$$\tilde{p}(y|x, D) = \frac{1}{(2\pi \sigma_y^2)^{1/2}} e^{-(y-y_{MP})^2/2\sigma_y^2},$$

(10.76)

with mean y_{MP} and variance $\sigma_y^2 = \frac{1}{\nu} + g^T A^{-1} g$ (see Exercise 10.10). This result can be used to derive approximate confidence bounds on the most-probable output y_{MP}.

So far, we have assumed the hyperparameters κ and λ are known. But, in practice, this is a highly unlikely scenario. In a fully hierarchical-Bayesian approach to this problem, we would incorporate the hyperparameters into the model and then integrate over all parameters and hyperparameters. However, such integrations are not possible analytically, and so another approach has to be taken.

To deal with unknown κ and λ within a Bayesian framework, two different approaches to this problem have been proposed: (1) integrating out the hyperparameters analytically and then using numerical methods to estimate the most-probable parameter values (Buntine and Weigend, 1991); (2) estimating the hyperparameter values by maximizing something called “evidence” (MacKay, 1992a). These two approaches have attracted a certain amount of controversy (see, e.g., Wolpert, 1993; MacKay, 1994).

Analytically integrating out the hyperparameters. The first method involves supplying prior densities for the hyperparameters, then integrating them out (a method called *marginalization*), and finally applying numerical methods to determine ω_{MP}. Thus, we can write

$$p(\omega|D) = \int \int p(\omega, \kappa, \lambda|D) dkd\lambda$$

$$= \int \int p(\omega|\kappa, \lambda, D)p(\kappa, \lambda|D) dkd\lambda.$$

(10.77)

Now, we use Bayes’s theorem for each term in the integrand: $p(\omega|\kappa, \lambda, D) = p(D|\omega, \kappa, \lambda)p(\omega|\kappa, \lambda)/p(D|\kappa, \lambda) = p(D|\omega, \kappa)p(\omega|\lambda)/p(D|\kappa, \lambda)$, because the likelihood does not depend upon λ and the prior does not depend upon κ; similarly, $p(\kappa, \lambda|D) = p(D|\kappa, \lambda)p(\kappa, \lambda)/p(D) = p(D|\kappa)p(\kappa|\lambda)/p(D)$, where we have assumed that the two hyperparameters, κ and λ, are distributed independently of each other. We take these (improper) priors to be defined over $(0, \infty)$ as $p(\kappa) = 1/\kappa$ and $p(\lambda) = 1/\lambda$. The integral (10.77)
reduces to
\[
p(\omega|D) = \frac{1}{p(D)} \int \int p(D, \omega, \kappa) p(\omega|\lambda) p(\kappa) p(\lambda) d\kappa d\lambda. \tag{10.78}
\]
This integral can be divided up into the product of two integrals and re-expressed as (10.61). Here,
\[
p(\omega) = \int p(\omega|\lambda) p(\lambda) d\lambda
= \int \frac{e^{-\lambda E_Q(\omega)}}{c_Q(\lambda)} \frac{1}{\lambda} d\lambda
= \pi^{-Q/2} \int \lambda^{Q/2-1} e^{-\lambda E_Q(\omega)} d\lambda. \tag{10.79}
\]
Using the value of a gamma integral (see, e.g., Casella and Berger, 1990, p. 100), we have that (10.79) reduces to
\[
p(\omega) = \frac{\Gamma(Q/2)}{(\pi E_Q(\omega))^{Q/2}}. \tag{10.80}
\]
Similarly, we obtain
\[
p(D|\omega) = \int p(D|\omega, \kappa) p(\kappa) d\kappa = \frac{\Gamma(n/2)}{(\pi E_D(\omega))^{n/2}}. \tag{10.81}
\]
Multiplying (10.80) and (10.81) to get the posterior density, taking the negative logarithm of the result, and simplifying, we get
\[
-\log_e p(\omega|D) = \frac{n}{2} \log_e E_D(\omega) + \frac{Q}{2} \log_e E_Q(\omega) + \text{constant}, \tag{10.82}
\]
where the constant does not depend upon \(\omega\). We differentiate (10.82) wrt \(\omega\),
\[
\frac{d}{d\omega} \{-\log_e p(\omega|D)\} = \kappa \frac{d}{d\omega} \{E_D(\omega)\} + \lambda \frac{d}{d\omega} \{E_Q(\omega)\}, \tag{10.83}
\]
to find its minimum, where
\[
\kappa = n/2E_D(\omega), \quad \lambda = Q/2E_Q(\omega). \tag{10.84}
\]
This result is next used in a nonlinear optimization algorithm in which the values of \(\kappa\) and \(\lambda\) are sequentially updated to find the most-probable parameters \(\omega_{MP}\), and then a multivariate Gaussian approximation to the posterior density is obtained centered around \(\omega_{MP}\).

Maximizing the evidence. Another method for dealing with unknown \(\kappa\) and \(\lambda\) is to maximize the “evidence” of the model, \(p(D|\kappa, \lambda)\), which can be
expressed as

\[
p(D|\kappa, \lambda) = \int p(D|\omega, \kappa, \lambda)p(\omega|\kappa, \lambda)d\omega
\]

\[
= \int p(D|\omega, \kappa)p(\omega|\lambda)d\omega
\]

\[
= (c_D(\kappa)c_Q(\lambda))^{-1}\int e^{-S(\omega)}d\omega
\]

\[
= \frac{c_S(\kappa, \lambda)}{c_D(\kappa)c_Q(\lambda)}
\]

(10.85)

where \(S(\omega)\) is given by (10.68). As usual, it is easier to maximize the logarithm of (10.85),

\[
\log_e p(D|\kappa, \lambda) = -\kappa E_D(\omega_{MP}) - \lambda E_Q(\omega_{MP}) - \frac{1}{2} \log_e |A| + \frac{n}{2} \log_e(\kappa) + \frac{Q}{2} \log_e(\lambda) - \frac{Q}{2} \log_e(2\pi).
\]

(10.86)

We maximize this expression in two steps: first, fix \(\kappa\) and differentiate (10.86) wrt \(\lambda\), set the result to zero, and solve for a maximum; next, fix \(\lambda\) and differentiate (10.86) wrt \(\kappa\), set the result equal to zero, and solve for a maximum. These manipulations yield the following formulas (MacKay, 1992b):

\[
\lambda^* = \frac{\gamma}{2E_Q(\omega_{MP})}
\]

(10.87)

\[
\kappa^* = \frac{n - \gamma}{2E_D(\omega_{MP})},
\]

(10.88)

where

\[
\gamma = \sum_{q=1}^{Q} \frac{\eta_q}{\eta_q + \lambda^*},
\]

(10.89)

and the \(\{\eta_q\}\) are the eigenvalues of \(A^{-1}\).

Thus, we set initial values for \(\kappa^*\) and \(\lambda^*\) by sampling from their respective prior densities and determine \(\omega_{MP}\) by applying a suitable nonlinear optimization algorithm to \(S(\omega)\); during the progress of these iterations, the values of \(\kappa^*\) and \(\lambda^*\) are sequentially updated using (10.87)–(10.89): an initial \(\lambda_0^*\) gives a \(\gamma_0\) using (10.86), which yields \(\lambda_1^*\) from (10.86) and \(\kappa_1^*\) from (10.88); the new \(\lambda_1^*\) is fed back into (10.89) to provide a new \(\gamma_1\), which, in turn, gives \(\lambda_2^*\) and \(\kappa_2^*\), and so on. These steps in the algorithm should be repeated a large number of times each time using different initial values for the parameter vector \(\omega\).

We note that this computational technique of dealing with hyperparameters is equivalent to the empirical Bayes (Carlin and Louis, 2000, Chapter 3)
or type II maximum-likelihood (ML-II) approach to prior selection (Berger, 1985, Section 3.5.4).

Multiple modes. A major problem in practice, however, is that it is not generally realistic to assume that the posterior density has only a single mode. From experience of fitting Bayesian models to nonlinear networks, we find it more reasonable to assume that there will be multiple local maxima of the posterior density (see, e.g., Ripley, 1994a, p. 452, who, in a particular example, found at least 22 distinct local modes). As usual in such situations, one should try to identify as many of the distinct local maxima as possible by running the optimization algorithm using a large number of randomly chosen starting points for the parameters.

A potentially better modeling strategy for multiple modes is to use an approximation to the posterior based upon a mixture of multivariate Gaussian densities, where the component densities are assumed to have minimal overlap; each component density is centered at a different local mode of the posterior \(p(\omega|D) \), and the inverse of its covariance matrix is matched to the Hessian of the logarithm of the posterior density at the mode (MacKay, 1992a). Although some work has been carried out on Gaussian mixture models for neural networks (see, e.g., Buntine and Weigend, 1991; Ripley, 1994b), more research is needed on this topic.

Classification Networks

If the problem involves classifying data into one of two classes, \(\Pi_1 \) or \(\Pi_2 \), then the output variable \(Y \) is binary, taking on the value 1 (for \(\Pi_1 \)) or 0 (for \(\Pi_2 \)). The network output \(y(x, \omega) = p(Y = 1|x, \omega) \) is the conditional probability that the particular input vector \(X = x \) is a member of \(\Pi_1 \).

The probability that \(Y_i = 1 \) is

\[
p(Y_i = 1|x_i, \omega) = (y(x_i, \omega))^{y_i} (1 - y(x_i, \omega))^{1-y_i}.
\]

The likelihood function of the parameters \(\omega \) (given the data \(D \)) is

\[
p(D|\omega) = \prod_{i=1}^{n} p(Y_i = 1|x_i, \omega) = e^{-\ell_D(\omega)},
\]

where

\[
\ell_D(\omega) = -\sum_{i=1}^{n} \{y_i \log_e y(x_i, \omega) + (1 - y_i) \log_e (1 - y(x_i, \omega))\}
\]

is the negative log-likelihood function. Again, the network’s architecture \(\mathcal{A} \) is assumed to be given. Note that, compared to (10.62) for regression networks, (10.91) has neither a hyperparameter \(\kappa \) nor a denominator \(c_D(\kappa) \).
For a prior on the parameters, we use the Gaussian density (10.65), which is proportional to $e^{-\lambda E_Q(\omega)}$.

Assuming the $\{Y_i\}$ are iid copies of Y, the posterior density (10.61) is

$$p(\omega|D) = \frac{e^{-S(\omega)}}{c_S(\lambda)}, \quad (10.93)$$

where

$$S(\omega) = \ell_D(\omega) + \lambda E_Q(\omega), \quad (10.94)$$

λ is, again, the regularization parameter (also known as a weight-decay regularizer), and $c_S(\lambda)$ is the normalization factor. Finding ω to maximize the posterior distribution is equivalent to minimizing $S(\omega)$. The value of ω that maximizes the posterior distribution is denoted by ω_{MP}.

We can now find the probability that the input vector, $\mathbf{X} = \mathbf{x}$, is a member of class Π_1 (i.e., $Y = 1$). MacKay (1992b) suggests that if $f(\cdot)$ is one of the activation functions in Table 10.1 and $u = u(\mathbf{x}, \omega)$, then,

$$p(Y = 1|\mathbf{x}, D) = \int p(Y = 1|u)p(u|\mathbf{x}, D)du = \int f(u)p(u|\mathbf{x}, D)du \quad (10.95)$$

provides a better estimate of the class probability than $y(\mathbf{x}, \omega_{MP})$. To evaluate this integral, MacKay first expands u in a Taylor series,

$$u(\mathbf{x}, \omega) \approx u(\mathbf{x}, \omega_{MP}) + \mathbf{g}(\mathbf{x})^T \Delta \omega, \quad (10.96)$$

where $\mathbf{g}(\mathbf{x}) = \partial u(\mathbf{x}, \omega)/\partial \omega|_{\omega_{MP}}$ and $\Delta \omega = \omega - \omega_{MP}$. Thus,

$$p(u|\mathbf{x}, D) = \int p(u|\mathbf{x}, \omega)p(\omega|D)d\omega = \int \delta(u - u_{MP} - \mathbf{g}(\mathbf{x})^T \Delta \omega)p(\omega|D)d\omega, \quad (10.97)$$

where $u_{MP} = u(\mathbf{x}, \omega_{MP})$ and δ is the Dirac delta-function. This result implies that if we use Laplace’s method and approximate the posterior density $p(\omega|D)$ in (10.93) by the multivariate Gaussian density,

$$\tilde{p}(\omega|D) \propto e^{-\frac{1}{2} \Delta \omega^T A \Delta \omega}, \quad (10.98)$$

where A is the (local) Hessian matrix, then, u is Gaussian,

$$p(u|\mathbf{x}, D) \propto e^{-(u - u_{MP})^2/2\nu^2}, \quad (10.99)$$

with mean u_{MP} and variance

$$\nu^2 = \mathbf{g}(\mathbf{x})^T A^{-1} \mathbf{g}(\mathbf{x}). \quad (10.100)$$
When \(f \) is sigmoidal and \(p(u|x, D) \) is Gaussian, the integral (10.95) does not have an analytic solution. MacKay (1992b) suggests the following simple approximation for (10.95):

\[
\bar{p}(Y = 1|x, D) = f(\alpha(\nu)u_{MP}),
\]

(10.101)

where \(\alpha(\nu) = (1 + (\pi\nu^2/8))^{-1/2} \). Note that the probability (10.101) is not the same as \(y(x, \omega_{MP}) \).

10.12.2 Markov Chain Monte Carlo Methods

As we have seen, the main computational difficulty in applying Bayesian methods involves the evaluation of complicated high-dimensional integrals. For example, the predictive distribution of the output value \(Y^* \) of a new test case \((X^*, Y^*)\), given the learning data, \(\mathcal{L} = \{(X_1, Y_1), \ldots, (X_n, Y_n)\} \), is given by

\[
p(y^*|x^*, \mathcal{L}) = \int p(y^*|x^*, \omega)p(\omega|\mathcal{L})d\omega.
\]

(10.102)

If we are to estimate \(Y^* \) in a regression model using squared-error as our loss function, then, the best predictor is the expectation of the predictive distribution (10.102),

\[
E\{Y^*|x^*, \mathcal{L}\} = \int p(x^*, \omega)p(\omega|\mathcal{L})d\omega.
\]

(10.103)

Problems of approximating the posterior density or its expectation have been summarized well by Neal (1996, Section 1.2).

A recent popular and highly successful addition to the Bayesian’s toolkit is a method known as Markov chain Monte Carlo (MCMC), which is actually a collection of related computational techniques designed for simulating from nonstandard multivariate distributions (see, e.g., Gilks, Richardson, and Spiegelhalter, 1996; Robert and Casella, 1999). It was proposed as a method for estimating the predictive distributions of regression and classification network parameters and their expectations by Neal (1996).

The essential idea behind MCMC is to approximate the desired integration by simulating from the joint probability distribution of all the model parameters and hyperparameters. Thus, we, first, use a Monte Carlo method to draw a sample of \(B \) values, \(\omega^{(1)}, \ldots, \omega^{(B)} \), from the predictive density (10.99), where \(\omega \) now includes all weights, biases, and hyperparameters; then, we approximate the expectation (10.103) by

\[
\hat{y}^* = \frac{1}{B} \sum_{b=1}^{B} p(x^*, \omega^{(b)}).
\]

(10.104)

When the predictive density is complicated, as it is in nonlinear neural network applications, then the sequence of generated values, \(\{\omega^{(b)}\} \), has to be viewed as a dependent sequence.
One way of generating such a dependent sequence is by using an ergodic Markov chain with stationary distribution \(P = p(\mathbf{x}, \omega) \). A Markov chain is defined on a sequence of states, \(\omega^{(b)} \), by an initial distribution for the startup state, \(\omega^{(0)} \), of the chain and a set of transition probabilities, \(\{Q(\omega^{(b)}|\omega^{(b-1)})\} \), for a future state, \(\omega^{(b)} \), to succeed the current state, \(\omega^{(b-1)} \). The distribution \(P \) is called stationary (or invariant) if it remains the same for all states in the sequence that follow the \(b \)th state. If a stationary distribution \(P \) exists and is unique, then the Markov chain is called ergodic and its stationary distribution \(P \) is known as the equilibrium distribution. If we can find an ergodic Markov chain that has equilibrium distribution \(P \), then it does not matter from which initial state we start the chain, convergence of the sequence will always be to \(P \). In such a case, we can estimate (10.103) wrt \(P \) by using (10.104).

Because the members of the sequence \(\{\omega^{(b)}\} \) are dependent, we need a much larger value of \(B \) than if the sequence consisted of independent values. At the beginning, the iterates will look like the starting values, \(\omega^{(0)} \), and then, after a long time, the Markov chain will settle down. To take this into account, the first \(B_0 \) iterates are considered as the “burn-in” period; these values are discarded as not resembling the equilibrium distribution \(P \), and only the subsequent \(B - B_0 \) values are regarded as essentially independent observations from \(P \) to be used for predictive purposes.

The two most popular methods for MCMC are Gibbs sampling and the Metropolis algorithm. Both (and variations of those themes) have been used extensively in mathematical physics, chemistry, biology, statistics, and image restoration.

The Gibbs sampler (Geman and Geman, 1984) can be applied when sampling from any distribution defined by a vector, \(\omega = (\omega_1, \ldots, \omega_Q)^\tau \), \(Q \geq 2 \), of parameters. Considering these parameters as random variables, we assume that all one-dimensional conditional distributions of the form \(p(\omega_q|\{\omega_i, i \neq q\}), q = 1, 2, \ldots, Q \), are available to be sampled. The entire set of these conditional distributions is (under mild conditions) sufficient to determine the joint distribution and all its margins. Given a vector of starting values \(\omega^{(0)} \), we define a Markov chain by generating \(\omega^{(b)} \) from \(\omega^{(b-1)} \) according to the algorithm in Table 10.3, where we use notation from Besag, Green, Higdon, and Mengersen (1995). This process generates a sequence (or trajectory) of the chain, \(\omega^{(0)}, \omega^{(1)}, \ldots, \omega^{(b)}, \ldots \), and, as \(b \) gets larger and larger (after a long enough “burn-in” period), the vector \(\omega^{(b)} \) becomes approximately distributed as the desired \(P \).

The Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, 1953) introduces a candidate or proposal density, \(f \), whose form depends upon the current state; one generates a candidate state, \(\omega^* \), from \(f \), and then decides whether or not to “accept” that candidate state. If the candidate state is accepted, it becomes the next state in the Markov chain; otherwise, it remains at the current state. See Table 10.4. The iterative
TABLE 10.3. The Gibbs sampler.

1. Let $\omega_1^{(0)}, \ldots, \omega_Q^{(0)}$ be starting values. Define

$$\omega_{-q} = \{\omega_j, j \neq q\} = \{\omega_1, \omega_2, \ldots, \omega_{q-1}, \omega_{q+1}, \ldots, \omega_Q\}.$$

2. For $b = 1, 2, \ldots$:

 draw $\omega_q^{(b)} \sim p_q(\omega_q | \omega_{-q}^{(b-1)})$, $q = 1, 2, \ldots, Q$.

3. Continue the 2nd step until the joint distribution of $\omega_1^{(b)}, \ldots, \omega_Q^{(b)}$ stabilizes.

process moves from the current state, $\omega^{(b-1)}$, to the next state, $\omega^{(b)}$, corresponding to a higher-density region of $p(\omega | \mathcal{L})$, whereas it rejects a percentage of those steps that move to lower-density regions of $p(\omega | \mathcal{L})$. Note that the candidate densities may change from step to step; typically, the candidate density f is selected to be a member of a family of distributions, such as Gaussian densities centered at $\omega^{(b-1)}$.

Unfortunately, neither the Gibbs sampler nor the Metropolis algorithm are recommended for sampling from the posterior distribution of a neural network model. Because of the huge numbers of parameters involved and the nonlinearity of the model, such MCMC procedures are either computationally infeasible or are very slow for this type of application.

TABLE 10.4. The Metropolis algorithm.

1. Let $\omega^{(0)}$ be starting values. Let $p(\omega | \mathcal{L})$ be the joint posterior density of ω.

2. For $b = 1, 2, \ldots$:

 (i) Draw a candidate state, ω^*, from a proposal density f, which depends upon the current state; i.e., $\omega^* \sim f(\cdot, \omega^{(b-1)})$.

 (ii) Compute the ratio $r = p(\omega^* | \mathcal{L}) / p(\omega^{(b-1)} | \mathcal{L})$.

 (iii) (a) If $r \geq 1$, accept the candidate state and set $\omega^{(b)} = \omega^*$.

 (b) Otherwise, accept the candidate state with probability r or reject it with probability $1 - r$. If the candidate state is rejected, set $\omega^{(b)} = \omega^{(b-1)}$.

3. Continue the 2nd step until the joint distribution of $\omega^{(b)}$ stabilizes.
To overcome these difficulties, Neal (1996, Chapter 3) successfully implemented a combination procedure based upon the hybrid Monte Carlo algorithm of Duane, Kennedy, Pendleton, and Roweth (1987). Neal’s procedure separates the hyperparameters from the network parameters (i.e., weights and biases) and alternates their updates: the Gibbs sampler is used for updating the hyperparameters, and the hybrid Monte Carlo algorithm, an elaborate version of the Metropolis algorithm, is used to update the network parameters.

10.13 Software Packages

S-Plus and R (Venables and Ripley, 2002, Sections 8.8–8.10) have commands to carry out neural networks (nnet), projection pursuit regression (ppr), and generalized additive models (gam). MATLAB has a Neural Network Toolbox with tools for designing, implementing, visualizing, and simulating neural networks. WEKA (Waikato Environment for Knowledge Analysis) is a collection of open-source machine-learning algorithms for data-mining tasks, including neural network modeling, from the University of Waikato, Hamilton, New Zealand (Witten and Frank, 2005). WEKA is downloadable from www.cs.waikato.ac.nz/ml/weka.

Gibbs sampling can be used to simulate from almost any probability model through BUGS (Bayesian inference Using Gibbs Sampling), WinBUGS, and OPENBUGS software, which is downloadable from www.mrc-bsu.cam.ac.uk/bugs/.

OPENBUGS can be run from R in Windows.

Bibliographical Notes

Groundbreaking work on the neural biology of the brain appeared in the book Hebb (1949), which was reprinted in 2002 with additional material. The historical remarks in this chapter about Hebb were adapted from Milner (1993), the edited volume by Jusczyk and Klein (1980), and the excellent individual articles by Sejnowski, Milner, Kolb, Tees, and Hinton in the February 2003 issue of Canadian Psychology. Also highly recommended is the fascinating book by Calvin and Ojemann (1994), who use conversations between an epileptic patient and his surgeon to carry out a learning tour of the cerebral cortex.

The universal approximation theorem derives from the work of Kolmogorov (1957), Sprecher (1965), and others, who showed that a continuous function could have an exact representation in terms of the superposition of a few functions of one variable. Dissatisfaction with these representations for motivating neural networks led to a variety of approximation results (e.g., Cybenko, 1989; Funahashi, 1989; Hornick, Stinchcombe, and White, 1989).

The backpropagation algorithm (also referred to as the generalized delta rule) was independently discovered by several researchers at the same time. Werbos (1974) had published the basic idea of backpropagation for general networks in his doctoral dissertation, which was written during the “quiet” period of neural networks. As fate would have it, the idea lay dormant until the mid-1980s when Parker (1985) and LeCun (1985) independently rediscovered versions of the algorithm. The paper by Rumelhart, Hinton, and Williams (1986) and an expanded version, Rumelhart and McClelland (1986a), enabled the algorithm to be given wide attention. An excellent discussion of the backpropagation algorithm from the point of view of a graph-labeling problem is given by Rojas (1996, Chapter 7).

The paper by Huber (1985) and the discussion following give an excellent description of PPR and its advantages and disadvantages. Additive models and generalized additive models are described in detail in the monograph by Hastie and Tibshirani (1990). A Bayesian backfitting algorithm for fitting additive models is given by Hastie and Tibshirani (2000).

An excellent reference to Laplace’s method is Tierney and Kadane (1986), who showed how it could be used to approximate posterior expectations and, therefore, how important the method is for Bayesian computation. See also Kass, Tierney, and Kadane (1988), Bernardo and Smith (1994, Section 5.5.1), and Carlin and Louis (2000, Section 5.2.2).

and February 2004 issues of Statistical Science. The Gibbs sampler was first used as an MCMC method by Geman and Geman (1984) in the context of image restoration. Its introduction to the statistical community is due to Gelfand and Smith (1990), who broadened its appeal considerably.

The field of neural networks is now regarded by many as part of a larger field known as softcomputing (due to L.A. Zadeh), which includes such topics as fuzzy logic (e.g., computing with words), evolutionary computing (e.g., genetic algorithms), probabilistic computing (e.g., Bayesian learning, statistical reasoning, belief networks), and neurocomputing. The primary goal of soft computing is to create a new AI that will reflect the workings of the human mind. According to Zadeh, this is to be accomplished using computing tools and methods that exploit a tolerance for imprecision, uncertainty, partial truth, and approximation in order to achieve robustness and a low-cost solution.

Exercises

10.1 Let \(\phi(x) = a \tanh(bx) \) be the hyperbolic tangent activation function, where \(a \) and \(b \) are constants. Show that \(\phi(x) = 2a\psi(bx) - a \), where \(\psi(x) = (1 + e^{-x})^{-1} \) is the logistic activation function.

10.2 Show that the logistic function is symmetric, whereas the \(\tanh \) function is asymmetric.

10.3 Show that the Gaussian cumulative distribution function, \(\Phi(x) = (2\pi)^{-1/2} \int_{-\infty}^{x} e^{-u^2/2} du \), is a sigmoidal function.

10.4 Show that \(\psi(x) = (2/\pi) \tan^{-1}(x) \) is a sigmoidal function.

10.5 For \(r = 3 \) inputs, draw the hyperplane in the unit cube corresponding to the McCulloch–Pitts neuron for the logical OR function.

10.6 (The XOR Problem.) Consider four points, \((X_1, X_2) \), at the corners of the unit square: \((0, 0), (0, 1), (1, 0), (1, 1)\). Suppose that \((0, 0)\) and \((1, 1)\) are in class 1, whereas \((0, 1)\) and \((1, 0)\) are in class 2. The XOR problem is to construct a network that classifies the four points correctly. By setting \(Y = 1 \) to points in class 1 and \(Y = 0 \) to points in class 2 (or vice versa), show algebraically that a straight line cannot separate the two classes of points and, hence, that a perceptron with no hidden nodes is not an appropriate network for this problem.

10.7 (The XOR Problem, cont.) Consider a fully connected network with two input nodes \((X_1, X_2) \), two hidden nodes \((Z_1, Z_2) \), and a single output node \((Y) \). Let \(\beta_{11} = \beta_{12} = 1 \) be the connection weights from \(X_1 \) to \(Z_1 \) and \(Z_2 \), respectively; let \(\beta_{01} = 1.5 \) be the bias at hidden node 1; let \(\beta_{21} = \)
\(\beta_{22} = 1 \) be the connection weights from \(X_2 \) to \(Z_1 \) and \(Z_2 \), respectively; and let \(\beta_{02} = 0.5 \) be the bias at hidden node 2. Next, let \(\alpha_1 = -2 \) and \(\alpha_2 = 1 \) be the connection weights from \(Z_1 \) to \(Y \) and from \(Z_2 \) to \(Y \), respectively, with bias \(\alpha_0 = 0.5 \). Draw the network graph. Find the linear boundaries as defined by the two hidden nodes; in the unit square, draw the boundaries and identify which class, 0 or 1, corresponds to each region of the unit square. Show that this network solves the XOR problem. Find another solution to this problem using different weights and biases.

10.8 Write a computer program to carry out the backpropagation algorithm as detailed in Section 10.7.6 for the squared-error loss function, and then apply it to a classification data set of your choice.

10.9 Study the correspondences between a single hidden layer neural network (10.18) and a generalized additive model (10.54).

10.10 Prove that

\[
\int e^{-\frac{1}{2}z^T B z + h^T z} d z = (2\pi)^{Q/2} |B|^{-1/2} e^{\frac{1}{2}h^T B^{-1} h}.
\]

10.11 Prove (10.74). (Hint: Use Exercise 10.10 with \(z = \Delta \omega, B = A + \nu gg^T \), and \(h = -\nu (y - y_{MP}) g \). Then, multiply numerator and denominator by \(g^T (I + \nu A^{-1} gg^T) g \), and simplify.)

10.12 Use the logistic function as the sigmoid activation function \(g(\cdot) \) and a linear function \(f(\cdot) \) to derive the computational expressions for the backpropagation algorithm. Discuss the properties of this particular algorithm.

10.13 Use the cross-entropy loss function to derive the appropriate computational expressions for the backpropagation algorithm. Program the resulting algorithm, use it with a data set of your choice, and compare its output with that obtained from the squared-error loss function.

10.14 Construct a network diagram based upon the sine function that will approximate the function \(F(x) \) in (10.21) by \(\hat{F}(x) \) in (10.22).

10.15 Suppose we construct a neural network with no hidden layer, just input and output nodes. Let \(X_j \) be the \(j \)th input, \(j = 1, 2, \ldots, r \), and let \(Y = f(\beta_0 + X^T \beta) \) denote the output, where \(f(u) = (1 + e^{-u})^{-1} \), \(X = (X_1, \ldots, X_r)^T \), and \(\beta = (\beta_1, \ldots, \beta_r)^T \) is an \(r \)-vector of weights. Show that the decision boundary of this network is linear. If there are two input variables (i.e., \(r = 2 \)), draw the corresponding decision boundary.

10.16 Fit a neural network to the gilgaied soil data set from Section 8.6. How could the two-way format of the data be taken into account in a neural network model?
10.17 Fit a neural network to the Cleveland heart-disease data from Section 9.2.1. Compare results with that given by using a classification tree.

10.18 Fit a neural network to the Pima Indians diabetic data set pima from Section 9.2.4. Compare results with that given by using a classification tree.

10.19 Fit a regression neural network to the 1992 Major League Baseball Salaries data from Section 9.3.5. Compare results with that given by using a regression tree.

10.20 Write a computer program to implement projection pursuit regression and use it to fit the 1992 Major League Baseball Salaries data.

10.21 Consider a regression neural network in which the outputs are identical to the inputs. Generate input data from a suitable multivariate Gaussian distribution and use that same data as outputs. Fit a neural networks model to these data and comment on your results. What is the relationship between this network analysis and principal component analysis?

10.22 In the discussion of Bayesian neural networks (Section 10.12), the binary classification problem was addressed. Redo the section on Bayesian classification networks using Laplace’s approximation method so that now there are more than two classes.

10.23 Take any classification data set and divide it up into a learning set and an independent test set. Change the value of one observation on one input variable in the learning set so that that value is now a univariate outlier. Fit separate single-hidden-layer neural networks to the original learning-set data and to the learning-set data with the outlier. Comment on the effect of the outlier on the fit and on its effect on classifying the test set. Shrink the value of that outlier toward its original value and evaluate when the effect of the outlier on the fit vanishes. How far away must the outlier move from its original value that significant changes to the network coefficient estimates occur?
11
Support Vector Machines

11.1 Introduction

Fisher’s linear discriminant function (LDF) and related classifiers for binary and multiclass learning problems have performed well for many years and for many data sets. Recently, a brand-new learning methodology, \textit{support vector machines (SVMs)}, has emerged (Boser, Guyon, and Vapnik, 1992), which has matched the performance of the LDF and, in many instances, has proved to be superior to it.

Development and implementation of algorithms for SVMs are currently of great interest to theoretical researchers and applied scientists in machine learning, data mining, and bioinformatics. Huge numbers of research articles, tutorials, and textbooks have been published on the topic, and annual workshops, new research journals, courses, and websites are now devoted to the subject. SVMs have been successfully applied to classification problems as diverse as handwritten digit recognition, text categorization, cancer classification using microarray expression data, protein secondary-structure prediction, and cloud classification using satellite-radiance profiles.

SVMs, which are available in both linear and nonlinear versions, involve optimization of a convex loss function under given constraints and so are unaffected by problems of local minima. This gives SVMs quite a strong
competitive advantage over methods such as neural networks and decision trees. SVMs are computed using well-documented, general-purpose, mathematical programming algorithms, and their performance in many situations has been quite remarkable. Even in the face of massive data sets, extremely fast and efficient software is being designed to compute SVMs for classification.

By means of the new technology of kernel methods, SVMs have been very successful in building highly nonlinear classifiers. The kernel method enables us to construct linear classifiers in high-dimensional feature spaces that are nonlinearly related to input space and to carry out those computations in input space using very few parameters. SVMs have also been successful in dealing with situations in which there are many more variables than observations.

Although these advantages hold in general, we have to recognize that there will always be applications in which SVMs can get beaten in performance by a hand-crafted classification method.

In this chapter, we describe the linear and nonlinear SVM as solutions of the binary classification problem. The nonlinear SVM incorporates nonlinear transformations of the input vectors and uses the kernel trick to simplify computations. We describe a variety of kernels, including string kernels for text categorization problems. Although the SVM methodology was built specifically for binary classification, we discuss attempts to extend that methodology to multiclass classification. Finally, although the SVM methodology was originally designed to solve classification problems, we discuss how the SVM methodology has been defined for regression situations.

11.2 Linear Support Vector Machines

Assume we have available a learning set of data,

$$\mathcal{L} = \{(\mathbf{x}_i, y_i) : i = 1, 2, \ldots, n\}, \quad (11.1)$$

where $\mathbf{x}_i \in \mathbb{R}^r$ and $y_i \in \{-1, +1\}$. The binary classification problem is to use \mathcal{L} to construct a function $f : \mathbb{R}^r \to \mathbb{R}$ so that

$$C(\mathbf{x}) = \text{sign}(f(\mathbf{x})) \quad (11.2)$$

is a classifier. The separating function f then classifies each new point \mathbf{x} in a test set \mathcal{T} into one of two classes, Π_+ or Π_-, depending upon whether $C(\mathbf{x})$ is +1 (if $f(\mathbf{x}) \geq 0$) or −1 (if $f(\mathbf{x}) < 0$), respectively. The goal is to have f assign all positive points in \mathcal{T} (i.e., those with $y = +1$) to Π_+ and
all negative points in $T (y = -1)$ to Π_-. In practice, we recognize that 100% correct classification may not be possible.

11.2.1 The Linearly Separable Case

First, consider the simplest situation: suppose the positive ($y_i = +1$) and negative ($y_i = -1$) data points from the learning set \mathcal{L} can be separated by a hyperplane,

$$\{x : f(x) = \beta_0 + x^T \beta = 0\}, \quad (11.3)$$

where β is the weight vector with Euclidean norm $\| \beta \|$, and β_0 is the bias. (Note: $b = -\beta_0$ is the threshold.) If this hyperplane can separate the learning set into the two given classes without error, the hyperplane is termed a separating hyperplane. Clearly, there is an infinite number of such separating hyperplanes. How do we determine which one is the best?

Consider any separating hyperplane. Let d_- be the shortest distance from the separating hyperplane to the nearest negative data point, and let d_+ be the shortest distance from the same hyperplane to the nearest positive data point. Then, the margin of the separating hyperplane is defined as

$$d = d_- + d_+.$$

If, in addition, the distance between the hyperplane and its closest observation is maximized, we say that the hyperplane is an optimal separating hyperplane (also known as a maximal margin classifier).

If the learning data from the two classes are linearly separable, there exists β_0 and β such that

$$\beta_0 + x_i^T \beta \geq +1, \quad \text{if } y_i = +1, \quad (11.4)$$

$$\beta_0 + x_i^T \beta \leq -1, \quad \text{if } y_i = -1. \quad (11.5)$$

If there are data vectors in \mathcal{L} such that equality holds in (11.4), then these data vectors lie on the hyperplane H_{+1}: $(\beta_0 - 1) + x^T \beta = 0$; similarly, if there are data vectors in \mathcal{L} such that equality holds in (11.5), then these data vectors lie on the hyperplane H_{-1}: $(\beta_0 + 1) + x^T \beta = 0$. Points in \mathcal{L} that lie on either one of the hyperplanes H_{-1} or H_{+1}, are said to be support vectors. See Figure 11.1. The support vectors typically consist of a small percentage of the total number of sample points.

If x_{-1} lies on the hyperplane H_{-1}, and if x_{+1} lies on the hyperplane H_{+1}, then,

$$\beta_0 + x_{-1}^T \beta = -1, \quad \beta_0 + x_{+1}^T \beta = +1. \quad (11.6)$$

The difference of these two equations is $x_{+1}^T \beta - x_{-1}^T \beta = 2$, and their sum is $\beta_0 = -\frac{1}{2} (x_{+1}^T \beta + x_{-1}^T \beta)$. The perpendicular distances of the hyperplane $\beta_0 + x^T \beta = 0$ from the points x_{-1} and x_{+1} are

$$d_- = \frac{|\beta_0 + x_{-1}^T \beta|}{\| \beta \|} = \frac{1}{\| \beta \|}, \quad d_+ = \frac{|\beta_0 + x_{+1}^T \beta|}{\| \beta \|} = \frac{1}{\| \beta \|}, \quad (11.7)$$
FIGURE 11.1. Support vector machines: the linearly separable case. The red points correspond to data points with \(y_i = -1 \), and the blue points correspond to data points with \(y_i = +1 \). The separating hyperplane is the line \(\beta_0 + \mathbf{x}^T \beta = 0 \). The support vectors are those points lying on the hyperplanes \(H_{-1} \) and \(H_{+1} \). The margin of the separating hyperplane is \(d = 2/\| \beta \| \).

respectively (see Exercise 11.1). So, the margin of the separating hyperplane is \(d = 2/\| \beta \| \).

The inequalities (11.4) and (11.5) can be combined into a single set of inequalities,

\[
y_i(\beta_0 + \mathbf{x}_i^T \beta) \geq +1, \quad i = 1, 2, \ldots, n. \tag{11.8}
\]

The quantity \(y_i(\beta_0 + \mathbf{x}_i^T \beta) \) is called the margin of \((\mathbf{x}_i, y_i) \) with respect to the hyperplane (11.3), \(i = 1, 2, \ldots, n \). From (11.6), we see that \(\mathbf{x}_i \) is a support vector with respect to the hyperplane (11.3) if its margin equals one; that is, if

\[
y_i(\beta_0 + \mathbf{x}_i^T \beta) = 1. \tag{11.9}
\]

The support vectors in Figure 11.1 are identified (with circles around them). The empirical distribution of the margins of all the observations in \(\mathcal{L} \) is called the margin distribution of a hyperplane with respect to \(\mathcal{L} \). The minimum of the empirical margin distribution is the margin of the hyperplane with respect to \(\mathcal{L} \).

The problem is to find the optimal separating hyperplane; namely, find the hyperplane that maximizes the margin, \(2/\| \beta \| \), subject to the conditions (11.8). Equivalently, we wish to find \(\beta_0 \) and \(\beta \) to

\[
\text{minimize} \quad \frac{1}{2} \| \beta \|^2, \tag{11.10}
\]

subject to

\[
y_i(\beta_0 + \mathbf{x}_i^T \beta) \geq 1, \quad i = 1, 2, \ldots, n. \tag{11.11}
\]
This is a convex optimization problem: minimize a quadratic function subject to linear inequality constraints. Convexity ensures that we have a global minimum without local minima. The resulting optimal separating hyperplane is called the maximal (or hard) margin solution.

We solve this problem using Lagrangian multipliers. Because the constraints are \(y_i (\beta_0 + \mathbf{x}_i^T \beta) - 1 \geq 0 \), \(i = 1, 2, \ldots, n \), we multiply the constraints by positive Lagrangian multipliers and subtract each such product from the objective function (11.10) to form the primal functional,

\[
F_P(\beta_0, \beta, \alpha) = \frac{1}{2} \| \beta \|^2 - \sum_{i=1}^{n} \alpha_i \{y_i(\beta_0 + \mathbf{x}_i^T \beta) - 1\},
\]

where

\[
\alpha = (\alpha_1, \cdots, \alpha_n)^T \geq \mathbf{0}
\]

is the \(n \)-vector of (nonnegative) Lagrangian coefficients. We need to minimize \(F \) with respect to the primal variables \(\beta_0 \) and \(\beta \), and then maximize the resulting minimum-\(F \) with respect to the dual variables \(\alpha \).

The Karush–Kuhn–Tucker conditions give necessary and sufficient conditions for a solution to a constrained optimization problem. For our primal problem, \(\beta_0 \), \(\beta \), and \(\alpha \) have to satisfy:

\[
\frac{\partial F_P(\beta_0, \beta, \alpha)}{\partial \beta_0} = -\sum_{i=1}^{n} \alpha_i y_i = 0,
\]

\[
\frac{\partial F_P(\beta_0, \beta, \alpha)}{\partial \beta} = \beta - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0,
\]

\[
y_i (\beta_0 + \mathbf{x}_i^T \beta) - 1 \geq 0,
\]

\[
\alpha_i \geq 0,
\]

\[
\alpha_i \{y_i (\beta_0 + \mathbf{x}_i^T \beta) - 1\} = 0,
\]

for \(i = 1, 2, \ldots, n \). The condition (11.18) is known as the Karush–Kuhn–Tucker complementarity condition.

Solving equations (11.14) and (11.15) yields

\[
\sum_{i=1}^{n} \alpha_i y_i = 0, \quad (11.19)
\]

\[
\beta^* = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i. \quad (11.20)
\]

Substituting (11.19) and (11.20) into (11.12) yields the minimum value of \(F_P(\beta_0, \beta, \alpha) \), namely,

\[
F_D(\alpha) = \frac{1}{2} \| \beta^* \|^2 - \sum_{i=1}^{n} \alpha_i \{y_i (\beta_0^* + \mathbf{x}_i^T \beta^*) - 1\}
\]
\[\begin{align*}
&= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j) - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_i) + \sum_{i=1}^{n} \alpha_i \\
&= \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^T x_j),
\end{align*} \]

where we used (11.18) in the second line. Note that the primal variables have been removed from the problem. The expression (11.21) is usually referred to as the dual functional of the optimization problem.

We next find the Lagrangian multipliers \(\alpha \) by maximizing the dual functional (11.21) subject to the constraints (11.17) and (11.19). The constrained maximization problem (the “Wolfe dual”) can be written in matrix notation as follows. Find \(\alpha \) to

\[
\text{maximize } F_D(\alpha) = 1^T n \alpha - \frac{1}{2} \alpha^T H \alpha
\]

subject to \(\alpha \geq 0, \alpha^T y = 0 \), (11.23)

where \(y = (y_1, \cdots, y_n)^T \) and \(H = (H_{ij}) \) is a square \((n \times n)\)-matrix with \(H_{ij} = y_i y_j (x_i^T x_j) \). If \(\hat{\alpha} \) solves this optimization problem, then

\[
\hat{\beta} = \sum_{i=1}^{n} \hat{\alpha}_i y_i x_i
\]

(11.24)

yields the optimal weight vector. If \(\hat{\alpha}_i > 0 \), then, from (11.18), \(y_i (\beta_0^* + x_i^T \hat{\beta}^*) = 1 \), and so \(x_i \) is a support vector; for all observations that are not support vectors, \(\hat{\alpha}_i = 0 \). Let \(sv \subset \{1, 2, \ldots, n\} \) be the subset of indices that identify the support vectors (and also the nonzero Lagrangian multipliers). Then, the optimal \(\beta \) is given by (11.24), where the sum is taken only over the support vectors; that is,

\[
\hat{\beta} = \sum_{i \in sv} \hat{\alpha}_i y_i x_i.
\]

(11.25)

In other words, \(\hat{\beta} \) is a linear function only of the support vectors \(\{x_i, i \in sv\} \). In most applications, the number of support vectors will be small relative to the size of \(L \), yielding a sparse solution. In this case, the support vectors carry all the information necessary to determine the optimal hyperplane.

The primal and dual optimization problems yield the same solution, although the dual problem is simpler to compute and, as we shall see, is simpler to generalize to nonlinear classifiers. Finding the solution involves standard convex quadratic-programming methods, and so any local minimum also turns out to be a global minimum.

Although the optimal bias \(\hat{\beta}_0 \) is not determined explicitly by the optimization solution, we can estimate it by solving (11.18) for each support
vector and then averaging the results. In other words, the estimated bias of the optimal hyperplane is given by

\[\hat{\beta}_0 = \frac{1}{|sv|} \sum_{i \in sv} \left(\frac{1 - y_i x_i^T \hat{\beta}}{y_i} \right), \]

(11.26)

where \(|sv|\) is the number of support vectors in \(L\).

It follows that the optimal hyperplane can be written as

\[
\hat{f}(x) = \hat{\beta}_0 + x^T \hat{\beta} = \hat{\beta}_0 + \sum_{i \in sv} \hat{\alpha}_i y_i (x^T x_i).
\]

(11.27)

Clearly, only support vectors are relevant in computing the optimal separating hyperplane; observations that are not support vectors play no role in determining the hyperplane and are, thus, irrelevant to solving the optimization problem. The classification rule is given by

\[
C(x) = \text{sign}\{\hat{f}(x)\}.
\]

(11.28)

If \(j \in sv\), then, from (11.27),

\[
y_j \hat{f}(x_j) = y_j \hat{\beta}_0 + \sum_{i \in sv} \hat{\alpha}_i y_i y_j (x_j^T x_i) = 1.
\]

(11.29)

Hence, the squared-norm of the weight vector \(\hat{\beta}\) of the optimal hyperplane is

\[
\|\hat{\beta}\|^2 = \sum_{i \in sv} \sum_{j \in sv} \hat{\alpha}_i \hat{\alpha}_j y_i y_j (x_i^T x_j)
\]

\[
= \sum_{j \in sv} \hat{\alpha}_j y_j \sum_{i \in sv} \hat{\alpha}_i y_i (x_i^T x_j)
\]

\[
= \sum_{j \in sv} \hat{\alpha}_j (1 - y_j \hat{\beta}_0)
\]

\[
= \sum_{j \in sv} \hat{\alpha}_j.
\]

(11.30)

The third line used (11.29) and the fourth line used (11.19). It follows from (11.30) that the optimal hyperplane has maximum margin \(2/\|\hat{\beta}\|\), where

\[
\frac{1}{\|\hat{\beta}\|} = \left(\sum_{j \in sv} \hat{\alpha}_j \right)^{-1/2}.
\]

(11.31)
11.2.2 The Linearly Nonseparable Case

In real applications, it is unlikely that there will be such a clear linear separation between data drawn from two classes. More likely, there will be some overlap. We can generally expect some data from one class to infiltrate the region of space perceived to belong to the other class, and vice versa. The overlap will cause problems for any classification rule, and, depending upon the extent of the overlap, we should expect that some of the overlapping points will be misclassified.

The nonseparable case occurs if either the two classes are separable, but not linearly so, or that no clear separability exists between the two classes, linearly or nonlinearly. One reason for overlapping classes is the high noise level (i.e., large variances) of one or both classes. As a result, one or more of the constraints will be violated.

The way we cope with overlapping data is to create a more flexible formulation of the problem, which leads to a soft-margin solution. To do this, we introduce the concept of a nonnegative slack variable, \(\xi_i \), for each observation, \((x_i, y_i)\), in \(L, i = 1, 2, \ldots, n \). See Figure 11.2 for a two-dimensional example. Let

\[
\xi = (\xi_1, \cdots, \xi_n)^\top \geq 0. \tag{11.32}
\]

The constraints (11.11) now become \(y_i(\beta_0 + x_i^\top \beta) + \xi_i \geq 1 \) for \(i = 1, 2, \ldots, n \). Data points that obey these constraints have \(\xi_i = 0 \). The classifier now has to find the optimal hyperplane that controls both the margin, \(2/\| \beta \| \), and some computationally simple function of the slack variables, such as

\[
g_\sigma(\xi) = \sum_{i=1}^{n} \xi_i^\sigma, \tag{11.33}
\]

subject to certain constraints. The usual values of \(\sigma \) are 1 (“1-norm”) or 2 (“2-norm”). Here, we discuss the case of \(\sigma = 1 \); for \(\sigma = 2 \), see Exercise 11.2.

The 1-norm soft-margin optimization problem is to find \(\beta_0, \beta, \) and \(\xi \) to

\[
\text{minimize} \quad \frac{1}{2} \| \beta \|^2 + C \sum_{i=1}^{n} \xi, \tag{11.34}
\]

subject to \(\xi_i \geq 0, \quad y_i(\beta_0 + x_i^\top \beta) \geq 1 - \xi_i, \quad i = 1, 2, \ldots, n, \tag{11.35} \)

where \(C > 0 \) is a regularization parameter. \(C \) takes the form of a tuning constant that controls the size of the slack variables and balances the two terms in the minimizing function.

Form the primal functional, \(F_P = F_P(\beta_0, \beta, \xi, \alpha, \eta) \), where

\[
F_P = \frac{1}{2} \| \beta \|^2 + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \alpha_i \{ y_i(\beta_0 + x_i^\top \beta) - (1 - \xi_i) \} - \sum_{i=1}^{n} \eta_i \xi_i, \tag{11.36}
\]
with $\alpha = (\alpha_1, \ldots, \alpha_n)^\tau \geq 0$ and $\eta = (\eta_1, \ldots, \eta_n)^\tau \geq 0$. Fix α and η, and differentiate F_P with respect to β_0, β, and ξ:

\[
\frac{\partial F_P}{\partial \beta_0} = -\sum_{i=1}^{n} \alpha_i y_i, \quad (11.37)
\]

\[
\frac{\partial F_P}{\partial \beta} = \beta - \sum_{i=1}^{n} \alpha_i y_i x_i, \quad (11.38)
\]

\[
\frac{\partial F_P}{\partial \xi_i} = C - \alpha_i - \eta_i, \quad i = 1, 2, \ldots, n. \quad (11.39)
\]

Setting these derivatives equal to zero and solving yields

\[
\sum_{i=1}^{n} \alpha_i y_i = 0, \quad \beta^* = \sum_{i=1}^{n} \alpha_i y_i x_i, \quad \alpha_i = C - \eta_i. \quad (11.40)
\]

Substituting (11.37) into (11.33) gives the dual functional,

\[
F_D(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (x_i^\tau x_j), \quad (11.41)
\]
which, remarkably, is the same as (11.18) for the linearly separable case. From the constraints \(C - \alpha_i - \eta_i = 0 \) and \(\eta_i \geq 0 \), we have that \(0 \leq \alpha_i \leq C \). In addition, we have the Karush–Kuhn–Tucker conditions:

\[
\begin{align*}
 y_i (\beta_0 + \mathbf{x}_i^T \mathbf{\beta}) - (1 - \xi_i) & \geq 0 \\
 \xi_i & \geq 0, \\
 \alpha_i & \geq 0, \\
 \eta_i & \geq 0,
\end{align*}
\]

\(\alpha_i \{ y_i (\beta_0 + \mathbf{x}_i^T \mathbf{\beta}) - (1 - \xi_i) \} = 0 \)

\(\xi_i (\alpha_i - C) = 0 \)

for \(i = 1, 2, \ldots, n \). From (11.47), a slack variable, \(\xi_i \), can be nonzero only if \(\alpha_i = C \). The Karush–Kuhn–Tucker complementarity conditions, (11.46) and (11.47), can be used to find the optimal bias \(\beta_0 \).

We can write the dual maximization problem in matrix notation as follows. Find \(\alpha \) to

\[
\text{maximize } F_D (\alpha) = \frac{1}{n} \alpha^T - \frac{1}{2} \alpha^T \mathbf{H} \alpha
\]

subject to \(\alpha^T \mathbf{y} = 0, \ 0 \leq \alpha \leq C \mathbf{1}_n \). (11.49)

The only difference between this optimization problem and that for the linearly separable case, (11.22) and (11.23), is that, here, the Lagrangian coefficients \(\alpha_i, i = 1, 2, \ldots, n \), are each bounded above by \(C \); this upper bound restricts the influence of each observation in determining the solution. This type of constraint is referred to as a box constraint because \(\alpha \) is constrained by the box of side \(C \) in the positive orthant. From (11.49), we see that the feasible region for the solution to this convex optimization problem is the intersection of the hyperplane \(\alpha^T \mathbf{y} = 0 \) with the box constraint \(0 \leq \alpha \leq C \mathbf{1}_n \). If \(C = \infty \), then the problem reduces to the hard-margin separable case.

If \(\hat{\alpha} \) solves this optimization problem, then,

\[
\hat{\mathbf{\beta}} = \sum_{i \in sv} \alpha_i y_i \mathbf{x}_i
\]

yields the optimal weight vector, where the set \(sv \) of support vectors contains those observations in \(\mathcal{L} \) which satisfy the constraint (11.42).

11.3 Nonlinear Support Vector Machines

So far, we have discussed methods for constructing a linear SVM classifier. But what if a linear classifier is not appropriate for the data set in
question? Can we extend the idea of linear SVM to the nonlinear case? The key to constructing a nonlinear SVM is to observe that the observations in \mathcal{L} only enter the dual optimization problem through the inner products $\langle x_i, x_j \rangle = x_i^T x_j$, $i, j = 1, 2, \ldots, n$.

11.3.1 Nonlinear Transformations

Suppose we transform each observation, $x_i \in \mathbb{R}^r$, in \mathcal{L} using some nonlinear mapping $\Phi : \mathbb{R}^r \rightarrow \mathcal{H}$, where \mathcal{H} is an N_H-dimensional feature space. The nonlinear map Φ is generally called the feature map and the space \mathcal{H} is called the feature space. The space \mathcal{H} may be very high-dimensional, possibly even infinite dimensional. We will generally assume that \mathcal{H} is a Hilbert space of real-valued functions on \mathbb{R} with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$.

Let

$$\Phi(x_i) = (\phi_1(x_i), \ldots, \phi_{N_H}(x_i))^T \in \mathcal{H}, \quad i = 1, 2, \ldots, n.$$ (11.51)

The transformed sample is then $\{\Phi(x_i), y_i\}$, where $y_i \in \{-1, +1\}$ identifies the two classes. If we substitute $\Phi(x_i)$ for x_i in the development of the linear SVM, then data would only enter the optimization problem by way of the inner products $\langle \Phi(x_i), \Phi(x_j) \rangle = \Phi(x_i)^T \Phi(x_j)$. The difficulty in using nonlinear transformations in this way is computing such inner products in high-dimensional space \mathcal{H}.

11.3.2 The “Kernel Trick”

The idea behind nonlinear SVM is to find an optimal separating hyperplane (with or without slack variables, as appropriate) in high-dimensional feature space \mathcal{H} just as we did for the linear SVM in input space. Of course, we would expect the dimensionality of \mathcal{H} to be a huge impediment to constructing an optimal separating hyperplane (and classification rule) because of the curse of dimensionality. The fact that this does not become a problem in practice is due to the “kernel trick,” which was first applied to SVMs by Cortes and Vapnik (1995).

The so-called kernel trick is a wonderful idea that is widely used in algorithms for computing inner products of the form $\langle \Phi(x_i), \Phi(x_j) \rangle$ in feature space \mathcal{H}. The trick is that instead of computing these inner products in \mathcal{H}, which would be computationally expensive because of its high dimensionality, we compute them using a nonlinear kernel function, $K(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle$, in input space, which helps speed up the computations. Then, we just compute a linear SVM, but where the computations are carried out in some other space.
11.3.3 Kernels and Their Properties

A kernel K is a function $K : \mathbb{R}^r \times \mathbb{R}^r \to \mathbb{R}$ such that, for all $x, y \in \mathbb{R}^r$,

$$K(x, y) = \langle \Phi(x), \Phi(y) \rangle. \quad (11.52)$$

The kernel function is designed to compute inner-products in \mathcal{H} by using only the original input data. Thus, wherever we see the inner product $\langle \Phi(x), \Phi(y) \rangle$, we substitute the kernel function $K(x, y)$. The choice of K implicitly determines both Φ and \mathcal{H}. The big advantage to using kernels as inner products is that if we are given a kernel function K, then we do not need to know the explicit form of Φ.

We require that the kernel function be symmetric, $K(x, y) = K(y, x)$, and satisfy an inequality, $|K(x, y)|^2 \leq K(x, x)K(y, y)$, derived from the Cauchy–Schwarz inequality. If $K(x, x) = 1$ for all $x \in \mathbb{R}^r$, this implies that $\|\Phi(x)\|_H = 1$. A kernel K is said to have the reproducing property if, for any $f \in \mathcal{H}$,

$$\langle f(\cdot), K(x, \cdot) \rangle = f(x). \quad (11.53)$$

If K has this property, we say it is a reproducing kernel. K is also called the representer of evaluation. In particular, if $f(\cdot) = K(\cdot, x)$, then,

$$\langle K(x, \cdot), K(y, \cdot) \rangle = K(x, y). \quad (11.54)$$

Let x_1, \ldots, x_n be any set of n points in \mathbb{R}^r. Then, the $(n \times n)$-matrix $K = (K_{ij})$, where $K_{ij} = K(x_i, x_j)$, $i, j = 1, 2, \ldots, n$, is called the Gram (or kernel) matrix of K with respect to x_1, \ldots, x_n. If the Gram matrix K satisfies $u^TKu \geq 0$, for any n-vector u, then it is said to be nonnegative-definite with nonnegative eigenvalues, in which case we say that K is a nonnegative-definite kernel\(^1\) (or Mercer kernel).

If K is a specific Mercer kernel on $\mathbb{R}^r \times \mathbb{R}^r$, we can always construct a unique Hilbert space \mathcal{H}_K, say, of real-valued functions for which K is its reproducing kernel. We call \mathcal{H}_K a (real) reproducing kernel Hilbert space (rkhs). We write the inner-product and norm of \mathcal{H}_K by $\langle \cdot, \cdot \rangle_{\mathcal{H}_K}$ (or just $\langle \cdot, \cdot \rangle$ when K is understood) and $\| \cdot \|_{\mathcal{H}_K}$, respectively.

11.3.4 Examples of Kernels

An example of a kernel is the inhomogeneous polynomial kernel of degree d,

$$K(x, y) = (\langle x, y \rangle + c)^d, \quad x, y \in \mathbb{R}^r, \quad (11.55)$$

\(^1\)In the machine-learning literature, nonnegative-definite matrices and kernels are usually referred to as positive-definite matrices and kernels, respectively.
Table 11.1. Kernel functions, $K(x, y)$, where $\sigma > 0$ is a scale parameter, $a, b, c \geq 0$, and d is an integer. The Euclidean norm is $\|x\|^2 = x^\tau x$.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>$K(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynomial of degree d</td>
<td>$(\langle x, y \rangle + c)^d$</td>
</tr>
<tr>
<td>Gaussian radial basis function</td>
<td>$\exp \left{ -\frac{|x-y|^2}{2\sigma^2} \right}$</td>
</tr>
<tr>
<td>Laplacian</td>
<td>$\exp \left{ -\frac{|x-y|}{\sigma} \right}$</td>
</tr>
<tr>
<td>Thin-plate spline</td>
<td>$(|x-y|/\sigma)^2 \log_e \left{ \frac{|x-y|}{\sigma} \right}$</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>$\tanh(a \langle x, y \rangle + b)$</td>
</tr>
</tbody>
</table>

where c and d are parameters. The homogeneous form of the kernel occurs when $c = 0$ in (12.55). If $d = 1$ and $c = 0$, the feature map reduces to the identity. Usually, we take $c > 0$. A simple nonlinear map is given by the case $r = 2$ and $d = 2$. If $x = (x_1, x_2)^\tau$ and $y = (y_1, y_2)^\tau$, then,

$$K(x, y) = (\langle x, y \rangle + c)^2 = (x_1 y_1 + x_2 y_2 + c)^2 = \langle \Phi(x), \Phi(y) \rangle,$$

where $\Phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1 x_2, \sqrt{2}c x_1, \sqrt{2}x_2, c)^\tau$ and similarly for $\Phi(y)$. In this example, the function $\Phi(x)$ consists of six features ($\mathcal{H} = \mathbb{R}^6$), all monomials having degree at most 2. For this kernel, we see that c controls the magnitudes of the constant term and the first-degree term.

In general, there will be $\dim(\mathcal{H}) = \binom{r+d}{d}$ different features, consisting of all monomials having degree at most d. The dimensionality of \mathcal{H} can rapidly become very large: for example, in visual recognition problems, data may consist of 16×16 pixel images (so that each image is turned into a vector of dimension $r = 256$); if $d = 2$, then $\dim(\mathcal{H}) = 33,670$, whereas if $d = 4$, we have $\dim(\mathcal{H}) = 186,043,585$.

Other popular kernels, such as the Gaussian radial basis function (RBF), the Laplacian kernel, the thin-plate spline kernel, and the sigmoid kernel, are given in Table 11.1. Strictly speaking, the sigmoid kernel is not a kernel (it satisfies Mercer’s conditions only for certain values of a and b), but it has become very popular in that role in certain situations (e.g., two-layer neural networks).

The Gaussian RBF, Laplacian, and thin-plate spline kernels are examples of translation-invariant (or stationary) kernels having the general form
$K(x, y) = k(x - y)$, where $k : \mathbb{R}^n \to \mathbb{R}$. The polynomial kernel is an example of a nonstationary kernel. A stationary kernel $K(x, y)$ is isotropic if it depends only upon the distance $\delta = \|x - y\|$, i.e., if $K(x, y) = k(\delta)$, scaled to have $k(0) = 1$.

It is not always obvious which kernel to choose in any given application. Prior knowledge or a search through the literature can be helpful. If no such information is available, the best approach is to try either a Gaussian RBF, which has only a single parameter (σ) to be determined, or a polynomial kernel of low degree ($d = 1$ or 2). If necessary, more complicated kernels can then be applied to compare results.

String Kernels for Text Categorization

Text categorization is the assignment of natural-language text (or hypertext) documents into a given number of predefined categories based upon the content of those documents (see Section 2.2.1). Although manual categorization of text documents is currently the norm (e.g., using folders to save files, e-mail messages, URLs, etc.), some text categorization is automated (e.g., filters for spam or junk mail to help users cope with the sheer volume of daily e-mail messages). To reduce costs of text categorization tasks, we should expect a greater degree of automation to be present in the future.

In text-categorization problems, string kernels have been proposed based upon ideas derived from bioinformatics (see, e.g., Lodhi, Saunders, Shawe-Taylor, Cristianini, and Watkins, 2002).

Let A be a finite alphabet. A “string”

$$s = s_1 s_2 \cdots s_{|s|}$$

(11.56)

is a finite sequence of elements of A, including the empty sequence, where $|s|$ denotes the length of s. We call u a subsequence of s (written $u = s(\mathbf{i})$) if there are indices $\mathbf{i} = (i_1, i_2, \ldots, i_{|u|})$, with $1 \leq i_1 < \cdots < i_{|u|} \leq |s|$, such that $u_j = s_{i_j}$, $j = 1, 2, \ldots, |u|$. If the indices \mathbf{i} are contiguous, we say that u is a substring of s. The length of u in s is

$$\ell(\mathbf{i}) = i_{|u|} - i_1 + 1,$$

(11.57)

which is the number of elements of s overlaid by the subsequence u. For example, let s be the string “cat” ($s_1 = c, s_2 = a, s_3 = t, \ |s| = 3$), and consider all possible 2-symbol sequences, “ca,” “ct,” and “at,” derived from s. For the string $u = ca$, we have that $u_1 = c = s_1, u_2 = a = s_2$, whence, $u = s(\mathbf{i})$, where $\mathbf{i} = (i_1, i_2) = (1, 2)$. Thus, $\ell(\mathbf{i}) = 2$. Similarly, for the subsequence $u = ct$, $u_1 = c = s_1, u_2 = t = s_3$, whence, $\mathbf{i} = (i_1, i_2) = (1, 3)$, and $\ell(\mathbf{i}) = 3$. Also, the subsequence $u = at$ has $u_1 = a = s_2, u_2 = t = s_3$, whence, $\mathbf{i} = (2, 3)$, and $\ell(\mathbf{i}) = 2$.
If $D = \mathcal{A}^m$ is the set of all finite strings of length at most m from \mathcal{A}, then, the feature space for a string kernel is \mathbb{R}^D. The feature map Φ_u, operating on a string $s \in \mathcal{A}^m$, is characterized in terms of a given string $u \in \mathcal{A}^m$. To deal with noncontiguous subsequences, define $\lambda \in (0, 1)$ as the drop-off rate (or decay factor); we use λ to weight the interior gaps in the subsequences. The degree of importance we put into a contiguous subsequence is reflected in how small we take the value of λ. The value $\Phi_u(s)$ is computed as follows: identify all subsequences (indexed by i) of s that are identical to u; for each such subsequence, raise λ to the power $\ell(i)$; and then sum the results over all subsequences. Because $\lambda < 1$, larger values of $\ell(i)$ carry less weight than smaller values of $\ell(i)$. We write

$$\Phi_u(s) = \sum_{i: u = s(i)} \lambda^{\ell(i)}, \quad u \in \mathcal{A}^m. \quad (11.58)$$

In our example above, $\Phi_{ca}(cat) = \lambda^2$, $\Phi_{ct}(cat) = \lambda^3$, and $\Phi_{at}(cat) = \lambda^2$.

Two documents are considered to be “similar” if they have many subsequences in common: the more subsequences they have in common, the more similar they are deemed to be. Note that the degree of contiguity present in a subsequence determines the weight of that substring in the comparison; the closer the subsequence is to a contiguous substring, the more it should contribute to the comparison.

Let s and t be two strings. The kernel associated with the feature maps corresponding to s and t is given by the sum of inner products for all common substrings of length m,

$$K_m(s, t) = \sum_{u \in D} \langle \Phi_u(s), \Phi_u(t) \rangle = \sum_{u \in D} \sum_{i: u = s(i)} \sum_{j: u = s(j)} \lambda^{\ell(i)+\ell(j)}. \quad (11.59)$$

The kernel (11.59) is called a string kernel (or a gap-weighted subsequences kernel). For the example, let t be the string “car” ($t_1 = c, t_2 = a, t_3 = r, |t| = 3$). Note that the strings “cat” and “car” are both substrings of the string “cart.” The three 2-symbol substrings of t are “ca,” “cr,” and “ar.” For these substrings, we have that $\Phi_{ca}(car) = \lambda^2$, $\Phi_{cr}(car) = \lambda^3$, and $\Phi_{ar}(car) = \lambda^2$. The inner product (11.62) is given by $K_2(cat, car) = \langle \Phi_{ca}(cat), \Phi_{ca}(car) \rangle = \lambda^4$.

The feature maps in feature space are usually normalized to remove any bias introduced by document length. This is equivalent to normalizing the kernel (11.59),

$$K_m^*(s, t) = \frac{K_m(s, t)}{\sqrt{K_m(s,s)K_m(t,t)}}. \quad (11.60)$$
For our example, $K_2(\text{cat, cat}) = \langle \Phi_{\text{ca}}(\text{cat}), \Phi_{\text{ca}}(\text{cat}) \rangle + \langle \Phi_{\text{ct}}(\text{cat}), \Phi_{\text{ct}}(\text{cat}) \rangle = \lambda^6 + 2\lambda^4$, and, similarly, $K_2(\text{car, car}) = \lambda^6 + 2\lambda^4$, whence, $K_*^2(\text{cat, car}) = \lambda^4 / (\lambda^6 + 2\lambda^4) = 1 / (\lambda^2 + 2)$.

The parameters of the string kernel (11.59) are m and λ. The choices of $m = 5$ and $\lambda = 0.5$ have been found to perform well on segments of certain data sets (e.g., on subsets of the Reuters-21578 data) but do not fare as well when applied to the full data set.

11.3.5 Optimizing in Feature Space

Let K be a kernel. Suppose, first, that the observations in L are linearly separable in the feature space corresponding to the kernel K. Then, the dual optimization problem is to find α and β_0 to

$$ \maximize \quad F_D(\alpha) = \frac{1}{\tau} \alpha - \frac{1}{2} \alpha^T H \alpha $$

subject to $\alpha \geq 0$, $\alpha^T y = 0$, (11.62)

where $y = (y_1, \cdots, y_n)^T$, $H = (H_{ij})$, and

$$ H_{ij} = y_i y_j K(x_i, x_j) = y_i y_j K_{ij}, \quad i, j = 1, 2, \ldots, n. \quad (11.63) $$

Because K is a kernel, the Gram matrix $K = (K_{ij})$ is nonnegative-definite, and so is the matrix H with elements (11.63). Hence, the functional $F_D(\alpha)$ is convex (see Exercise 11.8). So, there is a unique solution to this constrained optimization problem. If $\hat{\alpha}$ and $\hat{\beta}_0$ solve this problem, then, the SVM decision rule is $\text{sign}\{\hat{f}(x)\}$, where

$$ \hat{f}(x) = \hat{\beta}_0 + \sum_{i \in sv} \hat{\alpha}_i y_i K(x, x_i) \quad (11.64) $$

is the optimal separating hyperplane in the feature space corresponding to the kernel K.

In the nonseparable case, using the kernel K, the dual problem of the 1-norm soft-margin optimization problem is to find α to

$$ \maximize \quad F_D^*(\alpha) = \frac{1}{\tau} \alpha - \frac{1}{2} \alpha^T H \alpha $$

subject to $0 \leq \alpha \leq C \mathbf{1}_n$, $\alpha^T y = 0$, (11.66)

where y and H are as above. For an optimal solution, the Karush–Kuhn–Tucker conditions, (11.42)–(11.47), must hold for the primal problem. So, a solution, α, to this problem has to satisfy all those conditions. Fortunately, it suffices to check a simpler set of conditions: we have to check that α
11.3 Nonlinear Support Vector Machines

satisfies (11.66) and that (11.42) holds for all points where \(0 \leq \alpha_i < C \) and \(\xi_i = 0 \), and also for all points where \(\alpha_i = C \) and \(\xi_i \geq 0 \).

11.3.6 Grid Search for Parameters

We need to determine two parameters when using a Gaussian RBF kernel, namely, the cost, \(C \), of violating the constraints and the kernel parameter \(\gamma = 1/\sigma^2 \). The parameter \(C \) in the box constraint can be chosen by searching a wide range of values of \(C \) using either CV (usually, 10-fold) on \(L \) or an independent validation set of observations. In practice, it is usual to start the search by trying several different values of \(C \), such as 10, 100, 1,000, 10,000, and so on. A initial grid of values of \(\gamma \) can be selected by trying out a crude set of possible values, say, 0.00001, 0.0001, 0.001, 0.01, 0.1, and 1.0.

When there appears to be a minimum CV misclassification rate within an interval of the two-way grid, we make the grid search finer within that interval. Armed with a two-way grid of values of \((C, \gamma)\), we apply CV to estimate the generalization error for each cell in that grid. The \((C, \gamma)\) that has the smallest CV misclassification rate is selected as the solution to the SVM classification problem.

11.3.7 Example: E-mail or Spam?

This example (spambase) was described in Section 8.4, where we applied LDA and QDA to a collection of 4,601 messages, comprising 1,813 spam e-mails and 2,788 non-spam e-mails. There are 57 variables (attributes) and each message is labeled as one of the two classes email or spam.

Here we apply nonlinear SVM (R package libsvm) using a Gaussian RBF kernel to the 4,601 messages. The SVM solution depends upon the cost \(C \) of violating the constraints and the variance, \(\sigma^2 \), of the Gaussian RBF kernel. After applying a trial-and-error method, we used the following grid of values for \(C \) and \(\gamma = 1/\sigma^2 \):

\[
C = 10, 80, 100, 200, 500, 1,000, \\
\gamma = 0.00001(0.00001)0.0001(0.0001)0.002(0.001)0.01(0.01)0.04.
\]

In Figure 11.3, we plot the values of the 10-fold CV misclassification rate against the values of \(\gamma \) listed above, where each curve (connected set of points) represents a different value of \(C \). For each \(C \), we see that the CV/10 misclassification curves have similar shapes: a minimum value for \(\gamma \) very close to zero, and for values of \(\gamma \) away from zero, the curve trends upwards. In this initial search, we find a minimum CV/10 misclassification rate of 8.06% at \((C, \gamma) = (500, 0.0002)\) and \((1,000, 0.0002)\). We see that the general
level of the misclassification rate tends to decrease as C increases and γ decreases together.

A detailed investigation of $C > 1000$ and γ close to zero reveals a minimum CV/10 misclassification rate of 6.91% at $C = 11,000$ and $\gamma = 0.00001$, corresponding to the following 10 CV estimates of the true classification rate:

0.9043, 0.9478, 0.9304, 0.9261, 0.9109, 0.9413, 0.9326, 0.9500, 0.9326, 0.9328.

This solution has 931 support vectors (482 e-mails, 449 spam), which means that a large percentage (79.8%) of the messages (82.7% of the e-mails and 75.2% of the spam) are not support points. Of the 4,601 messages, 2,697 e-mails and 1,676 spam are correctly classified (228 misclassified), yielding an apparent error rate of 4.96%.

This example turns out to be more computationally intensive than are the other binary-classification examples discussed in this chapter. Although the value of γ has very little effect on the speed of computing the 10-fold CV error rate, the speed of computation does depend upon C: as we increase the value of C, the speed of computation slows down considerably.

FIGURE 11.3. SVM cross-validation misclassification rate curves for the spambase data. Initial grid search for the minimum 10-fold CV misclassification rate using $0.00001 \leq \gamma \leq 0.04$. The curves correspond to $C = 10$ (dark blue), 80 (brown), 100 (green), 200 (orange), 500 (light blue), and 1,000 (red). Within this initial grid search, the minimum CV/10 misclassification rate is 8.06%, which occurs at $(C, \gamma) = (500, 0.0002)$ and $(1,000, 0.0002)$.
TABLE 11.2. Summary of support vector machine (SVM) application to data sets for binary classification. Listed are the sample size \((n)\), number of variables \((r)\), and number of classes \((K)\). Also listed for each data set is the 10-fold cross-validation \((CV/10)\) misclassification rates corresponding to the best choice of \((C, \gamma)\) for the SVM. The data sets are listed in increasing order of LDA misclassification rates (see Table 8.5).

<table>
<thead>
<tr>
<th>Data Set</th>
<th>(n)</th>
<th>(r)</th>
<th>(K)</th>
<th>SVM–CV/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer (logs)</td>
<td>569</td>
<td>30</td>
<td>2</td>
<td>0.0158</td>
</tr>
<tr>
<td>Spambase</td>
<td>4601</td>
<td>57</td>
<td>2</td>
<td>0.0691</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>351</td>
<td>33</td>
<td>2</td>
<td>0.0427</td>
</tr>
<tr>
<td>Sonar</td>
<td>208</td>
<td>60</td>
<td>2</td>
<td>0.1010</td>
</tr>
<tr>
<td>BUPA liver disorders</td>
<td>345</td>
<td>6</td>
<td>2</td>
<td>0.2522</td>
</tr>
</tbody>
</table>

Also worth noting is that for fixed \(\gamma\), increasing \(C\) reduces the number of support vectors and the apparent error rate. We cannot make similar general statements about fixed \(C\) and increasing \(\gamma\); however, for fixed \(C\), we generally see that the number of support vectors tends to increase (but not always) with increasing \(\gamma\).

The nonlinear SVM is clearly a better classifier for this example than is LDA or QDA, whose leave-one-out CV misclassification rate is around 11% for LDA and 17% for QDA, but the amount of computational work involved in the grid search for the SVM solution is much greater and, hence, a lot more expensive.

11.3.8 Binary Classification Examples

We apply the SVM algorithm to the binary classification examples of Section 8.4: the log-transformed breast cancer data, the ionosphere data, the BUPA liver disorders data, the sonar data, and the spambase data. Except for spambase, computations for these examples were very fast.

In Table 11.2, we list the minimum 10-fold CV misclassification rate for each data set. Comparing these results to those of LDA (see Table 8.5, where we used leave-one-out CV), we see that SVM produces remarkable decreases in misclassification rates: the breast cancer rate decreased from 11.3% to 1.58%, the spambase rate decreased from 11.3% to 6.91%, the ionosphere rate decreased from 13.7% to 4.27%, the sonar rate decreased from 24.5% to 10.1%, and the BUPA liver disorders rate decreased from 30.1% to 25.22%.

11.3.9 SVM as a Regularization Method

The SVM classifier can also be regarded as the solution to a particular regularization problem. Let \(f \in \mathcal{H}_K\), the reproducing kernel Hilbert space
FIGURE 11.4. Hinge loss function \((1 - yf(x))_+\) for \(y = -1\) and \(y = +1\).

(rkhs) associated with the kernel \(K\), with \(\| f \|_{\mathcal{H}_K}^2\) the squared-norm of \(f\) in \(\mathcal{H}_K\).

Consider the classification error, \(y_i - f(x_i)\), where \(y_i \in \{-1, +1\}\). Then,

\[
|y_i - f(x_i)| = |y_i(1 - y_i f(x_i))| = |1 - y_i f(x_i)| = (1 - y_i f(x_i))_+, \quad (11.67)
\]

\(i = 1, 2, \ldots, n\), where \((x)_+ = \max\{x, 0\}\). The quantity \((1 - y_i f(x_i))_+\), which could be zero if all \(x_i\) are correctly classified, is called the hinge loss function and is displayed in Figure 11.4. The hinge loss plays a vital role in SVM methodology; indeed, it has been shown to be Bayes consistent for classification in the sense that minimizing the loss function yields the Bayes rule (Lin, 2002). The hinge loss is also related to the misclassification loss function \(I_{[y_i C(x_i) \leq 0]} = I_{[y_i f(x_i) \leq 0]}\). When \(f(x_i) = \pm 1\), the hinge loss is twice the misclassification loss; otherwise, the ratio of the two losses depends upon the sign of \(y_i f(x_i)\).

We wish to find a function \(f \in \mathcal{H}_K\) to minimize a penalized version of the hinge loss. Specifically, we wish to find \(f \in \mathcal{H}_K\) to

\[
\minimize \frac{1}{n} \sum_{i=1}^{n} (1 - y_i f(x_i))_+ + \lambda \| f \|_{\mathcal{H}_K}^2, \quad (11.68)
\]

where \(\lambda > 0\). In (11.69), the first term, \(n^{-1} \sum_{i=1}^{n} (1 - y_i f(x_i))_+\), measures the distance of the data from separability, and the second term, \(\lambda \| f \|_{\mathcal{H}_K}^2\), penalizes overfitting. The tuning parameter \(\lambda\) balances the trade-off between estimating \(f\) (the first term) and how well \(f\) can be approximated.
(the second term). After the minimizing f has been found, the SVM classifier is $C(x) = \text{sign}\{f(x)\}$, $x \in \mathbb{R}^r$.

The optimizing criterion (11.68) is nondifferentiable due to the shape of the hinge-loss function. Fortunately, we can rewrite the problem in a slightly different form and thereby solve it.

We start from the fact that every $f \in \mathcal{H}$ can be written uniquely as the sum of two terms:

$$f(\cdot) = f^\parallel(\cdot) + f^\perp(\cdot) = \sum_{i=1}^{n} \alpha_i K(x_i, \cdot) + f^\perp(\cdot),$$

(11.69)

where $f^\parallel \in \mathcal{H}_K$ is the projection of f onto the subspace \mathcal{H}_K of \mathcal{H} and f^\perp is in the subspace perpendicular to \mathcal{H}_K; that is, $\langle f^\perp(\cdot), K(x_i, \cdot) \rangle_{\mathcal{H}} = 0$, $i = 1, 2, \ldots, n$. We can write $f(x_i)$ via the reproducing property as follows:

$$f(x_i) = \langle f(\cdot), K(x_i, \cdot) \rangle = \langle f^\parallel(\cdot), K(x_i, \cdot) \rangle + \langle f^\perp(\cdot), K(x_i, \cdot) \rangle.$$

(11.70)

Because the second term on the rhs is zero, then,

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x),$$

(11.71)

independent of f^\perp, where we used (11.69) and $\langle K(x_i, \cdot), K(x_j, \cdot) \rangle_{\mathcal{H}_K} = K(x_i, x_j)$. Now, from (11.69),

$$\| f \|_{\mathcal{H}_K}^2 = \| \sum_{i=1}^{n} \alpha_i K(x_i, \cdot) + f^\perp \|_{\mathcal{H}_K}^2$$

$$= \| \sum_{i=1}^{n} \alpha_i K(x_i, \cdot) \|_{\mathcal{H}_K}^2 + \| f^\perp \|_{\mathcal{H}_K}^2$$

$$\geq \| \sum_{i=1}^{n} \alpha_i K(x_i, \cdot) \|_{\mathcal{H}_K}^2,$$

(11.72)

with equality iff $f^\perp = 0$, in which case any $f \in \mathcal{H}_K$ that minimizes (11.68) admits a representation of the form (11.71). This important result is known as the representer theorem (Kimeldorf and Wahba, 1971); it says that the minimizing f (which would live in an infinite-dimensional rkhs if, for example, the kernel is a Gaussian RBF) can be written as a linear combination of a reproducing kernel evaluated at each of the n data points.

From (11.72), we have that $\| f \|_{\mathcal{H}_K}^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K(x_i, x_j) = \| \beta \|^2$, where $\beta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$. If the space \mathcal{H}_K consists of linear functions of the form $f(x) = \beta_0 + \Phi(x)^T \beta$ with $\| f \|_{\mathcal{H}_K}^2 = \| \beta \|^2$, then the problem of finding f in (11.68) is equivalent to one of finding β_0 and β to

$$\text{minimize } \frac{1}{n} \sum_{i=1}^{n} (1 - y_i(\beta_0 + \Phi(x_i)^T \beta))_+ + \lambda \| \beta \|^2.$$

(11.73)
Then, (11.68), which is nondifferentiable due to the hinge loss function, can be reformulated in terms of solving the 1-norm soft-margin optimization problem (11.34)–(11.35).

11.4 Multiclass Support Vector Machines

Often, data are derived from more than two classes. In the multiclass situation, \(\mathbf{X} \in \mathbb{R}^r \) is a random \(r \)-vector chosen for classification purposes and \(Y \in \{1, 2, \ldots, K\} \) is a class label, where \(K \) is the number of classes. Because SVM classifiers are formulated for only two classes, we need to know if (and how) the SVM methodology can be extended to distinguish between \(K > 2 \) classes. There have been several attempts to define such a multiclass SVM strategy.

11.4.1 Multiclass SVM as a Series of Binary Problems

The standard SVM strategy for a multiclass classification problem (over \(K \) classes) has been to reduce it to a series of binary problems. There are different approaches to this strategy:

One-versus-rest: Divide the \(K \)-class problem into \(K \) binary classification subproblems of the type “\(k \)th class” vs. “not \(k \)th class,” \(k = 1, 2, \ldots, K \). Corresponding to the \(k \)th subproblem, a classifier \(\hat{f}_k \) is constructed in which the \(k \)th class is coded as positive and the union of the other classes is coded as negative. A new \(\mathbf{x} \) is then assigned to the class with the largest value of \(\hat{f}_k(\mathbf{x}) \), \(k = 1, 2, \ldots, K \), where \(\hat{f}_k(\mathbf{x}) \) is the optimal SVM solution for the binary problem of the \(k \)th class versus the rest.

One-versus-one: Divide the \(K \)-class problem into \(\binom{K}{2} \) comparisons of all pairs of classes. A classifier \(\hat{f}_{jk} \) is constructed by coding the \(j \)th class as positive and the \(k \)th class as negative, \(j, k = 1, 2, \ldots, K, j \neq k \). Then, for a new \(\mathbf{x} \), aggregate the votes for each class and assign \(\mathbf{x} \) to the class having the most votes.

Even though these strategies are widely used in practice to resolve multiclass SVM classification problems, one has to be cautious about their use.

In Table 11.3, we report the CV/10 misclassification rates for one-versus-one multiclass SVM applied to the same data sets from Section 8.7. Also listed in Table 11.3 are the values of \((C, \gamma) \) that yield the minimum misclassification rate for each data set. It is instructive to compare these rates with those in Table 8.7, where we used LDA and QDA. We see that for
the shuttle, diabetes, pendigits, vehicle, letter recognition, glass, and yeast data sets, the SVM method performs better than does the LDA method; for the iris, primate scapulae, and ecoli data sets, the SVM and LDA methods perform about the same; and LDA performs better than does SVM for the wine data set. Thus, neither one-versus-one SVM nor LDA performs uniformly best for all of these data sets.

The one-versus-rest approach is popular for carrying out text categorization tasks, where each document may belong to more than one class. Although it enjoys the optimality property of the SVM method for each binary subproblem, it can yield a different classifier than the Bayes optimal classifier for the multiclass case. Furthermore, the classification success of the one-versus-rest approach depends upon the extent of the class-size imbalance of each subproblem and whether one class dominates all other classes when determining the most-probable class for each new \(x\).

The one-versus-one approach, which uses only those observations belonging to the classes involved in each pairwise comparison, suffers from the problem of having to use smaller samples to train each classifier, which may, in turn, increase the variance of the solution.

11.4.2 A True Multiclass SVM

To construct a true multiclass SVM classifier, we need to consider all \(K\) classes, \(\Pi_1, \Pi_2, \ldots, \Pi_K\), simultaneously, and the classifier has to reduce to...
the binary SVM classifier if $K = 2$. Here we describe the construction due to Lee, Lin, and Wahba (2004).

Let v_1, \ldots, v_K be a sequence of K-vectors, where v_k has a 1 in the kth position and whose elements sum to zero, $k = 1, 2, \ldots, K$; that is, let

\[v_1 = \left(1, -\frac{1}{K-1}, \ldots, -\frac{1}{K-1} \right)^\tau \]
\[v_2 = \left(-\frac{1}{K-1}, 1, \ldots, -\frac{1}{K-1} \right)^\tau \]
\[
\vdots
\]
\[v_K = \left(-\frac{1}{K-1}, -\frac{1}{K-1}, \ldots, 1 \right)^\tau .
\]

Note that if $K = 2$, then $v_1 = (1, -1)^\tau$ and $v_2 = (-1, 1)^\tau$. Every x_i can be labeled as one of these K vectors; that is, x_i has label $y_i = v_k$ if $x_i \in \Pi_k$, $i = 1, 2, \ldots, n$, $k = 1, 2, \ldots, K$.

Next, we generalize the separating function $f(x)$ to a K-vector of separating functions,

\[f(x) = (f_1(x), \cdots, f_K(x))^\tau, \quad (11.74) \]

where

\[f_k(x) = \beta_{0k} + h_k(x), \quad h_k \in \mathcal{H}_K, \quad k = 1, 2, \ldots, K. \quad (11.75) \]

In (11.75), \mathcal{H}_K is a reproducing-kernel Hilbert space (rkhs) spanned by the $\{K(x_i, \cdot), i = 1, 2, \ldots, n\}$. For example, in the linear case, $h_k(x) = x^\tau \beta_k$, for some vector of coefficients β_k. We also assume, for uniqueness, that

\[\sum_{k=1}^{K} f_k(x) = 0. \quad (11.76) \]

Let $L(y_i)$ be a K-vector with 0 in the kth position if $x_i \in \Pi_k$, and 1 in all other positions; this vector represents the equal costs of misclassifying x_i (and allows for an unequal misclassification cost structure if appropriate).

If $K = 2$ and $x_i \in \Pi_1$, then $L(y_i) = (0, 1)^\tau$, while if $x_i \in \Pi_2$, then $L(y_i) = (1, 0)^\tau$.

The multiclass generalization of the optimization problem (11.68) is, therefore, to find functions $f(x) = (f_1(x), \cdots, f_K(x))^\tau$ satisfying (11.76) which

\[
\text{minimize} \quad I_\lambda(f, Y) = \frac{1}{n} \sum_{i=1}^{n} [L(y_i)]^\tau (f(x_i) - y_i)_+ + \frac{\lambda}{2} \sum_{k=1}^{K} \| h_k \|^2, \quad (11.77)
\]

where $(f(x_i) - y_i)_+ = ((f_1(x_i) - y_{i1})_+, \cdots, (f_K(x_i) - y_{iK})_+)^\tau$ and $Y = (y_1, \cdots, y_n)$ is a $(K \times n)$-matrix.
By setting $K = 2$, we can see that (11.77) is a generalization of (11.68). If $x_i \in \Pi_1$, then $y_i = v_1 = (1, -1)^\top$, and

$$
[L(y_i)]^\top (f(x_i) - y_i)_+ = (0, 1)((f_1(x_i) - 1)_+, (f_2(x_i) + 1)_+)^\top
= (f_2(x_i) + 1)_+
= (1 - f_1(x_i))_+,
$$

(11.78)

while if $x_i \in \Pi_2$, then $y_i = v_2 = (-1, 1)$, and

$$
[L(y_i)]^\top (f(x_i) - y_i)_+ = (f_1(x_i) + 1)_+.
$$

(11.79)

So, the first term (with f) in (11.68) is identical to the first term (with f_1) in (11.77) when $K = 2$. If we set $K = 2$ in the second term of (11.77), we have that

$$
\sum_{k=1}^{2} \| h_k \|^2 = \| h_1 \|^2 + \| -h_1 \|^2 = 2 \| h_1 \|^2,
$$

(11.80)

so that the second terms of (11.68) and (11.77) are identical.

The function $h_k \in \mathcal{H}_K$ can be decomposed into two parts:

$$
h_k(\cdot) = \sum_{\ell=1}^{n} \beta_{\ell k} K(x_\ell, \cdot) + h^\perp_k(\cdot),
$$

(11.81)

where the \{\beta_{\ell k}\} are constants and $h^\perp_k(\cdot)$ is an element in the rkhs orthogonal to \mathcal{H}_K. Substituting (11.76) into (11.77), then using (11.81), and rearranging terms, we have that

$$
f_K(\cdot) = -\sum_{k=1}^{K-1} \beta_{0k} - \sum_{k=1}^{K-1} \sum_{i=1}^{n} \beta_{ik} K(x_i, \cdot) - \sum_{k=1}^{K-1} h^\perp_k(\cdot).
$$

(11.82)

Because $K(\cdot, \cdot)$ is a reproducing kernel,

$$
\langle h_k, K(x_i, \cdot) \rangle = h_k(x_i), \quad i = 1, 2, \ldots, n,
$$

(11.83)

and so,

$$
\hat{f}_k(x_i) = \beta_{0k} + h_k(x_i)
= \beta_{0k} + \langle h_k, K(x_i, \cdot) \rangle
= \beta_{0k} + \sum_{\ell=1}^{n} \beta_{\ell k} K(x_\ell, \cdot) + h^\perp_k(\cdot, \cdot) K(x_i, \cdot)
= \beta_{0k} + \sum_{\ell=1}^{n} \beta_{\ell k} K(x_\ell, x_i).
$$

(11.84)
Note that, for \(k = 1, 2, \ldots, K - 1 \),
\[
\| h_k(\cdot) \|^2 = \| \sum_{\ell=1}^{n} \beta_{\ell k} K(x_\ell, \cdot) + h_k^+(\cdot) \|^2 \\
= \sum_{\ell=1}^{n} \sum_{i=1}^{n} \beta_{\ell k} \beta_{ik} K(x_\ell, x_i) + \| h_k^+(\cdot) \|^2, \tag{11.85}
\]
and, for \(k = K \),
\[
\| h_K(\cdot) \|^2 = \sum_{k=1}^{K-1} \sum_{i=1}^{n} \beta_{ik} K(x_i, \cdot) + \| h_K^+(\cdot) \|^2. \tag{11.86}
\]
Thus, to minimize (11.86), we set \(h_k^+(\cdot) = 0 \) for all \(k \).

From (11.84), the zero-sum constraint (11.76) becomes
\[
\bar{\beta}_0 + \sum_{\ell=1}^{n} \bar{\beta}_\ell K(x_\ell, \cdot) = 0, \tag{11.87}
\]
where \(\bar{\beta}_0 = K^{-1} \sum_{k=1}^{K} \beta_{0 k} \) and \(\bar{\beta}_i = K^{-1} \sum_{k=1}^{K} \beta_{ik} \). At the \(n \) data points, \(\{x_i, i = 1, 2, \ldots, n\} \), (11.87) in matrix notation is given by
\[
\left(\sum_{k=1}^{K} \beta_{0 k} \right) 1_n + K \left(\sum_{k=1}^{K} \beta_{k} \right) = 0, \tag{11.88}
\]
where \(K = (K(x_i, x_j)) \) is an \((n \times n)\) Gram matrix and \(\beta_{\cdot k} = (\beta_{1k}, \ldots, \beta_{nk})^\tau \).
Let \(\beta_{0 k}^* = \beta_{0 k} - \bar{\beta}_0 \) and \(\beta_{ik}^* = \beta_{ik} - \bar{\beta}_i \). Using (11.87), we see that the centered version of (11.84) is \(f_k^*(x_i) = \beta_{0 k}^* + \sum_{\ell=1}^{n} \beta_{\ell k}^* K(x_\ell, x_i) = f_k(x_i) \).
Then,
\[
\sum_{k=1}^{K} \| h_k(\cdot) \|^2 = \sum_{k=1}^{K} \beta_{\cdot k}^\tau K \beta_{\cdot k} - K \bar{\beta}^\tau K \bar{\beta} \leq \sum_{k=1}^{K} \beta_{\cdot k}^\tau K \beta_{\cdot k} = \sum_{k=1}^{K} \| h_k(\cdot) \|^2, \tag{11.89}
\]
where \(\bar{\beta} = (\bar{\beta}_1, \ldots, \bar{\beta}_n)^\tau \); if \(K \bar{\beta} = 0 \), the inequality becomes an equality and so \(\sum_{k=1}^{K} \beta_{0 k} = 0 \). Thus,
\[
0 = K^2 \bar{\beta}^\tau K \bar{\beta} = \| \sum_{i=1}^{n} \left(\sum_{k=1}^{K} \beta_{ik} K(x_i, \cdot) \right) \|^2 = \| \sum_{k=1}^{K} \sum_{i=1}^{n} \beta_{ik} K(x_i, \cdot) \|^2, \tag{11.90}
\]
whence, \(\sum_{i=1}^{n} \sum_{k=1}^{K} \beta_{ik} K(x_i, x) = 0 \), for all \(x \). Thus,
\[
\sum_{k=1}^{K} \left\{ \beta_{0 k} + \sum_{i=1}^{n} \beta_{ik} K(x_i, x) \right\} = 0, \tag{11.91}
\]
for every x. So, minimizing (11.77) under the zero-sum constraint (11.76) only at the n data points is equivalent to minimizing (11.77) under the same constraint for every x.

We next construct a Lagrangian formulation of the optimization problem (11.77) using the following notation. Let $\xi_i = (\xi_{i1}, \ldots, \xi_{iK})^\tau$ be a K-vector of slack variables corresponding to $(f(x_i) - y_i)_+, i = 1, 2, \ldots, n$, and let $(\xi_1, \ldots, \xi_K) = (\xi_{11}, \ldots, \xi_{nK})^\tau$ be the $(n \times K)$-matrix whose kth column is ξ_k and whose ith row is ξ_i. Let $(L_1, \ldots, L_K) = (L(y_1), \ldots, L(y_n))^\tau$ be the $(n \times K)$-matrix whose kth column is L_k and whose ith row is $L(y_i) = (L_{i1}, \ldots, L_{iK})$. Let $(y_1, \ldots, y_K) = (y_1, \ldots, y_n)^\tau$ denote the $(n \times K)$-matrix whose kth column is y_k and whose ith row is y_i.

The primal problem is to find $\{\beta_{0k}\}, \{\beta_k\}$, and $\{\xi_k\}$ to

$$
\text{minimize } \sum_{k=1}^{K} L_k^T \xi_k + \frac{n \lambda}{2} \sum_{k=1}^{K} \beta_k^T K \beta_k
$$

subject to

$$
\beta_{0k} 1_n + K \beta_k - y_k \leq \xi_k, \quad k = 1, 2, \ldots, K,
$$

$$
\xi_k \geq 0, \quad k = 1, 2, \ldots, K,
$$

$$
(\sum_{k=1}^{K} \beta_{0k}) 1_n + K(\sum_{k=1}^{K} \beta_k) = 0.
$$

Form the primal functional $F_P = F_P(\{\beta_{0k}\}, \{\beta_k\}, \{\xi_k\})$, where

$$
F_P = \sum_{k=1}^{K} L_k^T \xi_k + \frac{n \lambda}{2} \sum_{k=1}^{K} \beta_k^T K \beta_k
$$

$$
+ \sum_{k=1}^{K} \alpha_k^T (\beta_{0k} 1_n + K \beta_k - y_k - \xi_k)
$$

$$
- \sum_{k=1}^{K} \gamma_k^T \xi_k + \delta^T \left(\sum_{k=1}^{K} \beta_{0k} 1_n + K \sum_{k=1}^{K} \beta_k \right)
$$

In (11.96), $\alpha_k = (\alpha_{1k}, \ldots, \alpha_{nk})^\tau$ and γ_k are n-vectors of nonnegative Lagrange multipliers for the inequality constraints (11.93) and (11.94), respectively, and δ is an n-vector of unconstrained Lagrange multipliers for the equality constraint (11.95).

Differentiating (11.96) with respect to β_{0k}, β_k, and ξ_k yields

$$
\frac{\partial F_P}{\partial \beta_{0k}} = (\alpha_k + \delta)^T 1_n,
$$

$$
\frac{\partial F_P}{\partial \beta_k} = n \lambda K \beta_k + K \alpha_k + K \delta,
$$

(11.97)

(11.98)
\[
\frac{\partial F_P}{\partial \xi_k} = L_k - \alpha_k - \gamma_k, \quad (11.99)
\]
\[
\alpha_k \geq 0, \quad (11.100)
\]
\[
\gamma_k \geq 0. \quad (11.101)
\]

The Karush–Kuhn–Tucker complementarity conditions are
\[
\alpha_k (\beta_{0k} 1_n + K \beta_{.k} - y_{.k} - \xi_{.k})^\top = 0, \quad k = 1, 2, \ldots, K, \quad (11.102)
\]
\[
\gamma_k \xi_{.k}^\top = 0, \quad k = 1, 2, \ldots, K, \quad (11.103)
\]
where, from (11.99), \(\gamma_k = L_k - \alpha_k \). Note that (11.102) and (11.103) are outer products of two column vectors, meaning that each of the \(n^2 \) elementwise products of those vectors are zero.

From (11.99) and (11.101), we have that \(0 \leq \alpha_k \leq L_k, \quad k = 1, 2, \ldots, K \). Suppose, for some \(i \), \(0 < \alpha_{ik} < L_{ik} \); then, \(\gamma_{ik} > 0 \), and, from (11.103), \(\xi_{ik} = 0 \), whence, from (11.102), \(y_{ik} = \beta_{0k} + \sum_{\ell=1}^n \beta_{\ell k} K(x_\ell, x_i) \).

Setting the derivatives equal to zero for \(k = 1, 2, \ldots, K \) yields \(\delta = -\bar{\alpha} = -K^{-1} \sum_{k=1}^K \alpha_k \) from (11.97), whence, \((\alpha_k - \bar{\alpha})^\top 1_n = 0 \), and, from (11.98), \(\beta_k = -(n \lambda)^{-1} (\alpha_k - \bar{\alpha}) \), assuming that \(K \) is positive-definite. If \(K \) is not positive-definite, then \(\beta_k \) is not uniquely determined. Because (11.97), (11.98), and (11.99) are each zero, we construct the dual functional \(F_D \) by using them to remove a number of the terms of \(F_P \).

The resulting dual problem is to find \(\{\alpha_k\} \) to
\[
\text{minimize } F_D = \frac{1}{2} \sum_{k=1}^K (\alpha_k - \bar{\alpha})^\top K (\alpha_k - \bar{\alpha}) + n \lambda \sum_{k=1}^K \alpha_k^\top y_{.k} \quad (11.104)
\]
\[
\text{subject to } 0 \leq \alpha_k \leq L_k, \quad k = 1, 2, \ldots, K, \quad (11.105)
\]
\[
(\alpha_k - \bar{\alpha})^\top 1_n = 0, \quad k = 1, 2, \ldots, K. \quad (11.106)
\]

From the solution, \(\{\hat{\alpha}_k\} \), to this quadratic programming problem, we set
\[
\hat{\beta}_k = -(n \lambda)^{-1} (\hat{\alpha}_k - \bar{\alpha}), \quad (11.107)
\]
where \(\bar{\alpha} = K^{-1} \sum_{k=1}^K \hat{\alpha}_k \).

The multiclass classification solution for a new \(x \) is given by
\[
C_k(x) = \arg \max_k \{\hat{f}_k(x)\}, \quad (11.108)
\]
where
\[
\hat{f}_k(x) = \hat{\beta}_{0k} + \sum_{\ell=1}^n \hat{\beta}_{\ell k} K(x_\ell, x), \quad k = 1, 2, \ldots, K. \quad (11.109)
\]
Suppose the row vector $\alpha_i = (\hat{\alpha}_{i1}, \ldots, \hat{\alpha}_{iK}) = 0$ for (x_i, y_i); then, from (11.107), $\hat{\beta}_i = (\hat{\beta}_{i1}, \ldots, \hat{\beta}_{iK}) = 0$. It follows that the term $\hat{\beta}_{ik}^T K(x_i, x) = 0$, $k = 1, 2, \ldots, K$. Thus, any term involving (x_i, y_i) does not appear in (11.109); in other words, it does not matter whether (x_i, y_i) is or is not included in the learning set L because it has no effect on the solution. This result leads us to a definition of support vectors: an observation (x_i, y_i) is called a support vector if $\hat{\beta}_i = (\hat{\beta}_{i1}, \ldots, \hat{\beta}_{iK}) \neq 0$. As in the binary SVM solution, it is in our computational best interests for there to be relatively few support vectors for any given application.

The one issue remaining is the choice of tuning parameter λ (and any other parameters involved in the computation of the kernel). A generalized approximate cross-validation (GACV) method is derived in Lee, Lin, and Wahba (2004) based upon an approximation to the leave-one-out cross-validation technique used for penalized-likelihood methods. The basic idea behind GACV is the following. Write (11.77) as

$$I_\lambda(f, \mathcal{Y}) = n^{-1} \sum_{i=1}^{n} g(y_i, f(x_i)) + J_\lambda(f), \quad (11.110)$$

where $g(y_i, f(x_i)) = [L(y_i)]^T (f(x_i) - y_i) +$ and $J_\lambda(f) = (\lambda/2) \sum_{i=1}^{n} \| h_j \|^2$. Let $f_\lambda = \arg \min_f I_\lambda(f, \mathcal{Y})$ and let $f_\lambda^{(-i)}$ denote that f_λ that yields the minimum of $I_\lambda(f, \mathcal{Y})$ by omitting the ith observation (x_i, y_i) from the first term in (11.110). If we write

$$g(y_i, f_\lambda^{(-i)}(x_i)) = g(y_i, f_\lambda(x_i)) + [g(y_i, f_\lambda^{(-i)}(x_i)) - g(y_i, f_\lambda(x_i))] \quad (11.111)$$

then the λ that minimizes $n^{-1} \sum_{i=1}^{n} g(y_i, f_\lambda^{(-i)}(x_i))$ is found by using a suitable approximation of $D(\lambda) = n^{-1} \sum_{i=1}^{n} [g(y_i, f_\lambda^{(-i)}(x_i)) - g(y_i, f_\lambda(x_i))]$, computed over a grid of values of λ.

This solution of the multiclass SVM problem has been found to be successful in simulations and in analyzing real data. Comparisons of various multiclass classification methods, such as multiclass SVM, “all-versus-rest,” LDA, and QDA, over a number of data sets show that no one classification method appears to be superior for all situations studied; performance appears to depend upon the idiosyncracies of the data to be analyzed.

11.5 Support Vector Regression

The SVM was designed for classification. Can we extend (or generalize) the idea to regression? How would the main concepts used in SVM — convex optimization, optimal separating hyperplane, support vectors, margin, sparseness of the solution, slack variables, and the use of kernels — translate to the regression situation? It turns out that all of these concepts find
their analogues in regression analysis and they add a different view to the
topic than the views we saw in Chapter 5.

11.5.1 \(\epsilon\)-Insensitive Loss Functions

In SVM classification, the margin is used to determine the amount of
separation between two nonoverlapping classes of points: the bigger the
margin, the more confident we are that the optimal separating hyperplane is
a superior classifier. In regression, we are not interested in separating points
but in providing a function of the input vectors that would track the points
closely. Thus, a regression analogue for the margin would entail forming a
“band” or “tube” around the true regression function that contains most
of the points. Points not contained within the tube would be described
through slack variables. In formulating these ideas, we first need to define
an appropriate loss function.

We define a loss function that ignores errors associated with points falling
within a certain distance (e.g., \(\epsilon > 0\)) of the true linear regression function,

\[
\mu(x) = \beta_0 + x^T \beta. \tag{11.112}
\]

In other words, if the point \((x, y)\) is such that \(|y - \mu(x)| \leq \epsilon\), then the loss
is taken to be zero; if, on the other hand, \(|y - \mu(x)| > \epsilon\), then we take the
loss to be \(|y - \mu(x)| - \epsilon\).

With this strategy in mind, we can define the following two types of loss function:

- \(L^1_\epsilon(y, \mu(x)) = \max\{0, |y - \mu(x)| - \epsilon\}\),
- \(L^2_\epsilon(y, \mu(x)) = \max\{0, (y - \mu(x))^2 - \epsilon\}\).

The first loss function, \(L^1_\epsilon\), is called the \textit{linear \(\epsilon\)-insensitive loss function},
and the second, \(L^2_\epsilon\), is the \textit{quadratic \(\epsilon\)-insensitive loss function}. The two
loss functions, linear (red curve) and quadratic (blue curve), are graphed
in Figure 11.5. We see that the linear loss function ignores all errors falling
within \(\pm \epsilon\) of the true regression function \(\mu(x)\) while dampening in a linear
fashion errors that fall outside those limits.

11.5.2 Optimization for Linear \(\epsilon\)-Insensitive Loss

We define slack variables \(\xi_i\) and \(\xi'_i\) in the following way. If the point
\((x_i, y_i)\) lies above the \(\epsilon\)-tube, then \(\xi'_i = y_i - \mu(x_i) - \epsilon \geq 0\), whereas if the point
\((x_j, y_j)\) lies below the \(\epsilon\)-tube, then \(\xi_j = \mu(x_j) - \epsilon - y_j \geq 0\). For
points that fall outside the \(\epsilon\)-tube, the values of the slack variables depend
Upon the shape of the loss function; for points inside the ϵ-tube, the slack variables have value zero.

For linear ϵ-insensitive loss, the primal optimization problem is to find $\beta_0, \beta, \xi' = (\xi'_1, \cdots, \xi'_n)^T$, and $\xi = (\xi_1, \cdots, \xi_n)^T$ to

$$\minimize \quad \frac{1}{2} \| \beta \|^2 + C \sum_{i=1}^n (\xi_i + \xi'_i) \quad \text{(11.113)}$$

subject to

$$y_i - (\beta_0 + x_i^T \beta) \leq \epsilon + \xi'_i,$$

$$(\beta_0 + x_i^T \beta) - y_i \leq \epsilon + \xi_i,$$

$$\xi'_i \geq 0, \quad \xi_i \geq 0, \quad i = 1, 2, \ldots, n.$$ \hspace{1cm} \text{(11.114)}$$

The constant $C > 0$ exists to balance the flatness of the function μ against our tolerance of deviations larger than ϵ. Notice that because ϵ is found only in the constraints, the solution to this optimization problem has to incorporate a band around the regression function.

Form the primal Lagrangian,

$$F_P = \frac{1}{2} \| \beta \|^2 + C \sum_{i=1}^n (\xi_i + \xi'_i) - \sum_i a_i \{ y_i - (\beta_0 + x_i^T \beta) - \epsilon - \xi'_i \}$$

$$- \sum_i b_i \{ (\beta_0 + x_i^T \beta) - y_i - \epsilon - \xi_i \}$$

$$- \sum_i c_i \xi'_i - \sum_i d_i \xi_i,$$ \hspace{1cm} \text{(11.115)}$$
where \(a_i, b_i, c_i, \) and \(d_i, \) \(i = 1, 2, \ldots, n, \) are the Lagrange multipliers. This, in turn, implies that \(a_i, b_i, c_i, d_i, \) \(i = 1, 2, \ldots, n, \) are all nonnegative. The derivatives are

\[
\frac{\partial F_P}{\partial \beta_0} = \sum_i a_i - \sum_i b_i \tag{11.116}
\]
\[
\frac{\partial F_P}{\partial \beta} = \beta + \sum_i a_i x_i - \sum_i b_i x_i \tag{11.117}
\]
\[
\frac{\partial F_P}{\partial \xi_i} = C + b_i - d_i \tag{11.118}
\]
\[
\frac{\partial F_P}{\partial \xi_i'} = C + a_i - c_i \tag{11.119}
\]

Setting these derivatives equal to zero for a stationary solution yields:

\[
\beta^* = \sum_i (b_i - a_i) x_i, \tag{11.120}
\]
\[
\sum_i (b_i - a_i) = 0, \tag{11.121}
\]
\[
C + b_i - d_i = 0, \quad C + a_i - c_i = 0, \quad i = 1, 2, \ldots, n. \tag{11.122}
\]

The expression (11.120) is known as the support vector expansion because \(\beta^* \) can be written as a linear combination of the input vectors \(\{x_i\} \). Setting \(\beta = \beta^* \) in the true regression equation (11.112) gives us

\[
\mu^*(x) = \beta_0 + \sum_{i=1}^n (b_i - a_i)(x^T x_i). \tag{11.123}
\]

Substituting \(\beta^* \) into the primal Lagrangian and using (11.120) and (11.121) gives us the dual problem: find \(\mathbf{a} = (a_1, \ldots, a_n)^T, \mathbf{b} = (b_1, \ldots, b_n)^T \) to

\[
\text{maximize} \quad F_D = (\mathbf{b} - \mathbf{a})^T \mathbf{y} - \epsilon (\mathbf{b} + \mathbf{a})^T \mathbf{1}_n - \frac{1}{2} (\mathbf{b} - \mathbf{a})^T \mathbf{K} (\mathbf{b} - \mathbf{a}) \tag{11.124}
\]

subject to \(0 \leq \mathbf{a}, \mathbf{b} \leq C \mathbf{1}_n, \quad (\mathbf{b} - \mathbf{a})^T \mathbf{1}_n = 0, \) \(\tag{11.125} \)

where \(\mathbf{K} = (\langle x_i, x_j \rangle) \) for linear SVM. The Karush–Kuhn–Tucker complementarity conditions state that the products of the dual variables and the constraints are all zero:

\[
a_i (\beta_0 + x_i^T \mathbf{\beta} - y_i - \epsilon - \xi_i) = 0, \quad i = 1, 2, \ldots, n, \tag{11.126}
\]
\[
b_i (y_i - \beta_0 - x_i^T \mathbf{\beta} - \epsilon - \xi_i') = 0, \quad i = 1, 2, \ldots, n, \tag{11.127}
\]
\[
\xi_i \xi_i' = 0, \quad a_i b_i = 0, \quad i = 1, 2, \ldots, n, \tag{11.128}
\]
\[
(a_i - C) \xi_i = 0, \quad (b_i - C) \xi_i' = 0, \quad i = 1, 2, \ldots, n. \tag{11.129}
\]
In practice, the value of ϵ is usually taken to be around 0.1.

The solution to this optimization problem produces a linear function of x accompanied by a band or tube of $\pm \epsilon$ around the function. Points that do not fall inside the tube are the support vectors.

11.5.3 Extensions

The optimization problem using quadratic ϵ-insensitive loss can be solved in a similar manner; see Exercise 11.3.

If we formulate this problem using nonlinear transformations of the input vectors, $x \rightarrow \Phi(x)$, to a feature space defined by the kernel $K(x, y)$, then the stationary solution (11.120) is replaced by

$$
\beta^* = \sum_{i=1}^{n} (b_i - a_i) \Phi(x_i),
$$

(11.130)

the inner product $\langle x_i, x_j \rangle = x_i^T x_j$ in (11.120) is replaced by the more general kernel function,

$$
K(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle = \Phi(x_i)^T \Phi(x_j),
$$

(11.131)

the matrix $K = (K(x_i, x_j))$ replaces the matrix K in (11.124), and the SVM regression function (11.122) becomes

$$
\mu^*(x) = \beta_0 + \sum_{i=1}^{n} (b_i - a_i) K(x, x_i);
$$

(11.132)

see Exercise 11.4. Note that β^* in (11.130) does not have an explicit representation as it has in (11.120).

11.6 Optimization Algorithms for SVMs

When a data set is small, general-purpose linear programming (LP) or quadratic programming (QP) optimizers work quite well to solve SVM problems; QP optimizers can solve problems having about a thousand points, whereas LP optimizers can deal with hundreds of thousands of points. With large data sets, however, a more sophisticated approach is required.

The main problem when computing SVMs for very large data sets is that storing the entire kernel in main memory dramatically slows down computation. Alternative algorithms, constructed for the specific task of overcoming such computational inefficiencies, are now available in certain SVM software.
We give only brief descriptions of some of these algorithms. The simplest procedure for solving a convex optimization problem is that of gradient ascent:

Gradient Ascent: Start with an initial estimate of the α-coefficient vector and then successively update α one α-coefficient at a time using the steepest ascent algorithm.

A problem with this approach is that the solution for $\alpha = (\alpha_1, \cdots, \alpha_n)^T$ has to satisfy the linear constraint $\alpha^T y = \sum_{i=1}^{n} \alpha_i y_i = 0$. Carrying out a non-trivial one-at-a-time update of each α-component (while holding the remaining αs constant at their current values) will violate this constraint, and the solution at each iteration will fall outside the feasible region. The minimum number of αs that can be changed at each iteration is two.

More complicated (but also more efficient) numerical techniques for large learning data sets are now available in many SVM software packages. Examples of such advanced techniques include “chunking,” decomposition, and sequential minimal optimization. Each method builds upon certain common elements: (1) choose a subset of the learning set L; (2) monitor closely the KKT optimality conditions to discover which points not in the subset violate the conditions; and (3) apply a suitable optimizing strategy. These strategies are

Chunking: Start with an arbitrary subset (called the “working set” or “chunk”) of size 100–500 of the learning set L; use a general LP or QP optimizer to train an SVM on that subset and keep only the support vectors; apply the resulting classifier to all the remaining data in L and sort the misclassified points by how badly they violate the KKT conditions; add to the support vectors found previously a predetermined number of those points that most violate the KKT conditions; iterate until all points satisfy the KKT conditions. The general optimizer and the point selection process make this algorithm slow and inefficient.

Decomposition: Similar to chunking, except that at each iteration, the size of the subset is always the same; adding new points to the subset means that an equal number of old points must be removed.

Sequential Minimal Optimization (SMO): An extreme version of the decomposition algorithm, whereby the subset consists of only two points at each iteration (see above comments related to the gradient ascent algorithm). These two αs are found at each iteration by using a heuristic argument and then updated so that the constraint $\alpha^T y = \sum_{i=1}^{n} \alpha_i y_i = 0$ is satisfied and the solution is found within the feasible region.
Table 11.4. Some implementations of SVM.

<table>
<thead>
<tr>
<th>Package</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVMlight</td>
<td>http://svmlight.joachims.org/</td>
</tr>
<tr>
<td>LIBSVM</td>
<td>http://csie.ntu.edu.tw/~cjlin/libsvm/</td>
</tr>
<tr>
<td>SVMseuquel</td>
<td>http://www.isi.edu/~hdaume/SVMseuquel/</td>
</tr>
<tr>
<td>TinySVM</td>
<td>http://chasen.org/~taku/TinySVM/</td>
</tr>
</tbody>
</table>

A big advantage of SMO (Platt, 1999) is that the algorithm has an analytical solution and so does not need to refer to a general QP optimizer; it also does not need to store the entire kernel matrix in memory. Although more iterations are needed, SMO is much faster than the other algorithms. The SMO algorithm has been improved in many ways for use with massive data sets.

11.7 Software Packages

There are several software packages for computing SVMs. Many are available for downloading over the Internet. See Table 11.4 for a partial list. Most of these SVM packages use similar data-input formats and command lines.

The most popular SVM package is SVMlight by Thorsten Joachims; it is very fast and can carry out classification and regression using a variety of kernels and is used for text classification. It is often used as the basis for other SVM software packages.

The C++–based package LIBSVM by C.-C. Chang and C.-J. Lin, which carries out classification and regression, is based upon SMO and SVMlight, and has interfaces to MATLAB, python, perl, ruby, S-Plus (function \texttt{svm} in library \texttt{libsvm}), and R (function \texttt{svm} in library \texttt{e1071}); see Venables and Ripley (2002, pp. 344–346). SVMTorch II is an extremely fast C++ program for classification and regression that can handle more than 20,000 observations and more than 100 input variables. SVMseuquel is a very fast program that handles classification problems, a variety of kernels (including string kernels), and enormous data sets. TinySVM, which supports C++, perl, ruby, python, and Java interfaces, is based upon SVMlight, carries out classification and regression, and can deal with very large data sets.
Bibliographical Notes

Most of the theoretical work on kernel functions goes back to about the beginning of the 1900s. The idea of using kernel functions as inner products was introduced into machine learning by Aizerman, Braverman, and Rozoener (1964). Kernels were then put to work in SVM methodology by Boser, Guyon, and Vapnik (1992), who borrowed the “kernel” name from the theory of integral operators.

Exercises

11.1 (a) Show that the perpendicular distance of the point \((h, k)\) to the line \(f(x, y) = ax + by + c = 0\) is \(\pm (ah + bk + c)/\sqrt{a^2 + b^2}\), where the sign chosen is that of \(c\).

(b) Let \(\mu(x) = \beta_0 + x^T \beta = 0\) denote a hyperplane, where \(\beta_0 \in \mathbb{R}\) and \(\beta \in \mathbb{R}^r\), and let \(x_k \in \mathbb{R}^r\) be a point in the space. By minimizing \(\|x - x_k\|^2\) subject to \(\mu(x) = 0\), show that the perpendicular distance from the point to the hyperplane is \(\|\mu(x_k)\|/\|\beta\|\).

11.2 In the support vector regression problem using a quadratic \(\epsilon\)-insensitive loss function, formulate and solve the resulting optimization problem.

11.3 The “2-norm soft margin” optimization problem for SVM classification: Consider the regularization problem of minimizing \(\frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \xi_i^2\) subject to the constraints \(y_i(\beta_0 + x_i^T \beta) \geq 1 - \xi_i\), and \(\xi_i \geq 0\), for \(i = 1, 2, \ldots, n\).

(a) Show that the same optimal solution to this problem is reached if we remove the constraints \(\xi_i \geq 0, i = 1, 2, \ldots, n\), on the slack variables. (Hint: What is the effect on the objective functional if this constraint is violated?)
(b) Form the primal Lagrangian F_P, which will be a function of β_0, β, ξ, and the Lagrangian multipliers α. Differentiate F_P wrt β_0, β, and ξ, set the results equal to zero, and solve for a stationary solution.

(c) Substitute the results from (b) into the primal Lagrangian to obtain the dual objective functional F_D. Write out the dual problem (objective functional and constraints) in matrix notation. Maximize the dual wrt α. Use the Karush–Kuhn–Tucker complementary conditions $\alpha_i \{y_i(\beta_0 + x_i^T \beta) - (1 - \xi_i)\} = 0$ for $i = 1, 2, \ldots, n$.

(d) If α^* is the solution to the dual problem, find $\hat{\beta}$ and its norm, which gives the width of the margin.

11.4 For the support vector regression problem in a feature space defined by a general kernel function K representing the inner product of pairs of nonlinearly transformed input vectors, formulate and solve the resulting optimization problem using (a) a linear ϵ-insensitive loss function and (b) a quadratic ϵ-insensitive loss function.

11.5 In the support vector regression problem, let $\epsilon = 0$. Consider the quadratic (2-norm) primal optimization problem,
\[
\begin{align*}
\text{minimize} & \quad \lambda \| \beta \|^2 + \sum_{i=1}^{n} \xi_i^2 \\
\text{subject to} & \quad y_i - x_i^T \beta = \xi_i, \; i = 1, 2, \ldots, n.
\end{align*}
\]
Form the Lagrangian, differentiate wrt β and ξ_i, $i = 1, 2, \ldots, n$, and set the results equal to zero for a stationary solution. Substitute these values into the primal functional to get the dual problem. Use K to represent the Gram matrix with entries either $K_{ij} = x_i^T x_j$ or $K_{ij} = K(x_i, x_j)$. Differentiate the dual functional wrt the Lagrange multipliers α, and set the result equal to zero. Show that this solution is related to ridge regression (see Section 5.7.4).

11.6 Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$. Consider the polynomial kernel function, $K(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle^2$, so that $r = 2$ and $d = 2$. Find two different maps $\Phi : \mathbb{R}^2 \to \mathcal{H}$ for $\mathcal{H} = \mathbb{R}^3$.

11.7 Let $z \in \mathbb{R}$ and define the $(2m + 1)$-dimensional Φ-mapping,
\[
\Phi(z) = (2^{-1/2}, \cos z, \ldots, \cos mz, \sin z, \ldots, \sin mz)^T.
\]
Using this mapping, show that the kernel $K(\mathbf{x}, y) = \langle \Phi(\mathbf{x}), \Phi(y) \rangle$, $\mathbf{x}, y \in \mathbb{R}$, reduces to the Dirichlet kernel given by
\[
K(x, y) = \frac{\sin((m + 1/2)\delta)}{2\sin(\delta/2)},
\]
where $\delta = x - y$.

11.8 Show that the homogeneous polynomial kernel, $K(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle^d$, satisfies Mercer’s condition (11.54).
11.9 If K_1 and K_2 are kernels and $c_1, c_2 \geq 0$ are real numbers, show that the following functions are kernels:

(a) $c_1 K_1(x, y) + c_2 K_2(x, y)$;
(b) $K_1(x, y) K_2(x, y)$;
(c) $\exp\{K_1(x, y)\}$.

(Hint: In each case, you have to show that the function is nonnegative-definite.)

11.10 Prove that in finite-dimensional input space, a symmetric function $K(x, y)$ is a kernel function iff $K = (K(x_i, x_j))$ is a nonnegative-definite matrix with nonnegative eigenvalues. (Hint: Use the symmetry and the spectral theorem for K to show that K is a kernel. Then, show that for a negative eigenvalue, the squared-norm of any point $z \in \mathcal{H}$ is negative, which is impossible.)

11.11 Show that the functional $F_D(\alpha)$ in (11.40) is convex; i.e., show that, for $\theta \in (0, 1)$ and $\alpha, \beta \in \mathbb{R}^m$,

$$F_D(\theta \alpha + (1-\theta)\beta) \leq \theta F_D(\alpha) + (1-\theta)F_D(\beta).$$

11.12 Apply nonlinear-SVM to a binary classification data set of your choice. Make up a two-way table of values of (C, γ) and for each cell in that table compute the CV/10 misclassification rate. Find the pair (C, γ) with the smallest CV/10 misclassification rate. Compare this rate with results obtained using LDA and that using a classification tree.
12
Cluster Analysis

12.1 Introduction

Cluster analysis, which is the most well-known example of unsupervised learning, is a very popular tool for analyzing unstructured multivariate data. Within the data-mining community, cluster analysis is also known as data segmentation, and within the machine-learning community, it is also known as class discovery. The methodology consists of various algorithms each of which seeks to organize a given data set into homogeneous subgroups, or “clusters.” There is no guarantee that more than one such group can be found; however, in any practical application, the underlying hypothesis is that the data form a heterogeneous set that should separate into natural groups familiar to the domain experts.

Clustering is a statistical tool for those who need to arrange large quantities of multivariate data into natural groups. For example, marketers use demographics and consumer profiles in an attempt to segment the marketplace into small, homogeneous groups so that promotional campaigns may be carried out more efficiently; biologists divide organisms into hierarchical orders in order to describe the notion of biological diversity; financial managers categorize corporations into different types based upon relevant financial characteristics; archaeologists group artifacts (e.g., broaches) found in
graves in order to understand movements of ancient peoples; physicians use medical records to cluster patients for treatment diagnosis; and audiologists use repeated utterances of specific words by different speakers to provide a basis for speaker recognition. There are many other similar examples.

Cluster analysis resembles methods for classifying items; yet the two data analytic methods are philosophically different from each other. First, in classification, it is known a priori how many classes or groups are present in the data and which items are members of which class or group; in cluster analysis, the number of classes is unknown and so is the membership of items into classes. Second, in classification, the objective is to classify new items (possibly in the form of a test set) into one of the given classes based upon experience obtained using a learning set of data; clustering falls more into the framework of exploratory data analysis, where no prior information is available regarding the class structure of the data. Third, classification deals almost exclusively with classifying observations, whereas clustering can be applied to clustering observations or variables or both observations and variables simultaneously, depending upon the context.

Methods for clustering items (either observations or variables) depend upon how similar (or dissimilar) the items are to each other. Similar items are treated as a homogeneous class or group, whereas dissimilar items form additional classes or groups. Much of the output of a cluster analysis is visual, with the results displayed as scatterplots, trees, dendrograms, silhouette plots, and heatmaps.

12.1.1 What Is a Cluster?

This is a difficult question to answer mainly because there is no universally accepted definition of exactly what constitutes a cluster. As a result, the various clustering methods usually do not produce identical or even similar solutions.

A cluster is generally thought of as a group of items (objects, points) in which each item is “close” (in some appropriate sense) to a central item of a cluster and that members of different clusters are “far away” from each other. In a sense, then, clusters can be viewed as “high-density regions” of some multidimensional space (Hartigan, 1975). Such a notion seems fine on the surface if clusters are to be thought of as convex elliptical regions.

However, it is not difficult to conceive of situations in which natural clusterings of items do not follow this pattern. When the dimension of a space is large enough, these multidimensional items, plotted as points in that space, may congregate in clusters that curve and twist around each other; even if the various swarms of points are non-overlapping (which is unlikely), the oddly shaped configurations of points may be almost impossible to detect and identify using current techniques.
12.1.2 Example: Old Faithful Geyser Eruptions

The data for this example\(^1\) is a set of 107 bivariate observations, that were taken from a study of the eruptions of Old Faithful Geyser in Yellowstone National Park, Wyoming (Weisberg, 1985, p. 231). A geyser is a hot spring which occasionally becomes unstable and erupts hot water and steam into the air. Old Faithful Geyser is the most famous of all geysers and is an extremely popular tourist attraction. The variables measured are duration of eruption (\(X_1\)) and waiting time until the next eruption (\(X_2\)), both recorded in minutes, for all eruptions of Old Faithful Geyser between 6 a.m. and midnight, 1–8 August 1978. Prior to clustering, one could argue that there are two or three possible clusters in the data.

Because the two variables are measured on very different scales (the standard deviations of \(X_1\) and \(X_2\) being approximately 1 and 13, respectively), the derived clusters (using any clustering algorithm) are completely determined by \(X_2\), the interval between eruptions; the observations are divided into clusters by straight-line boundaries parallel to the horizontal axis. Without standardizing both variables, we cannot obtain a realistic partitioning of the data. So, for this example, we standardize the variables prior to clustering.

The results of this clustering study, where we set the number of clusters to be two or three for each method, are displayed in Figure 12.1. The most interesting result is that “perfect” clustering (according to our intuition) for both two and three clusters is accomplished only by the single-linkage, hierarchical agglomerative method (see first row of Figure 12.1). If we use the single-linkage results as the gold standard, we see that average-linkage and complete-linkage methods (second row), which produced the same results for two and three clusters, had one incorrect allocation for two clusters and three incorrect allocations for three clusters. Although both of the non-hierarchical clustering methods, \textit{pam} and \textit{K}-means (third row), had perfect clustering for two clusters, they performed poorly for three clusters, where they both had 45 incorrectly allocations.

12.2 Clustering Tasks

There are numerous ways of clustering a data set of \(n\) independent measurements on each of \(r\) correlated variables.

\textbf{Clustering Observations:} When we speak about “clustering,” we usually think of clustering the \(n\) observations into groups, where the

\(^1\)The data can be found in the file \texttt{geyser} on the book’s website.
FIGURE 12.1. Clustering results for Old Faithful Geyser data. The scatterplots in the left column panels are solutions for $K = 2$ classes, with red and blue as the two cluster colors. The scatterplots in the right column panels are solutions for $K = 3$ classes, with red, green, and blue as the three cluster colors. The first row is the single-linkage (SL) solutions, the second row is both average-linkage (AL) and complete-linkage (CL) solutions, the third row is both pam and K-means solutions.
number, K, of groups is unknown and has to be determined from the data. When analyzing microarray data, the observations may be, for example, tissue samples, disease types, or experimental conditions, and so this task is often referred to as “clustering samples.”

Clustering Variables: We may wish to partition the p variables into K distinct groups, where the number K is unknown and has to be determined from the data. A group may be determined by using only one variable; however, most clusters will be formed using several variables. These clusters should be far enough apart (in some sense) that groupings are easily identifiable. Each cluster of variables may later be replaced by a single variable representative of that cluster. When analyzing microarray data, the variables are genes, and so we refer to this task as “gene clustering.”

Two-Way Clustering: Instead of clustering the variables or the observations separately, it might in certain circumstances be more appropriate to cluster them both simultaneously. Two-way clustering is known by different names, such as “block clustering” or “direct clustering.” This goal is especially appropriate in microarray studies, where it is desired to cluster genes and tissue samples at the same time to show which subset of genes is most closely related to which subset of disease types.

NOTE: Because many of the clustering algorithms can be applied to observations or variables (or both simultaneously), it will often be convenient in this chapter to use the generic word “item” when a distinction between observation or variable is unnecessary.

12.3 Hierarchical Clustering

There are two types of hierarchical clustering methods: *agglomerative* and *divisive*. Agglomerative clustering algorithms, often called “bottom-up” methods, start with each item being its own cluster; then, clusters are successively merged, until only a single cluster remains. Divisive clustering algorithms, often called “top-down” methods, do the opposite: they start with all items as members of a single cluster; then, that cluster is split into two separate clusters, and so on for every successive cluster, until each item is its own cluster. Most attention in the clustering literature has been on agglomerative methods; however, arguments have been made that divisive methods can provide more sophisticated and robust clusterings.
12.3.1 Dendrogram

The end result of all hierarchical clustering methods is a dendrogram (i.e., hierarchical tree diagram), where the k-cluster solution is obtained by merging some of the clusters from the $(k + 1)$-cluster solution. The dendrogram may be drawn horizontal or vertical, depending upon user choice or software decision; both types give the same information. In this discussion, we assume a vertical dendrogram.

The dendrogram allows the user to read off the “height” of the linkage criterion at which items or clusters or both are combined together to form a new, larger cluster. Items that are similar to each other are combined at low heights, whereas items that are more dissimilar are combined higher up the dendrogram. Thus, it is the difference in heights that defines how close items are to each other. The greater the distance between heights at which clusters are combined, the more readily we can identify substantial structure in the data.

A partition of the data into a specified number of groups can be obtained by “cutting” the dendrogram at an appropriate height. If we draw a horizontal line on the dendrogram at a given height, then the number, K, of vertical lines cut by that horizontal line identifies a K-cluster solution; the intersection of the horizontal line and one of those K vertical lines then represents a cluster, and the items located at the end of all branches below that intersection constitute the members of the cluster.

Unlike the vertical distances, which are crucial in defining a solution, the horizontal distances between items are irrelevant; the software that draws a dendrogram is generally written so that the dendrogram can be easily interpreted. For large data sets, however, this goal becomes impossible.

12.3.2 Dissimilarity

The basic tool for hierarchical clustering is a measure of the dissimilarity or proximity (i.e., distance) of one item relative to another item. Which definition of distance is used in any given application is often a matter of subjective choice. Let $x_i, x_j \in \mathbb{R}^r$. Dissimilarities usually satisfy the following three properties:

1. $d(x_i, x_j) \geq 0$;
2. $d(x_i, x_i) = 0$;
3. $d(x_j, x_i) = d(x_i, x_j)$.

Such dissimilarities are termed metric or ultrametric according to whether they satisfy a fourth property, A metric dissimilarity satisfies

4a. $d(x_i, x_j) \leq d(x_i, x_k) + d(x_k, x_j)$,
and an ultrametric dissimilarity satisfies

4b. $d(x_i, x_j) \leq \max\{d(x_i, x_k), d(x_j, x_k)\}$.

Ultrametric dissimilarities can be displayed graphically by a dendrogram. There are several ways to define a dissimilarity, the most popular being Euclidean distance and Manhattan city-block distance.

Let $x_i = (x_{i1}, \ldots, x_{ir})^T$ and $x_j = (x_{j1}, \ldots, x_{jr})^T$ denote two points in \mathbb{R}^r. Then, these dissimilarity measures are defined as follows:

Euclidean:

$$d(x_i, x_j) = [\sum_{k=1}^{r} (x_{ik} - x_{jk})^2]^{1/2}.$$

Manhattan:

$$d(x_i, x_j) = \sum_{k=1}^{r} |x_{ik} - x_{jk}|.$$

Minkowski:

$$d_m(x_i, x_j) = [\sum_{k=1}^{r} |x_{ik} - x_{jk}|^m]^{1/m}.$$

In some applications, squared-Euclidean distance is used. Minkowski distance includes as special cases Euclidean distance ($m = 2$) and Manhattan distance ($m = 1$).

These dissimilarity measures are all computed using raw data, not standardized data. Standardization is usually recommended when the variability of the variables is quite different: a larger variability will have a more pronounced effect upon the clustering procedure than will a variable with relatively low variability.

A dissimilarity measure used for clustering variables is

1-correlation:

$$d(x_i, x_j) = 1 - \rho_{ij} = 1 - s_{ij}/s_is_j,$$

where $-1 \leq \rho_{ij} \leq 1$ is the correlation between the pair of variables X_i and X_j. Here, $s_{ij} = \sum_{k=1}^{r} (x_{ik} - \bar{x}_i)(x_{jk} - \bar{x}_j)$, $s_i = [\sum_{k=1}^{r} (x_{ik} - \bar{x}_i)^2]^{1/2}$, $s_2 = [\sum_{k=1}^{r} (x_{jk} - \bar{x}_j)^2]^{1/2}$, and $\bar{x}_\ell = r^{-1} \sum_{k=1}^{r} x_{\ell k}$, $\ell = i, j$. A relatively large absolute value of ρ_{ij} suggests the variables are “close” to each other, whereas a small correlation ($\rho_{ij} \approx 0$) suggests the variables are “far away” from each other. Thus, $1 - \rho_{ij}$ is taken as a measure of “dissimilarity” between the variables.

Given n observations, $x_1, \ldots, x_n \in \mathbb{R}^r$, the starting point of any hierarchical clustering procedure is to compute the pairwise dissimilarities between observations and then arrange them into a symmetric, $(n \times n)$ proximity matrix, $D = (d_{ij})$, where $d_{ij} = d(x_i, x_j)$, with zeroes along the diagonal. If we are clustering variables, the proximity matrix $D = (d_{ij})$ is a symmetric, $(r \times r)$-matrix with ijth dissimilarity $d_{ij} = 1 - \rho_{ij}$.

12.3.3 Agglomerative Nesting (agnes)

Table 12.1 lists the algorithm for agglomerative hierarchical clustering. The most popular of these clustering methods are referred to as single-linkage (or nearest-neighbor), complete-linkage (or farthest-neighbor), and a compromise between these two, average-linkage methods. Each of these clustering methods is defined by the way in which two clusters (which may be single items) are combined or “joined” to form a new, larger cluster. Single linkage uses a minimum-distance metric between clusters, complete linkage uses a greatest-distance metric, and average linkage computes the average distance between all pairs of items within the two different clusters, one item from each cluster. There is also a weighted version of average linkage, where the weights reflect the (possibly disparate) sizes of the clusters in question.

No one of these algorithms is uniformly best for all clustering problems. Whereas the dendrograms from single-linkage and complete-linkage methods are invariant under monotone transformations of the pairwise dissimilarities, this property does not hold for the average-linkage method. Single-linkage often leads to long “chains” of clusters, joined by singleton points near each other, a result that does not have much appeal in practice, whereas complete-linkage tends to produce many small, compact clusters. Average linkage is dependent upon the size of the clusters, whereas single and complete linkage, which depend only upon the smallest or largest dissimilarity, respectively, do not.

12.3.4 A Worked Example

To understand agglomerative hierarchical clustering, we give a detailed analysis of a small example. Consider the following \(n = 8 \) bivariate points:

\[
\begin{align*}
&x_1 = (1, 3)^\tau, x_2 = (2, 4)^\tau, x_3 = (1, 5)^\tau, x_4 = (5, 5)^\tau, \\
&x_5 = (5, 7)^\tau, x_6 = (4, 9)^\tau, x_7 = (2, 8)^\tau, x_8 = (3, 10)^\tau.
\end{align*}
\]

A scatterplot of these points is given in Figure 12.2 (top-left panel). Using Euclidean distance, the upper-triangular portion of the symmetric, \((8 \times 8)\)-matrix \(D^{(1)} \) is as follows:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>1.41</td>
<td>2.00</td>
<td>4.47</td>
<td>5.66</td>
<td>6.71</td>
<td>5.09</td>
<td>7.28</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>1.41</td>
<td>3.16</td>
<td>4.24</td>
<td>5.38</td>
<td>4.00</td>
<td>6.08</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>4.00</td>
<td>4.47</td>
<td>5.00</td>
<td>3.16</td>
<td>5.38</td>
<td>0.00</td>
<td>2.36</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>2.00</td>
<td>4.12</td>
<td>4.24</td>
<td>5.38</td>
<td>0.00</td>
<td>3.16</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>2.36</td>
<td>3.16</td>
<td>4.14</td>
<td>0.00</td>
<td>2.36</td>
<td>0.00</td>
<td>2.36</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>0.00</td>
<td>1.41</td>
<td>4.14</td>
<td>3.16</td>
<td>0.00</td>
<td>2.36</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.36</td>
<td>3.16</td>
<td>0.00</td>
<td>2.36</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
TABLE 12.1. Algorithm for agglomerative hierarchical clustering.

1. Input: $\mathcal{L} = \{x_i, i = 1, 2, \ldots, n\}$, $n =$ number of clusters, each cluster of which contains one item.

2. Compute $D = (d_{ij})$, the $(n \times n)$-matrix of dissimilarities between the n clusters, where $d_{ij} = d(x_i, x_j)$, $i, j = 1, 2, \ldots, n$.

3. Find the smallest dissimilarity, say, d_{IJ}, in $D = D^{(1)}$. Merge clusters I and J to form a new cluster IJ.

4. Compute dissimilarities, $d_{IJ,K}$, between the new cluster IJ and all other clusters $K \neq IJ$. These dissimilarities depend upon which linkage method is used. For all clusters $K \neq I, J$, we have the following linkage options:
 - **Single linkage:** $d_{IJ,K} = \min\{d_{I,K}, d_{J,K}\}$.
 - **Complete linkage:** $d_{IJ,K} = \max\{d_{I,K}, d_{J,K}\}$.
 - **Average linkage:** $d_{IJ,K} = \sum_{i \in IJ} \sum_{k \in K} d_{ik} / (N_{IJ}N_K)$, where N_{IJ} and N_K are the numbers of items in clusters IJ and K, respectively.

5. Form a new $((n - 1) \times (n - 1))$-matrix, $D^{(2)}$, by deleting rows and columns I and J and adding a new row and column IJ with dissimilarities computed from step 4.

6. Repeat steps 3, 4, and 5 a total of $n - 1$ times. At the ith step, $D^{(i)}$ is a symmetric $((n - i + 1) \times (n - i + 1))$-matrix, $i = 1, 2, \ldots, n$. At the last step ($i = n$), $D^{(n)} = 0$, and all items are merged together into a single cluster.

7. Output: List of which clusters are merged at each step, the value (or height) of the dissimilarity of each merge, and a dendrogram to summarize the clustering procedure.

Single Linkage. The smallest dissimilarity is $d_{12} = d_{23} = d_{68} = 1.414$. We choose to merge x_2 and x_3 to form the new cluster “23.” We next compute new dissimilarities, $d_{23,K} = \min\{d_{2K}, d_{3K}\}$ for $K = 1, 4, 5, 6, 7, 8$. The (7×7)-matrix $D^{(2)}$ is given by the following:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>23</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1.414</td>
<td>4.472</td>
<td>5.657</td>
<td>6.708</td>
<td>5.099</td>
<td>7.280</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>3.162</td>
<td>4.243</td>
<td>5.000</td>
<td>3.162</td>
<td>5.385</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2.000</td>
<td>4.123</td>
<td>4.243</td>
<td>5.385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2.236</td>
<td>3.162</td>
<td>3.606</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2.236</td>
<td>1.414</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>2.236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(6 × 6)-matrix \(D^{(3)} \) is as follows:

\[
\begin{array}{ccccccc}
123 & 4 & 5 & 6 & 7 & 8 \\
123 & 0 & 3.162 & 4.243 & 5.000 & 3.162 & 5.385 \\
4 & 0 & 2.000 & 4.123 & 4.243 & 5.385 & \\
5 & 0 & 2.236 & 3.162 & 3.606 & \\
6 & 0 & 2.236 & 1.414 & \\
7 & 0 & 2.236 & \\
8 & 0 & \\
\end{array}
\]

The smallest dissimilarity is \(d_{68} = 1.414 \), and so we merge \(x_6 \) and \(x_8 \) to form the new cluster “68.” We compute new dissimilarities, \(d_{68,K} = \min\{d_{6K},d_{8K}\} \) for \(K = 123, 4, 5, 7 \). This gives us the (5 × 5)-matrix \(D^{(4)} \),

\[
\begin{array}{ccccccc}
123 & 4 & 5 & 6 & 7 \\
123 & 0 & 3.162 & 4.243 & 5.000 & 3.162 \\
4 & 0 & 2.000 & 4.123 & 4.243 & \\
5 & 0 & 2.236 & 3.162 & \\
68 & 0 & 2.236 & 0 & \\
7 & 0 & \\
\end{array}
\]

The smallest dissimilarity is \(d_{45} = 2.0 \), and so we merge \(x_4 \) and \(x_5 \) to form the new cluster “45.” We compute new dissimilarities, \(d_{45,K} = \min\{d_{4K},d_{5K}\} \) for \(K = 123, 68, 7 \). This gives the (4 × 4)-matrix \(D^{(5)} \),

\[
\begin{array}{cccc}
123 & 45 & 6 & 7 \\
123 & 0 & 3.162 & 5.000 & 3.162 \\
45 & 0 & 2.236 & 4.243 & \\
68 & 0 & 2.236 & \\
7 & 0 & \\
\end{array}
\]

The smallest dissimilarity is \(d_{45,68} = d_{68,7} = 2.236 \). We choose to merge the cluster “68” with \(x_7 \) to produce the new cluster “678.” The new dissimilarities, \(d_{678,K} = \min\{d_{6K},d_{7K}\} \) for \(K = 123, 45 \), yield the matrix \(D^{(6)} \),

\[
\begin{array}{cccc}
123 & 45 & 678 \\
123 & 0 & 3.162 & 3.162 \\
45 & 0 & 2.236 & \\
678 & 0 & \\
\end{array}
\]

The smallest dissimilarity is \(d_{45,678} = 2.236 \), so the next merge is the cluster “45” with the cluster “678.” The matrix \(D^{(7)} \) is

\[
\begin{array}{cccc}
123 & 45678 \\
123 & 0 & 3.162 & \\
45678 & 0 & \\
\end{array}
\]

The last merge is cluster “123” with cluster “45678,” and the merging dissimilarity is \(d_{123,45678} = 3.162 \). The dendrogram is displayed in the top-right panel of Figure 12.2.

Complete Linkage. Complete linkage uses the same idea as single linkage, but instead of taking the smallest dissimilarity as the distance measure between clusters, we take the largest such dissimilarity. From \(D^{(1)} \) given
previously, we merge x_2 and x_3 to form the “23” cluster at height 1.414, as before. Using Euclidean distance (but omitting square-roots in the presentation), the upper-triangular portion of the (7×7)-matrix $D^{(2)}$ is as follows:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>23</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2.0</td>
<td>4.472</td>
<td>5.657</td>
<td>6.708</td>
<td>5.099</td>
<td>7.280</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>4.000</td>
<td>4.472</td>
<td>5.385</td>
<td>4.000</td>
<td>6.083</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2.000</td>
<td>4.123</td>
<td>4.243</td>
<td>5.385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2.236</td>
<td>3.162</td>
<td>3.606</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2.236</td>
<td>1.414</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>2.236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The smallest dissimilarity is $d_{68} = 1.414$. We merge x_6 and x_8 to form a new cluster “68.” We compute new dissimilarities, $d_{68,K} = \max\{d_{6K}, d_{8K}\}$.
for $K = 1, 23, 4, 5, 7$. This gives us a (6×6)-matrix $D^{(3)}$,

\[
\begin{array}{ccccccc}
1 & 23 & 4 & 5 & 68 & 7 \\
1 & 0 & 2.000 & 4.472 & 5.657 & 7.280 & 5.099 \\
23 & 0 & 4.000 & 4.472 & 6.083 & 4.000 & 0 \\
4 & 0 & 2.000 & 4.123 & 4.243 & 5 & 0.236 \\
5 & 0 & 2.236 & 3.162 & 6 & 0.236 \\
68 & 0 & 2.36 & 3.162 & 68 & 0.236 \\
7 & 0 & 0 & 0 & 7 & 0 \\
\end{array}
\]

The smallest dissimilarity is $d_{1,23} = d_{45} = 2.0$. We choose to merge the cluster “23” with x_1 to form a new cluster “123.” We compute new dissimilarities, $d_{123,K} = \max\{d_{12,K}, d_{3K}\}$ for $K = 4, 5, 68, 7$. This gives us a new (5×5)-matrix $D^{(4)}$,

\[
\begin{array}{ccccccc}
123 & 4 & 5 & 68 & 7 \\
123 & 0 & 4.472 & 5.657 & 7.280 & 5.099 \\
4 & 0 & 2.000 & 5.385 & 4.243 & 5 & 3.606 \\
5 & 0 & 3.606 & 3.162 & 6 & 0.236 \\
68 & 0 & 2.36 & 3.162 & 68 & 0.236 \\
7 & 0 & 0 & 0 & 7 & 0 \\
\end{array}
\]

The smallest dissimilarity is $d_{45} = 2.0$. We merge x_4 and x_5 to form a new cluster “45.” We compute dissimilarities, $d_{45,K} = \max\{d_{4K}, d_{5K}\}$ for $K = 123, 68, 7$. This gives us a new (4×4)-matrix $D^{(5)}$,

\[
\begin{array}{ccccccc}
123 & 45 & 68 & 7 \\
123 & 0 & 5.657 & 7.280 & 5.099 \\
45 & 0 & 5.385 & 4.243 & 68 & 0.236 \\
68 & 0 & 2.36 & 3.162 & 68 & 0.236 \\
7 & 0 & 0 & 0 & 7 & 0 \\
\end{array}
\]

The smallest dissimilarity is $d_{68,7} = 2.236$. We merge cluster “68” with x_7 to form the new cluster “678.” New dissimilarities $d_{678,K} = \max\{d_{68,K}, d_{7K}\}$ are computed for $K = 123, 45$ to give the new (3×3)-matrix $D^{(6)}$,

\[
\begin{array}{ccccccc}
123 & 45 & 678 \\
123 & 0 & 5.657 & 7.280 & 678 & 0 \\
45 & 0 & 5.385 & 678 & 0 \\
678 & 0 & 0 & 0 & 678 & 0 \\
\end{array}
\]

The last steps merge the clusters “45” and “678” with a merging value of $d_{45,678} = 5.385$, and then the clusters “123” and “45678” with a merging value of $d_{123,45678} = 7.280$. The dendrogram is displayed in the bottom-left panel of Figure 12.2.

Average Linkage. For average linkage, the distance between two clusters is found by computing the average dissimilarity of each item in the first cluster to each item in the second cluster.

We start with the matrix $D^{(1)}$. The smallest dissimilarity is $d_{12} = \sqrt{2} = 1.414$, and so we merge x_1 and x_2 to form cluster “12.” We compute dissimilarities between the cluster “12” and all other points using the average distance, $d_{12,K} = (d_{1K} + d_{2K})/2$, for $K = 3, 4, 5, 6, 7, 8$. For example,
\[d_{12,3} = (d_{13} + d_{23})/2 = (\sqrt{4} + \sqrt{2})/2 = 1.707. \]

The matrix \(D^{(2)} \) is given by

\[
\begin{array}{ccccccc}
12 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
3 & 0 & 4.000 & 4.472 & 5.000 & 3.162 & 5.385 \\
4 & 0 & 2.000 & 4.123 & 4.243 & 5.385 \\
5 & 0 & 2.236 & 3.162 & 3.606 \\
6 & 0 & 2.236 & 1.414 \\
7 & 0 & 2.236 \\
8 & 0 & & & & & \\
\end{array}
\]

The smallest dissimilarity is \(d_{68} = 1.414 \), and so we merge \(x_6 \) and \(x_8 \) to form the new cluster “68.” We compute dissimilarities between the cluster “68” and all other points and clusters using the average distance, \(d_{68,12} = (d_{16} + d_{26} + d_{18} + d_{28})/4 = 6.364 \), and \(d_{68,K} = (d_{6K} + d_{8K})/2 \), for \(K = 3, 4, 5, 7 \).

The matrix \(D^{(3)} \) is

\[
\begin{array}{ccccccc}
12 & 3 & 4 & 5 & 68 & 7 \\
\hline
3 & 0 & 4.000 & 4.472 & 5.193 & 3.162 \\
4 & 0 & 2.000 & 4.754 & 4.243 \\
5 & 0 & 2.921 & 3.162 \\
68 & 0 & 2.236 \\
7 & 0 & & & & & \\
\end{array}
\]

The smallest dissimilarity is \(d_{12,3} = 1.707 \), and so we merge \(x_3 \) and the cluster “12” to form the new cluster “123.” We compute dissimilarities between the cluster “123” and all other points using the average distance, \(d_{123,68} = (d_{16} + d_{18} + d_{26} + d_{28} + d_{36} + d_{38})/6 = 5.974 \) and \(d_{123,K} = (d_{1K} + d_{2K} + d_{3K})/3 \), for \(K = 4, 5, 7 \). This gives the matrix \(D^{(4)} \):

\[
\begin{array}{ccccccc}
123 & 4 & 5 & 68 & 7 \\
\hline
123 & 0 & 3.878 & 4.791 & 5.974 & 4.087 \\
4 & 0 & 2.000 & 4.754 & 4.243 \\
5 & 0 & 2.921 & 3.162 \\
68 & 0 & 2.236 \\
7 & 0 & & & & & \\
\end{array}
\]

The smallest dissimilarity is \(d_{45} = 2.0 \), and so we merge \(x_4 \) and \(x_5 \) to form the new cluster “45.” We compute dissimilarities between the cluster “45” and the other clusters as before. This gives the matrix \(D^{(5)} \):

\[
\begin{array}{ccccccc}
123 & 45 & 68 & 7 \\
\hline
123 & 0 & 4.334 & 5.974 & 4.087 \\
45 & 0 & 3.837 & 3.702 \\
68 & 0 & 2.236 \\
7 & 0 & & & & & \\
\end{array}
\]

The smallest dissimilarity is \(d_{68,7} = 2.236 \), and so we merge \(x_7 \) and the cluster “68” to form the new cluster “678.” This gives the matrix \(D^{(6)} \):

\[
\begin{array}{cccc}
123 & 45 & 678 \\
\hline
123 & 0 & 4.334 & 5.345 \\
45 & 0 & 3.792 \\
678 & 0 & & \\
\end{array}
\]
The smallest dissimilarity is \(d_{45,678} = 3.782 \), and so we merge the two clusters “45” and “678” to form a new cluster “45678.” We merge the last two clusters and compute their dissimilarity \(d_{123,45678} = 4.940 \). The dendrogram is displayed in the bottom-right panel of Figure 12.2.

12.3.5 Divisive Analysis (diana)

The most-used divisive hierarchical clustering procedure is that proposed by MacNaughton-Smith, Williams, Dale, and Mockett (1964).

The idea is that at each step, the items are divided into a “splinter” group (say, cluster \(A \)) and the “remainder” (say, cluster \(B \)). The splinter group is initiated by extracting that item that has the largest average dissimilarity from all other items in the data set; that item is set up as cluster \(A \). Given this separation of the data into \(A \) and \(B \), we next compute, for each item in cluster \(B \), the following two quantities: (1) the average dissimilarity between that item and all other items in cluster \(B \), and (2) the average dissimilarity between that item and all items in cluster \(A \). Then, we compute the difference (1)–(2) for each item in \(B \). If all differences are negative, we stop the algorithm. If any of these differences are positive (indicating that the item in \(B \) is closer on average to cluster \(A \) than to the other items in cluster \(B \)), we take the item in \(B \) with the largest positive difference, move it to \(A \), and repeat the procedure. This algorithm provides a binary split of the data into two clusters \(A \) and \(B \). This same procedure can then be used to obtain binary splits of each of the clusters \(A \) and \(B \) separately.

The dendrogram corresponding to divisive hierarchical clustering of the worked example is displayed in Figure 12.3. Compare the result with that of the various agglomerative hierarchical clustering options in Figure 12.2. The major difference we see is that \(x_4 \) is now included in the cluster with items \(x_1, x_2, \) and \(x_3 \), rather than in the other cluster.

12.3.6 Example: Primate Scapular Shapes

This example is a small part of a much larger study (Ashton, Oxnard, and Spence, 1965) on measurements of the scapulae (shoulder bones) from 30 genera covering most of the primate order. The data used in this example consist of measurements on the scapulae of five genera of adult primates.

\(^2\)The author thanks Charles Oxnard and Rebecca German for providing him with these data. The data can be found in the file `primate.scapulae` on the book’s website.
12.3 Hierarchical Clustering

representing Hominoidea; that is, gibbons (*Hylobates*), orangutans (*Pongo*), chimpanzees (*Pan*), gorillas (*Gorilla*), and man (*Homo*).

The measurements consist of indices and angles that are related to scapular shape, but not to functional meaning. Other studies showed that gender differences for such measurements were not statistically significant, and so no attempt was made by the authors of the study to divide the specimens by gender. Interest centered upon determining the extent to which these scapular shape measurements could be useful in classifying living primates. There are eight variables in this data set, of which the first five (*AD.BD*, *AD.CD*, *EA.CD*, *Dx.CD*, and *SH.ACR*) are indices and the last three (*EAD*, *β*, and *γ*) are angles. Of the 105 measurements on each variable, 16 were taken on *Hylobates* scapulae, 15 on *Pongo* scapulae, 20 on *Pan* scapulae, 14 on *Gorilla* scapulae, and 40 on *Homo* scapulae. The angle *γ* was not available for *Homo* and, thus, was not used in this example. Agglomerative and divisive hierarchical methods were employed for clustering the scapulae data using all five indices and two of the angles (*EAD* and *β*). Figure 12.4 shows dendrograms from the single-linkage, average-linkage, and complete-linkage agglomerative hierarchical methods and the dendrogram from the divisive hierarchical method. Although five clusters can be identified for each dendrogram, the single-linkage dendrogram, which shows long, stringy clusters, has a very different shape than do the other three dendrograms.

We can see that certain primates are separated from the others. In particular, primates 6, 18, 20, 55, and 102 stand out in the agglomerative dendrograms, and primate 3 also stands out in the single-linkage dendrogram.
When an isolated observation appears high enough up in a dendrogram, it becomes a cluster of size one and, hence, plays the role of an outlier in the data. In fact, single linkage for five clusters produces three clusters each of size one (primates 3, 20, and 102), and average linkage produces one cluster of size one (primate 20). We see from Figure 12.4 that single-linkage and average-linkage clustering algorithms tend to have more isolated observations than do either the complete-linkage or divisive clustering algorithms.

12.4 Nonhierarchical or Partitioning Methods

Nonhierarchical clustering methods (also known as partitioning methods) simply split the data items into a predetermined number \(K \) of groups or clusters, where there is no hierarchical relationship between the \(K \)-cluster solution and the \((K + 1) \)-cluster solution; that is, the \(K \)-cluster solution is not the initial step for the \((K + 1) \)-cluster solution. Given \(K \), we seek to partition the data into \(K \) clusters so that the items within each cluster
are similar to each other, whereas items from different clusters are quite
dissimilar.

One sledgehammer method of nonhierarchical clustering would conceiv-
ably involve as a first step the total enumeration of all possible groupings of
the items. Then, using some optimizing criterion, the grouping that is cho-
sen as “best” would be that partition that optimized the criterion. Clearly,
for large data sets (e.g., microarray data used for gene clustering), such a
method would rapidly become infeasible, requiring incredible amounts of
computer time and storage. As a result, all available clustering techniques
are iterative and work on only a very limited amount of enumeration. Thus,
nonhierarchical clustering methods, which do not need to store large prox-
imity matrices, are computationally more efficient than are hierarchical
methods.

This category of clustering methods includes all of the partitioning meth-
ods, (e.g., K-means, partitioning around medoids) and mode-searching (or
bump-hunting) methods using parametric mixtures or nonparametric den-
sity estimates.

12.4.1 K-Means Clustering ($kmeans$)

The popular K-means algorithm (MacQueen, 1967) is listed in Table
12.2. Because it is extremely efficient, it is often used for large-scale cluster-
ing projects. Note that the K-means algorithm needs access to the original
data.

The K-means algorithm starts either by assigning items to one of K
predetermined clusters and then computing the K cluster centroids, or by
pre-specifying the K cluster centroids. The pre-specified centroids may be
randomly selected items or may be obtained by cutting a dendrogram at
an appropriate height. Then, in an iterative fashion, the algorithm seeks to
minimize ESS by reassigning items to clusters. The procedure stops when
no further reassignment reduces the value of ESS.

The solution (a configuration of items into K clusters) will typically
not be unique; the algorithm will only find a local minimum of ESS. It
is recommended that the algorithm be run using different initial random
assignments of the items to K clusters (or by randomly selecting K
initial centroids) in order to find the lowest minimum of ESS and, hence, the best
clustering solution based upon K clusters.

For the worked example, the K-means clustering solutions for $K = 2, 3, 4$
are listed in Table 12.3. For $K = 2$, ESS=23.5; for $K = 3$, ESS=8.67;
and for $K = 4$, ESS=5.67. Note that, in general, we expect ESS to be
a monotonically decreasing function of K, unless the solution for a given
value of K turns out to be a local minimum.
TABLE 12.2. Algorithm for K-means clustering.

1. Input: \(L = \{ x_i, i = 1, 2, \ldots, n \} \), \(K \) = number of clusters.
2. Do one of the following:
 - Form an initial random assignment of the items into \(K \) clusters and, for cluster \(k \), compute its current centroid, \(\bar{x}_k, k = 1, 2, \ldots, K \).
 - Pre-specify \(K \) cluster centroids, \(\bar{x}_k, k = 1, 2, \ldots, K \).
3. Compute the squared-Euclidean distance of each item to its current cluster centroid:
 \[
 ESS = \sum_{k=1}^{K} \sum_{c(i)=k} (x_i - \bar{x}_k)^T (x_i - \bar{x}_k),
 \]
 where \(\bar{x}_k \) is the \(k \)th cluster centroid and \(c(i) \) is the cluster containing \(x_i \).
4. Reassign each item to its nearest cluster centroid so that \(ESS \) is reduced in magnitude. Update the cluster centroids after each reassignment.
5. Repeat steps 3 and 4 until no further reassignment of items takes place.

12.4.2 Partitioning Around Medoids (pam)

This clustering method (Vinod, 1969) is a modification of the K-medoids clustering algorithm. Although similar to K-means clustering, this algorithm searches for \(K \) “representative objects” (or medoids) — rather than the centroids — among the items in the data set, and a dissimilarity-based distance is used instead of squared-Euclidean distance. Because it minimizes a sum of dissimilarities instead of a sum of (squared) Euclidean distances, the method is more robust to data anomalies such as outliers and missing values.

This algorithm starts with the proximity matrix \(D = (d_{ij}) \), where \(d_{ij} = d(x_i, x_j) \), either given or computed from the data set, and an initial configuration of the items into \(K \) clusters. Using \(D \), we find that item (called a representative object or medoid) within each cluster that minimizes the total dissimilarity to all other items within its cluster. In the K-medoids algorithm, the centroids of steps 2, 3, and 4 in the K-means algorithm (Table 12.2) are replaced by medoids, and the objective function \(ESS \) is replaced by \(ESS_{Kmed} \). See Table 12.4 (steps 1, 2, 3, and 4a) for the K-medoids algorithm.

The partitioning around medoids (pam) modification of the K-medoids algorithm (Kaufman and Rousseeuw, 1990, Section 2.4) introduces a swapping strategy by which the medoid of each cluster is replaced by another item in that cluster, but only if such a swap reduces the value of the
TABLE 12.3. K-means clustering solutions \((K = 2, 3, 4)\) for the worked example.

<table>
<thead>
<tr>
<th>(K)</th>
<th>(k)</th>
<th>Indexes</th>
<th>Centroid</th>
<th>Within-Cluster SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1, 2, 3, 4, 5, 6, 7, 8</td>
<td>(3.5, 8.5)</td>
<td>13.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3.5, 8.5</td>
<td>(2.25, 4.25)</td>
<td>10.0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1, 2, 3</td>
<td>(1.33, 4.0)</td>
<td>2.67</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4, 5</td>
<td>(5.0, 6.0)</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6, 7, 8</td>
<td>(3.0, 9.0)</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1, 2, 3</td>
<td>(1.33, 4.0)</td>
<td>2.67</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4, 5</td>
<td>(5.0, 6.0)</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6, 8</td>
<td>(3.5, 9.5)</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>(2.0, 8.0)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

A disadvantage of both the \(K\)-medoids and the \texttt{pam} algorithms is that, although they run well on small data sets, they are not efficient enough to use for clustering large data sets.

12.4.3 Fuzzy Analysis (\texttt{fanny})

The idea behind fuzzy clustering is that items to be clustered can be assigned probabilities of belonging to each of the \(K\) clusters (Kaufman and Rousseeuw, 1990, Section 4.4). Let \(u_{ik}\) denote the strength of membership of the \(i\)th item for the \(k\)th cluster. For the \(i\)th item, we require that the \(\{u_{ik}\}\) behave like probabilities; that is, \(u_{ik} \geq 0\), for all \(i\) and \(k = 1, 2, \ldots, K\), and \(\sum_{k=1}^{K} u_{iv} = 1\) for each \(i\). This contrasts with the partitioning methods of \texttt{kmeans} or \texttt{pam}, where each item is assigned to one and only one cluster.

Given a proximity matrix \(D = (d_{ij})\) and number of clusters \(K\), the unknown membership strengths, \(\{u_{ik}\}\), are found by minimizing the objective function,

\[
\sum_{k=1}^{K} \sum_{i} \sum_{j} u_{ik}^2 u_{jk}^2 d_{ij} - \frac{1}{2} \sum_{k} u_{ik}^2.
\]

The objective function is minimized subject to the nonnegativity and unit sum restrictions by using an iterative algorithm.

For the worked example, the solution (after 90 iterations) is given in Table 12.5, where the most likely cluster memberships are as follows: cluster 1: items 1, 2, 3; cluster 2: items 4, 5; cluster 3: items 6, 7, 8. The minimum of the objective function is 3.428.

1. Input: proximity matrix $D = (d_{ij})$; $K = \text{number of clusters}$.
2. Form an initial assignment of the items into K clusters.
3. Locate the medoid for each cluster. The medoid of the kth cluster is defined as that item in the kth cluster that minimizes the total dissimilarity to all other items within that cluster, $k = 1, 2, \ldots, K$.

4a. For K-medoids clustering:
 - For the kth cluster, reassign the i_kth item to its nearest cluster medoid so that the objective function,
 \[\text{ESS}_{\text{med}} = \sum_{k=1}^{K} \sum_{c(i)=k} d_{i_k}, \]
 is reduced in magnitude, where $c(i)$ is the cluster containing the ith item.
 - Repeat step 3 and the reassignment step until no further reassignment of items takes place.

4b. For partitioning-around-medoids clustering:
 - For each cluster, swap the medoid with the non-medoid item that gives the largest reduction in ESS_{med}.
 - Repeat the swapping process over all clusters until no further reduction in ESS_{med} takes place.

12.4.4 Silhouette Plot

A useful feature of partitioning methods based upon the proximity matrix D (e.g., kmeans, pam, and fanny) is that the resulting partition of the data can be graphically displayed in the form of a silhouette plot (Rousseeuw, 1987).

Suppose we are given a particular clustering, C_K, of the data into K clusters. Let $c(i)$ denote the cluster containing the ith item. Let a_i be the average dissimilarity of that ith item to all other members of the same cluster $c(i)$. Also, let c be some cluster other than $c(i)$, and let $d(i, c)$ be the average dissimilarity of the ith item to all members of c. Compute $d(i, c)$ for all clusters c other than $c(i)$. Let $b_i = \min_{c \neq c(i)} d(i, c)$. If $b_i = d(i, C)$, then, cluster C is called the neighbor of data point i and is regarded as the second-best cluster for the ith item.
TABLE 12.5. Fuzzy clustering for the worked example with $K = 3$. The boldfaced entries show the most probable cluster memberships for each item.

<table>
<thead>
<tr>
<th>i</th>
<th>Cluster k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.799</td>
</tr>
<tr>
<td>2</td>
<td>0.828</td>
</tr>
<tr>
<td>3</td>
<td>0.735</td>
</tr>
<tr>
<td>4</td>
<td>0.116</td>
</tr>
<tr>
<td>5</td>
<td>0.102</td>
</tr>
<tr>
<td>6</td>
<td>0.072</td>
</tr>
<tr>
<td>7</td>
<td>0.196</td>
</tr>
<tr>
<td>8</td>
<td>0.064</td>
</tr>
</tbody>
</table>

The ith silhouette value (or width) is given by

$$s_i(C_K) = s_{iK} = \frac{b_i - a_i}{\max\{a_i, b_i\}},$$

so that $-1 \leq s_{iK} \leq 1$. Large positive values of s_{iK} (i.e., $a_i \approx 0$) indicate that the ith item is well-clustered, large negative values of s_{iK} (i.e., $b_i \approx 0$) indicate poor clustering, and $s_{iK} \approx 0$ (i.e., $a_i \approx b_i$) indicates that the ith item lies between two clusters. If $\max_i\{s_{iK}\} < 0.25$, this indicates either that there are no definable clusters in the data or that, even if there are, the clustering procedure has not found it. Negative silhouette widths tend to attract attention: the items corresponding to these negative values are considered to be borderline allocations; they are neither well-clustered nor are they assigned by the clustering process to an alternative cluster.

A silhouette plot is a bar plot of all the $\{s_{iK}\}$ after they are ranked in decreasing order, where the length of the ith bar is s_{iK}. For the worked example, where we used the pam clustering method with $K = 3$ clusters, the silhouette plot is displayed in Figure 12.5.

The average silhouette width, \bar{s}_K, is the average of all the $\{s_{iK}\}$. For the worked example with $K = 3$, the overall average silhouette width is $\bar{s}_3 = 0.51$. (For $K = 2$, $\bar{s}_2 = 0.44$, and for $K = 4$, $\bar{s}_4 = 0.41$.) The statistic \bar{s}_K has been found to be a very useful indicator of the merit of the clustering C_K. The average silhouette width has also been used to choose the value of K by finding K to maximize \bar{s}_K.

As a clustering diagnostic, Kaufman and Rousseeuw defined the silhouette coefficient, $SC = \max_K\{\bar{s}_K\}$, and gave subjective interpretations of its value:
12.4.5 Example: Landsat Satellite Image Data

Since 1972, Landsat satellites orbiting the Earth have used a combination of scanning geometry, satellite orbit, and Earth rotation to collect high-resolution multispectral digital information for detecting and monitoring different types of land surface cover characteristics. The Landsat data in this example were generated from a Landsat Multispectral Scanner (MSS) image database used in the European STATLOG Project for assessing machine-learning methods. The following description of the data is taken from the STATLOG website:

One frame of Landsat MSS imagery consists of four digital images of the same scene in different spectral bands. Two of these are in the visible region (corresponding approximately to green and red regions of the visible spectrum) and two are in the (near) infrared. Each pixel is an 8-bit word, with 0
TABLE 12.6. Comparison of results of different clustering algorithms applied to the Landsat image data. The data consist of six groups of 4,435 observations measured on 36 variables. Prior to clustering, all variables were standardized. The six derived clusters are designated A–F. The agglomerative hierarchical clustering methods are single-linkage (SL), average-linkage (AL), and complete-linkage (CL), and the nonhierarchical methods are K-means and partitioning around mediods (pam). Each column in this table gives the cluster sizes distributed among the six clusters, ordered from largest cluster (A) to smallest cluster (F).

<table>
<thead>
<tr>
<th>Cluster</th>
<th>SL</th>
<th>AL</th>
<th>CL</th>
<th>K-Means</th>
<th>pam</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4,428</td>
<td>2,203</td>
<td>1,717</td>
<td>1,420</td>
<td>999</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>1,764</td>
<td>1,348</td>
<td>1,134</td>
<td>937</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>370</td>
<td>885</td>
<td>763</td>
<td>790</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>57</td>
<td>266</td>
<td>694</td>
<td>708</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>23</td>
<td>162</td>
<td>242</td>
<td>613</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>18</td>
<td>57</td>
<td>182</td>
<td>388</td>
</tr>
</tbody>
</table>

corresponding to black and 255 to white. The spatial resolution of a pixel is about 80m×80m. Each image contains 2,340×3,380 such pixels. The data set is a (tiny) sub-area of a scene, consisting of 82×100 pixels. Each line of the data corresponds to a 3×3 square neighborhood of pixels completely contained within the 82×100 sub-area. Each line contains the pixel values in the four spectral bands of each of the 9 pixels in the 3×3 neighborhood.

The 36 variables are arranged in groups of four spectral bands (1, 2, 3, 4) covering each pixel of the 3×3 neighborhood (top-left (TL), top-center (TC), top-right (TR); center-left (CL), center-center (CC), center-right (CR); bottom-left (BL), bottom-center (BC), bottom-right (BR)). The center pixel (CC) of each of 4,435 neighborhoods is classified into one of six classes: 1. red soil (1,072), 2. cotton crop (479), 3. gray soil (961), 4. damp gray soil (415), 5. soil with vegetation stubble (470), and 7. very damp gray soil (1038). There is no class 6. Although we do not use these classifications in the clustering algorithms, we can compare our results with the true classifications.

The results of five clustering methods (we specified six clusters for each method) are given in Table 12.6. We see that of the agglomerative hierarchical clustering methods, single-linkage (SL) puts almost all the observations into a single cluster, whereas average-linkage (AL) and complete-linkage (CL) are somewhat better at distributing the observations among the six clusters. K-means is better still, but pam is closest to the true configuration of the data. The pam silhouette plot for six clusters is given in Figure 12.6 and the average silhouette width is 0.32.
430 12. Cluster Analysis

The largest four eigenvalues of the (36×36) correlation matrix of the Landsat data are 18.68, 14.08, 1.61, and 0.91, respectively. Kaiser’s rule says that we should retain only those PCs whose eigenvalues are greater than unity; in this case, we retain the first three PCs. In Figure 12.7, we display a scatterplot of the first two PC scores of the Landsat data. The six clusters of points (corresponding to Table 12.6) found using the pam algorithm are each identified by their color. The scatterplot of the PC scores appears to be wedge-shaped, with three primary “rods.” The “bottom” rod is divided into three distinct bands, consisting of clusters A (dark blue), C (red), and B (green); the “middle” rod is similarly divided up into three distinct bands of clusters D (orange), E (light blue), and some B (green); and the “top” rod only consists of cluster F (brown). There are also many points in the scatterplot that fall between the rods.

The picture becomes more interpretable if we look at a 3D scatterplot of the first three PC scores (not shown here), especially if we use a rotation/spin operation as is available in S–Plus or R. Rotating the 3D plot shows a tripod-like structure, with the top of the tripod being cluster B and the three rods being the three legs of the tripod. We can compute a confusion table, Table 12.7, which details how many neighborhoods from each class are allocated to the various clusters. From Table 12.7, we see that one leg consists of clusters of primarily different types of gray soil (A, C, and B); the second leg consists of clusters of primarily red soil (D and E); and the third leg consists of a cluster of cotton crop (F). Image neighborhoods classified by Landsat as soil with vegetation stubble appear mostly within clusters B and E.

FIGURE 12.6. Silhouette plot for the Landsat image example using the partitioning around medoids (pam) clustering method with $K = 6$ clusters.
12.5 Self-Organizing Maps (SOMs)

The self-organizing map (SOM) algorithm (Kohonen, 1982) has its roots in artificial neural networks and has also been likened to methods such as multidimensional scaling (MDS; see Chapter 14) and \(K \)-means clustering. It is also referred to as a Kohonen self-organizing feature map. The original motivation for SOMs was expressed in terms of an artificial neural network.

TABLE 12.7. The confusion table showing results of the `pam` clustering algorithm applied to the Landsat image data. The six derived clusters are designated A–F. The entry in the \(i \)th row and \(j \)th column shows the number of neighborhoods classified by Landsat into the \(i \)th image-type and allocated to the \(j \)th cluster.

<table>
<thead>
<tr>
<th>Class</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>0</td>
<td>11</td>
<td>651</td>
<td>388</td>
<td>0</td>
<td>1,072</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>72</td>
<td>388</td>
<td>479</td>
</tr>
<tr>
<td>3</td>
<td>883</td>
<td>1</td>
<td>63</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>961</td>
</tr>
<tr>
<td>4</td>
<td>78</td>
<td>18</td>
<td>307</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>415</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>249</td>
<td>48</td>
<td>31</td>
<td>142</td>
<td>0</td>
<td>470</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>668</td>
<td>351</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1,038</td>
</tr>
<tr>
<td>Total</td>
<td>999</td>
<td>937</td>
<td>790</td>
<td>708</td>
<td>613</td>
<td>388</td>
<td>4,435</td>
</tr>
</tbody>
</table>

FIGURE 12.7. Scatterplot of first two principal components of the Landsat image data, with points colored to identify the clusters found in the data. The six derived clusters are A. dark blue; B. green; C. red; D. orange; E. light blue; F. brown.
for modeling the human brain, and much of the literature still uses the image of neurons in describing the building blocks of a SOM.

SOMs have been applied to clustering problems in fields as diverse as geographical information systems, bioinformatics, medical research, physical anthropology, natural language processing, document retrieval systems, and ecology. Its primary use is in reducing high-dimensional data to a lower-dimensional nonlinear manifold, usually two or three dimensions, and in displaying graphically the results of such data reduction. In a SOM, the aim is to map the projected data to discrete interconnected nodes, where each node represents a grouping or cluster of relatively homogeneous points.

12.5.1 The SOM Algorithm

Two versions of the SOM algorithm are available: an “on-line” version, in which items are presented to the algorithm in sequential fashion (one at a time, possibly in random order), and a “batch” version, in which all the data are presented together at one time. Both algorithms are due to Kohonen.

The end product of the SOM algorithm (after a large number of iteration steps) is a graphical image called a SOM plot. The SOM plot is displayed in output space and consists of a grid (or network) of a large number of interconnected nodes (or artificial neurons). In two dimensions, the nodes are typically arranged as a square, rectangular, or hexagonal grid. See Figure 12.8. For visualization reasons, an hexagonal grid is preferred.

In a two-dimensional rectangular grid, for example, the set of rows is $\mathcal{K}_1 = \{1, 2, \ldots, K_1\}$ and the set of columns is $\mathcal{K}_2 = \{1, 2, \ldots, K_2\}$, where K_1 (the height) and K_2 (the width) are chosen by the user. Then, a node is defined by its coordinates, $(\ell_1, \ell_2) \in \mathcal{K}_1 \times \mathcal{K}_2$. The total number of nodes, $K = K_1 K_2$, is usually chosen by trial and error, initially much larger than the suspected number of clusters in the data. After an initial SOM analysis, one can reconfigure the SOM by reducing the number of row and column nodes. It will be convenient to map the collection of nodes into an ordered...
12.5 Self-Organizing Maps (SOMs)

sequence, so that the node \((\ell_1, \ell_2) \in K_1 \times K_2\) is relabeled as the index \(k = (\ell_1 - 1)K_2 + \ell_2 \in K\), where \(K = \{1, 2, \ldots, K\}\).

The SOM algorithm has much in common with \(K\)-means clustering. In \(K\)-means clustering, items assigned to a particular cluster are averaged to obtain a “cluster centroid” (or “representative” of that cluster), which is subsequently updated. With this in mind, we associate with the \(k\)th node in a SOM plot a representative in input space, \(m_k \in \mathbb{R}^r, k \in K\). Representatives have also been called synaptic weight vectors, prototypes, codebook vectors, reference vectors, and model vectors. It is usual to initialize the process by setting the components of \(m_k, k \in K\), to be random numbers.

12.5.2 On-line Versions

At the first step of the on-line SOM algorithm, we set up the map size (i.e., select \(K_1\) and \(K_2\)) and initialize all representatives \(\{m_k\}\) so that they each consist of random values.

At each subsequent step of the algorithm, an input vector \(X\) is randomly selected from the data set and standardized so that each component variable of \(X\) has zero mean and variance one. In this way, no component variable has undue influence on the results just because it has a large variance or absolute value. We then present \(X\) to the SOM algorithm.

We compute the Euclidean distance between \(X\) and each representative and find that node whose representative yields the smallest distance to \(X\). If

\[
k^* = \arg \min_k \{ \| X - m_k \| \},
\]

where \(\cdot\|\) denotes Euclidean norm, then the representative \(m_{k^*}\) is declared the “winner,” and \(k^*\) is referred to as the best-matching unit (BMU) or winning node for the input vector \(X\).

Next, we look at those nodes that are “neighbors” of the winning node. A node \(k' \in K\) is defined to be a grid neighbor of the node \(k \in K\) if the Euclidean distance between \(m_k\) and \(m_{k'}\) is smaller than a given threshold \(c\). The set of nodes, \(N_c(k^*)\), which are grid neighbors of the winning node \(k^*\), is called the neighborhood set for that node. We then update the representatives corresponding to each grid neighbor of the winning node \(k^*\) (including \(k^*\) itself) so that each \(m_k, k \in N_c(k^*)\), is closer to \(X\); the simplest way of doing this is to use the uniformly weighted update formula,

\[
m_k \leftarrow m_k + \alpha (X - m_k), \quad k \in N_c(k^*),
\]

where \(0 < \alpha < 1\) is a learning-rate factor. For \(k \notin N_c(k^*)\), we set \(\alpha = 0\), so that \(m_k, k \notin N_c(k^*)\), remains unchanged. This process, which is repeated a large number of times, runs through the collection of input vectors one at
a time. A useful “rule of thumb” is to run the algorithm steps for at least 500 times the number of nodes (Kohonen, 2001, p. 112).

A “distance-weighted” version of (12.4) is probably the more popular strategy,

\[m_k \leftarrow m_k + \alpha h_k (X - m_k), \quad k \in N_c(k^*), \quad (12.5) \]

where the neighborhood function \(h \) depends upon how close the neighboring representatives are to \(m_{k^*} \). Those representatives that are neighbors of \(m_{k^*} \) are adjusted, but not by as much as \(m_{k^*} \); the further a neighbor is from \(m_{k^*} \), the less of an adjustment is made. The \(h \)-function takes the value one when the distance is zero and becomes progressively smaller as the distances become larger. For \(k \notin N_c(k^*) \), we set \(h_k = 0 \). The most-popular \(h \)-function is the multivariate Gaussian kernel function,

\[h_k = \exp \left\{ -\frac{\| m_k - m_{k^*} \|^2}{2\sigma^2} \right\} I[k \in N_c(k^*)], \quad (12.6) \]

where \(\sigma > 0 \) is the neighborhood radius.

Values of \(c, \alpha, \) and \(\sigma \) are provided by the user but may change during the sequential process. In the on-line process, \(c \) is shrunk during the first 1,000 or so observations from, say, an initial value of \(C \) (chosen by the user) to 1. If we take the threshold value \(c \) to be so small that each neighborhood contains only a single point, then we lose the dependencies between representatives, which would be independently updated, and the SOM algorithm reduces to an on-line version of \(K \)-means clustering, where \(K \) is the total number of nodes. The value of \(\alpha \) decreases from a large initial value of just less than 1 to a value slightly greater than zero over the same observation span. Three forms of the learning rate, \(\alpha(t) \), as a function of the iteration number \(t \) are used:

linear: \(\alpha(t) = \alpha_0 (1 - t/T) \);

power: \(\alpha(t) = \alpha_0 (0.005/\alpha_0)^{t/T} \);

inverse: \(\alpha(t) = \alpha_0 / (1 + 100t/T) \),

where \(\alpha_0 \) is the initial learning rate and \(T \) is the total number of iterations. In Figure 12.9, the functions \(\alpha(t) \) are drawn for the linear, power, and inverse forms, where we have taken \(\alpha_0 = 0.5 \) and \(T = 100 \). Like \(\alpha, \sigma \) in (12.6) is also taken to decrease monotonically.

12.5.3 Batch Version

The batch SOM algorithm is significantly faster than the on-line version. As before, we first make an initial choice of representatives \(\{m_k\} \). For the \(k \)th node, we list all those items \(X_i \) whose \(m_{k^*} \in N_c(k) \). Then, we
update m_k by averaging the items obtained from the previous step of the algorithm, where we might use a weighted average, with weights $\{h_{ik}\}$ given by (12.6). Finally, repeat the process a few times.

In a batch SOM display, the nodes are drawn as circles, and the data points that are mapped to a node are then randomly plotted within the circle corresponding to that particular node; see Figure 12.10, which presents a SOM display of the Landsat data. This can be a very useful graphical display for showing the interrelated structure of the (often high-dimensional) representatives in a 2D plot, together with the input points that are mapped to each representative.

If each data point has a unique identifier, such as a gene description, then it is not difficult to determine the identities of the data points that are captured by each node. In many clustering problems, however, individual points do not have unique identifiers; so, instead, class membership can be used as a plotting symbol in the SOM plot, as in Figure 12.10. From a SOM plot, cluster patterns should be visible.

12.5.4 Unified-Distance Matrix

A different type of visualization of the cluster structure of a SOM is a U-matrix, where U stands for “unified distance” (Ultsch and Siemon, 1990). Each entry in a U-matrix is the Euclidean distance (in input space) between neighboring representatives. For example, if we have a map with one row of five nodes with representatives $\{m_1, m_2, m_3, m_4, m_5\}$, then the
FIGURE 12.10. A 6×6 hexagonal batch-SOM plot of the Landsat satellite image data. The circles correspond to nodes, and the projected points are plotted randomly within the appropriate circle to which they were deemed closest. The six classes of vegetation are used as plotting symbols (1=red, 2=blue, 3=turquoise, 4=purple, 5=yellow, 7=black).

U-matrix is a (1×9)-vector,

$$U = (u_1, u_{12}, u_2, u_{23}, u_3, u_{34}, u_4, u_{45}, u_5),$$

(12.7)

where $u_{ij} = \| \mathbf{m}_i - \mathbf{m}_j \|$ is the Euclidean distance between neighboring representatives, and u_i is a representative-specific value; for example, $u_3 = (u_{23} + u_{34})/2$ is the average distance from that representative to all neighboring representatives. A small value in a U-matrix indicates that the SOM nodes are close together in input space, whereas a large value indicates that the SOM nodes, even though they are neighbors in output space, are quite far apart in input space. Thus, the U-matrix provides a useful guide to the underlying probability density function of \mathbf{X} projected onto two dimensions.

Rather than displaying these U-matrix values as a 3D landscape (with low valleys showing clusters and high ridges showing separations between clusters), it is usual instead to discretize the distance values and then color-code them in a 2D colormap, where the colors show the gradations in values. In the SOM Toolbox for MATLAB, for example, large distances in the U-matrix are colored as yellow and red and indicate a cluster border, whereas
small distances are colored as blue and indicate items in the same cluster. Figure 12.11 displays the U-matrix with an hexagonal grid for the Landsat image data, where a number of clusters are visible.

A *hierarchical SOM (HSOM)* is a tree of maps (U-matrices), where the “lower” maps on the tree act as a preprocessing stage to the “higher” maps. As we climb up the hierarchy, the information becomes more abstract. HSOMs have been successfully used in the development of bibliographic information retrieval tools. For example, a “document map” has been created for organizing astronomical text documents (Lesteven, Poinçot, and Murtagh, 2001). Using more than 10,300 articles published in several leading astronomy journals, the authors selected 269 keywords, each of which appeared in at least five different articles. By clicking on an individual node in the map, information about the articles located at that node can be retrieved. From this information, the user can then access article content (title, authors, abstract, and the on-line full paper).

12.5.5 Component Planes

An additional useful visualization tool is a colormap of the various component planes. In general, the “components” are the individual input variables that make up X.

Figure 12.12 shows the 36 component planes for the Landsat data. Because these data have an easily visualized physical structure, the component planes are arranged into four groups of nine images (corresponding to the four spectral bands and the nine positions). The component planes
FIGURE 12.12. Colormaps of the 36 component planes from the batch-SOM algorithm with hexagonal grids for the Landsat image data. The component planes are arranged into four groups (corresponding to the four spectral bands, 1, 2, 3, and 4), each group having nine component planes (corresponding to the nine positions (TL, TC, TR; CL, CC, CR; BL, BC, BR, where T is top position, C is center, B is bottom, L is left, C is center, R is right) in the 3×3 pixel neighborhoods.)
show that the variable values differ substantially between the four spectral bands. Within each set of 3×3 pixel neighborhoods, the component planes show some differences, but those differences are not as significant as between spectral bands. In this example, the component planes have given us a good view of the differences in measurement of each of the four spectral bands.

The U-matrix and component planes derived from SOMs have been applied to the visualization of gene clusters derived from microarray data (see, e.g., Tomayo, Slonim, Mesirov, Zhu, Kitareewan, Dmitrovsky, Lander, and Golub, 1999). In particular, if the genes are expressed at different points in time or at different temperatures, then the component planes, which can be thought of as “slices” of the U-matrix, show the cluster structure obtained at each timepoint or temperature.

12.6 Clustering Variables

We can use the same clustering methods for variables as we used for clustering observations, the main difference being the measure of distance between variables. For clustering variables, we generally use a distance metric based upon the correlation matrix for the r variables. The correlations provide a reasonable measure of “closeness” between pairs of variables. Those pairs of variables with relatively large correlations can be thought of as being “close” to each other; those pairs for which the corresponding correlations are small are considered to be “far away” from each other.

If we standardize each of the r variables to have zero mean and unit variance, then it is not difficult to show that

$$\frac{1}{2(n-1)} \sum_{i=1}^{n} (X_{ji} - X_{ki})^2 = 1 - \rho_{jk},$$

(12.8)

where ρ_{jk} is the correlation between variables X_j and X_k. This shows us that using squared Euclidean distance, $\sum_i (X_{ji} - X_{ki})^2$, is equivalent to using $1 - \rho_{jk}$ as a dissimilarity measure. Either distance metric enables us to utilize any of the hierarchical or nonhierarchical/partitioning clustering methods discussed above, and the graphical output can be a dendrogram or a silhouette plot as appropriate.

12.6.1 Gene Clustering

The most popular use of variable clustering has been in clustering the thousands or tens of thousands of genes measured using a microarray experiment. Concern over the enormous volume of biological information in an organism’s genome has led to the idea of grouping together those genes
with similar expression patterns. This type of clustering is referred to as **gene clustering**, where, in addition to the usual hierarchical and partitioning methods, some specialized methods have been developed.

In gene clustering, the \((r \times n)\) data matrix \(\mathcal{X} = (X_{ij})\) contains the gene-expression data derived from a microarray experiment, where \(i\) indexes the row (gene), \(j\) indexes the column (tissue sample), and \(X_{ij}\) is, for example, the intensity log-ratio of the abundance of the \(i\)th gene in the experimental sample relative to some reference sample; in other words, \(X_{ij}\) is a measurement of how strongly the \(i\)th gene is expressed in the \(j\)th sample. Because \(X_{ij}\) is the log of a ratio, it follows that those ratios with values between 0 and 1 will yield negative \(X_{ij}\), whereas those ratios greater than 1 will yield positive \(X_{ij}\). For typical microarray experiments, \(r \gg n\), so that matrix \(\mathcal{X}\) will be “vertically long and skinny.”

12.6.2 Principal-Component Gene Shaving

Suppose our goal is to discover a gene cluster that has high variability across samples. Let \(S_k\) denote the set of (row) indices of a cluster of \(k\) genes. Consider the \(j\)th tissue sample (i.e., \(j\)th column of \(\mathcal{X}\)) and compute the average gene-expression over the \(k\) genes for that sample,

\[
\bar{X}_{j,S_k} = \frac{1}{k} \sum_{i \in S_k} X_{ij}, \quad j = 1, 2, \ldots, n. \tag{12.9}
\]

The variance of the \(\bar{X}_{j,S_k}, j = 1, 2, \ldots, n,\) is given by

\[
\text{var}\{\bar{X}_{S_k}\} = \frac{1}{n} \sum_{j=1}^{n} (\bar{X}_{j,S_k} - \bar{X}_{S_k})^2, \tag{12.10}
\]

where

\[
\bar{X}_{S_k} = \frac{1}{n} \sum_{j=1}^{n} \bar{X}_{j,S_k} = \frac{1}{kn} \sum_{j=1}^{n} \sum_{i \in S_k} X_{ij}. \tag{12.11}
\]

Given all possible clusters of size \(k\), we can search for that cluster \(S_k\) with the highest \(\text{var}\{\bar{X}_{S_k}\}\). Unfortunately, such a search procedure is computationally infeasible because it entails evaluating \(\binom{r}{k}\) different subsets, which gets big very quickly for \(r\) large, as would be common in gene clustering.

Gene shaving (Hastie, Tibshirani, Eisen, Alzadeh, Levy, Staudt, Chan, Botstein, and Brown, 2000) has been proposed as a method for clustering genes, where the primary goal is to identify small subsets (i.e., clusters) of highly correlated (“coherent”) genes that vary as much as possible between
Clustering Variables

Consider the linear combination,

$$Z_j = a^\tau X_j = \sum_{i=1}^{r} a_i X_{ij}, \quad (12.12)$$

of the jth column gene expressions, where $X_j = (X_{1j}, \cdots, X_{rj})^\tau$, $a = (a_1, \cdots, a_r)^\tau$, the $\{a_i\}$ are positive, negative, or zero weights, and $\sum_{i=1}^{r} a_i^2 = 1$.

For example, for given k, we could set $a_i = \pm 1/\sqrt{k}$ for $i \in S_k$, and zero otherwise. We wish to find the coefficients $\{a_i\}$ such that the variance of Z_j is maximized.

The solution is given by the first principal component (PC1) of the r rows of X. The min$(r - 1, n)$ principal components of X are referred to as eigen-genes. The individual genes may be ordered according to the magnitude (from largest to smallest in absolute value) of their respective coefficients in the first eigen-gene PC1; we expect that many of the coefficients in PC1 will be close to zero. We could threshold those “near-zero” coefficients (i.e., set the coefficient value equal to zero if it is smaller than a prespecified limit), thereby removing those particular genes from the cluster, but, from experience with simulations, we can do better.

As a selection process for weeding out unimportant genes, we instead compute the inner product (or correlation) of each gene with PC1 and “shave off” (i.e., remove) those genes (rows of X) with the 100α% smallest absolute inner products (e.g., $\alpha = 0.1$). This shaving process decreases the size of the set of available genes, say to k_1 genes. From the reduced subset of k_1 rows, we recompute the first principal component, which, in turn, is shaved to a subset of, say, k_2 rows. This iteration is repeated until a finite sequence of nested gene clusters, $S_r \supset S_{k_1} \supset S_{k_2} \supset \cdots \supset S_1$, is obtained, where S_k denotes the set of indices of a cluster of k genes.

The next step is to decide on k and S_k. For a given value of k, define the following ANOVA-type decomposition of the total variance,

$$V_T = \frac{1}{kn} \sum_{i \in S_k} \sum_{j=1}^{n} (X_{ij} - \bar{X}_{S_k})^2 = V_B + V_W, \quad (12.13)$$

where

$$V_B = \frac{1}{n} \sum_{j=1}^{n} (\bar{X}_{j,S_k} - \bar{X}_{S_k})^2, \quad (12.14)$$

$$V_W = \frac{1}{n} \sum_{j=1}^{n} \left[\frac{1}{k} \sum_{i \in S_k} (X_{ij} - \bar{X}_{j,S_k})^2 \right] \quad (12.15)$$
are the between-variance and within-variance, respectively. A natural statistic is

\[R^2(S_k) = \frac{V_B}{V_T} \times 100\% = \frac{V_B/V_W}{1 + V_B/V_W} \times 100\%, \tag{12.16} \]

which is the percentage of the total variance explained by the gene cluster \(S_k \). The larger the value of \(R^2 \), the more coherent the gene cluster.

Hastie et al. now determine the cluster size \(k \) by a permutation argument applied to the \(R^2 \)-value in (12.16). The “significance” of the \(R^2 \)-value is judged by comparing it with its expectation computed under a suitable reference null distribution; in this case, the reference distribution assumes the rows and columns of \(X \) are independent. Randomly permute the elements of each row of \(X \) to get \(X^{*b} \), \(b = 1, 2, \ldots, B \). Apply the shaving algorithm to \(X^{*b} \), that gives \(S^{*b}_k \), and then compute \(R^2(S^{*b}_k) \), \(b = 1, 2, \ldots, B \).

The gap statistic (Tibshirani, Walther, and Hastie, 2001) is defined as

\[\text{Gap}(k) = R^2(S_k) - \bar{R^2}(S_k), \tag{12.17} \]

where \(\bar{R^2}(S_k) \) is the average of all the \(\{ R^2(S^{*b}_k), b = 1, 2, \ldots, B \} \). We choose that value, \(\hat{k} \), of \(k \) (and, hence, \(S_k \)) which results in the maximum gap; that is, \(\hat{k} = \arg \max_k \text{Gap}(k) \). A useful graphical technique is to plot the gap curve, which is a plot of \(\text{Gap}(k) \) against cluster size \(k \). Set \(\hat{k} = \hat{k}^{(1)} \).

After determining the number, \(\hat{k}^{(1)} \), of genes and their identities, we look for a second gene cluster. Before we do that, we need to remove the effects of the first cluster of genes. Hastie et al. apply an orthogonalization trick: first, compute the first supergene, \(\overline{X}^{(1)} = (\overline{X}_1^{(1)}, \ldots, \overline{X}_r^{(1)})^T \), an \(r \)-vector of average genes corresponding to the first cluster \(S^{(1)}_{\hat{k}} \), where \(\overline{X}_j^{(1)} = \sum_{i \in S^{(1)}_{\hat{k}}} X_{ij}/\hat{k}^{(1)} \), \(j = 1, 2, \ldots, r \); second, orthogonalize \(X \) by regressing each row of \(X \) on the supergene \(\overline{X}^{(1)} \) and replacing the rows of \(X \) by the residuals from each such regression. This gives us the matrix \(X_1 \). Rerun the shaving algorithm on \(X_1 \) and then use the gap statistic to obtain \(\hat{k}^{(2)} \), the second gene cluster \(S^{(2)}_{\hat{k}} \), and the second supergene \(\overline{X}^{(2)} \). This process is applied repeatedly a total of \(t \) times, where \(t \) is prespecified, by modifying \(X \) and \(\overline{X} \) at each step; at the \(k \)th step, \(X \) is orthogonal to all the previously obtained supergenes \(\overline{X}^{(\ell)} \), \(\ell = 1, 2, \ldots, k - 1 \).

One of the main steps in the gene-shaving process is the use of the gap statistic to determine the cluster size \(k \). Hastie et al. report good results for the gap statistic when the clusters are well-separated. However, there is evidence that the gap statistic tends to overestimate the number of clusters (Dudoit and Fridlyand, 2002; Simon et al., 2003, p. 151).

After identifying each gene cluster, the rows of \(X \) can be reordered to display those gene clusters more explicitly. The tissue samples (columns of
\(X\) can also be reordered according to either the average gene expression of each column of \(X\) or some external covariate reflecting additional information, such as tissue type or cancer class. A supervised version of gene shaving (Hastie et al., 2000) has been developed, which, for example, is able to identify gene clusters that are closely associated with patient survival times.

12.6.3 Example: Colon Cancer Data

We apply PC gene-shaving to the colon cancer microarray data described in Section 2.2.1. The microarray data consist of expression levels of 92 genes obtained from a microarray study on 62 colon tissue samples. The gene-expression heatmap for the colon cancer data is displayed in Figure 2.1. Figure 12.13 shows the gap curves for the first four clusters derived using the gene-shaving algorithm. For each cluster, the value of \(k\) at which the gap curve attains its maximum is chosen to be the estimated size of the cluster. The estimated cluster sizes for the first four clusters are 41, 15, 6, and 19, respectively. The four heatmaps for those gene clusters are displayed in Figure 12.14, where the samples are ordered by the values of the column averages; each panel gives the values of the total variance \(V_T\), the between-variance \(V_B\), the ratio \(V_B/V_W\), and \(R^2 = V_B/V_T \times 100\%\), the percentage of the total variance explained by that cluster. The largest \(R^2\) value was that of the third cluster at 64.8%.

The four clusters in Figure 12.14 display different patterns of gene expression. The first cluster has an interesting feature in that the genes split into two equal-sized subgroups: for a given tissue sample, when the “upper” subgroup of genes are strongly upregulated (red color), the “lower” subgroup are strongly downregulated (green color), and vice versa. Furthermore, the red/green split depends upon whether the sample is a tumor sample or a normal sample. The second and third clusters of genes have the same overall appearance: in both, the tumor samples (mostly located on the right of the heatmap) tend to be upregulated, whereas normal samples (mostly located on the left of the heatmap) tend to be downregulated. The reds and greens of the fourth cluster are somewhat more randomly sprinkled around the heatmap, although there are pockets of adjacent cells (e.g., the top few rows and a portion of the right-hand side) that seem to share similar expression patterns.

12.7 Block Clustering

So far, our focus has been on clustering observations (cases, samples) or variables separately. Now, we consider the problem of clustering observations and variables simultaneously.
FIGURE 12.13. Gap curves for the first four clusters of colon cancer data. The gap estimate of cluster size is that value of \(k \) for which the gap curve is a maximum. The estimated cluster sizes are first cluster (top-left panel), 41; second cluster (top-right panel), 15; third cluster (bottom-left panel), 6; and fourth cluster (bottom-right panel), 19.

The simplest way to do this is to apply a hierarchical clustering method to rows and columns separately. Figure 12.15 displays the heatmap of the colon cancer data, where rows and columns have been rearranged through separate hierarchical clustering algorithms. We see a partition of the heatmap into blocks of mainly reds or greens. The rearrangement of rows (colon tissue samples) does not correspond to the known division into tumor samples and normal samples.

Block clustering, also known as direct clustering (Hartigan, 1972), produces a simultaneous reordering of the rows and columns of the \((r \times n)\) data matrix \(X = (X_{ij}) \) so that the data matrix is partitioned into \(K \) submatrices or “data clusters.” As an example, Hartigan (1974) clustered the voting records of 126 nations on 50 selected issues at the United Nations, where each vote was coded as \(1 (= \text{yes}) \), \(2 (= \text{abstain}) \), \(3 (= \text{no}) \), \(5 (= \text{absent}) \), or \(0 (= \text{unknown}) \), and the “absents” are treated as missing data. To motivate the two-way clustering, a natural problem was whether “blocs” of countries exist that vote alike on “blocs” of questions that arise from the same issue.
FIGURE 12.14. Heatmaps for the first four gene clusters for the colon cancer data, where each cluster size is determined by the maximum of that gap curve. The genes are the rows and the samples are the columns. The samples are ordered by the values of the column averages.
In block clustering, each entry in the data matrix appears in one and only one data cluster, and each data cluster corresponds to a particular “row cluster” and a particular “column cluster.” The block-clustering algorithm given in Table 12.8 partitions the rows and columns of X into homogeneous, disjoint blocks (i.e., where the elements of each block can be closely approximated by the same value) so that the row clusters and column clusters are hierarchically arranged to form row and column dendrograms, respectively.

12.8 Two-Way Clustering of Microarray Data

For clustering gene expression data, it can be argued that creating disjoint blocks of genes and samples may be an over-simplification of the situation. Biological systems are notoriously complicated, and interrelations between these systems may result from some genes possessing multiple
1. Start with all data in a single block (i.e., $K = 1$).

2. Let B_1, B_2, \ldots, B_K denote a partition of the rows and columns of X into K blocks (or data clusters), where $B_k = (\mathcal{R}_k, \mathcal{C}_k)$ consists of a set, \mathcal{R}_k, of r_k rows and a set, \mathcal{C}_k, of c_k columns of X, $k = 1, 2, \ldots, K$.

3. Within the kth block B_k, compute \bar{X}_k, the average of all the X_{ij} within that block. Approximate X by the matrix $\hat{X} = (\hat{X}_{ij})$, where $\hat{X}_{ij} = \bar{X}_k$ are constant within block B_k. Compute $\text{ESS} = \sum_{k=1}^{K} \sum_{(i,j) \in B_k} (X_{ij} - \bar{X}_k)^2$, the total within-block variance.

4. At the hth step, there will be h blocks, B_1, B_2, \ldots, B_h. Suppose we destroy B_k by splitting it into two subblocks, B_k' and B_k'', either by splitting the rows or the columns. Consider a row-split of the block $B_k = (\mathcal{R}_k, \mathcal{C}_k)$. Suppose \mathcal{R}_k contains a previous row-split of a different block $B_\ell = (\mathcal{R}_\ell, \mathcal{C}_\ell)$ into $B_\ell' = (\mathcal{R}_\ell', \mathcal{C}_\ell')$ and $B_\ell'' = (\mathcal{R}_\ell'', \mathcal{C}_\ell'')$. Then, the only row-split allowable for B_k is a fixed split given by $\mathcal{R}_k' = \mathcal{R}_\ell'$ and $\mathcal{R}_k'' = \mathcal{R}_\ell''$. Similarly for column splits. A free split is a split in which no such restrictions are specified.

5. The reduction in ESS due to row-splitting B_k into B_k' and B_k'' is given by

$$\Delta \text{ESS} = c_k r_k' [\bar{X}(B_k') - \bar{X}(B_k)]^2 + c_k r_k'' [\bar{X}(B_k'') - \bar{X}(B_k)]^2,$$

where $\bar{X}(B)$ denotes the average of X over the block B.

6. At each step, compute ΔESS for each (row or column) split of all existing blocks. Choose that split that maximizes ΔESS.

7. Stop when any further splitting leads to ΔESS becoming too small or when the number of blocks K becomes too large.

Table 12.8. Hartigan’s block-clustering algorithm.

- Start with all data in a single block (i.e., $K = 1$).
- Let B_1, B_2, \ldots, B_K denote a partition of the rows and columns of X into K blocks (or data clusters), where $B_k = (\mathcal{R}_k, \mathcal{C}_k)$ consists of a set, \mathcal{R}_k, of r_k rows and a set, \mathcal{C}_k, of c_k columns of X, $k = 1, 2, \ldots, K$.
- Within the kth block B_k, compute \bar{X}_k, the average of all the X_{ij} within that block. Approximate X by the matrix $\hat{X} = (\hat{X}_{ij})$, where $\hat{X}_{ij} = \bar{X}_k$ are constant within block B_k. Compute $\text{ESS} = \sum_{k=1}^{K} \sum_{(i,j) \in B_k} (X_{ij} - \bar{X}_k)^2$, the total within-block variance.
- At the hth step, there will be h blocks, B_1, B_2, \ldots, B_h. Suppose we destroy B_k by splitting it into two subblocks, B_k' and B_k'', either by splitting the rows or the columns. Consider a row-split of the block $B_k = (\mathcal{R}_k, \mathcal{C}_k)$. Suppose \mathcal{R}_k contains a previous row-split of a different block $B_\ell = (\mathcal{R}_\ell, \mathcal{C}_\ell)$ into $B_\ell' = (\mathcal{R}_\ell', \mathcal{C}_\ell')$ and $B_\ell'' = (\mathcal{R}_\ell'', \mathcal{C}_\ell'')$. Then, the only row-split allowable for B_k is a fixed split given by $\mathcal{R}_k' = \mathcal{R}_\ell'$ and $\mathcal{R}_k'' = \mathcal{R}_\ell''$. Similarly for column splits. A free split is a split in which no such restrictions are specified.
- The reduction in ESS due to row-splitting B_k into B_k' and B_k'' is given by

$$\Delta \text{ESS} = c_k r_k' [\bar{X}(B_k') - \bar{X}(B_k)]^2 + c_k r_k'' [\bar{X}(B_k'') - \bar{X}(B_k)]^2,$$

where $\bar{X}(B)$ denotes the average of X over the block B.
- At each step, compute ΔESS for each (row or column) split of all existing blocks. Choose that split that maximizes ΔESS.
- Stop when any further splitting leads to ΔESS becoming too small or when the number of blocks K becomes too large.

functions. Hence, it may be more realistic to accept the idea that certain clusters should naturally overlap each other. Furthermore, similarities between related genes and between related samples may be more complex due to gene-sample interaction effects.

12.8.1 Biclustering

With this in mind, the **biclustering** approach (Cheng and Church, 2000) seeks to divide the $(r \times n)$-matrix $X = (X_{ij})$ of gene-expression data into a pre-specified number of “biclusters,” which do not have to be disjoint. Each bicluster corresponds to a subset of the genes and a subset of the samples that possess a high degree of similarity. So, certain rows and columns of X will appear in several biclusters. The basic idea is to determine in a sequential fashion one bicluster at a time.
A bicluster is defined as a submatrix, $X(I, J)$, of X, where I is a subset of n_I rows and J is a subset of n_J columns in X. Consider the expression level X_{ij}, $i \in I, j \in J$. If we model the bicluster by an additive two-way analysis of variance (ANOVA) model, then we can write

$$X_{ij} \approx \mu + \alpha_i + \beta_j, \quad i \in I, j \in J,$$

(12.18)

where μ is the overall mean effect, α_i represents the effect of the ith row, β_j the effect of the jth column, and, for uniqueness, we assume that $\sum_{i \in I} \alpha_i = \sum_{j \in J} \beta_j = 0$. Least-squares estimates of μ, α_i, and β_j are given by

$$\hat{\mu} = \bar{X}_{..}, \quad \hat{\alpha}_i = \bar{X}_{i.} - \bar{X}_{..}, \quad \hat{\beta}_j = \bar{X}_{.j} - \bar{X}_{..},$$

(12.19)

where

$$\bar{X}_i = n_J^{-1} \sum_{j \in J} X_{ij}, \quad \bar{X}_j = n_I^{-1} \sum_{i \in I} X_{ij}$$

(12.20)

and

$$\bar{X}_{..} = \left(n_I n_J \right)^{-1} \sum_{i \in I} \sum_{j \in J} X_{ij}.$$

(12.21)

The least-squares residual at X_{ij} is defined as

$$\hat{e}_{ij} = X_{ij} - \hat{\mu} - \hat{\alpha}_i - \hat{\beta}_j = X_{ij} - \bar{X}_i - \bar{X}_j + \bar{X}_{..}, \quad i \in I, j \in J.$$

(12.22)

Let

$$RSS(I, J) = \sum_{i \in I} \sum_{j \in J} \hat{e}_{ij}^2$$

(12.23)

be the residual sum of squares for the bicluster. The objective function is

$$H(I, J) = \frac{RSS(I, J)}{n_I n_J},$$

(12.24)

which is proportional to the residual mean square $RMS(I, J)$ for the bicluster; that is, $RMS = [(n_I - 1)(n_J - 1)/n_I n_J]H$. The aim is to find a row set I and a column set J such that $H(I, J)$ has a small value.

A bicluster is constructed by sequentially deleting one or multiple rows or columns at a time from X, where the choice is determined at each step so as to achieve the largest decrease in the value of H. Deleting rows or columns will reduce the value of H. A similar result allows one to add some rows or columns without increasing H. Like all greedy algorithms, this algorithm needs a threshold value; it is usual to fix a maximum-acceptable threshold $\delta \geq 0$ for the value of H while running the algorithm.

As each bicluster is found, the elements of X corresponding to that bicluster are replaced by random numbers (so that no recognizable pattern from that bicluster is retained that could be correlated with future biclusters), and the next bicluster is sought. The random numbers are sampled from a uniform density over a range appropriate for the given application.
12.8.2 Plaid Models

Plaid models (Lazzeroni and Owen, 2002) form a family of models for carrying out block-clustering, in which sums of “layers” of two-way ANOVA models are fitted to gene-expression data. As such, it generalizes the biclustering approach. Each “layer” is formed by a subset of the rows and columns and can be viewed as a two-way clustering of the elements of the data matrix, except that genes can be members of different layers or of none of them. Hence, overlapping clusters (i.e., layers) are allowed.

There are several different types of plaid models, some more detailed than others. Consider the following simple model,

\[
X_{ij} \approx \mu_0 + \sum_{k=1}^{K} \mu_k \rho_{ik} \kappa_{jk}. \tag{12.25}
\]

In this model, \(\mu_0 \) represents the expression level for the background layer, \(\mu_k \) represents the expression level in the \(k \)th layer, and \(\rho_{ik} \) and \(\kappa_{jk} \) are two indicators whose value is 1 if the subscripts are equal and 0 otherwise. Thus, \(\rho_{ik} = 1 \) (or 0) indicates the presence (or absence) of the \(i \)th gene in the \(k \)th gene-layer, whereas \(\kappa_{jk} = 1 \) (or 0) indicates the presence (or absence) of the \(j \)th sample in the \(k \)th sample-layer. The expression level \(\mu_k \) is said to be upregulated if \(\mu_k > 0 \) and downregulated if \(\mu_k < 0 \).

Requiring each gene and each sample to be in exactly one cluster would mean that \(\sum_k \rho_{ik} = 1 \) for every \(i \), and \(\sum_k \kappa_{jk} = 1 \) for every \(j \), respectively. To allow overlapping levels, these constraints would have to be relaxed: for example, we could set \(\sum_k \rho_{ik} \geq 2 \) for some \(i \), or \(\sum_k \kappa_{jk} \geq 2 \) for some \(j \). We would also need to recognize that there may be genes or samples that do not belong naturally to any layer; for such genes, \(\sum_k \rho_{ik} = 0 \), and for such samples, \(\sum_k \kappa_{jk} = 0 \). In general, we do not need to impose any restrictions on the \(\{\rho_{ik}\} \) and \(\{\kappa_{jk}\} \).

A more general ANOVA-type model is given by

\[
X_{ij} \approx \mu_0 + \sum_{k=1}^{K} (\mu_k + \alpha_{ik} + \beta_{jk}) \rho_{ik} \kappa_{jk}, \tag{12.26}
\]

where \(\alpha_{ik} \) and \(\beta_{jk} \) measure the effects of the \(i \)th row (genes) and \(j \)th column (samples), respectively, in the \(k \)th layer. To avoid overparameterization, we require \(\sum_i \rho_{ik} \alpha_{ik} = \sum_j \kappa_{jk} \beta_{jk} = 0, k = 1, 2, \ldots, K \). The description of model (12.26) as a “plaid” model derives from the visual appearance of the fitted heatmap of \(\mu_k + \alpha_{ik} + \beta_{jk} \), where we see the row-stripes of the \(\{\rho_{ik}\} \) and the column-stripes of the \(\{\kappa_{jk}\} \).

Let \(\theta_{ijk} = \mu_k + \alpha_{ik} + \beta_{jk} \), \(k = 1, 2, \ldots, K \). Then, we can write the plaid model (12.26) as

\[
X_{ij} \approx \theta_{ij0} + \sum_{k=1}^{K} \theta_{ijk} \rho_{ik} \kappa_{jk}. \tag{12.27}
\]
To estimate the parameters \(\{\theta_{ijk}\} \) in (12.27), we minimize the criterion,

\[
Q = \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{n} \left(X_{ij} - \theta_{ij0} - \sum_{k=1}^{K} \theta_{ijk} \rho_{ik} \kappa_{jk} \right)^2,
\]

with respect to \(\{\theta_{ijk}\}, \{\rho_{ik}\}, \{\kappa_{jk}\} \), where \(\rho_{ik}, \kappa_{jk} \in \{0, 1\} \). Given the number of layers \(K \), this optimization problem quickly becomes computationally infeasible (each gene and each sample can be in or out of each layer, and so there are \((2^r - 1)(2^n - 1) \) possible combinations of genes and samples).

To overcome this problem, the minimization of \(Q \) is turned into an iterative process, where we add one layer at a time. Suppose we have already fitted \(K-1 \) layers, and we need to identify the \(K \)th layer by minimizing \(Q \).

If we let

\[
Z_{ij} = X_{ij} - \theta_{ij0} - \sum_{k=1}^{K-1} \theta_{ijk} \rho_{ik} \kappa_{jk}
\]

denote the “residual” remaining after the first \(K-1 \) layers, then we can write \(Q \) as

\[
Q = \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{n} (Z_{ij} - \theta_{ijK} \rho_{iK} \kappa_{jK})^2
\]

\[
= \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{n} (Z_{ij} - (\mu_K + \alpha_{iK} + \beta_{jK}) \rho_{iK} \kappa_{jK})^2.
\]

(12.31)

We wish to minimize \(Q \) subject to the identifying conditions

\[
\sum_{i=1}^{r} \alpha_{iK} \rho_{iK}^2 = \sum_{j=1}^{n} \beta_{jK} \kappa_{jK}^2 = 0.
\]

(12.32)

From (12.31) and (12.32), we set up the usual Lagrangian multipliers, differentiate wrt \(\mu_K, \alpha_{iK}, \) and \(\beta_{jK} \), set the derivatives equal to zero, and solve. The results give:

\[
\mu_{K}^* = \frac{\sum_{i} \sum_{j} Z_{ij} \rho_{iK} \kappa_{jK}}{(\sum_{i} \rho_{iK}^2)(\sum_{j} \kappa_{jK}^2)}
\]

(12.33)

\[
\alpha_{iK}^* = \frac{\sum_{j} (Z_{ij} - \mu_K \rho_{iK} \kappa_{jK}) \kappa_{jK}}{\rho_{iK}(\sum_{j} \kappa_{jK}^2)}
\]

(12.34)

\[
\beta_{jK}^* = \frac{\sum_{i} (Z_{ij} - \mu_K \rho_{iK} \kappa_{jK}) \rho_{iK}}{\kappa_{jK}(\sum_{i} \rho_{iK}^2)}
\]

(12.35)

Given the values of \(\rho_{iK}^{(s-1)} \) and \(\kappa_{jK}^{(s-1)} \) from the \((s-1)\)st iteration, we use (12.33)–(12.35) to update \(\theta_{ijK}^{(s)} \) at the \(s \)th iteration. Note that updating
\(\alpha_{iK} \) only requires data for the \(i \)th gene, and updating \(\beta_{jK}^* \) only requires data for the \(j \)th sample; hence, the resulting iterations are very fast.

Given values for \(\theta_{ijK} \), the update formulas for \(\rho_{iK} \) and \(\kappa_{jK} \) are found by differentiating (12.14) wrt \(\rho_{iK} \) and \(\kappa_{jK} \), setting the results equal to zero, and solving. This gives:

\[
\rho_{iK}^* = \frac{\sum_j Z_{ij} \theta_{ijK} \kappa_{jK}}{\sum_j \theta_{ijK}^2 \kappa_{jK}^2} \\
\kappa_{jK}^* = \frac{\sum_i Z_{ij} \theta_{ijK} \rho_{iK}}{\sum_i \theta_{ijK}^2 \rho_{iK}^2}.
\]

(12.36)
(12.37)

So, set the initial values of all the \(\rho \)s and the \(\kappa \)s to be in \((0, 1)\) (say, make them all equal to 0.5). Then, given values of \(\theta^{(s)}_{ijK} \) and \(\kappa^{(s-1)}_{jK} \), we use (12.20) to update \(\rho^{(s)}_{iK} \). Similarly, given values of \(\theta^{(s)}_{ijK} \) and \(\rho^{(s-1)}_{iK} \), we use (12.21) to update \(\kappa^{(s)}_{jK} \). The trick is to keep \(\rho \) and \(\kappa \) away from 0 and 1 early in the iteration process, but to force \(\rho \) and \(\kappa \) toward 0 and 1 late in the process. At convergence, the estimated parameters for the \(k \)th layer are denoted by \(\hat{\mu}_k, \hat{\alpha}_{ik}, \) and \(\hat{\beta}_{jk}, k = 1, 2, \ldots, K \).

The absolute values of the row effects, \(|\hat{\mu}_k + \hat{\alpha}_{ik}| \), and the column effects, \(|\hat{\mu}_k + \hat{\beta}_{jk}| \), for the \(k \)th layer \((k = 1, 2, \ldots, K)\) can each be ordered to show which genes and samples are most affected by the biological conditions of that layer. Within the \(k \)th layer, genes are upregulated if \(\hat{\mu}_k + \hat{\alpha}_{ik} > 0 \), whereas genes with \(\hat{\mu}_k + \hat{\alpha}_{ik} < 0 \) are said to be downregulated. The “size” or “importance” of the \(k \)th layer is indicated by the value of

\[
\sigma^2_k = \sum_{i=1}^{n} \sum_{j=1}^{r} \rho_{iK}^* \kappa_{jK}^* \theta_{ijk}^2,
\]

and this quantity is used in a permutation argument by Lazzeroni and Owen to choose the number of layers \(K \).

12.8.3 Example: Leukemia (ALL/AML) Data

The data for this example\(^4\) are obtained from a study of two types of acute leukemias — acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) (Golub et al, 1999). The leukemia data, which consist of gene expression levels for 7,219 probes from 6,817 human genes, were

\(^4\)The leukemia data can be found in the file ALL_AML_Merge.txt on the book’s website. The data are available in the Bioconductor R package golubEsets, and the preprocessing code is in the Bioconductor R package multtest, both of which can be downloaded from the website http://www.bioconductor.org.
Cluster Analysis

derived using Affymetrix high-density oligonucleotide arrays. There are 72 mRNA samples made up of 47 ALL samples (38 B-cell and 9 T-cell) and 25 AML samples extracted from bone marrow (BM) or from peripheral blood (PB).

The leukemia data were preprocessed following the methods of Golub et al. (see Dudoit, Fridlyand, and Speed, 2002): (1) a floor and ceiling of 100 and 16,000, respectively, were set for the expression levels; (2) any gene that has low variability (i.e., any gene with either max/ min \(\leq 5 \) or max – min \(\leq 500 \)) over all tissue samples was excluded; (3) the remaining expression levels were transformed using a logarithmic (base-10) transformation; (4) the preprocessed leukemia data were standardized by centering (mean 0) and scaling (variance 1) each of the mRNA samples across rows (genes). This left a data array, \(X = (X_{gi}) \), consisting of 3,571 rows (genes) by 72 columns (mRNA samples), where \(X_{gi} \) denotes the expression level for the \(g \)th gene in the \(i \)th mRNA sample.

We applied the plaid model to the leukemia data. Our strategy consisted of (1) four shuffles in the stopping rule; (2) a common sign for \(\mu + \alpha_i \) and for \(\mu + \beta_j \) within each layer; and (3) any row (or column) released from a layer if being part of a layer failed to reduce its sum of squares by at least 0.51. The algorithm stopped after finding 11 layers, each containing \(\alpha_i \) and \(\beta_j \) components. After the 11th layer, the algorithm failed to find a layer that retained any rows under the release criterion.

Table 12.9 shows the composition of each of the 11 layers. We see that layer 4 is completely composed of AML samples, layer 5 consists of only ALL B-cell samples, and layers 3 and 11 contain only ALL samples. All other layers are mixed ALL and AML samples. Only 55 of the 72 samples are contained in the 11 layers, so that 17 samples were not included in any layer. The biggest percentage omission is for the ALL T-cell samples with 5 out of 9 samples not included; 9 of the 38 ALL B-cell samples and 3 of the 25 AML samples are omitted.

Table 12.10 gives the estimated column effects, \(\hat{\mu}_k + \hat{\beta}_{jk} \), in the first 8 layers; notice that the signs of each column effect are the same within each layer. We see a pattern of similar mRNA samples appearing in the odd layers 1, 3, 5, 7, and 11, and in the even layers 2, 4, 6, and 8. These odd-even patterns, however, are switched in layers 9 and 10.

While we see from Table 12.9 that the number of samples in the different layers is about the same, the number of genes decreases from more than 200 in the first few layers to a much smaller number in each of the last few layers. About half of the genes in each of the first two layers are the same, whereas a third of the genes in layer 3 are present in layer 4 and vice versa. The amount of gene overlap in the other layers is negligible.
So far, our treatment of clustering has been algorithmic; rather than creating clustering methods based upon a statistical model with stochastic elements (so that the the full force of the traditional statistical inference framework could be applied), we have used nonstochastic methods whose computational solution in each case is an iterative algorithm, which is a general optimization routine for the treatment of incomplete data. The EM algorithm has been found to be especially valuable for clustering data in problems from machine learning, computer vision, vector quantization, image restoration, and market segmentation.

Suppose \(X \sim p(\cdot | \psi) \), where \(\psi \) is an unknown parameter vector. The complete-data likelihood is given by

\[
L(\psi | X) = p(X | \psi).
\] \hspace{1cm} (12.39)

Now, suppose some components of \(X \) are missing. We can write

\[
X = (X_{\text{obs}}^T, X_{\text{mis}}^T)^T,
\] \hspace{1cm} (12.40)

where \(X_{\text{obs}} \) is the observed part of \(X \), and \(X_{\text{mis}} \) is the missing part of \(X \). If the probability that a particular variable is unobserved depends only upon \(X_{\text{obs}} \) and not on \(X_{\text{mis}} \), then the observed-data likelihood is obtained by integrating \(X_{\text{mis}} \) out of the complete-data likelihood,

\[
L_{\text{obs}}(\psi | X_{\text{obs}}) = \int p(X_{\text{obs}}, X_{\text{mis}} | \psi) \, dX_{\text{mis}}.
\] \hspace{1cm} (12.41)
TABLE 12.10. Plaid analysis of the leukemia data. Estimated column effects ($\hat{\mu} + \hat{\beta}_j$) for the first 8 layers. Samples whose estimated effects do not appear in a column are not included in that layer.

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLT 3</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.53</td>
</tr>
<tr>
<td>ALLB 4</td>
<td></td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.63</td>
</tr>
<tr>
<td>ALLT 5</td>
<td></td>
<td></td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.63</td>
</tr>
<tr>
<td>ALLB 6</td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td>ALLB 7</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.37</td>
</tr>
<tr>
<td>ALLB 8</td>
<td>1.09</td>
<td></td>
<td></td>
<td></td>
<td>0.74</td>
<td></td>
<td></td>
<td>1.58</td>
</tr>
<tr>
<td>ALLB 13</td>
<td></td>
<td>1.10</td>
<td></td>
<td>1.10</td>
<td></td>
<td></td>
<td></td>
<td>1.58</td>
</tr>
<tr>
<td>ALLB 14</td>
<td></td>
<td></td>
<td></td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLB 15</td>
<td></td>
<td>1.07</td>
<td></td>
<td>1.07</td>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td>ALLB 16</td>
<td></td>
<td></td>
<td></td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLB 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.07</td>
<td>0.51</td>
</tr>
<tr>
<td>ALLB 20</td>
<td></td>
<td>1.39</td>
<td></td>
<td>1.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLB 21</td>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLB 22</td>
<td></td>
<td></td>
<td></td>
<td>0.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLB 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLB 24</td>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLB 27</td>
<td>1.54</td>
<td></td>
<td>1.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 28</td>
<td></td>
<td>0.69</td>
<td>0.70</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 30</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>AML 32</td>
<td></td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 33</td>
<td>0.86</td>
<td>1.06</td>
<td>0.69</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 34</td>
<td>0.69</td>
<td>1.39</td>
<td>0.84</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 35</td>
<td>0.71</td>
<td></td>
<td>0.97</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 36</td>
<td>1.06</td>
<td></td>
<td>0.94</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 37</td>
<td></td>
<td></td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 38</td>
<td>0.67</td>
<td></td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 39</td>
<td>0.72</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 40</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 41</td>
<td></td>
<td></td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>AML 44</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 45</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 46</td>
<td>0.80</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 47</td>
<td></td>
<td>0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 48</td>
<td></td>
<td></td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 49</td>
<td></td>
<td></td>
<td></td>
<td>1.29</td>
<td></td>
<td></td>
<td></td>
<td>1.07</td>
</tr>
<tr>
<td>AML 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td></td>
<td></td>
<td>1.31</td>
</tr>
<tr>
<td>AML 51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 56</td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 58</td>
<td></td>
<td>1.04</td>
<td></td>
<td></td>
<td>0.77</td>
<td></td>
<td></td>
<td>0.68</td>
</tr>
<tr>
<td>AML 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.36</td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td>AML 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>AML 62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AML 66</td>
<td></td>
<td></td>
<td></td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLB 68</td>
<td></td>
<td>1.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLB 69</td>
<td></td>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLB 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 12.11. The EM algorithm.

1. Input: $\hat{\psi}^{(0)} = \text{initial guess for the parameter vector } \psi$.
2. Let $X = (X_{\text{obs}}, X_{\text{mis}})^T$ represent the “complete” data, where X_{obs} and X_{mis} are the portions of X which are observed and missing, respectively.
3. For $m=0,1,2,\ldots$, iterate between the following two steps:
 - **E-step:** Compute $Q(\psi | \hat{\psi}^{(m)}) = E\left\{ \ell(\psi | X) \mid X_{\text{obs}}, \hat{\psi}^{(m)} \right\}$ as a function of ψ.
 - **M-step:** Find $\hat{\psi}^{(m+1)} = \arg \max_{\psi} Q(\psi | \hat{\psi}^{(m)})$.
4. Stop when convergence of the log-likelihood is attained.

The MLE for ψ based upon the observed data X_{obs} is the ψ that maximizes $\mathcal{L}_{\text{obs}}(\psi | X_{\text{obs}})$. Unfortunately, a direct attack on this problem usually fails.

The EM algorithm is tailor-made for this type of problem. It is a two-step iterative process, incorporating an *expectation step* (E-step) with a *maximization step* (M-step); see Table 12.11 for the algorithmic details. The E-step computes the conditional expectation of the complete-data log-likelihood given the observed data and the current parameter estimate, and the M-step updates the parameter estimate by maximizing the conditional expectation from the E-step.

Because $p(X_{\text{mis}} | X_{\text{obs}}, \psi) = p(X_{\text{obs}} | X_{\text{mis}}, \psi)/p(X_{\text{obs}} | \psi)$, the observed-data log-likelihood is

$$
\ell(\psi | X_{\text{obs}}) = \log p(X_{\text{obs}} | \psi) = \ell(\psi | X) - \log p(X_{\text{mis}} | X_{\text{obs}}, \psi), \quad (12.42)
$$

where $\ell(\psi | X)$ is the complete-data log-likelihood, which may be easy to compute, and $\log p(X_{\text{mis}} | X_{\text{obs}}, \psi)$ is the part of the complete-data log-likelihood due to the missing data. Taking expectations of (12.39) wrt the conditional density $p(X_{\text{mis}} | X_{\text{obs}}, \psi')$, where ψ' is a current value of ψ, yields

$$
\ell(\psi | X_{\text{obs}}) = Q(\psi | \psi') - H(\psi | \psi'), \quad (12.43)
$$

where

$$
Q(\psi | \psi') = \int \ell(\psi | X)p(X_{\text{mis}} | X_{\text{obs}}, \psi')dX_{\text{mis}} = E\{\ell(\psi | X) | X_{\text{obs}}, \psi'\}, \quad (12.44)
$$
and

\[H(\psi | \psi') = \int \log p(X_{mis} | X_{obs}, \psi) p(X_{mis} | X_{obs}, \psi') dX_{mis} \]

\[= \mathbb{E}\{\log p(X_{mis} | X_{obs}, \psi) | X_{obs}, \psi'\}. \quad (12.45) \]

If we now set

\[h(X_{mis}) = \frac{p(X_{mis} | X_{obs}, \psi)}{p(X_{mis} | X_{obs}, \psi')}, \quad (12.46) \]

then,

\[H(\psi | \psi') - H(\psi' | \psi') = \mathbb{E}\{\log h(X_{mis}) | X_{obs}, \psi'\} \]

\[\leq \mathbb{E}\{h(X_{mis} | X_{obs}, \psi')\} - 1 \]

\[= 0, \quad (12.47) \]

where we have used the inequality \(\log x \leq x - 1 \). Thus, \(H(\psi | \psi') \leq H(\psi' | \psi') \).

From (12.43), the difference in \(\ell(\psi | X_{obs}) \) at the \(m \)th and \((m + 1) \)st iterations is

\[\ell(\psi^{(m+1)} | X_{obs}) - \ell(\psi^{(m)} | X_{obs}) \geq Q(\psi^{(m+1)} | \psi^{(m)}) - Q(\psi^{(m)} | \psi^{(m)}) \geq 0, \quad (12.48) \]

where we have used (12.44) and the fact that the EM algorithm finds \(\psi^{(m+1)} \) to make \(Q(\psi^{(m+1)} | \psi^{(m)}) > Q(\psi^{(m)} | \psi^{(m)}) \). Thus, the log-likelihood function increases at each iteration (more accurately, it does not decrease). From this result, it can be shown that (under reasonably mild regularity conditions) convergence of the log-likelihood, at least to a local maximum, is ensured by this iterative process (Wu, 1983). Note, however, that local convergence of the log-likelihood does not automatically imply local convergence of the parameter estimates, although the latter convergence holds under additional regularity conditions.

The EM algorithm possesses reliable convergence properties and low cost per iteration, does not require much storage space, and is easy to program. Yet, it can be extremely slow to converge if there are many missing data and if the size of the data set is large. (We note that some effort has been made to speed up the EM algorithm.) Furthermore, because convergence is guaranteed only to a local maximum, and because likelihood surfaces often possess many local maxima, it is usually necessary to run the EM algorithm using different random starts to try to find a global maximum of the likelihood function.

12.9.1 The EM Algorithm for Finite Mixtures

In mixture problems, if we knew which observations belonged to which group or class, then we could divide up the data by class and then estimate
the parameters of each component density separately. Not knowing the class labels means that the labels and the parameters have to be estimated simultaneously.

One of the first applications of the EM algorithm was to the finite mixtures problem. The “trick” here is to introduce a K-vector of dummy variables,

$$X_{i,mis} = (X_{i1,mis}, \cdots, X_{iK,mis})^\tau,$$

(12.49)

where

$$X_{ik,mis} = \begin{cases} 1 & \text{if } X_{i,obs} \in \Pi_k \\ 0 & \text{otherwise} \end{cases}$$

(12.50)

$k = 1, 2, \ldots , K$, and use it to augment the ith observation, $X_{i,obs}$, to produce a “complete” data vector,

$$X_i = (X_{i,obs}^\tau, X_{i,mis}^\tau), \quad i = 1, 2, \ldots, n.$$

(12.51)

This idea of creating “missing data” for this problem as indicators of the unknown class labels was a key innovation of Dempster, Laird, and Rubin (1977).

Assume now that $X_{i,mis}$ is iid according to a single draw from a K-class multinomial distribution with probabilities $\pi_k = \text{Prob}\{X_{i,obs} \in \Pi_k\}, \ k = 1, 2, \ldots , K$. That is,

$$X_{i,mis} \overset{iid}{\sim} \text{Mult}_K(1, \pi), \quad i = 1, 2, \ldots, n,$$

(12.52)

where $\pi = (\pi_1, \ldots, \pi_K)^\tau$. Hence,

$$X_{i,obs|X_{i,mis}} \sim \prod_{k=1}^K [f_k(X_{i,obs|\theta_k})]^{X_{ik,mis}}.$$

(12.53)

From (13.49) and (13.50), the complete-data log-likelihood is

$$\ell(\psi|X) = \ell(\{\theta_k\}, \{\pi_k\}, \{X_{ik,mis}\}|X)$$

$$= \sum_{i=1}^n \sum_{k=1}^K X_{ik,mis} \log \{\pi_k f_k(X_{i,obs|\theta_k})\}. $$

(12.54)

The E-step computes $Q(\psi|\hat{\psi}^{(m)})$ by replacing each dummy variable $X_{ik,mis}$ in (12.54) by its conditional expectation,

$$\hat{X}_{ik,mis}^{(m)} = \text{E}\{X_{ik,mis}|X_{i,obs}, \hat{\psi}^{(m)}\},$$

(12.55)

where $\hat{\psi}^{(m)}$ is the current estimate of ψ. In other words, at the mth iteration, $X_{ik,mis}$ is estimated by the posterior probability that $X_{i,obs} \in \Pi_k$; from Section 9.5.1, this is

$$\hat{X}_{ik,mis}^{(m)} = \frac{\hat{\pi}_k^{(m)} f_k(X_{i,obs|\hat{\theta}_k^{(m)})}}{\sum_{j=1}^K \hat{\pi}_j^{(m)} f_j(X_{i,obs|\hat{\theta}_j^{(m)})}}.$$

(12.56)
The M-step then takes the probabilities of class membership provided by the E-step, inserts them into (12.54) in place of $X_{ik,mis}$, and updates the parameter values from the E-step by maximizing (12.54) wrt $\{\pi_k\}, \{\theta_k\}$. The M-step for the mixture proportions $\{\pi_k\}$ is given by

$$\hat{\pi}_k^{(m+1)} = n^{-1} \sum_{i=1}^{n} \hat{X}_{ik,mis}^{(m)}, \quad k = 1, 2, \ldots, K.$$ \hspace{1cm} (12.57)

The M-step for the parameter vector ψ depends upon the context. The E-step and M-step are iterated as many times as it is necessary to achieve convergence of the log-likelihood. The ML determination of the class of the ith observation is then the class corresponding to the largest value of $\hat{X}_{ik,mis}$, $k = 1, 2, \ldots, K$.

Consider, for example, a mixture of the two univariate Gaussian densities $\phi(x|\theta_1)$ and $\phi(x|\theta_2)$, where the parameter vectors are $\theta_1 = (\mu_1, \sigma_1^2)^T$ and $\theta_2 = (\mu_2, \sigma_2^2)^T$, and the mixture proportions are $\pi_1 = 1 - \pi$ and $\pi_2 = \pi$. We also drop the subscript k. The E-step (13.56) reduces to

$$\hat{X}_{i,mis}^{(m)} = \frac{\hat{\pi}^{(m)}(X_{i,obs}|\hat{\theta}_1^{(m)})}{(1 - \hat{\pi}^{(m)}(X_{i,obs}|\hat{\theta}_1^{(m)}) + \hat{\pi}^{(m)}(X_{i,obs}|\hat{\theta}_2^{(m)}),}$$ \hspace{1cm} (12.58)

where $\hat{\pi}^{(m)} = n^{-1} \sum_{i=1}^{n} \hat{X}_{i,mis}^{(m)}$. By maximizing (13.54) while fixing $X_{ik,mis} = \hat{X}_{ik,mis}$, the M-step yields the estimates

$$\hat{\mu}_1^{(m+1)} = \frac{\sum_{i=1}^{n} (1 - \hat{X}_{i,mis}^{(m)}) X_{i,obs}}{\sum_{i=1}^{n} (1 - \hat{X}_{i,mis}^{(m))}},$$ \hspace{1cm} (12.59)

$$\hat{\sigma}_1^2^{(m+1)} = \frac{\sum_{i=1}^{n} (1 - \hat{X}_{i,mis}^{(m)}) (X_{i,obs} - \hat{\mu}_1^{(m+1)})^2}{\sum_{i=1}^{n} (1 - \hat{X}_{i,mis}^{(m))}},$$ \hspace{1cm} (12.60)

$$\hat{\mu}_2^{(m+1)} = \frac{\sum_{i=1}^{n} \hat{X}_{i,mis}^{(m)} X_{i,obs}}{\sum_{i=1}^{n} \hat{X}_{i,mis}^{(m))}},$$ \hspace{1cm} (12.61)

$$\hat{\sigma}_2^2^{(m+1)} = \frac{\sum_{i=1}^{n} \hat{X}_{i,mis}^{(m)} (X_{i,obs} - \hat{\mu}_2^{(m+1)})^2}{\sum_{i=1}^{n} \hat{X}_{i,mis}^{(m)}},$$ \hspace{1cm} (12.62)

Experimentation with this mixture model has shown that whereas convergence of the log-likelihood may be incredibly slow, most of the progress toward convergence tends to occur during the first few iterations (Redner and Walker, 1984).

In the multivariate Gaussian mixture problem (see Exercise 12.9), the “curse of dimensionality” raises its ugly head, where the number of parameters grows quickly with the increase in dimensionality. Although PCA
is often used as a first step to reduce the dimensionality, this does not help in mixtures problems because any class structure as exists may not be preserved by the principal components (Chang, 1983). Furthermore, whenever estimates of the covariance matrix become singular or nearly singular, the EM algorithm breaks down; this can happen, for example, if the mixture has too many components and at least one of those components has too few observations, or when the dimensionality is greater than the number of observations, such as occurs with microarray experiments. This is currently an area of much research (Fraley and Raftery, 2002).

12.9.2 How Many Components?

The number of components, K, is one of the most important ingredients in mixture modeling, which becomes more complicated when the value of K is unknown. As a result, much attention has been paid to this issue. By and large, attempts at formulating test criteria to decide on the number of components have not been successful.

For example, an early decision procedure was the likelihood-ratio test statistic $-2 \log \lambda_k$, where λ_k is the likelihood ratio (LR) (Wolfe, 1970). The LR compares a mixture having k components with a mixture having $k + 1$ components and then repeats the test for a succession of increasing values of k, each time comparing the result to a reference χ^2-distribution. The testing stops the first time that a k-mixture density is not rejected in favor of a $(k + 1)$-mixture density. Recent empirical evidence indicates that this test tends to overestimate the value of K. More seriously, the regularity conditions for the χ^2 approximation do not hold in finite-mixture problems.

Several alternatives to the likelihood ratio test have since been proposed. The two most prominent approaches are a nonparametric bootstrap assessment of the number of modes in the data using a kernel density estimator with a sequence of decreasing window-widths (Silverman, 1981, 1983) and a Bayesian solution that uses the EM algorithm to fit the mixture model and then computes approximate Bayes factors to decide on K (Fraley and Raftery, 2002). Silverman’s approach is promising, but there are a number of anomalies in its behavior (Izenman and Sommer, 1988). Bayes factors (Kass and Raftery, 1995) are ratios of high-dimensional integrals and are often impossible to compute; arguments have been made to justify BIC as approximate Bayes factors to estimate K, even though the regularity conditions for the BIC approximation do not hold for finite-mixture models.

12.10 Software Packages

Almost all the major statistical software packages contain hierarchical and non-hierarchical clustering routines for clustering observations or variables
as appropriate. Software for two-way clustering methods, model-based clustering methods, and other recently developed methods have to be downloaded from the Internet.

There are two SOM methods, batchSOM and SOM, in the R package (Venables and Ripley, 2002, pp. 310–311) and a CRAN package som (formerly GeneSOM) for gene expression data. A SOM TOOLBOX for MATLAB can be downloaded free from www.cis.hut.fi/projects/somtoolbox/. Another package for computing SOMs is GENECLUSTER, which can be downloaded from the website www-genome.wi.mit.edu/cancer/software/software.html. The U-matrix and component planes in Figures 13.11 and 13.12 were computed using MATLAB somtoolbox.

A fast algorithm for gene-shaving forms the basis for the software package GeneClust, which can be downloaded free from odin.mdacc.tmc.edu/~kim/geneclust; see Do, Broom, and Wen (2003). Software and documentation (Owen, 2000) for applying plaid models to a data array can be downloaded from www-stat.stanford.edu/ owen/clickwrap/plaid.html.

Most research into model-based clustering from a Bayesian viewpoint has been carried out by Adrian Raftery and colleagues. Their S-PLUS functions mclust and mclust-em and documentation (Fraley and Raftery, 1998) can be downloaded from www.stat.washington.edu/raftery/Research/Mclust.

The EMMIX software package can fit a mixture model with Gaussian or t-components (McLachlan, Peel, Basford, and Abrams, 1999) and can be downloaded from www.jstatsoft.org.

Bibliographical Notes

Books that focus on cluster analysis include Kaufman and Rousseeuw (1990) and Hartigan (1975). Cluster analysis can be found as a chapter of most books on multivariate analysis: Rencher (2002, Chapter 14), Lattin, Carroll, and Green (2003, Chapter 8), Johnson and Wichern (1998, Chapter 12), Seber (1984, Chapter 7). See also Ripley (1996, Section 9.3).

Books on self-organizing maps include Oja and Kaski (2003), and Kohonen (2001). There is also a Special Issue of Neural Networks in 2002 on New Developments in Self-Organizing Maps.

There is a huge literature on mixtures of distributions. Book references include Everitt and Hand (1981), Titterington, Smith, and Makov (1985), McLachlan and Basford (1988), and McLachlan and Peel (2000). The idea of representing a density function as a mixture of two Gaussian components was popularized by Tukey (1960) as a way of modeling outliers in data, where he assumed equal means but different variances, one variance much larger than the other.

The EM algorithm has a long and interesting history, with the earliest version published in 1926. It was named in Dempster, Laird, and Rubin (1977), who showed the monotonic behavior of the log-likelihood function and gave examples of the general applicability of the algorithm. Books that give good accounts of the EM algorithm include Hastie, Tibshirani, and Friedman (2001, Section 8.5), Schafer (1997, Chapter 3), Ripley (1996, Appendix A.2), and Little and Rubin (1987, Chapter 7). See also the edited volume by Wanatabe and Yamaguchi (2004). An excellent review of model-based clustering is given by Fraley and Raftery (2002).

Exercises

12.1 Run the clustering algorithms for the satimage data, but only using the center pixels (i.e., variables CC1, CC2, CC3, CC4) of each 3×3 neighborhood. Compare your results with those in Table 12.10.

12.2 Write a computer program to implement single-linkage, average-linkage, and complete-linkage agglomerative hierarchical clustering. Try it out on a data set of your choice.

12.3 Cluster the primate.scapulae data using single-linkage, average-linkage, and complete-linkage agglomerative hierarchical clustering methods. Find the five-cluster solutions for all three methods, which allows comparison with the true primate classifications. Find the misclassification rate for all three methods. Show that the lowest rate occurs for the complete-linkage method and the highest for the single-linkage method.

12.4 Using the leukemia (ALL/AML) data, run a SOM algorithm (either on-line or batch) to cluster the genes. Draw a SOM plot and identify the genes captured by each representative. Consult with a biologist to see whether the clusters of genes are biologically meaningful. Compute the U-matrix and the component planes. Solely on the basis of the patterns provided by the component planes, can you separate them into the three groups of ALL-B, ALL-T, and AML tissue samples?

12.5 Microarray data from the National Cancer Institute can be found in the file ncifinal.txt on the book’s website. There are 5,244 genes and 61
samples in this data set; the samples are derived from tumors with different sites of origin: 7 breast, 5 central nervous system (CNS), 7 colon, 6 leukemia, 8 melanoma, 9 non–small-cell lung carcinoma (NSCLC), 6 ovarian, and 9 renal. There are also data from independent microarray experiments yielding 2 leukemia samples (K562) and 2 breast cancer samples (MCF7). Use the gene shaving method to cluster the genes in this data set into 8 clusters. Describe the appearance of the heatmap for each cluster, and use the gap statistic to determine the number of genes in each cluster.

12.6 Nutritional data from 961 different food items is given in the file food.txt, which can be downloaded from the book’s website or from http://www.ntwrks.com/~mikev/chart1.html. For each food item, there are 7 variables: fat (grams), food energy (calories), carbohydrates (grams), protein (grams), cholesterol (milligrams), weight (grams), and saturated fat (grams). To equalize out the different types of servings of each food, first divide each variable by weight of the food item. Next, because of the wide variations in the different variables, standardize each variable. The resulting data are $X = (X_{ij})$. Apply plaid models to these data. Describe your findings for each of the first 10 layers.

12.7 Establish the ML estimates (12.57), (12.59)–(12.62) for the parameters of the two-component univariate Gaussian mixture.

12.8 Using the EM algorithm, find the ML estimates of the parameters of a finite mixture of multivariate Gaussian densities with equal covariance matrices Σ. Show that the ML estimate $\hat{\Sigma}^{(m)}$ has to be inverted at each iteration m, which is one of the factors slowing down the computational speed of the algorithm.

12.9 Run a batch-SOM analysis on the Wisconsin Breast-Cancer data wbcd. Find the “circles” representation for the data and describe how well the SOM method clusters the tumor cases into benign and malignant. Compute the U-matrix and discuss its representation for these data.
13
Multidimensional Scaling and Distance Geometry

13.1 Introduction

Imagine you have a map of a particular geographical region, which includes a number of cities and towns. Usually, such a map will be accompanied by a two-way table displaying how close a selected number of those towns and cities are to each other. Each cell of that table will show the degree of “closeness” (or proximity) of the row city to the column city that identifies that cell. The notion of proximity between two geographical locations is easy to understand, even though it could have different meanings: for example, proximity could be defined as straight-line distance or as shortest traveling distance.

In more general situations, proximity could be a more complicated concept. We can talk about the proximity of any two entities to each other, where by “entity” we might mean an object, a brand-name product, a nation, a stimulus, etc. The proximity of a pair of such entities could be a measure of association (e.g., the absolute value of a correlation coefficient), a confusion frequency (i.e., to what extent one entity is confused with another in an identification exercise), or some other measure of how alike (or how different) one perceives the entities. If we are studying a set of linked Internet webpages, we may be interested in visualizing a hypermedia network
in which proximity would be based upon a notion of network distance (i.e., the number of hyperlinks needed to jump from one node to another).

The general problem of multidimensional scaling (MDS) essentially reverses that relationship: given only a two-way table of proximities, we wish to reconstruct the original map as closely as possible. A further wrinkle in the problem is that we also do not know the number of dimensions in which the given entities are located. So, determining the number of dimensions is another major problem to be solved.

MDS is not a single procedure but a family of different algorithms, each designed to arrive at an optimal low-dimensional configuration for a particular type of proximity data. MDS is primarily a data visualization method for identifying “clusters” of points, where points in a particular cluster are viewed as being “closer” to the other points in that cluster than to points in other clusters.

In this chapter, we describe a number of MDS methods. Specifically, we describe and illustrate classical scaling (also called “distance geometry” by those in bioinformatics) and distance scaling (divided according to whether the distances are of metric or nonmetric type). Distance scaling is also referred to as metric and nonmetric MDS. The standard treatment of classical scaling yields an eigendecomposition problem and as such is the same as PCA if the goal is dimensionality reduction. The distance scaling methods, on the other hand, use iterative procedures to arrive at a solution.

In Table 13.1, we list some of the application areas of MDS. We shall see that the essential ideas behind MDS also play prominent roles in evaluating random forests (Chapter 14) and revealing nonlinear manifolds (Chapter 16).

13.1.1 Example: Airline Distances

As a simple example of the MDS problem, consider Table 13.2, which is taken from p. 131 of the Revised 6th Edition (1995) of the National Geographic Atlas of the World. The table lists the airline distances (in kms) between $n = 18$ cities: Beijing, Cape Town, Hong Kong, Honolulu, London, Melbourne, Mexico, Montreal, Moscow, New Delhi, New York, Paris, Rio de Janeiro, Rome, San Francisco, Singapore, Stockholm, and Tokyo. For this application of MDS, the problem is to re-create the map that yielded the table of airline distances. Because the cities are scattered around the surface of a sphere, we should expect to recover a solution in three dimensions. Furthermore, because airplanes do not fly through the earth but over its surface, airline distances between cities do not always obey the triangle inequality and so may not be Euclidean.

We used the classical scaling method to obtain 2D and 3D maps of the MDS reconstruction, where each map has 18 points, one for each city. We
TABLE 13.1. *Some application areas and research topics in MDS.*

Psychology: Study the underlying structure of perceptions of different classes of psychological stimuli (e.g., personality traits, gender roles) or physical stimuli (e.g., human faces, everyday sounds, fragrances, colors) and create a “perceptual map” of those stimuli. Understand the psychological dimensions hidden in the data so that we can describe how proximity judgments are generated.

Marketing: Derive “product maps” of consumer choice and product preference (e.g., automobiles, beer) so that relationships between products can be discerned. Use these maps to position new products appropriately, to modify an existing product image to emphasize brand differentiation, or to design future experiments to determine what type of consumer can best discriminate between similar products and on which dimensions.

Ecology: Provide “environmental impact maps” of pollution (e.g., oil spills, sewage pollution, drilling-mud dispersal) on local communities of animals, marine species, and insects. Use such maps to develop a biological taxonomy to classify populations using morphometric or genetic data or from evolutionary theory.

Molecular Biology: Reconstruct the spatial structures of molecules (e.g., amino acids) using biomolecular conformation (3D structure). Interpret their interrelations, similarities, and differences. Construct a 3D “protein map” as a global view of the protein structure universe.

Computational Chemistry: Use a measure of molecular similarity (e.g., interatomic distance) to characterize the behavior and function of molecules derived from large collections of compounds.

Social Networks: Develop “telephone-call graphs,” where the vertices are telephone numbers and the edges correspond to calls between them. Recognize instances of credit card fraud and network intrusion detection. Identify clusters in large scientific collaboration networks.

Graph Layout: Design a diagram to describe a network and the system it represents using a graph-theoretic distance (e.g., minimum-path length) between pairs of nodes or vertices. Examples include communications networks, electrical circuit diagrams, wiring diagrams, and protein-protein interaction graphs. Create graphic visualizations of digital image libraries, with images as vertices and proximities (e.g., perceptual differences) between pairs of images as edge weights.

Music: Use a measure of musical sound quality (e.g., a set of spectral components with high resolution at low frequencies to mimic the human auditory system) as input to a nonlinear distance measure to assess the similarities and differences between a variety of songs.

<table>
<thead>
<tr>
<th>Beijing</th>
<th>Cape Town</th>
<th>Hong Kong</th>
<th>Honolulu</th>
<th>London</th>
<th>Melbourne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape Town</td>
<td>12947</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>1972</td>
<td>11867</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honolulu</td>
<td>8171</td>
<td>18562</td>
<td>8945</td>
<td></td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>8160</td>
<td>9635</td>
<td>9646</td>
<td>11653</td>
<td></td>
</tr>
<tr>
<td>Melbourne</td>
<td>9093</td>
<td>10338</td>
<td>7392</td>
<td>8862</td>
<td>16902</td>
</tr>
<tr>
<td>Mexico</td>
<td>12478</td>
<td>13703</td>
<td>14155</td>
<td>6098</td>
<td>8947</td>
</tr>
<tr>
<td>Montreal</td>
<td>10490</td>
<td>12744</td>
<td>12462</td>
<td>7915</td>
<td>5240</td>
</tr>
<tr>
<td>Moscow</td>
<td>5809</td>
<td>10101</td>
<td>7158</td>
<td>11342</td>
<td>2506</td>
</tr>
<tr>
<td>New Delhi</td>
<td>3788</td>
<td>9284</td>
<td>3770</td>
<td>11930</td>
<td>6724</td>
</tr>
<tr>
<td>New York</td>
<td>11012</td>
<td>12551</td>
<td>12984</td>
<td>7996</td>
<td>5586</td>
</tr>
<tr>
<td>Paris</td>
<td>8236</td>
<td>9307</td>
<td>9650</td>
<td>11988</td>
<td>341</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>17325</td>
<td>6075</td>
<td>17710</td>
<td>13343</td>
<td>9254</td>
</tr>
<tr>
<td>Rome</td>
<td>8144</td>
<td>8417</td>
<td>9300</td>
<td>12936</td>
<td>1434</td>
</tr>
<tr>
<td>San Francisco</td>
<td>9524</td>
<td>16487</td>
<td>11121</td>
<td>3857</td>
<td>8640</td>
</tr>
<tr>
<td>Singapore</td>
<td>4465</td>
<td>9671</td>
<td>2575</td>
<td>10824</td>
<td>10860</td>
</tr>
<tr>
<td>Stockholm</td>
<td>6725</td>
<td>10334</td>
<td>8243</td>
<td>11059</td>
<td>1436</td>
</tr>
<tr>
<td>Tokyo</td>
<td>2104</td>
<td>14737</td>
<td>2893</td>
<td>6208</td>
<td>9585</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mexico</th>
<th>Montreal</th>
<th>Moscow</th>
<th>New Delhi</th>
<th>New York</th>
<th>Paris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montreal</td>
<td>3728</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moscow</td>
<td>10740</td>
<td>7077</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Delhi</td>
<td>14679</td>
<td>11286</td>
<td>4349</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>3362</td>
<td>533</td>
<td>7330</td>
<td>11779</td>
<td></td>
</tr>
<tr>
<td>Paris</td>
<td>9213</td>
<td>5522</td>
<td>2492</td>
<td>6601</td>
<td>5851</td>
</tr>
<tr>
<td>Rio</td>
<td>7669</td>
<td>8175</td>
<td>11529</td>
<td>14080</td>
<td>7729</td>
</tr>
<tr>
<td>Rome</td>
<td>10260</td>
<td>6601</td>
<td>2378</td>
<td>5929</td>
<td>6907</td>
</tr>
<tr>
<td>S.F.</td>
<td>3038</td>
<td>4092</td>
<td>9469</td>
<td>12380</td>
<td>4140</td>
</tr>
<tr>
<td>Singapore</td>
<td>16623</td>
<td>14816</td>
<td>8426</td>
<td>4142</td>
<td>15349</td>
</tr>
<tr>
<td>Stockholm</td>
<td>9603</td>
<td>5900</td>
<td>1231</td>
<td>5579</td>
<td>6336</td>
</tr>
<tr>
<td>Tokyo</td>
<td>11319</td>
<td>10409</td>
<td>7502</td>
<td>5857</td>
<td>10870</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.F.</th>
<th>Singapore</th>
<th>Stockholm</th>
<th>Tokyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rome</td>
<td>9181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.F.</td>
<td>10647</td>
<td>10071</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>15740</td>
<td>10030</td>
<td>13598</td>
</tr>
<tr>
<td>Stockholm</td>
<td>10682</td>
<td>1977</td>
<td>8644</td>
</tr>
<tr>
<td>Tokyo</td>
<td>18557</td>
<td>9881</td>
<td>8284</td>
</tr>
</tbody>
</table>
FIGURE 13.1. Two-dimensional map of 18 world cities using the classical scaling algorithm on airline distances between those cities. The colors reflect the different continents: Asia (purple), North America (red), South America (orange), Europe (blue), Africa (brown), and Australasia (green).

expect cities with low airline mileage between them to correspond to points in the display that are close together and cities with high airline mileage to correspond to points far apart from each other. In Figure 13.1, we display a scatterplot of the 2D solution.

The 3D solution is given in Figure 13.2. Different colors are used to label the different continents. A dynamic “brush and spin” of the 3D solution shows that the points appear to be scattered around the surface of a sphere; we also see three outliers: Melbourne, Rio de Janeiro, and Cape Town. We expect to see (and we do see) geographically related clusters of points.

Note that the points are not in their customary locations on a globe, and it may be necessary to carry out a rotation and reflection to get them into their usual positions. The computational details needed to produce Figures 13.1 and 13.2 can be found in Section 13.6.3.
13.2 Two Golden Oldies

The primary goal of MDS is to rearrange the entities in some optimal manner so that distances between different entities in the resulting spatial configuration correspond closely to the given proximities. The rearrangement of entities takes place in a space of specified low dimension (usually, 1, 2, or 3 dimensions), where MDS ensures that the given proximities between the entities are well-reproduced by the new configuration.

Before we get into details about the different MDS methods, we first look at a couple of classic examples that were instrumental in paving the way to a greater understanding of the power of MDS for researchers in various fields. These classic examples are the pairwise comparison of color stimuli and of Morse-code signals, where the similarity or dissimilarity of the members of each pair is evaluated by a number of subjects.

13.2.1 Example: Perceptions of Color in Human Vision

In an experiment designed to study the perceptions of color in human vision (Ekman, 1954), 14 colors differing only in their hue (i.e., wavelengths from 434 µm to 674 µm) were projected two at a time onto a screen in an all-pairs design (see Section 13.3 for definition) to 31 subjects, who rated...
FIGURE 13.3. Two-dimensional nonmetric MDS representation of color dissimilarities showing the “color circle.” The colors correspond to the following wavelengths: 434=indigo, 445=blue, 472=blue-green, 504=green, 555=yellow-green, 600=yellow, 628=orange-yellow, 651=orange, 674=red.

each of the possible \(m = 91 \) pairs on a five-point scale from 0 (“no similarity at all”) to 4 (“identical”). The rating for each pair of colors was averaged over all subjects and the result divided by 4 to bring the similarity ratings into the interval \([0, 1]\). These mean similarity ratings were then collected into a \((14 \times 14)\) table (see Exercise 13.1), which was treated as a correlation matrix. A visual inspection of the similarities shows that the higher values cluster on the diagonal closest to the main diagonal.

A nonmetric MDS solution for the color experiment (Shepard, 1962) essentially reproduces the well-known two-dimensional “color circle.” Figure 13.3 shows a two-dimensional circular configuration of points representing the 14 colors arranged in order of their wavelengths. A one-dimensional solution would not work because a projection onto the \(x\)-axis would make points 434 and 555 lie very close to each other, whereas the dissimilarity between those two colors was one of the largest.

13.2.2 Example: Confusion of Morse-Code Signals

Morse code consists of 36 short signals of dots and dashes (26 letters of the alphabet and the digits 0–9). In a study of the extent of confusion over these different codes (Rothkopf, 1957), the 36 Morse-code signals were acoustically presented by machine in pairs to 598 subjects who had no knowledge of Morse code; each pair of signals was presented twice (e.g.,
FIGURE 13.4. Two-dimensional nonmetric MDS representation of Morse-code dissimilarities. The left panel shows the configuration of letters and numbers, and the right panel shows the corresponding Morse code. A “beep” is a dot or a dash. A dot (short beep) is coded as a “1” and a dash (long beep) is coded as a “2.” Colors are used to distinguish between code lengths: one beep (purple), two beeps (brown), three beeps (green), four beeps (red), and five beeps (blue).

A then B, and B then A), and the subjects had to determine whether the members of each pair were the same or different. The results of this experiment yielded 1,260 proximities (instead of the usual \(m = 630 \)) due to asymmetric results from the repeated and inverted presentation of each paired signal. The proximities are given in Exercise 13.2.

A two-dimensional nonmetric MDS solution (Shepard, 1963) is displayed in Figure 13.4. For ease in visualization, dots and dashes are coded by using a “1” for a dot and a “2” for a dash. The graph shows the complexity of the signals. We see that the horizontal axis accounts for code length (i.e., the total number of dots and dashes in the Morse-code symbol) and the vertical axis accounts for the fraction of dots (i.e., ratio of number of dots to code length).

A reanalysis of the MDS solution to the Morse-code data (Buja and Swayne, 2002; Buja, Swayne, Littman, and Hofmann, 2002) using XGvis, an interactive data visualization system for MDS calculations based upon the XGobi package, found evidence that code length and fraction of dots are slightly confounded: long codes that have many dots are more often confused with shorter codes that have many dashes, and vice versa, thereby suggesting a confusion effect due to the physical duration of the code. Furthermore, two additional dimensions were suggested by the graphical analysis: a dummy dimension for the codes of length one and a dummy
13.3 Proximity Matrices

The focus on pairwise comparisons of entities is fundamental to MDS. The “closeness” of two entities is measured by a proximity measure, which can be defined in a number of different ways. On the one hand, a proximity can be a continuous measure of how physically close one entity is to another (i.e., a bona fide distance measure, as in the airline distances example) or it could be a subjective judgment recorded on an ordinal scale, but where the scale is sufficiently well-calibrated as to be considered continuous.

In other cases, especially in studies of perception, a proximity will not be quantitative but will be a subjective rating of similarity (or dissimilarity) recorded on a pair of entities. A similarity rating is designed to indicate how “close” a pair of entities are to each other, whereas a dissimilarity rating shows the opposite, how unlike are the pair.

In many types of experiments, proximity data are obtained from a group of subjects, each of whom make similarity (or dissimilarity) judgments on all possible \(m = \binom{n}{2} = \frac{1}{2}n(n-1) \) unordered pairs of \(n \) entities. This type of experiment is said to have an all-pairs design (Ramsay, 1982). For example, the color stimuli and Morse-code experiments both followed all-pairs designs. It is unusual for such an experiment to be repeated with the same group of subjects (due to boredom, fatigue, or memory of previous responses), although designs have been constructed to present fewer than all possible pairs to each subject.

It is irrelevant whether we use similarities or dissimilarities as our measure of proximity between two entities. In other words, “closeness” of one entity to another could be measured by a small or large value. The only thing that matters when carrying out MDS is that there should be a monotonic relationship (either increasing or decreasing) between the “closeness” of two entities and the corresponding similarity or dissimilarity value. Anyway, we usually convert similarities into dissimilarities through a monotonically decreasing transformation.

Consider a particular collection of \(n \) entities. Let \(\delta_{ij} \) represent the dissimilarity of the \(i \)th entity to the \(j \)th entity. We arrange the \(m \) dissimilarities, \(\{\delta_{ij}\} \), into an \((m \times m)\) square matrix,

\[
\Delta = (\delta_{ij}),
\]

(13.1)
called a proximity matrix. The proximity matrix is usually displayed as a lower-triangular array of nonnegative entries, with the understanding that the diagonal entries are all zeroes and that the upper-triangular array is a
472 13. Multidimensional Scaling and Distance Geometry

mirror image of the given lower-triangle (i.e., the matrix is symmetric). In
other words, for all $i, j = 1, 2, \ldots, n$,

$$\delta_{ij} \geq 0, \quad \delta_{ii} = 0, \quad \delta_{ji} = \delta_{ij}. \quad (13.2)$$

In order for a dissimilarity measure to be regarded as a \textit{metric} distance, we
also require that δ_{ij} satisfy the \textit{triangle inequality},

$$\delta_{ij} \leq \delta_{ik} + \delta_{kj}, \quad \text{for all } k. \quad (13.3)$$

In some applications (such as the Morse-code example described above),
we should not expect symmetry; in such cases, adjustments (e.g., setting
$\delta_{ij} \leftarrow \frac{1}{2}(\delta_{ij} + \delta_{ji})$ to form a symmetrized version of Δ) can be made.

13.4 Comparing Protein Sequences

There are about 100,000 different proteins in the human body, and they
provide the internal structure of cells and tissues. Proteins are macromole-
cules and carry out important bodily functions, including supporting cell
structure (skin, tendons, hair, nails, bone), protecting against infection
from bacteria and viruses (antibodies, immune system), aiding movement
(muscles), transporting materials (hemoglobin for oxygen), and regulating
control (enzymes, hormones, metabolism, insulin) of the body. Nearly all
of these proteins have a similar chemical structure and, in some instances,
even share a common evolutionary origin.

Of major interest in the study of molecular biology is the notion of a
spatial “protein map,” which would show how existing protein families re-
late to one another, structurally and functionally. One would hope that
such a map would yield important insight into the evolutionary origins of
existing protein structures. In this way, researchers might be able to predict
the functions of newly discovered proteins from their spatial locations and
proximities to other proteins in the map, where we would expect neigh-
boring proteins to have very similar biochemical properties. This also raises the
issue of whether a protein map can help justify classifications of proteins
into empirically determined classes, such as the four primary classes ($\alpha,$
$\beta, \alpha/\beta,$ and $\alpha + \beta$) of proteins as defined by the Structural Classification
System of Proteins (SCOP).

13.4.1 Optimal Sequence Alignment

The argument used to compute the proximity of two proteins centers
on the idea that amino acids can be altered by random mutations over a
long period of evolution. Mutations of a protein sequence can take various
13.4 Comparing Protein Sequences

TABLE 13.3. The 20 amino acids (and their 3-letter and 1-letter abbreviations).

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>3-Letter Abbreviation</th>
<th>1-Letter Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>ala</td>
<td>A</td>
</tr>
<tr>
<td>Arginine</td>
<td>arg</td>
<td>R</td>
</tr>
<tr>
<td>Asparagine</td>
<td>asn</td>
<td>N</td>
</tr>
<tr>
<td>Aspartic</td>
<td>asp</td>
<td>D</td>
</tr>
<tr>
<td>Cysteine</td>
<td>cys</td>
<td>C</td>
</tr>
<tr>
<td>Glutamine</td>
<td>gln</td>
<td>Q</td>
</tr>
<tr>
<td>Glutamic</td>
<td>glu</td>
<td>E</td>
</tr>
<tr>
<td>Glycine</td>
<td>gly</td>
<td>G</td>
</tr>
<tr>
<td>Histidine</td>
<td>his</td>
<td>H</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>ile</td>
<td>I</td>
</tr>
<tr>
<td>Leucine</td>
<td>leu</td>
<td>L</td>
</tr>
<tr>
<td>Lysine</td>
<td>lys</td>
<td>K</td>
</tr>
<tr>
<td>Methionine</td>
<td>met</td>
<td>M</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>phe</td>
<td>F</td>
</tr>
<tr>
<td>Proline</td>
<td>pro</td>
<td>P</td>
</tr>
<tr>
<td>Serine</td>
<td>ser</td>
<td>S</td>
</tr>
<tr>
<td>Threonine</td>
<td>thr</td>
<td>T</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>trp</td>
<td>W</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>tyr</td>
<td>Y</td>
</tr>
<tr>
<td>Valine</td>
<td>val</td>
<td>V</td>
</tr>
</tbody>
</table>

forms, such as the deletion or insertion of amino acids, or swapping similar amino acids for ones already in the sequence. For an evolving organism to survive, the structure and functionality of the most important segments of its protein sequences would have to be preserved (or even be improved). Thus, researchers try to understand the evolutionary process of proteins by studying relationships between their respective amino acid sequences.

The comparison problem is complicated by the fact that each sequence is actually a “word” composed of a string of letters selected from a 20-letter alphabet; see Table 13.3. It is a nontrivial task to compute a similarity value between two sequences that have different lengths and different amino acid distributions. The trick here is to align the two sequences (or segments of each of them) so that as many letters in one sequence can be “matched” with the corresponding letters in the other sequence. The extent to which matching occurs will have some bearing on how related (or unrelated) we consider the sequences to be.

There are several methods for carrying out sequence alignment. These are generally divided into global and local methods. Global alignment tries to align all the letters in the two entire sequences assuming that the two sequences are very similar from beginning to end, whereas local alignment assumes that the two sequences are highly similar only over short segments of letters. Alignment methods use dynamic programming algorithms as the primary tool (Needleman and Wunsch, 1970; Smith and Waterman, 1981). For searching the huge databases available today, local methods, such as BLAST (Altschul, Gish, Miller, Myers, and Lipman, 1990) and FASTA (Pearson and Lipman, 1988), which use more heuristic-type techniques, have become popular because of their extremely fast computation times, even though their solutions may be slightly suboptimal.

A sequence alignment is declared to be “optimal” if it maximizes an alignment score. For a particular alignment of two sequences, an alignment score is the sum of a number of terms, each term comparing an element from the first sequence and a corresponding element in the same position from the second sequence, where an element is either an amino acid or a “gap.” When the amino acids in a given position are identical in both
TABLE 13.4. The BLOSUM62 amino acid substitution matrix. The rows correspond to the amino acids in one protein sequence and the columns correspond to the amino acids in another sequence. At a given position in an alignment of the two sequences, the substitution score of the aligned amino acids is given in the appropriate cell of the matrix. The diagonal entries (in blue) show the scores applied to identities, whereas off-diagonal positive scores are given in red.

	A	C	D	E	F	G	H	I	K	L	M	N	P	Q	R	S	T	V	W	Y	
A	4	0	-2	-1	-2	0	-2	-1	-1	-1	-2	-1	-1	0	0	-3	-2				
C	0	9	-3	-4	-2	-3	-1	-1	-3	-3	-3	-3	-3	-1	-1	-1	-2	-2			
D	-2	-3	6	2	-3	-1	-1	-3	-1	-4	-3	1	-1	0	0	-3	-3	-3	-3	-1	-1
E	-1	-4	2	5	-3	-2	0	-3	1	-3	-2	0	-1	2	0	-1	-2	-3	-2		
F	-2	-2	-3	-3	6	-3	-1	0	-3	-4	-3	-3	-3	-2	-2	-1	1	3			
G	0	-3	-1	-2	-3	6	-2	4	-2	-4	-3	0	-2	-2	-2	0	-3	-3	-3	-2	
H	-2	-3	-1	0	-1	-2	8	-3	-1	-3	-2	1	-2	0	0	-1	-2	-3	-2	2	
I	-1	-1	-3	-3	0	-4	-3	4	-3	2	1	-3	-3	-3	-2	-1	3	-3	-1		
K	-1	-3	-1	1	-3	-2	-1	-3	5	-2	-1	0	-1	1	2	0	-1	2	-3		
L	-1	-1	-4	-3	0	-4	-3	2	-2	4	2	-3	-3	-2	-2	-2	1	-2	-1		
M	-1	-1	-3	-2	0	-3	-2	1	-1	2	5	-2	-2	0	-1	-1	1	-1	1		
N	-2	-3	1	0	-3	0	1	-3	0	-3	-2	6	2	0	0	1	0	-3	-4	-2	
P	-1	-3	-1	-1	-4	-2	-2	-3	-1	-3	-2	7	-1	-2	-1	-2	-1	-2	-4	-3	
Q	-1	-3	0	2	-3	-2	0	-3	1	-2	0	0	-1	5	1	0	-1	-2	-2		
R	-1	-3	-2	0	-3	-2	0	-3	2	-2	-1	0	-2	1	5	1	-1	-1	-3	-2	
S	1	-1	0	-1	-2	0	-1	-2	0	-2	1	-1	0	-1	-4	1	-2	-3	-2		
T	0	-1	-1	-2	-2	-2	-1	-1	-1	0	-1	-1	-1	1	1	5	0	-2	-2		
V	0	-1	-3	-2	-1	-3	-3	3	-2	1	1	-3	-2	-2	-3	-2	0	4	-3	-1	
W	-3	-2	-4	-3	1	-2	-2	-3	-2	-1	-4	-4	-2	-3	-3	-3	-3	-3	-3	-2	
Y	-2	-2	-3	-2	3	-3	2	-1	-2	-1	-1	-2	-3	-1	-2	-2	-1	2	7		

sequences, we say that an identity has occurred and give it a high positive score. When two different amino acids are present at the same position in an alignment, we call it a substitution and give it a score that could be negative, zero, or positive.

To each possible pairing of amino acids (one from each sequence, at the same position in the alignment), we assign a substitution score, which gives a quantitative measure of the “cost” of replacing one amino acid by another. The substitution scores for all 210 possible pairs of amino acids are collected together to form a symmetric, \((20 \times 20)\) substitution matrix, which is used to measure the closeness of the two sequences. One of the most popular substitution matrices is BLOSUM62 (BLOcks SUBstitution Matrix; see Table 13.4), which assumes that no more than 62% of the letters in the two sequences are identical (Henikoff and Henikoff, 1996).

A gap (or indel) is an empty space (denoted by a “-”) introduced into an alignment to compensate for an insertion or a deletion of an amino acid in one sequence relative to the other. A gap is penalized by assigning to it a large value (the gap score, usually set by the user), which is then subtracted from the alignment score. There are two types of gap penalties, one for starting (or opening) a gap and another for extending the gap; typically, the latter is considered to be more serious than is the former, so that opening a gap merits a smaller penalty than does extending that
Comparing Protein Sequences

Gap-scoring methods usually define the gap penalty as $q + rk$, where q and r are chosen by the user; the gap open penalty uses $k = 1$ and the gap extension penalty uses $k = 2, 3, \ldots$.

The alignment score s is the sum of the identity and substitution scores, minus the gap score. Implicitly, we are assuming that the score for a particular position in the alignment is independent of scores derived from neighboring positions (Karlin and Altschul, 1990); such an assumption appears to be reasonable for protein sequences. The optimal alignment between two sequences (including gaps) corresponds to that alignment with the highest alignment score.

In general, given n proteins from some database, let s_{ij} be the alignment score between the ith and jth protein, $i, j = 1, 2, \ldots, n$. Because closely related proteins will have a high alignment score, the alignment score is a similarity and so has to be transformed into a dissimilarity using $\delta_{ij} = s_{\text{max}} - s_{ij}$, where s_{max} is the largest alignment score among all $m = n(n - 1)/2$ protein pairs. The proximity matrix is then given by $\Delta = (\delta_{ij})$.

13.4.2 Example: Two Hemoglobin Chains

Suppose we wish to compare the hemoglobin alpha chain protein (Swiss-Prot database code HBA_HUMAN, AC# P69905/P019122) having length 141 with the related hemoglobin beta chain protein (Swiss-Prot database code HBB_HUMAN, AC# P68871/P02023) having length 146. Both of these human proteins transport oxygen from the lungs to the various peripheral tissues. HBA gives blood its red color, and defects in HBB are the cause of sickle cell anemia.

To compare these proteins, we use the BLOSUM62 matrix and the gap scoring method with $q = 12$, $r = 4$. The SIM algorithm (Huang and Miller, 1991), which is a local similarity program using dynamic programming techniques, finds that the optimal alignment over 145 amino acids is:

```
LSPADKTNVKAAGKVGAHAGEYPGAEALERMFSFPTKTYFPHF-------DLSH
L+P +K+ V A WGKV + E G EAL R+ +P T+ +F F D
LTPEEKSAVTALWGVK--NVDEVGGEALRLLVVYYPWTQRFFESGDLSTPDAVM

GSAQVKGHGKVDALTNAVHVDDMPNALSALSDLHAHKLVDPVNFKLLSHCL
G+ +VK HKGVK A ++ +AH+D++ +LS+LH KL VDP N+LL + L
GNPKVKAHGGKVGLASFGLAHDLNZKLTFATLSELHCDKHLVDPNFRLLGNVL

LVTLAALPAAFPAPVHASLKDMLASVLTSKSY
+ LA H EFTP V A+ K +A V+ L KY
VCVLHHPFGKEFTPPVQAAYQKVVGAVANLAHKY}
```

The first line is a portion of the HBA_HUMAN protein sequence, and the third line is a portion of HBB_HUMAN. The sequences have been “locally” aligned.
Multidimensional Scaling and Distance Geometry

(with gaps). Looking at the middle line, we see 86 positive substitution scores (the 25 “+”s and the 61 identities). The alignment score is \(s = 259 \).

For different values of \(q \) and \(r \), we would obtain different optimal alignments and alignment scores.

13.5 String Matching

The problem of comparing different protein sequences is closely related to a more general class of problems involving the matching of different strings of letters, characters, or symbols drawn from a common alphabet \(A \). The alphabet could be binary \(\{0, 1\} \), decimal \(\{0, 1, 2, \ldots, 9\} \), English language \(\{A, B, C, \ldots, Z\} \), the four DNA bases \(\{A, C, G, T\} \), or the 20 amino acids.

In pattern matching, we study the problem of finding a given pattern (typically, a collection of strings described in terms of some alphabet \(A \)) within a body of text. If a pattern is a single string, the problem is called string matching. We can imagine, for example, a string-matching problem in which we need to know whether a particular word or phrase can be found within a given sentence, paragraph, article, or book.

String matching is used extensively in text-processing applications; in particular, it is used in searching a document for a word, phrase, or an arbitrary string of letters; designing spell-checkers; predicting unknown words when writing in a second language; and name-retrieval systems in genealogical research. The UNIX programming environment (Kernighan and Pike, 1984), for example, employs various string- and pattern-matching algorithms (e.g., awk, diff, and grep), and the PERL language was designed specifically to possess powerful string-matching capabilities. The related problems of string- and pattern-matching have obvious implications for the design of an Internet search engine (e.g., Google™, www.google.com), where the text is the union of all linked webpages (Brin and Page, 1998).

String matching techniques are needed in many different applications, including matching melodies in large databases of digital music (Uitdenbogerd and Zobel, 1999), dating trees by the sequence of rings they contain (Wenk, 1999), and comparing different speech pronunciations in computational linguistics (Nerbonne, Heeringa, and Kleiweg, 1999).

13.5.1 Edit Distance

A popular numerical measure of the similarity between two strings is edit distance (also called Levenshtein distance), which was adapted from methods used to compare two different protein sequences. The usual definition of edit distance is the fewest number of editing operations (insertions, deletions, substitutions) which would be needed to transform one string into
the other. An insertion inserts a letter into the sequence, a deletion deletes a letter from the sequence, and a substitution replaces one letter in the sequence by another letter. Identities (or matches) are not counted in the distance measure. In some definitions of edit distance, each editing operation is assigned a nonnegative cost, that reduces to the above definition if each editing operation has unit cost. The sequence of editing operations that achieves the minimum edit distance will probably not be unique.

An early application of edit distance was to comparative biochemistry (de Duve, 1984, p. 354), where it was used to construct a phylogenetic tree — a diagram laying out a possible evolutionary history — of a single protein. The resulting proximity matrix shows the number of amino-acid substitutions in the protein cytochrome c from 25 different species, including mammals and other vertebrates, invertebrates, plants, and fungi. The entries in the matrix show the fewest number of nucleotide substitutions in DNA (according to the genetic code) needed to account for the observed amino-acid replacements.

13.5.2 Example: Employee Careers at Lloyds Bank

An unusual example of string matching using edit distance is that of analyzing changes in employee careers over a given period of time. The careers of two individuals can be compared by determining the fewest number of changes necessary to transform one career into the other (Abbott and Hrycak, 1990). Each type of change incurs a cost, and the total cost of transforming one career into another is the sum of all such costs.

One fascinating study looked at a large database of employee information from Lloyds Bank, one of England’s oldest and largest banks, during the period 1890–1970 (Stovel, Savage, and Bearman, 1996). The authors were interested in tracing how “static, status-based employment arrangements” of the early 1900s had been replaced, less than two generations later, by “highly-dynamic, achievement-oriented careers” within large bureaucratic organizations, such as the British banking system and, in particular, Lloyds Bank.

The available data give every job held by each employee of the bank. The data are described by a rectangular array, where each row corresponds to a different employee and the columns (variables) record the various jobs held by that employee over the number of years of the study. In this particular study, job termination (resignation, death, firing) is coded by type of termination, and each year the employee is absent from bank employment is coded as 999. These termination codes and 999s are not used in the matching algorithm.

An employee’s job at Lloyds Bank is characterized by three factors: branch size and type (1=small rural, 2=large rural, 3=small urban, 4=large
urban [London], 5=specialist head office, and 6=head office) and job category (1=clerk, 2=senior clerk, 3=regular manager, and 4=specialist manager). Thus, there are $6 \times 4 = 24$ branch-position categories of jobs, where a job would be characterized as “years@branch-position.” For example, a 45-year career at Lloyds might be summarized as \{15@11, 6@22, 24@23\}, which translates into 15 years as a clerk in a small rural branch, then a move to a large rural branch where he spent 6 years as a senior clerk and 24 years as a regular manager.

In this example, we reanalyze two data sets on the careers of Lloyds’ employees. The data sets consist of sequential employment records for random samples of $n = 80$ employees drawn from two different cohorts, those who started work at Lloyds during the period 1905–1909 and those who started during 1925–1929.\footnote{See also Oh and Raftery, 2001, who used only the 1905-1909 cohort data.} Each data set contains an ID variable, a variable containing the first year of the employee’s employment, and $r = 71$ variables containing the sequential data of the employment history of each employee.

A (24×24) substitution matrix with branch-position categories forming its rows and columns was constructed from the entire collection of employee records (Stovel, Savage, and Bearman, 1996, Table A3). The entries in the substitution matrix represent costs; they range from 0.5 to 6.5 and reflect the notion that unlikely changes are costly and frequent changes are inexpensive. The cost of an insertion or deletion was fixed at the maximum substitution cost, 6.5. The career records, the substitution matrix, and the edit-distance method were then used by an alignment algorithm to construct an (80×80) non-Euclidean proximity matrix for each cohort of employees.

13.6 Classical Scaling and Distance Geometry

The airline-distances example (see Section 13.1.1) illustrates the classical scaling method of MDS. Suppose we are given n points $X_1, \ldots, X_n \in \mathbb{R}^r$. From these points, we compute an $(n \times n)$ proximity matrix $\Delta = (\delta_{ij})$ of dissimilarities, where

$$\delta_{ij} = \|X_i - X_j\| = \left\{ \sum_{k=1}^{r} (X_{ik} - X_{jk})^2 \right\}^{1/2} \quad (13.4)$$

\footnote{The author thanks Katherine Stovel for kindly providing him with the employment data on the two cohorts of Lloyds’ employees and for the corresponding two (80×80) proximity matrices. The data can be found in the files samp05 and samp25, and the proximity matrices in the files samp05d and samp25d, all on the book’s website.}
is the dissimilarity between the points \(X_i = (X_{ik}) \) and \(X_j = (X_{jk}) \); these

dissimilarities are the Euclidean distances between all \(m = \frac{1}{2}n(n-1) \) pairs

of points in that space.

Actually, there is no requirement that the \(\{ \delta_{ij} \} \) be Euclidean distances;
they can be any kind of distances. For example, the Minkowski or \(L_p \) distance

is given by

\[
\delta_{ij} = \left(\sum_{k=1}^{r} |X_{ik} - X_{jk}|^p \right)^{1/p}, \tag{13.5}
\]

where \(p \geq 1 \) is set by the user. When \(p = 1 \), we have the city-block or Manhattan distance, and when \(p = 2 \), we have Euclidean distance.

13.6.1 From Dissimilarities to Principal Coordinates

From (13.4), we note that

\[
\delta_{ij}^2 = \| X_i \|^2 + \| X_j \|^2 - 2X^T_i X_j. \tag{13.6}
\]

Let \(b_{ij} = X_i^T X_j = -\frac{1}{2} (\delta_{ij}^2 - \delta_{i0}^2 - \delta_{j0}^2) \), where \(\delta_{i0}^2 = \| X_i \|^2 \) is the squared distance from the point \(x_i \) to the origin. Summing (13.6) over \(i \) and over \(j \) yields the following identities:

\[
n^{-1} \sum_i \delta_{ij}^2 = n^{-1} \sum_i \delta_{i0}^2 + \delta_{j0}^2, \tag{13.7}
\]

\[
n^{-1} \sum_j \delta_{ij}^2 = \delta_{i0}^2 + n^{-1} \sum_j \delta_{j0}^2. \tag{13.8}
\]

\[
n^{-2} \sum_i \sum_j \delta_{ij}^2 = 2n^{-1} \sum_i \delta_{i0}^2. \tag{13.9}
\]

Substituting (13.7)–(13.9) into (13.6) and simplifying, we get

\[
b_{ij} = a_{ij} - a_i - a_j + a, \tag{13.10}
\]

where \(a_{ij} = -\frac{1}{2} \delta_{ij}^2 \), and the usual “dot” notation is used, \(a_i = n^{-1} \sum_j a_{ij}^2 \),

\(a_j = n^{-1} \sum_i a_{ij}^2 \), and \(a = n^{-2} \sum_i \sum_j a_{ij}^2 \). If we set \(A = (a_{ij}) \) to be the

matrix of squared dissimilarities and \(B = (b_{ij}) \), then \(A \) and \(B \) are related

through \(B = HAH \), where \(H = I_n - n^{-1}J_n \) is a centering matrix and \(J_n \) is

an \((n \times n) \)-matrix of ones. The matrix \(B \) is said to be a “doubly centered”

version of \(A \).

In the dimensionality-reduction aspect of MDS, we wish to find a \(t \)-dimensional representation, \(Y_1, \ldots, Y_n \in \mathbb{R}^t \) (referred to as principal coordinates), of those \(r \)-dimensional points (with \(t < r \)), such that the interpoint distances in \(t \)-space “match” those in \(r \)-space. When dissimilarities are defined as Euclidean interpoint distances, this type of “classical” MDS is
equivalent to PCA in that the principal coordinates are identical to the scores of the first \(t \) principal components of the \(\{ X_i \} \).

Typically, in classical scaling (Torgerson, 1952, 1958) we are not given the \(\{ X_i \} \subset \mathbb{R}^r \); instead, we are given only the dissimilarities \(\{ \delta_{ij} \} \) through the \((n \times n)\) proximity matrix \(\Delta \). Using \(\Delta \), we form \(A \), and then \(B \). Motivation for classical scaling comes from a least-squares argument similar to the one employed for PCA; see Section 7.2.2. The idea is to find a matrix \(B^* = (b_{ij}^*) \) with rank at most \(t \) that minimizes \(\text{tr}(B - B^*)^2 = \sum_i \sum_j (b_{ij} - b_{ij}^*)^2 \). It can be shown (Mardia, 1978) that if \(\{ \lambda_k \} \) are the eigenvalues of \(B \) and \(\{ \lambda_k^* \} \) are the eigenvalues of \(B^* \), then the minimum of \(\text{tr}(B - B^*)^2 \) is given by \(\sum_{k=1}^n (\lambda_k - \lambda_k^*)^2 \), where \(\lambda_k^* = \max(\lambda_k, 0) \) for \(k = 1, 2, \ldots, t \), and zero otherwise. Because of the rank constraint, at least \(n-t \) of the eigenvalues of \(B^* \) have to be zero. If any of the eigenvalues of \(B \) are negative, a suitable constant can be added to the dissimilarities, or the negative eigenvalues can be ignored. The first \(t \) principal coordinates, as defined by the classical scaling algorithm in Table 13.5, are taken to be the required projections in \(t \)-dimensional space.

The classical scaling algorithm is based upon an eigendecomposition of the matrix \(B \). This eigendecomposition produces \(Y_1, \ldots, Y_n \in \mathbb{R}^t, t < r \), a configuration whose Euclidean interpoint distances,

\[
d^2_{ij} = \|Y_i - Y_j\|^2 = (Y_i - Y_j)^T (Y_i - Y_j),
\]

match those given in the matrix \(\Delta \). The classical scaling algorithm automatically sets the mean \(\bar{Y} \) of all \(n \) points in the configuration to be the origin in \(\mathbb{R}^t \). To see this, we note that because \(H1_n = 0 \), we have that \(B1_n = 0 \), whence, \(n^2 \bar{Y} \bar{Y} = (Y^T 1_n)^T (Y^T 1_n) = 1_n B1_n = 0 \), and so \(\bar{Y} = 0 \).

The solution of the classical scaling problem is not unique. Consider an orthogonal transformation of two points that are obtained through the classical scaling algorithm: \(Y_i \rightarrow PY_i \) and \(Y_j \rightarrow PY_j \), where \(P \) is an orthogonal matrix. Then, \(PY_i - PY_j = P(Y_i - Y_j) \), whence,

\[
\|P(Y_i - Y_j)\|^2 = (Y_i - Y_j)^T P^T P(Y_i - Y_j) = \|Y_i - Y_j\|^2.
\]

So, a common orthogonal transformation of the points in the configuration found by classical scaling yields a different solution of the classical scaling problem.

13.6.2 Assessing Dimensionality

One way of determining the dimensionality of the resulting configuration is to look at the eigenvalues of \(B \).

The usual strategy is to plot the ordered eigenvalues (or some function of them) against dimension and then identify a dimension at which the
1. Given an \((n \times n)\)-matrix of interpoint distances \(\Delta = (\delta_{ij})\), form the \((n \times n)\)-matrix \(A = (a_{ij})\), where \(a_{ij} = -\frac{1}{2} \delta_{ij}^2\).

2. Form the “doubly centered,” symmetric, \((n \times n)\)-matrix \(B = HAH\), where \(H = I_n - n^{-1} \mathbf{J}_n\) and \(\mathbf{J}_n = 1_n 1_n^\top\) is an \((n \times n)\)-matrix of ones.

3. Compute the eigenvalues and eigenvectors of \(B\). Let \(\Lambda = \text{diag}\{\lambda_1, \ldots, \lambda_n\}\) be the diagonal matrix of the eigenvalues of \(B\) and let \(V = (v_1, \ldots, v_n)\) be the matrix whose columns are the eigenvectors of \(B\). Then, by the spectral theorem, \(B = V\Lambda V^\top\).

4. If \(B\) is nonnegative-definite with rank \(r(B) = t < n\), the largest \(t\) eigenvalues will be positive and the remaining \(n - t\) eigenvalues will be zero. Denote by \(\Lambda_1 = \text{diag}\{\lambda_1, \cdots, \lambda_t\}\) the \((t \times t)\) diagonal matrix of the positive eigenvalues of \(B\) and let \(V_1 = (v_1, \cdots, v_t)\) be the corresponding matrix of eigenvectors of \(B\). Then,

\[
B = V_1 \Lambda_1 V_1^\top = (V_1 \Lambda_1^{1/2})(\Lambda_1^{1/2} V_1) = YY^\top,
\]

where \(Y = V_1 \Lambda_1^{1/2} = (\sqrt{\lambda_1} v_1, \cdots, \sqrt{\lambda_t} v_t) = (Y_1, \cdots, Y_n)^\top\).

5. The principal coordinates, which are the columns, \(Y_1, \ldots, Y_n\), of the \((t \times n)\)-matrix \(Y^\top\), yield the \(n\) points in \(t\)-dimensional space whose interpoint distances \(d_{ij} = ||Y_i - Y_j||\) are equal to the distances \(\delta_{ij}\) in the matrix \(\Delta\).

6. If the eigenvalues of \(B\) are not all nonnegative, then either ignore the negative eigenvalues (and associated eigenvectors) or add a suitable constant to the dissimilarities (i.e., \(\delta_{ij} \leftarrow \delta_{ij} + c\) if \(i \neq j\), and unchanged otherwise) and return to step 1. If \(t\) is too large for practical purposes, then the largest \(t' < t\) positive eigenvalues and associated eigenvectors of \(B\) can be used to construct a reduced set of principal coordinates. In this case, the interpoint distances \(d_{ij}\) approximate the \(\delta_{ij}\) from the matrix \(\Delta\).

Example: Airline Distances (Continued)

In Table 13.6, we give the 18 eigenvalues of the matrix \(B\). One can see three large positive eigenvalues, eight negative eigenvalues, six smaller positive eigenvalues, and one zero eigenvalue (due to the double-centering operation). Ignoring the negative eigenvalues (which, in this case, result in eigenvalues becoming “stable” (i.e., do not change perceptively). At that dimension, we may observe an “elbow” that shows where stability occurs. If \(X_i \in \mathbb{R}^t\), \(i = 1, 2, \ldots, n\), then stability in the plot should occur at dimension \(t + 1\). For easier graphical interpretation of a classical scaling solution, we hope that \(t\) is small, of the order 2 or 3.
TABLE 13.6. Eigenvalues of B and the eigenvectors corresponding to the first three largest eigenvalues (in red) for the airline distances example.

<table>
<thead>
<tr>
<th>Eigenvalues</th>
<th>Eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>471582511</td>
</tr>
<tr>
<td>2</td>
<td>316824787</td>
</tr>
<tr>
<td>3</td>
<td>253943687</td>
</tr>
<tr>
<td>4</td>
<td>-98466163</td>
</tr>
<tr>
<td>5</td>
<td>-74912121</td>
</tr>
<tr>
<td>6</td>
<td>-47505097</td>
</tr>
<tr>
<td>7</td>
<td>31736348</td>
</tr>
<tr>
<td>8</td>
<td>-7508328</td>
</tr>
<tr>
<td>9</td>
<td>4338497</td>
</tr>
<tr>
<td>10</td>
<td>1747583</td>
</tr>
<tr>
<td>11</td>
<td>-1498641</td>
</tr>
<tr>
<td>12</td>
<td>145113</td>
</tr>
<tr>
<td>13</td>
<td>-102966</td>
</tr>
<tr>
<td>14</td>
<td>60477</td>
</tr>
<tr>
<td>15</td>
<td>-6334</td>
</tr>
<tr>
<td>16</td>
<td>-1362</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 13.7. First three principal coordinates of the 18 cities in the airline distances example.

<table>
<thead>
<tr>
<th>City</th>
<th>Principal Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>Beijing</td>
<td>5315.24</td>
</tr>
<tr>
<td>Cape Town</td>
<td>57.63</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>7010.90</td>
</tr>
<tr>
<td>Honolulu</td>
<td>962.86</td>
</tr>
<tr>
<td>London</td>
<td>-3157.53</td>
</tr>
<tr>
<td>Melbourne</td>
<td>7948.29</td>
</tr>
<tr>
<td>Mexico</td>
<td>-6108.97</td>
</tr>
<tr>
<td>Montreal</td>
<td>-5912.57</td>
</tr>
<tr>
<td>Moscow</td>
<td>-220.84</td>
</tr>
<tr>
<td>New Delhi</td>
<td>4528.94</td>
</tr>
<tr>
<td>New York</td>
<td>-6341.02</td>
</tr>
<tr>
<td>Paris</td>
<td>-3058.30</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>-7905.60</td>
</tr>
<tr>
<td>Rome</td>
<td>-2262.26</td>
</tr>
<tr>
<td>San Francisco</td>
<td>-3341.92</td>
</tr>
<tr>
<td>Singapore</td>
<td>8139.01</td>
</tr>
<tr>
<td>Stockholm</td>
<td>-1610.37</td>
</tr>
<tr>
<td>Tokyo</td>
<td>5656.51</td>
</tr>
</tbody>
</table>
from the distances not being Euclidean due to the earth’s curvature), we see that the magnitudes of the three largest positive eigenvalues suggest that a 3D solution makes the most sense here for recreating the world map. As a result, we retain only the eigenvectors corresponding to the first $t = 3$ eigenvalues. In Table 13.7, we display the $n = 18$ scores of the first three principal coordinates using step 4 of the classical scaling algorithm. The 2D solution is given in Figure 13.1 and the 3D solution in Figure 13.2. Figure 13.5 shows the estimated and observed airline distances plotted against each other for the 2D and 3D solutions. In the top-left panel, the scatterplot corresponding to the 2D solution shows that many of the observed distances are severely underestimated, with a number of them also being overestimated. In the top-right panel, the scatterplot corresponding
to the 3D solution indicates a better fit to the observed distances, yet it also shows that the observed distances are consistently overestimated.

We should not really be surprised at the results in this example. The differences occur because of the fact that the estimated airline distances are taken to be Euclidean. Airline distances are measured over a curved surface rather than a flat one. We should, therefore, expect to see a certain amount of distortion when we use a Euclidean metric to estimate distances between cities distributed across the surface of a globe.

The Euclidean distance between two cities “near” each other is close to its airline distance; see, for example, the European, Asian, or North American clusters of cities in Figure 13.1, whose 2D configurations are similar to their usual geographical locations. However, when the cities are far apart from each other, maybe on opposite sides of the globe, we expect large distortions to be introduced. We see this effect in the 2D and 3D solutions, with the three cities of Cape Town, Rio de Janeiro, and Melbourne each involved in producing all the largest absolute residuals (where residual = \(d_{ij} - \delta_{ij}\)); see the bottom two panels of Figure 13.5, where residuals are plotted against sequence number. The largest residuals in the 3D solution are the Cape Town–Rio de Janeiro and Melbourne–Tokyo distances.

13.6.4 Example: Mapping the Protein Universe

Molecular evolution has led to the development of “families” of proteins, so that information on the shape and function of one protein can be used to predict the shape and function of another protein within the same family. Sifting through the 100,000 or so amino acid sequences to group similar proteins into families becomes more difficult when the evolutionary distances between proteins grow too large. In such cases, it is natural to turn toward comparing the three-dimensional shapes of proteins (rather than their one-dimensional amino acid sequences).

Molecular biologists would, therefore, like to obtain a global representation (i.e., a map) of the “protein structure universe,” in which adjacent points represent structurally related proteins. In order to do this, biologists have been using the classical scaling algorithm under the name “distance geometry” (Havel, Kuntz, and Crippen, 1983) to construct various 2D and 3D protein maps (see, e.g., Holm and Sander, 1996; Hou, Sims, Zhang, and Kim, 2003).

In this example, we reanalyze data on 498 proteins taken from the SCOP (Structural Classification System of Proteins) database.\(^2\) We applied the

\(^2\)The author thanks Sung-Hou Kim and Jingtong Hou for kindly providing him with their list of 498 proteins and the resulting \((498 \times 498)\) proximity matrix \(\Delta\). The list of
classical scaling algorithm (Table 13.5) to the proximity matrix Δ. From inspection of the largest 25 eigenvalues of B (see Figure 13.6), we see that the first three eigenvalues are dominant, suggesting a 3D configuration is probably most appropriate.

A 2D map of the first two principal coordinate scores for the 498 proteins is given in Figure 13.7. We can clearly see three arms with four clusters of points corresponding to four of the SCOP classes. The first (red dots) arm contains 136 α-helix proteins (class 1), the second (blue dots) arm contains 92 β-sheet proteins (class 2), the third (green dots) arm consists of 94 α/β proteins (class 3, mainly parallel β-sheets), and the 176 $\alpha + \beta$ proteins (class 4, mainly antiparallel β-sheets) congregate (brown dots) at the junction of the three arms. Class 1 does not overlap with class 3 and has minimal overlap (two outlying points) with class 2; classes 2 and 3 have only two overlapping points; class 4, however, spreads and mixes with all three other classes. These results suggest that certain proteins may be misclassified by SCOP. We also notice the presence of a few outliers in the display.

A 3D map of the first three principal coordinates for the 498 proteins shows more interesting structure; see Figure 13.8. The blue points of class 1 (the α-helix proteins) and the red points of class 2 (the β-sheet proteins) proteins may be found in the file 498.SCOP.txt and the proximity matrix is in the file 498.matrix.txt on the book’s website.
FIGURE 13.7. Two-dimensional map of four protein classes using the classical scaling algorithm on 498 proteins. Class 1 (red dots) are α-proteins, class 2 (blue dots) are β-proteins, class 3 (green dots) are α/β-proteins, and class 4 (brown dots) are $\alpha+\beta$-proteins.

appear to fall along two separate axes. The black points of class 4 (the $\alpha+\beta$ proteins, a random mixture of α-helix and β-sheet proteins) jut out from the middle of those two axes and lie on the plane formed by those axes. The green points representing the proteins in class 3 (the α/β proteins) are actually scattered around a third axis, perpendicular to the other two axes. These results are very similar to those discovered by Hou, Sims, Zhang, and Kim (2003).

13.7 Distance Scaling

Given n items (or entities) and the matrix of their dissimilarities, $\Delta = (\delta_{ij})$, we saw that the classical scaling problem is to find a configuration of points in a lower-dimensional space such that the interpoint distances $\{d_{ij}\}$ satisfy $d_{ij} \approx \delta_{ij}$. In distance scaling, this relationship is relaxed; we wish to find a suitable configuration for which

$$d_{ij} \approx f(\delta_{ij}),$$

(13.13)

where f is some monotonic function. The function f transforms the dissimilarities into distances. The use of “metric” or “nonmetric” distance
scaling depends upon the nature of the dissimilarities. If the dissimilarities are quantitative (e.g., ratio or interval scale), we use metric distance scaling, whereas if the dissimilarities are qualitative (e.g., ordinal), we use nonmetric distance scaling. In the MDS literature, metric distance scaling is traditionally called metric MDS and nonmetric distance scaling is called nonmetric MDS.

13.8 Metric Distance Scaling

In metric distance scaling, the dissimilarities \(\{\delta_{ij}\} \) are quantitative measurements, usually Euclidean, but other distance metrics are possible. The function \(f \) is usually taken to be a parametric monotonic function, such as \(f(\delta_{ij}) = \alpha + \beta \delta_{ij} \), where \(\alpha \) and \(\beta \) are unknown positive coefficients. In some MDS software (e.g., SAS PROC MDS), metric distance scaling is characterized in three ways: absolute MDS \((\alpha = 0, \beta = 1)\), ratio MDS \((\alpha = 0, \beta > 0)\), and interval MDS \((\alpha \geq 0 \text{ and } \beta \geq 0)\). It is worth noting
that absolute MDS is not very useful in practice. If the \(\{\delta_{ij}\} \) are similarities (rather than dissimilarities), then we need \(\beta < 0 \).

13.8.1 Metric Least-Squares Scaling

Because \(f \) is a parametric function, the distances \(\{d_{ij}\} \) can be fitted to \(\{f(\delta_{ij})\} \) by least-squares (LS). The result is metric LS scaling. If the dissimilarities are Euclidean distances and \(f \) is taken to be the identity function, then classical scaling can be viewed as an example of metric LS scaling. In fact, metric distance scaling is often regarded as synonymous with classical scaling.

A given configuration of points \(\{Y_{ij}\} \subset \mathbb{R}^t \) can be evaluated by computing the pairwise distances \(\{d_{ij}\} \) and then, for an unknown monotone function \(f \), using the weighted loss function,

\[
\mathcal{L}_f(Y_1, \ldots, Y_n; W) = \sum_{i<j} w_{ij}(d_{ij} - f(\delta_{ij}))^2,
\]

(13.14)

as a goodness-of-fit criterion, where \(W = (w_{ij}) \) is a given matrix of weights. For a specific dimensionality \(t \), the square-root of \(\mathcal{L}_f \),

\[
\text{stress} = [\mathcal{L}_f(Y_1, \ldots, Y_n; W)]^{1/2},
\]

(13.15)

is known as the metric stress function. Minimizing stress over all \(t \)-dimensional configurations \(\{Y_{ij}\} \) and monotone \(f \) yields an optimal metric distance scaling solution. Weighting systems include \(w_{ij} = (\sum_{k<\ell} \delta_{k\ell}^2)^{-1} \) and \(w_{ij} = \delta_{ij}^{-2} \). More general loss functions, where \(g(d_{ij}) \) replaces \(d_{ij} \) in (13.14), for some function \(g \), have also been proposed.

13.8.2 Sammon Mapping

The so-called Sammon nonlinear mapping, which has become a popular tool for pattern recognition, is a special case of metric LS scaling, where \(w_{ij} = \delta_{ij}^{-1}(\sum_{k<\ell} \delta_{k\ell})^{-1} \) is used as the weighting system in (13.14) and \(f \) is the identity function (Sammon, 1969). This weighting system normalizes the squared-errors in pairwise distances by using the distance in the original space. As a result, Sammon mapping preserves the small \(\delta_{ij} \), giving them a greater degree of importance in the fitting procedure than for larger values of \(\delta_{ij} \); this can be a useful strategy if one is trying to identify clusters in the data.

Differentiating (13.14) with Sammon weights yields a set of nonlinear least-squares equations, which are then solved using an iterative numerical procedure. The usual algorithm (see, e.g., Cox and Cox, 2001, Section 2.4) starts at the classical scaling solution, then follows that up by using a
pseudo-Newton iterative procedure with step size reduced by a “magic”
factor, usually in the range 0.3–0.4; in some cases, this factor has to be set
to a much smaller value to carry the algorithm to convergence.

13.8.3 Example: Lloyds Bank Employees

As an example of metric LS scaling, we compare the two-dimensional
Sammon mapping and classical scaling solutions of the 1905–1909 and
1925–1929 cohorts of the Lloyds Bank employee data (see Section 13.5.2).
Figure 13.9 displays the two types of metric MDS for each cohort. We see
that whereas the plotted points for classical scaling and Sammon mapping
appear to have similar patterns, with a number of well-separated clus-
ters, the points in the Sammon map for each cohort are considerably more
spread out than are those derived from classical scaling. A similar effect
using different data was also noticed by Ripley (1996, p. 309).

For the 1905–1909 cohort, there are three employees (1587, 1590, 3240)
who can be considered as outliers with respect to the remaining employees.
The two employees 1590 and 3240 only worked at Lloyds Bank for two
years (the next shortest employment tenure was 10 years) and employee
1587 worked there for 59 years (the next longest tenure was 48 years). The
Sammon mapping algorithm stopped (no further iterations) at the classical
scaling solution, so that the upper-left and upper-right panels of Figure 13.9
are identical.

13.8.4 Bayesian MDS

In certain situations, it may be reasonable to assume that the observed
dissimilarities in the proximity matrix $\Delta = (\delta_{ij})$ are tainted by measure-
ment error. We may see this, for example, when the elements of Δ are
clearly measured in three dimensions, but the stress value for the three-
dimensional solution is not zero as it should be; instead, it may require a
much-higher dimensional solution to reduce stress down to zero. One way
to incorporate measurement error into metric MDS is to adopt a more ex-
licit modeling framework, such as a Bayesian viewpoint (Oh and Raftery,
2001).

A cautionary note: in general, it is often difficult to verify the types of dis-
tributional assumptions used in statistical modeling, and the assumptions
used in Bayesian MDS are no exception.

In this model, we assume the dissimilarity, $\delta_{ij} > 0$, between entities i
and j is observed with Gaussian error:

$$\delta_{ij} = \delta_{ij}^0 + \epsilon_{ij}, \quad (13.16)$$

where δ_{ij}^0 is the true dissimilarity and $\epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$, $i, j = 1, 2, \ldots, n.$
FIGURE 13.9. Two-dimensional MDS solutions for the Lloyds Bank data. The left panels show classical scalings and the right panels show Sammon mappings. The upper panels show the 1905–1909 cohorts of Lloyds Bank employees and the lower panels show the 1925–1929 cohorts.

Thus, given δ^0_{ij}, the observed dissimilarity δ_{ij}, which is a function of the unknown $\{X_i\}$, follows the truncated Gaussian distribution,

$$
\delta_{ij} \sim \mathcal{N}(\delta^0_{ij}, \sigma^2)I[\delta_{ij} > 0], \quad i \neq j, \ i, j = 1, 2, \ldots, n. \quad (13.17)
$$

The likelihood function of $\{\{X_i\}, \sigma^2\}$, given Δ, is given by

$$
L(\{X_i\}, \sigma^2|\Delta) = \prod_{i<j} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{(\delta_{ij} - \delta^0_{ij})^2}{2\sigma^2} \right\} \left\{ 1 - \Phi \left(-\frac{\delta^0_{ij}}{\sigma} \right) \right\}^{-1} \propto (\sigma^2)^{-m/2} \exp \left\{ -\frac{ESS}{2\sigma^2} - \sum_{i<j} \log \Phi \left(\frac{\delta^0_{ij}}{\sigma} \right) \right\}, \quad (13.18)
$$

where $ESS = \sum_{i<j} (\delta_{ij} - \delta^0_{ij})^2$ is the error sum of squares, $\Phi(\cdot)$ is the standard Gaussian cdf, and $m = n(n-1)/2$ is the number of dissimilarities. The
second term in the exponent of the likelihood function is the modification to the normalizing constant due to the truncation.

Next, we assume that the \(\{X_i\} \) are iid with a common multivariate-Gaussian prior density,

\[
X_i \sim \mathcal{N}(0, \Sigma_{XX}), \quad i = 1, 2, \ldots, n,
\]

(13.19)

where \(\Sigma_{XX} = \text{diag}\{\lambda_1, \ldots, \lambda_r\} \). Then, the full conditional posterior density of the \(\{X_i\} \), that is, \(\pi(\{X_i\}|\sigma^2, \{\lambda_j\}) \), is proportional to

\[
(\sigma^2)^{-m/2} \left(\prod_{j=1}^r \lambda_j^{-n/2} \right) \exp \left\{ -\frac{Q_1 + Q_2}{2} - \sum_{i<j} \log \Phi \left(\frac{\delta_{ij}}{\sigma} \right) \right\},
\]

(13.20)

where \(Q_1 = \text{ESS}/\sigma^2 \) and \(Q_2 = \sum_{i=1}^n (X_i^T \Sigma_{XX}^{-1} X_i) = \sum_{j=1}^r \lambda_j^{-1} s_j \) are quadratic functions of the \(\{X_i\} \), and \(s_j = \sum_{i=1}^n X_{ij}^2 \).

We now assume that the error variance \(\sigma^2 \) has the (conjugate) prior

\[
\sigma^2 \sim IG(a, b),
\]

(13.21)

where \(IG(a, b) \) is the inverse-gamma distribution with parameters \(a \) and \(b \) (i.e., \(\pi(\sigma^2) \propto (\sigma^2)^{-a-1} e^{-b/\sigma^2} \), \(a, b > 0 \); see, e.g., Bernardo and Smith, 1994, p. 119). Similarly, the prior for \(\lambda_j \) is taken to be

\[
\lambda_j \sim IG(\alpha, \beta_j)
\]

(13.22)

(i.e., \(\pi(\lambda_j) \propto \lambda_j^{-(a+1)} e^{-\beta_j/\lambda_j} \), \(\alpha, \beta_j > 0 \)), independently for each \(j = 1, 2, \ldots, r \). Finally, the prior densities of \(\{X_i\} \), \(\{\lambda_j\} \), and \(\sigma^2 \) are assumed to be independent.

The joint posterior density of \((\{X_i\}, \{\lambda_j\}, \sigma^2) \), given the proximity matrix \(\Delta = (\delta_{ij}) \), is

\[
p(\{X_i\}, \{\lambda_j\}, \sigma^2|\Delta) = L(\{X_i\}, \sigma^2|\Delta) \cdot \pi(\{X_i\}) \cdot \pi(\sigma^2) \cdot \pi(\{\lambda_j\})
\]

\[
\propto (\sigma^2)^{-(m/2+a+1)} \left(\prod_{j=1}^r \lambda_j^{-(n/2+\alpha+1)} \right) e^{-A},
\]

(13.23)

where

\[
A = \frac{Q_1 + Q_2}{2} + \sum_{i<j} \log \Phi \left(\frac{\delta_{ij}}{\sigma} \right) + \frac{b}{\sigma^2} + \sum_{j=1}^r \frac{\beta_j}{\lambda_j}.
\]

(13.24)

The posterior distribution (13.23) is a complicated function of the unknown quantities \((\{X_i\}, \{\lambda_j\}, \sigma^2) \).

The numerical integration necessary to compute Bayes estimates of these quantities is best accomplished using Markov chain Monte Carlo (MCMC)
methods. Oh and Raftery used a random-walk, Metropolis–Hastings algorithm. Initial values for the \(\{ X_i \} \) and the other unknown parameters, \(\sigma^2 \) and \(\{ \lambda_j \} \), of the posterior distributions are taken from a classical scaling solution. For the algorithmic details, we refer the reader to the original article.

13.9 Nonmetric Distance Scaling

In many applications of MDS, dissimilarities are known only by their rank order, and the spacing between successively ranked dissimilarities is of no interest or is unavailable. This may happen because the data collected involve only ordinal information (possibly through pairwise comparisons of a set of entities). See, for example, the color stimuli and Morse code examples in Section 13.2. In these types of situations, we have no metric to deal with such comparisons.

In nonmetric distance scaling (also known as ordinal MDS), we assume that \(f \) is an arbitrary function that satisfies the monotonicity constraint \(f(\delta_{ij}) \leq f(\delta_{k\ell}) \) whenever \(\delta_{ij} < \delta_{k\ell} \), for all \(i, j, k, \ell = 1, 2, \ldots, n \). Explanations as to why \(f \) should be a monotone transformation of a dissimilarity include the following:

People vary remarkably in the way in which they use rating scales in general, with some showing tendencies to avoid extreme ratings, others using specific categories disproportionately often, and still others piling their judgments up against one extreme of the scale. (Ramsay, 1988)

In psychophysical applications, the measuring device by which dissimilarities are observed is the human mind, which is known to perceive distances in ways that are subject to monotonic distortion. (For example, the mind has a tendency to underestimate large distances.) (Trosset, 1998)

So, rather than using subjective judgment as a distance measure, we choose instead to construct \(f \) to preserve the rank-order of the dissimilarities.

13.9.1 Disparities

Suppose we have a symmetric matrix \(\Delta = (\delta_{ij}) \) of dissimilarities (with zero diagonal entries) between a collection of \(n \) \(r \)-dimensional entities. Ignoring the diagonal entries in \(\Delta \) (which avoids the problem in the Morse-code example), we have \(m = \frac{1}{2}n(n - 1) \) dissimilarities, which we further
Nonmetric Distance Scaling

Assume can be strictly ordered from smallest to largest:

\[\delta_{i_1,j_1} < \delta_{i_2,j_2} < \cdots < \delta_{i_m,j_m}, \tag{13.25} \]

where \((i_1,j_1)\) indicates the pair of entities having the smallest dissimilarity, and \((i_m,j_m)\) indicates the pair of entities having the largest dissimilarity.

The objective is to represent these \(r\)-dimensional entities as a configuration of \(n\) points in the lower-dimensional space \(\mathbb{R}^t\), where for the moment we assume that the dimensionality \(t\) is given. Denote the points in this configuration by \(Y_1, \ldots, Y_n\) and let

\[d_{ij} = \|Y_i - Y_j\| = \{(Y_i - Y_j)^\tau (Y_i - Y_j)\}^{1/2} \tag{13.26} \]

be the Euclidean distance between the points \(Y_i\) and \(Y_j\), \(i < j\). Nonmetric distance scaling finds a configuration such that the ordering of the distances

\[d_{i_1,j_1} < d_{i_2,j_2} < \cdots < d_{i_m,j_m} \tag{13.27} \]

matches exactly the ordering of the dissimilarities in (13.25).

A plot of the configuration distances \(\{d_{ij}\}\) against their rank-order will not necessarily produce a monotonically looking scatterplot, thereby violating the monotone condition (13.27). To overcome this difficulty, we approximate the \(\{d_{ij}\}\) by \(\{\hat{d}_{ij}\}\), say (usually called disparities), which are monotonically related to the \(\{d_{ij}\}\) and where

\[\hat{d}_{i_1,j_1} \leq \hat{d}_{i_2,j_2} \leq \cdots \leq \hat{d}_{i_m,j_m}. \tag{13.28} \]

This formulation allows for possible ties in the disparities. Think of the \(\{\hat{d}_{ij}\}\) as fitted values obtained from fitting a monotonically increasing function to the \(\{d_{ij}\}\); the \(\{\hat{d}_{ij}\}\) are not themselves distances, and there may be no configuration of points \(\{Y_i\}\) for which the \(\{\hat{d}_{ij}\}\) are their interpoint distances. These disparities, which are joined up to form a “curve,” are then superimposed upon the plot of the configuration distances against rank-order. The resulting plot is usually called a Shepard diagram.

There are two main methods for computing nondecreasing disparities for the nonmetric distance-scaling problem. The first method, isotonic regression (also known as monotonic regression) (Kruskal, 1964b), results in a step-like function, whereas the second, monotone splines, yields a smoother transformation.

Isotonic Regression: A Simple Example

Consider the following artificial example with \(n = 6\) entities. Suppose the rank-order of the 15 dissimilarities, \(\{\delta_{ij}\}\), is given in Table 13.8 by the column marked “rank.” Suppose, further, that a specific configuration yields
TABLE 13.8. Finding the disparities by isotonic regression for an artificial example with \(n = 6 \) and \(m = 15 \). The columns I, II, III, IV, V, and VI display a sequence of trial solutions for the disparities. The cells in red indicate the active block at each trial solution. The value of \(S \) is 6.85%.

<table>
<thead>
<tr>
<th>rank</th>
<th>(d_{ij})</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>(\hat{d}_{ij})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.30</td>
<td>2.30</td>
<td>2.30</td>
<td>2.30</td>
<td>2.30</td>
</tr>
<tr>
<td>2</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
<td>2.70</td>
</tr>
<tr>
<td>3</td>
<td>8.1</td>
<td>8.1</td>
<td>6.9</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
</tr>
<tr>
<td>4</td>
<td>5.7</td>
<td>5.7</td>
<td>6.9</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
<td>6.67</td>
</tr>
<tr>
<td>6</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.10</td>
<td>8.10</td>
<td>7.80</td>
<td>7.80</td>
<td>7.80</td>
</tr>
<tr>
<td>7</td>
<td>8.6</td>
<td>8.6</td>
<td>8.6</td>
<td>8.60</td>
<td>8.13</td>
<td>7.80</td>
<td>7.80</td>
<td>7.80</td>
</tr>
<tr>
<td>8</td>
<td>7.7</td>
<td>7.7</td>
<td>7.7</td>
<td>7.70</td>
<td>8.13</td>
<td>7.80</td>
<td>7.80</td>
<td>7.80</td>
</tr>
<tr>
<td>9</td>
<td>6.8</td>
<td>6.8</td>
<td>6.8</td>
<td>6.80</td>
<td>6.80</td>
<td>7.80</td>
<td>7.80</td>
<td>7.80</td>
</tr>
<tr>
<td>11</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
<td>10.50</td>
<td>10.50</td>
<td>10.50</td>
<td>10.15</td>
<td>10.10</td>
</tr>
<tr>
<td>12</td>
<td>9.8</td>
<td>9.8</td>
<td>9.8</td>
<td>9.80</td>
<td>9.80</td>
<td>9.80</td>
<td>10.15</td>
<td>10.10</td>
</tr>
<tr>
<td>13</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.10</td>
</tr>
<tr>
<td>14</td>
<td>12.6</td>
<td>12.6</td>
<td>12.6</td>
<td>12.60</td>
<td>12.60</td>
<td>12.60</td>
<td>12.60</td>
<td>12.60</td>
</tr>
<tr>
<td>15</td>
<td>12.8</td>
<td>12.8</td>
<td>12.8</td>
<td>12.80</td>
<td>12.80</td>
<td>12.80</td>
<td>12.80</td>
<td>12.60</td>
</tr>
</tbody>
</table>

the estimated dissimilarities, \(\{d_{ij}\} \), given in the second column. Clearly, the estimates are not rank-ordered to fit with the ranks of the dissimilarities.

We partition the estimated dissimilarities into blocks, and at each step of the algorithm one of these blocks becomes “active.” A “block” is a consecutive set of dissimilarities that have to be set equal to each other to maintain monotonicity. A trial solution consists of averaging the values within the active block. Table 13.8 shows the complete sequence of trial solutions for this example to obtain the set of disparities for a single iteration.

From the second column of Table 13.8, we see that the first three \(d_{ij} \) are increasing (2.3, 2.7, 8.1). The next distance (5.7) is smaller only than the preceding 8.1, so the active block is (8.1, 5.7), whose values are averaged to get 6.9. The next distance 6.2 is smaller than the two previous 6.9s, so the active block is (6.9, 6.9, 6.2), with an average of 6.67. The two distances (8.1, 8.6) are increasing, but the next one (7.7) is smaller than the preceding two. The active block is now (8.1, 8.6, 7.7), and their average value is 8.13. The next distance (6.8) is smaller than the three 8.13s, so the active block is (8.13, 8.13, 8.13, 6.80), with an average of 7.80. The next two distances (9.3, 10.5) are increasing, but 9.8 is smaller than 10.5. So, we average the two distances (10.5, 9.8) to get 10.15. The next distance 10.0 is smaller than the two 10.15s, so we average the three values to get 10.1. The remaining distances satisfy the monotonicity requirement, and the procedure stops.

The last column of Table 13.8 shows the disparities \(\{\hat{d}_{ij}\} \). The Shepard diagram of the \(\{d_{ij}\} \) and the \(\{\hat{d}_{ij}\} \) is given in the left panel of Figure 13.10. In preparation for the next step in the algorithm (i.e., updating the
configuration), the disparities are normalized so that their sum-of-squares equals \(\frac{1}{2} n(n - 1) \).

Monotone Splines

As we see from the left panel of Figure 13.10, the disparities are plotted as a step-like function. We would like to make the transformation smoother than a step function while retaining the property that it be non-decreasing. We now describe a class of monotone spline transformations (Ramsay, 1988), which can be constrained to be everywhere non-decreasing and smooth. Monotone splines are constructed from polynomials defined over a grid of subintervals so that adjacent polynomials are joined up in a very smooth way at the interval boundaries.

Let \([L, U] \subset \mathbb{R}\) be an interval. Define a grid in the interior of that interval by the sequence of points (or knots) \(L = \xi_0 < \xi_1 < \cdots < \xi_q < \xi_{q+1} = U \). This grid has \(q \) interior knots, \(\xi_1, \ldots, \xi_q \). Let \(p_i \) represent the rank of the \(i \)-th dissimilarity, \(i = 1, 2, \ldots, m \). The grid of points defines a sequence of adjacent subintervals, \([\xi_0, \xi_1], [\xi_1, \xi_2], \ldots, [\xi_q, \xi_{q+1}] \), so that each \(p_i \) falls into one of these subintervals. Within the \(j \)-th subinterval \([\xi_j, \xi_{j+1}] \), the function \(f \) consists of a polynomial \(P_j \) having a given degree \(k - 1 \) (or order \(k \)). The smoothness of \(f \) is characterized by the two polynomials \(P_j \) and \(P_{j+1} \) having equal (and, hence, continuous) derivatives up to order \(k - 2 \) at the knot \(\xi_j \), \(i = 1, 2, \ldots, q \); that is, \((D^{i-1}P_j)(\xi_j) = (D^{i-1}P_{j+1})(\xi_j), i = 1, 2, \ldots, k - 1 \), where \((D^{i-1}P)(\xi) = d^{i-1}P/dx^{i-1} \) evaluated at the point \(\xi \) if \(i > 1 \) and \((D^0P)(\xi) = P(\xi) \).
Thus, if $k = 1$, the spline is a step function discontinuous at the knots; if $k = 2$, the spline is a sequence of piecewise linear segments that join up continuously at the knots; if $k = 3$, we have piecewise quadratic segments with continuous first derivatives at the knots; and if $k = 4$, we have piecewise cubic segments with continuous first and second derivatives at the knots (usually called a cubic spline). Note that the number of knots and their placement play important roles in the definition of any spline function; a poor choice of knots can result in a low-quality spline fit to the data.

It can be shown that a monotone spline of degree k with q interior knots can be computed using the equation,

$$
\hat{d} = b_0 1_m + M b,
$$

(13.29)

where $M = (M_1, \ldots, M_{k+q})$ is an $(m \times (k + q))$-matrix, b is a $(k + q)$-vector of nonnegative weights, and b_0 is a nonnegative constant. These type of splines are also called regression splines. The columns $\{M_j\}$ of M are each piecewise polynomial functions of the p_i. The first $\max\{0, j - k\}$ intervals of M_j are each zero and the last $\max\{0, q - j + 1\}$ intervals of M_j are each one. For example, suppose $k = 2$ (quadratic) and $q = 4$ interior knots. Then, M_1 has ones in the last four intervals, M_2 has ones in the last three intervals, M_3 has a zero in the first interval and ones in the last two intervals, M_4 has zeroes in the first two intervals and a one in the last interval, M_5 has zeroes in the first three intervals, and M_6 has zeroes in the first four intervals. The remaining intervals constitute an appropriate polynomial in the p_i with equal derivatives at the knots.

More formally, let M_{ij} denote the ith element of the jth column M_j of the matrix M, $i = 0, 1, 2, \ldots, m - 1$, $j = 1, 2, \ldots, k + q$, where q is the number of interior knots. A zero-order ($k = 0$) spline has M_{ij} equal to zero if $\xi_0 \leq p_i < \xi_j$ and one if $\xi_j \leq p_i < \xi_{q+1}$. A linear ($k = 1$) spline has elements

$$
M_{ij} = \begin{cases}
0 & \text{if } \xi_0 \leq p_i < \xi_{j-1} \\
 a_{ij} & \text{if } \xi_{j-1} \leq p_i < \xi_j \\
1 & \text{if } \xi_j \leq p_i < \xi_{q+1}
\end{cases}
$$

(13.30)

where $a_{ij} = (p_i - \xi_j)/(\xi_j - \xi_{j-1})$. For a quadratic spline ($k = 2$), we have that:

$$
M_{ij} = \begin{cases}
0 & \text{if } \xi_0 \leq p_i < \xi_{j-2} \\
b_{ij} & \text{if } \xi_{j-2} \leq p_i < \xi_{j-1} \\
1 - c_{ij} & \text{if } \xi_{j-1} \leq p_i < \xi_j \\
1 & \text{if } \xi_j \leq p_i < \xi_{q+1}
\end{cases}
$$

(13.31)

where $b_{ij} = (\xi_{j-2} - p_i)^2/(\xi_{j-1} - \xi_{j-2})(\xi_j - \xi_{j-2})$ and $c_{ij} = (\xi_j - p_i)^2/(\xi_j - \xi_{j-1})(\xi_j - \xi_{j-2})$. For $j = 1$, we set $\xi_1 = \xi_0$, and for $j = q + 1$, we set $\xi_{q+1} = \xi_q$. In the special case that $q = m - 1$ and $k = 0$, the monotone spline
(using appropriately located knots) is identical to a monotone regression transformation (see Exercise 13.4).

Thus, we can write the ith disparity (i.e., ith element of the m-vector \hat{d}) as the linear combination,

$$\hat{d}_i = \sum_{j=0}^{k+q} b_j M_{ij}, \quad (13.32)$$

with nonnegative weights, $b_j \geq 0$, $j = 0, 1, 2, \ldots, k + q$, where we set $M_{i0} = 1$, $i = 1, 2, \ldots, m$. Redefine \mathbf{M} to be an $(m \times (k+q+1))$-matrix with first column $\mathbf{1}_m$ to take care of the constant b_0. Then, $\mathbf{b} = (b_0, b_1, \cdots, b_{k+q})^\tau$ is the coefficient vector having nonnegative elements. The vector of disparities is defined as $\mathbf{d} = \mathbf{Mb}$.

We now wish to find nonnegative \mathbf{b} that will solve the LS problem,

$$\mathbf{b}^* = \arg \min_{\mathbf{b} \geq 0} (\mathbf{d} - \mathbf{Mb})^\tau (\mathbf{d} - \mathbf{Mb}). \quad (13.33)$$

This problem can be solved using the following alternating least-squares (ALS) algorithm. First, fix all entries of \mathbf{b} except b_j. We now choose a nonnegative b_j to minimize (13.33). Compute the “residual” $\mathbf{e}_j = \mathbf{d} - \sum_{k \neq j} b_k \mathbf{M}_k$. Then, $\hat{\mathbf{e}}_j - b_j \mathbf{M}_j = \mathbf{d} - \mathbf{Mb}$, and $(\hat{\mathbf{e}}_j - b_j \mathbf{M}_j)^\tau (\hat{\mathbf{e}}_j - b_j \mathbf{M}_j) = \hat{\mathbf{e}}_j^\tau \hat{\mathbf{e}}_j + b_j^2 \mathbf{M}_j^\tau \mathbf{M}_j - 2 b_j \mathbf{M}_j^\tau \hat{\mathbf{e}}_j$, which is minimized when $b_j = \mathbf{M}_j^\tau \hat{\mathbf{e}}_j / \mathbf{M}_j^\tau \mathbf{M}_j$. If $b_j < 0$, set $b_j = 0$. Thus, $b_j \geq 0$. Repeat this computation for every other element of \mathbf{b} while keeping all other elements of \mathbf{b} fixed. These steps constitute the first iteration of the ALS algorithm, which yields $\mathbf{b} \geq 0$. We update these values in an iterative fashion until no change is observed in \mathbf{b}. This algorithm has been shown to converge to a global minimum of the nonnegative LS problem.

In the right panel of Figure 13.10, we show the monotone spline fitted to the artificial data example given in Table 13.8.

13.9.2 The Stress Function

If we square the horizontal deviations, $d_{ij} - \hat{d}_{ij}$, from a Shepard diagram and then add them up, we get a form of residual sum of squares,

$$\text{raw stress} = S^*(\mathbf{Y}_1, \ldots, \mathbf{Y}_n) = \sum_{i<j} (d_{ij} - \hat{d}_{ij})^2, \quad (13.34)$$

which acts as a measure of goodness of fit. Although this measure is invariant under translations, reflections, and rotations (orthogonal transformations) of the $\{\mathbf{Y}_i\}$, it is not scale-invariant under stretching (or shrinking) of each of the $\{\mathbf{Y}_i\}$ by some constant k; we see that $\mathbf{Y}_i \rightarrow k \mathbf{Y}_i$ means $d_{ij} \rightarrow kd_{ij}$ and $\hat{d}_{ij} \rightarrow k \hat{d}_{ij}$, so that $S^* \rightarrow k^2 S^*$. Thus, raw stress can
always be reduced in magnitude by scaling down (shrinking) the configuration to a single point where all the \(d_{ij} = 0\). To counter this effect of scale-dependency, we normalize the measure \(S^*\) to have the general form,

\[
\left\{ \sum_{i<j} w_{ij} (d_{ij} - \hat{d}_{ij})^2 \right\}^{1/2},
\]

(13.35)

where the \(\{w_{ij}\}\) are weights chosen by the user. The most popular normalization is where \(w_{ij} = (\sum_{i<j} d_{ij}^2)^{-1}\), so that (13.34) becomes (Kruskal, 1964a)

\[
\text{stress} = S(Y_1, \ldots, Y_n) = \left\{ \frac{\sum_{i<j} (d_{ij} - \hat{d}_{ij})^2}{\sum_{i<j} d_{ij}^2} \right\}^{1/2},
\]

(13.36)

where it is understood that the summations in both the numerator and denominator of \(S\) are computed for all \(i, j = 1, 2, \ldots, n\) such that \(i < j\). The stress value \(S\) lies between 0 and 1.

The stress criterion \(S\) (more commonly known as Kruskal’s stress formula one or Stress-1) can be interpreted as a loss function that depends upon the configuration points \(\{Y_i\}\) and the disparities \(\{\hat{d}_{ij}\}\) and measures how well a particular configuration fits the given dissimilarities. It is worth noting that certain authors refer to \(S^2\) as the stress function.

A slightly different version of \(S\) (called stress formula two or Stress-2) has weights given by

\[
w_{ij} = \left\{ \sum_{i<j} (d_{ij} - \bar{d})^2 \right\}^{-1},
\]

(13.37)

where \(\bar{d}\) is the average distance. The normalization (13.37) has been used in situations where certain types of degeneracies occur. Other recommended normalizations include \(w_{ij} = \hat{d}_{ij}^{-2}\) and \(w_{ij} = (\sum_{i<j} \hat{d}_{ij})^{-1} \hat{d}_{ij}^{-1}\) (Sammon, 1969). The \(ssstress\) criterion, which uses squared distances and squared disparities,

\[
\text{ssstress} = \sum_{i<j} (d_{ij}^2 - \hat{d}_{ij}^2)^2,
\]

(13.38)

is the minimization criterion of choice in the MDS program \textsc{Alscal} (Takane, Young, and de Leeuw, 1977). A disadvantage of the \(ssstress\) criterion (13.38) is that it emphasizes larger dissimilarities at the expense of smaller ones. More general versions of all these stress functions are available.
Table 13.9. The nonmetric distance-scaling algorithm.

1. Order the \(m = \frac{1}{2}n(n-1) \) dissimilarities \(\{\delta_{ij}\} \) from smallest to largest as in (13.25).
2. Fix the number \(t \) of dimensions and choose an initial configuration of points \(Y_i \in \mathbb{R}^t, i = 1, 2, \ldots, n. \)
3. Compute the set of distances \(\{d_{ij}\} \) between all pairs of points in the initial configuration.
4. Use an isotonic regression algorithm to produce fitted values \(\{\hat{d}_{ij}\} \). Compute the initial value of stress.
5. Change the configuration of points by applying an iterative gradient search algorithm (e.g., method of steepest descent) to the stress criterion. This step will produce a new set of \(\{d_{ij}\} \).
6. Use an isotonic regression algorithm to produce revised values of the \(\{\hat{d}_{ij}\} \), together with a smaller stress value.
7. Repeat steps 5 and 6 until the current configuration produces a minimum stress value, so that no further improvement in stress can take place by further reconfiguring the points.
8. Repeat the previous steps using a different value of \(t \). Plot stress against \(t \). Choose that value of \(t \) that gives a reasonably small value of stress and where no significant decrease in stress can result from increasing \(t \). This is usually exhibited by an “elbow” in the plot.

13.9.3 Fitting Nonmetric Distance-Scaling Models

The goal here is to find a configuration of points \(\{Y_i\} \subset \mathbb{R}^t \) that minimizes the stress value \(S \) under the monotonicity condition (13.28) for the disparities. To minimize such a nonlinear function in many variables, gradient-based optimization algorithms (e.g., method of steepest descent) have traditionally been used (Kruskal, 1964b).

Starting with an arbitrary configuration (which may be a random scatter of points having little relationship to the given dissimilarities or the configuration found from carrying out metric MDS on \(\Delta \)), we change the locations of the points in an iterative fashion. At each iteration, we improve the configuration by finding the direction for which \(S \) decreases most quickly, and we move the points in the configuration a short step in that direction. This iterative scheme is carried out until \(S \) does not decrease significantly. The algorithm is listed in Table 13.9.

Let \(Y^\tau = (Y_1^\tau, \cdots, Y_n^\tau) \) be a \(t \times n \)-matrix whose columns are the configuration points. Let \(y = \text{vec}(Y^\tau) = (Y_1^\tau, \cdots, Y_n^\tau)^\tau \) be the \(nt \)-vector obtained by placing the columns of \(Y^\tau \) under one another successively. Stress
500 13. Multidimensional Scaling and Distance Geometry

\(S = S(y) \) is now a function of \(y \). The method of steepest descent moves the configuration in a direction determined by the partial derivatives of \(S \) with respect to \(y \). Thus, given the configuration \(y^{(m)} \) at the \(m \)th iteration, a revised configuration at the next iteration is given by:

\[
y^{(m+1)} = y^{(m)} - \alpha_{m+1} z,
\]

where \(\alpha_{m+1} \) is the step-size at the \((m + 1) \)th iteration and

\[
z = \frac{\partial S}{\partial y} \Big/ |\frac{\partial S}{\partial y}| \tag{13.40}
\]

is the (normalized) gradient function. Explicit formulas for \(z \) were first given by Kruskal (1964b). See also Cox and Cox (2001, Section 3.2.2). Step size should be changed at each iteration to speed up the algorithm (Kruskal suggests starting in general with \(\alpha_0 = 0.2 \)).

This gradient-based procedure has been extended and generalized in many different ways. However, there is no guarantee that any of these algorithms will find a global minimum. Indeed, it is not unusual for these algorithms to find only local minima. As a result, the best that can often be accomplished is to try different initial configurations (i.e., random starts) to check the convergence properties of the algorithm. This may be accomplished by choosing a very large step size to start the iteration process all over again whenever a local minimum is thought to have been reached. If the same solution is obtained from repeated application of the algorithm, then the common solution is probably a global minimum.

13.9.4 How Good Is an MDS Solution?

Kruskal’s experience with various types of real and simulated data led him to assess the global fit of any nonmetric distance-scaling solution by various levels of stress values (Kruskal, 1964a); see Table 13.10. The distance-scaling solution for the color-stimuli example has a clear elbow in the scree plot and a 2D minimum-stress value of 0.023, which would classify the configuration as an excellent fit to the data.

The assessment given by Table 13.10 should be considered only as a possible guideline of how well an MDS solution fits the “true” data structure; in fact, this guideline often fails to do this, especially in situations where the data are noisy. For example, in the distance-scaling solution for the Morse-code example, the scree plot shows no elbow and the minimum-stress value for the 2D solution is 0.18, which would declare the configuration close to a poor fit to the data. In general, if the number of subjects is larger in one study than in another, then we would expect the stress value from the former study to be larger. We see this in the Morse-code example, where
TABLE 13.10 Evaluation of “stress.”

<table>
<thead>
<tr>
<th>Stress</th>
<th>Goodness of Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>Poor</td>
</tr>
<tr>
<td>0.10</td>
<td>Fair</td>
</tr>
<tr>
<td>0.05</td>
<td>Good</td>
</tr>
<tr>
<td>0.025</td>
<td>Excellent</td>
</tr>
<tr>
<td>0.0</td>
<td>“Perfect”</td>
</tr>
</tbody>
</table>

the number of subjects is much larger than in the color-stimuli example and so would be expected to have a higher stress value.

13.9.5 How Many Dimensions?

Stress S measures the goodness of fit of a given configuration in \mathbb{R}^t, and the configuration that best matches the dissimilarities enjoys minimum stress. Furthermore, as we increase t, we find that the minimum stress decreases. In fact, if $t \geq n - 1$, the minimum stress is exactly zero, a solution that is clearly undesirable; too large a dimensionality implies that we are including in the solution overly many noisy dimensions, which, in turn, leads to overfitting.

The goal is to choose a configuration for which t is reasonably small (typically, 2 or 3, if possible). With this consideration in mind, we compute the minimum value of stress, $S_{\min}^{(t)}$, for different dimensionalities t, plot the points $(t, S_{\min}^{(t)})$, and then join up the plotted points. The resulting “curve” will be monotonically decreasing from right to left, with the decrease becoming less severe as t gets larger. This “curve” is sometimes called a scree plot if all minimum-stress values for t from 1 to r are computed.

We choose that value of t for which the minimum stress is small and any further increase in t does not significantly decrease the minimum stress. Using an informal selection procedure also found in PCA and factor analysis, we look for a t that exhibits an “elbow” in the plot. That value of t is taken as the chosen dimensionality. The results of simulation studies with noise-perturbed distances (e.g., Spence and Graef, 1974), however, have shown that “elbows” are not all that obvious in scree plots even when noise is kept at a fairly low level.

13.10 Software Packages

Classical scaling can be carried out in S-PLUS and R by using the command `cmdscale` [in library(mva)] (Venables and Ripley, 2002, p. 306). Sammon
mapping can be computed using the S-PLUS and R command sammon [in library(MASS)] (Venables and Ripley, 2002, p. 308) and is also available in the SOM toolbox in MATLAB. A Fortran program, bmds, written by Oh and Raftery to compute Bayesian MDS is available at the StatLib website. R (version 1.9.0) contains the command isoreg [now in package stats, moved from package modreg] to compute isotonic regression. Kruskal’s method of nonmetric distance scaling using the stress function (13.36) and isotonic regression can be carried out in S-PLUS and R by using the command isoMDS [in library(MASS)] (Venables and Ripley, 2002, p. 308).

Bibliographical Notes

Book-length descriptions of MDS include Cox and Cox (1994) and Borg and Groenen (1997).

The early development of MDS procedures was dominated by applications to psychology. Another very popular area for MDS application has been marketing, where the entities are different brand-name products, and the distance between a pair of those products gives a measure of how closely associated the two products appear to be in the eyes of consumers. Researchers in areas of molecular biology (Crippen and Havel, 1978; Havel, 1991; Glunt, Hayden, and Raydan, 1993; Basalaj and Eilbeck, 2003; Hou, Sims, Zhang, and Kim, 2003), computational chemistry (Trosset, 1998), social networks (Theus and Schonlau, 1998), and graph layout and drawing (Kruskal and Seery, 1980; Di Battista, Eades, Tamassia, and Tollis, 1994) have shown that those areas can also profit from using MDS. We note that the MDS application to network design (Kruskal and Seery, 1980) is used as part of the Isomap algorithm for nonlinear manifold learning (see Section 16.7.3), but where geodesic distance along the manifold is used instead of Euclidean distance.

Classical scaling was introduced by Torgerson (1952, 1958). Gower (1966) called it principal coordinate analysis because of its close resemblance to PCA. Its roots go back to the results of Eckart and Young (1936) and Young and Householder (1938). Classical scaling has variously been referred to as Torgerson scaling, Torgerson–Gower scaling, and Torgerson–Young scaling.

In 1995, the National Academy Commission on Physical Sciences, Mathematics, and Applications published a report entitled Mathematical Challenges from Theoretical/Computational Chemistry. In Chapter 3 of that report, “distance geometry” was described as “an important technique in computational chemistry” and “a key tool in the NMR spectroscopist’s arsenal, providing not only the [3D] structures, but also a [quantification] of how accurately they are known.”
Useful books on protein sequence alignment include Durbin, Eddy, Krogh, and Mitchison (1998) and Deonier, Tavaré, and Waterman (2005). An excellent account of BLAST can be found in the book by Korf, Yandell, and Bedell (2003), where Altschul reports that the name BLAST was originally chosen to be a pun on the name FASTA, but then morphed into its current expanded name. The SIM sequence alignment program can be found at the website us.expasy.org/tools/sim-prot.html.

Nonmetric MDS was formulated by Kruskal (1964a,b), who introduced the notion of stress and gave an iterative computational algorithm for carrying out MDS. Monotone splines have been used as a main ingredient in a model-based framework for statistical inference in MDS (Ramsay, 1982). We note that even though the idea of extending nonmetric MDS into a model-based methodology is very controversial (see the discussion accompanying Ramsay’s article), monotone splines in MDS have been found to be a useful exploratory tool for calculating disparities.

The algorithms that are still being used for MDS are known to be very slow and inefficient and do not scale well for very large data sets. Accordingly, workshops on MDS algorithms are being held to develop new and different algorithms for MDS.

Exercises

13.1 Consider the color-stimuli experiment outlined in Section 14.2.1. The similarity ratings are given in the file color-stimuli on the book’s website. Carry out a classical scaling of the data and show that the solution is a “color circle” ranging from violet (434 mμ) to blue (472 mμ) to green (504 mμ) to yellow (584 mμ) to red (674 mμ). Compare your solution to the nonmetric scaling solution given in Section 13.2.

13.2 Consider the Morse-code experiment outlined in Section 13.2.2. The file Morse-code on the book’s website gives a table of the percentages of times that a signal corresponding to the row label was identified as being the same as the signal corresponding to the column label. A row of this table shows the confusion rate for that particular Morse-code signal when presented before each of the column signals, whereas a column of the table shows the confusion rate for that particular signal when presented after each of the row signals. This table of confusion rates is not symmetric and the diagonal elements are not each 100%. Now, every square matrix M can be decomposed uniquely into the sum of two orthogonal matrices, $M = A + B$, where $A = \frac{1}{2}(M + M^\tau)$ is symmetric ($A^\tau = A$), and $B = \frac{1}{2}(M - M^\tau)$ is skew-symmetric ($B^\tau = -B$) with zero diagonal entries. Find the decomposition for the Morse-code data. Ignore that part of the Morse-code data provided by B and carry out a nonmetric scaling only of the
symmetric part \(\mathbf{A} \). Decide how many dimensions you think are appropriate for representing the data.

13.3 Let \(\| \mathbf{M} \|_2^2 = \sum_i \sum_j M_{ij}^2 \). From the decomposition in Exercise 13.2, show that \(\| \mathbf{M} \|_2^2 = \| \mathbf{A} \|_2^2 + \| \mathbf{B} \|_2^2 \). This result enables us to analyze separately the symmetric part (see Exercise 13.2) and the asymmetric part of the Morse-code data. Ignore the diagonal entries in \(\mathbf{M}, \mathbf{A}, \) and \(\mathbf{B} \). Find the sum of squares of the remaining entries of all three matrices and argue why you may think that the symmetric part of the data plays a major role in the analysis, whereas the asymmetric part plays only a minor role.

13.4 Show that the dissimilarities in the matrix \(\mathbf{\Delta} \) are Euclidean distances if and only if the doubly centered matrix \(\mathbf{B} = \mathbf{HAH} \) is nonnegative definite, where \(\mathbf{A} \) is given in the classical scaling algorithm of Table 13.5.

13.5 This exercise shows that monotone regression is a special case of monotone spline transformations. Consider a zero-order \((k = 0)\) monotone spline with \(q = m - 1 \) interior knots (where \(m \) is the number of dissimilarities). Let \(p_i = i, \) \(i = 0, 1, 2, \ldots, m - 1 \). Let \(m = 5 \) and put the knots at the points \(\xi_0 = 0.5, \xi_1 = 1.5, \xi_2 = 2.5, \xi_3 = 3.5, \xi_4 = 4.5, \xi_5 = 5.5 \). Find the \((5 \times 4)\)-matrix \(\mathbf{M} \) and the vector of disparities \(\mathbf{d} = b_0 \mathbf{1}_m + \mathbf{Mb} \), for any nonnegative \(b_i, i = 0, 1, \ldots, m - 1 \). Show that the disparities obey the same monotonicity property as they do in (13.27) for monotone regression.

13.6 In the British-towns file on the book’s website, there is a proximity matrix of the distances between 48 towns in Great Britain. Carry out a classical scaling of these pairwise distances and construct a map of Great Britain.

13.7 In ratio MDS and interval MDS, find the LS estimates of \(\alpha \) and \(\beta \) in each case, where the minimizing criterion is the weighted loss function (13.14).
Committee Machines

14.1 Introduction

One of the most important research topics in machine learning is the problem of how to lower the generalization error of a learning algorithm, either by reducing the bias or the variance (or both). A major complication of any attempt to reduce variance or bias (or both) is that the definitions of “bias” and “variance” of a classification rule are not as obvious as they are in regression. In fact, there have been several conflicting suggestions for the bias-variance decomposition for classification problems.

Such a desire to control bias and variance, and, hence, generalization error, is related to the idea of “instability” of a prediction or classification method. If a small perturbation of the learning set induces major changes in the resulting predictor or classifier, we say that the associated regression or classification method is unstable. Unstable predictors or classifiers have high variance (due to overfitting) and low bias. High bias occurs for predictors or classifiers that underfit the data. Decision trees and neural nets are, by this definition, unstable, whereas linear discriminant analysis is an example of a stable classifier with low variance and possibly high bias.

In this chapter, we show that the instability of a predictor or classifier (or, more generally, of any learning algorithm) is an important tool that can be
used to improve the accuracy of that learning algorithm. Novel approaches to the problem of predictor instability include bagging and boosting. Both of these approaches exploit the presence of instability in order to create a more accurate learning method (i.e., predictor or classifier). By perturbing the learning set, these methods generate an ensemble of different base predictors or base classifiers, which are then combined into a single combined predictor or combined classifier, as appropriate. The success of such combined learning methods — called ensemble learning or committee machines — often depends upon the degree of instability of the base predictors or classifiers.

Bagging and boosting can be distinguished from each other by the manner in which their respective perturbations are generated. The bagging process (Breiman, 1996b) generates perturbations by random and independent drawings from the learning set, whereas the boosting process (Freund and Schapire, 1998) is deterministic and generates perturbations by successive reweightings of the learning set, where current weights depend upon the misclassification history of the process. Bagging was designed specifically to reduce variance, whereas boosting appears to have more of a bias-reducing flavor. Another example of a committee machine that will be described in this chapter is random forests (Breiman, 2001b).

14.2 Bagging

The word bagging is an acronym for the phrase “bootstrap aggregating” (Breiman, 1996b). Bagging was the first procedure that successfully combined an ensemble of learning algorithms to improve performance over a single such algorithm.

Bagging is most successful if the predictor is unstable. If the learning procedure is stable, the bagged predictor will not differ much from the single predictor and may even weaken its performance somewhat. However, when the learning procedure is unstable, we tend to see a significant improvement for the bagged predictor over the original unstable procedure.

As before, we denote the learning set of n observations by

$$
\mathcal{L} = \{(X_i, Y_i), i = 1, 2, \ldots, n\},
$$

where the $\{Y_i\}$ are continuous responses (a regression problem) or unordered class labels (a classification problem). Bagging takes an ensemble of learning sets, $\{\mathcal{L}_k\}$, say, each containing n observations drawn from the same underlying distribution as those in \mathcal{L}, and combines the predictors from those learning sets in such a way that the resulting predictor improves upon that obtained from the single learning set \mathcal{L}.

The bagging procedure starts by drawing B bootstrap samples from \mathcal{L}. Each bootstrap sample is obtained by repeated sampling with replacement
from \mathcal{L}. In other words, we place equal probabilities on the sample points (i.e., $p_i = 1/n$ on the ith observation (X_i, Y_i) in $\mathcal{L}, i = 1, 2, \ldots, n$) and then sample n times with replacement from this distribution. We denote the bootstrap samples by

$$
\mathcal{L}^{*b} = \{(X_i^{*b}, Y_i^{*b}), i = 1, 2, \ldots, n\}, \ b = 1, 2, \ldots, B. \tag{14.2}
$$

Some of the original learning set will appear in \mathcal{L}^{*b}, some will appear several times, whereas others will not appear at all. What we do next depends upon whether we are dealing with a classification or a regression problem.

14.2.1 Bagging Tree-Based Classifiers

In the classification case, $Y_i \in \{1, 2, \ldots, K\}$ is a class label attached to X_i. We grow a classification tree T^{*b} from the bth bootstrap sample \mathcal{L}^{*b}. To reduce bias, we grow this tree very large without pruning. Suppose (X, Y) is independently drawn from the same joint distribution as the members in \mathcal{L}. We drop X down each of the B bootstrap trees. For each tree, when X falls into a terminal node associated with a particular class, we say that the tree “votes” for that class. We then predict the class of X by the class that receives the most number of votes over all B trees. We call this classification procedure the **majority-vote rule**.

In order to evaluate the bagging method, we need an independent test set of observations. The fact that we are sampling (with replacement) from \mathcal{L} means that about 37% of the observations in \mathcal{L} will not be chosen for each bootstrap sample (see Section 5.5.3). Let $\mathcal{L} - \mathcal{L}^{*b}$ denote those observations in \mathcal{L} that are not selected for the bth bootstrap sample \mathcal{L}^{*b}. If the observation (X, Y) is in $\mathcal{L} - \mathcal{L}^{*b}$ (which we write as $(X, Y) \notin \mathcal{L}^{*b}$), then (X, Y) is called an **out-of-bag (OOB)** observation. The collection of OOB observations (which we call an OOB sample) corresponding to the bootstrap sample \mathcal{L}^{*b} will function as an independent test set.

The OOB approach to estimating generalization error is equivalent to using an independent test set of the same size. The OOB approach is also able to use all the data, rather than partitioning the data into a separate (and smaller) learning set and a test set, and it does not require any additional computing as is needed for cross-validation.

Suppose $(X_i, Y_i) \notin \mathcal{L}^{*b}$. We drop X_i down the classification tree T^{*b} grown from \mathcal{L}^{*b}, and predict the class label for X_i. This acts as a classification vote on X_i. Suppose there are $n_i (\leq B)$ trees for which X_i is a member of the corresponding OOB sample. Drop X_i down each of those n_i trees and aggregate the votes for each of the K classes. Summarize the results by the K-vector,

$$
\hat{p}(x_i) = (\hat{p}_1(x_i), \hat{p}_2(x_i), \cdots, \hat{p}_K(x_i))^T, \tag{14.3}
$$
where $\hat{p}_k(x_i)$ is the proportion of the n_i trees that votes for $X_i = x_i$ to be a member of the kth class Π_k. The proportion $\hat{p}_k(x_i)$ is an estimate of the true probability, $p(\Pi_k|x_i) = \text{Prob}(X \in \Pi_k|X = x_i)$, that the observed x_i belongs to Π_k. The OOB classifier, $C_{\text{bag}}(x_i)$, of x_i is then obtained by the majority-vote rule:

$$C_{\text{bag}}(x_i) = \arg\max_k \{ \hat{p}_k(x_i) \}.$$

(14.4)

That is, it assigns x_i to that class that enjoys the largest number of votes. We repeat this for every observation in L. The OOB misclassification rate,

$$PE_{\text{bag}} = n^{-1} \sum_{i=1}^{n} I[C_{\text{bag}}(x_i) \neq y_i],$$

(14.5)

is the proportion of times that the predicted class, $C_{\text{bag}}(x_i)$, is different from the true class, $Y = y_i$, for all observations in L, and is an unbiased estimate of generalization error.

Examples of Bagging Classification Trees

As a first example of bagging classification trees, we estimate the OOB misclassification rate for the binary classification data set *spambase*, which consists of 57 variables measured on 4,601 messages, each one classified as *spam* (1,813 messages) or *e-mail* (2,788 messages). If we declare every message as non-spam, we get a baseline misclassification rate of $1 - 1813/4601 = 0.394$.

We grew different-sized classification trees (stumps, 4-node trees, 8-node trees, and largest-possible trees) and then bagged them using $B = 10(25)200$ bootstrap replications; each combination of tree-size and B was then repeated 10 times. Figure 14.1 plots the average OOB misclassification rates for bagging different size trees against B (left panel) and parallel boxplots for bagging the largest-possible trees (right panel). We see that bagging stumps is obviously a bad idea. Otherwise, as the complexity of the tree increases, the OOB misclassification rates decrease significantly.

In Figure 14.2, we display the results of bagging classification trees for the two-class data sets *BUPA liver disorders* and *Wisconsin diagnostic breast cancer (wdbc)* and for the multiclass data sets *glass* (six classes) and *yeast* (ten classes) as parallel boxplots. For each data set, the largest-possible tree was grown, the number of bootstrap samples was varied as $B = 10,25(25)200$, and for each B, we repeated the bagging procedure 10 times. The results, which are representative of many different data sets, show that for binary classification problems, as we increase B, the misclassification rate declines, until about $B = 50$, when it appears to stabilize. For multiclass classification problems, and especially in situations where there
14.2 Bagging

FIGURE 14.1. Bagging classification trees for the spambase data. Left panel: Comparison of average profiles (over 10 repetitions) of out-of-bag (OOB) misclassification rates plotted against number of bootstrap samples ($B = 10, 25(25)200$) for different size trees (stumps, 4-node trees, 8-node trees, and the largest-possible trees). Notice how poorly stumps perform as base classifiers, and misclassification rates decline as tree complexity increases. Right panel: Parallel boxplots of OOB misclassification rates for the spambase data plotted against the number of bootstrap samples B, where largest-possible trees were grown.

are a large number of classes, the misclassification rate tends to stabilize when B is taken to be 75–100.

14.2.2 Bagging Regression-Tree Predictors

In the regression case, $Y_i \in \mathbb{R}$. Bagging regression-tree estimates is a very similar procedure to that applied to classification trees, but instead of using a voting mechanism to determine the predicted class of an observation, we average the predicted response values obtained from the individual regression trees.

Specifically, from the bth bootstrap sample L^b, we grow a regression tree T^b and obtain the predictor $\hat{\mu}^b(X)$. We drop X down each of the B regression trees and then average the predictions,

$$\hat{\mu}_{\text{bag}}(X) = B^{-1} \sum_{b=1}^{B} \hat{\mu}^b(X),$$

(14.6)

to arrive at a bagged estimate of Y.

To evaluate the predictive abilities of a bagged regression estimate such as (14.6), we again use the OOB approach. Let $(X_i, Y_i) \in \mathcal{L}$. We drop X_i down each of the n_i bootstrap trees whose OOB samples contain (X_i, Y_i). The OOB regression estimate, $\hat{\mu}_{\text{bag}}(X_i)$, is found by averaging the n_i bootstrap
FIGURE 14.2. Parallel boxplots of out-of-bag (OOB) misclassification rates plotted against the number of bootstrap samples B. Top-left panel: BUPA liver disorders ($K = 2$); top-right panel: WDBC ($K = 2$); bottom-left panel: Glass ($K = 6$); bottom-right panel: Yeast ($K = 10$), where K is the number of classes. For each $B = 10, 25(25)200$, 10 repetitions were generated.

Predicted values; that is,

$$\hat{\mu}_{\text{bag}}(X_i) = n_i^{-1} \sum_{b \in N_i} \hat{\mu}^b(X_i),$$

(14.7)

where N_i is the set of n_i bootstrap samples that do not contain (X_i, Y_i). We repeat this procedure for all observations in L. We then estimate the generalization error of the bagged estimate by the OOB error rate,

$$PE_{\text{bag}} = n^{-1} \sum_{i=1}^{n} (Y_i - \hat{\mu}_{\text{bag}}(X_i))^2,$$

(14.8)
which is computed as the mean-squared-error between the bagged estimates and their true response values.

14.3 Boosting

The underlying notion of “boosting” is to enhance the accuracy of a “weak” binary classification learning algorithm. This idea originated in a field known in machine learning as “probably approximately correct” (PAC) learning (Valiant, 1984). The first successful boosting algorithms were provided by Schapire (1990) and Freund (1995). The name derives from the idea of creating a “strong” classifier by substantially improving or “boosting” the performance of a single “weak” classifier, where improvement is obtained by combining the classification votes from an ensemble of similar classifiers.

We define a weak (or base) classifier to be one that correctly classifies slightly more than 50% of the time (i.e., a little better than random guessing). Boosting algorithms combine \(M \) base classifiers \(C_1, C_2, \ldots, C_M \) in the following way. For an observation \(X = x \), the boosted classifier is given by:

\[
C_\alpha(x) = \text{sign}\{f_\alpha(x)\},
\]

(14.9)

where

\[
f_\alpha(x) = \sum_{j=1}^{M} \left(\frac{\alpha_j}{\sum_{j'} \alpha_{j'}} \right) C_j(x),
\]

(14.10)

and \(\alpha = (\alpha_1, \cdots, \alpha_M)^r \) is an \(M \)-vector of constant coefficients.

Suppose, for example, we wish to determine whether a particular e-mail is spam (i.e., junk e-mail) or not without actually opening it. If we decide it is spam, we delete the e-mail without looking at it; if not, we read it. Suppose we have software that automatically detects whether an e-mail contains any particular word, say, the word “money,” and then classifies the e-mail as spam or not spam depending upon whether that word is or is not in the e-mail. This is an example of a weak classifier because by itself it may classify too many legitimate e-mails as spam and give the appearance of pure guessing. We could improve upon this classifier by combining it with other weak classifiers each of which detects one word thought to characterize spam, say, “free,” “order,” “credit,” and so on. We would then expect the resulting combined classifier to be a much stronger classifier than any of them separately.

More often than not, boosting (and the other ensemble methods) is applied to classifiers derived from decision trees. The weak classifier described above is an example of a “stump” classifier, a decision tree having only a single split and two terminal nodes. In that example, the stump classifier...
asks only one question: Does the e-mail contain the word “money”? If it does, classify it as spam (i.e., +1); otherwise, as not spam (i.e., −1). More complicated problems may require a weak classifier to be derived from two- or three-level decision trees. A strong classifier has a much smaller misclassification rate using a test set of observations.

Suppose, in the spam/not spam example, we use four (M = 4) stump classifiers that separately use the words “money,” “free,” “order,” and “credit” to characterize spam. Define these classifiers as follows:

\[
C_1(\text{e-mail}) = \begin{cases}
 +1 & \text{if e-mail contains word “money”} \\
 -1 & \text{otherwise}
\end{cases}
\]

\[
C_2(\text{e-mail}) = \begin{cases}
 +1 & \text{if e-mail contains word “free”} \\
 -1 & \text{otherwise}
\end{cases}
\]

\[
C_3(\text{e-mail}) = \begin{cases}
 +1 & \text{if e-mail contains word “order”} \\
 -1 & \text{otherwise}
\end{cases}
\]

\[
C_4(\text{e-mail}) = \begin{cases}
 +1 & \text{if e-mail contains word “credit”} \\
 -1 & \text{otherwise}
\end{cases}
\]

Now, linearly combine these four classifiers by using nonnegative weights summing to one. Suppose the combined classifier is

\[
f(\text{e-mail}) = 0.2C_1(\text{e-mail}) + 0.1C_2(\text{e-mail}) + 0.4C_3(\text{e-mail}) + 0.3C_4(\text{e-mail}).
\]

How should an e-mail having the words “money,” “order,” and “credit” be classified? We calculate \(f(\text{e-mail}) = 0.2 - 0.1 + 0.4 + 0.3 = 0.8\). The classification is given by \(\text{sign}\{f(\text{e-mail})\} = \text{sign}\{0.8\} = +1\), and so we classify the e-mail as spam.

Different versions of boosting have been applied to a wide variety of data sets with enormous success; consequently, this class of improvement algorithms has become an important research topic in both the statistics and machine learning communities. The most well-known of these boosting algorithms is AdaBoost (Freund and Schapire, 1997).

14.3.1 AdaBoost: Boosting by Reweighting

AdaBoost (an acronym for “adaptive boosting”) is an algorithm that is designed to improve performance in binary classification problems; it is generally regarded as the first step toward a truly practical boosting procedure. Details of the algorithm are shown in Table 14.1. It is also known as “Discrete AdaBoost” (because the goal is to predict class labels). A simple generalization of AdaBoost to more than two classes is called “AdaBoost.M1.” AdaBoost was originally devised with the

1. Input: $\mathcal{L} = \{(\mathbf{x}_i, y_i), i = 1, 2, \ldots, n\}$, $y_i \in \{-1, +1\}$, $i = 1, 2, \ldots, n$, $\mathcal{C} = \{C_1, C_2, \ldots, C_M\}$, $T =$ number of iterations.

2. Initialize the weight vector: Set $\mathbf{w}_1 = (w_{11}, \ldots, w_{1n})^T$, where $w_{i1} = 1/n$, $i = 1, 2, \ldots, n$.

3. For $t = 1, 2, \ldots, T$:
 - Select a weak classifier $C_{j_t}(\mathbf{x}) \in \{-1, +1\}$ from \mathcal{C}, $j_t \in \{1, 2, \ldots, M\}$, and train it on the learning set \mathcal{L}, where the ith observation (\mathbf{x}_i, y_i) has (normalized) weight w_{it}, $i = 1, 2, \ldots, n$.
 - Compute the weighted prediction error:
 \[PE_t = PE(\mathbf{w}_t) = E_w \{ I_{\{Y_i \neq C_{j_t}(\mathbf{x}_i)\}} \} = \left(\frac{\mathbf{w}_t^T \mathbf{e}_t}{W_t} \right) \mathbf{e}_t, \]
 where E_w indicates taking expectation with respect to the probability distribution of $\mathbf{w}_t = (w_{1t}, \ldots, w_{nt})^T$, and \mathbf{e}_t is an n-vector with ith entry $[\mathbf{e}_t]_i = I_{\{Y_i \neq C_{j_t}(\mathbf{x}_i)\}}$.
 - Set $\beta_t = \frac{1}{2} \log \left(\frac{1 - PE_t}{PE_t} \right)$.
 - Update weights:
 \[w_{i,t+1} = \frac{w_{it}}{W_t} \exp\{2\beta_t I_{\{Y_i \neq C_{j_t}(\mathbf{x}_i)\}}\}, \quad i = 1, 2, \ldots, n, \]
 where W_t is a normalizing constant needed to ensure that the vector $\mathbf{w}_{t+1} = (w_{1,t+1}, \ldots, w_{n,t+1})^T$ represents a true weight distribution over \mathcal{L}; that is, $1_n^T \mathbf{w}_{t+1} = 1$.

4. Output: $\text{sign}\{f(\mathbf{x})\}$, where $f(\mathbf{x}) = \sum_{t=1}^T \beta_t C_{j_t}(\mathbf{x}) = \sum_{j=1}^M \alpha_j C_j(\mathbf{x})$, and $\alpha_j = \sum_{t=1}^T \beta_t I_{\{j_t = j\}}$.

specific intention of driving the prediction error from the learning set (i.e., the learning set error) quickly to zero.

In the AdaBoost algorithm for binary classification, we start with a learning set $\mathcal{L} = \{(\mathbf{x}_i, y_i)\}$, where \mathbf{x}_i is an r-vector of inputs and $y_i \in \{-1, +1\}$ is a class label. AdaBoost weights the observations in \mathcal{L} by a weight vector, $\mathbf{w} = (w_1, w_2, \ldots, w_n)^T$, and these weights are recalculated at each iteration. Initially, we use equal weights for each observation in \mathcal{L}.

At each iteration, the algorithm selects a “weak” classifier from a very large, but finite, set \mathcal{C} of all possible weak classifiers. The finiteness assumption always holds for classification problems where each classifier in \mathcal{C} has a finite set of possible outputs. For example, in binary classification, at most 2^n distinct labelings can be applied to the learning set. Because \mathcal{C} is finite, it is entirely possible that, in constructing the ensemble, certain of
the weak classifiers in C will be selected more than once (i.e., the smaller the set, the more likely that repetitions will occur).

At the tth iteration of AdaBoost, we modify the weighting system so that observations misclassified in the previous iteration will be more heavily weighted in the current iteration. In this way, AdaBoost tries hard to classify correctly any previously misclassified observations.

After T iterations, we have a sequence, $C_{j_1}(x), C_{j_2}(x), \ldots, C_{j_T}(x)$, of weak classifiers, where $j_t \in \{1, 2, \ldots, M\}$, $t = 1, 2, \ldots, T$. If the weak classifier C_j is selected multiple times in the process of the algorithm, then the coefficient for that component in the combined classifier is the sum of those coefficients obtained at all iterations when C_j was chosen. If the classifiers are small decision trees (as they often are when boosting is applied), then the jth weak classifier can be parameterized as $C_j(x; a_j)$, where the parameter vector a_j contains information on the splitting variables, split points, and the mean at each terminal node of the jth tree.

The value of the boosted classifier $C(x)$ depends upon the sign of the linear combination, $f(x) = \sum_{j=1}^{M} \alpha_j C_j(x)$, of the weak classifiers, where α_j is the coefficient for C_j. In other words, $C(x) = +1$ if $f(x) > 0$, and -1 otherwise. AdaBoost does not restrict the sum of the coefficients $\{\alpha_j\}$, which may grow to be very large; all AdaBoost assumes is that f is in the linear span of the class C of weak classifiers. If we restrict the coefficients to be nonnegative with a fixed sum λ, say, this produces a regularized version of AdaBoost, where λ acts as a smoothing parameter; in this case, $f \in \text{conv}(C)$, the convex hull of C (see, e.g., Lugosi and Vayatis, 2004).

14.3.2 Example: Aqueous Solubility in Drug Discovery

In order to identify high-quality candidate drugs, pharmaceutical companies need to assess the absorption, distribution, metabolism, and excretion (ADME) characteristics of compounds, including biopharmaceutical properties such as aqueous solubility, permeability, metabolic stability, and in vivo pharmacokinetics. One of the most fundamental tests to perform is that of solubility of a compound in water (or a solvent mixture), which now takes place routinely prior to biological testing. In fact, “aqueous-solubility” testing now usually occurs very early within the drug discovery and development process. Moreover, the Biopharmaceutics Classification System classifies compounds based upon their solubility and other properties.

Because patients tend to prefer oral medication, the commercial viability of a candidate drug would be greatly improved if the drug were soluble in water and could be delivered orally. For compounds that are not water soluble, results from experimental in vitro screening assays (which test the
ability of a compound to dissolve in water) may not be reliable or reproduc-ducible and can lead to biological problems and increased drug-development costs. In recent years, the pharmaceutical industry has seen more candidate drugs that are highly insoluble, and this has become a real problem in drug development.

This example examines a data set involving 5,631 compounds on which an in-house solubility screen was performed.\footnote{These data are available at the book’s website under the filename soldat. The data are part of the R-package 	exttt{ada} (Culp, Johnson, and Michailidis, 2006), which implements several versions of boosting, and can be downloaded from the website \url{www.stat.lsa.umich.edu/Culp/math/ada/img.html}. The description of the data set is taken from that article. The author thanks Mark V. Culp for discussions about the 	exttt{ada} package and the 	exttt{soldat} data set.} Based upon this screen, compounds were categorized as either “insoluble” (3,493 compounds) or “soluble” (2,138 compounds). Then, for each compound, 72 continuous, noisy structural variables were recorded. One variable (71) had a large number (14\%) of missing data and so was deleted from the data set. For proprietary reasons, the identities of the variables and compounds were not made publicly available.

The 5,631 compounds were randomly separated into a learning set (2,815 compounds) and a test set (2,816 compounds). We applied the discrete \texttt{AdaBoost} algorithm (using an exponential loss function; see below) and the results are displayed in Figure 14.3, where we plot the misclassification rate of both the learning set and the test set.

When we use “stumps” as classification trees in this example (left panel), the misclassification rates of both the learning set and the test set continue to decline, even after 2,000 iterations of \texttt{AdaBoost}, where the misclassification rates are 0.2298 for the learning set and 0.2553 for the test set. When we use 16-node trees (right panel), we see a different picture: after 500 boosting iterations, the learning set has a misclassification rate of zero, reached at iteration 312, and the test set declines to about 0.205.

In Figure 14.4, we show a comparison of test-set misclassification rates using different size trees: stumps (red curve), 4-node trees (magenta), 8-node trees (blue), and 16-node trees (green). We see that using \texttt{AdaBoost} on stumps actually performs the worst, whereas 16-node trees perform best. However, boosting 32-node trees (not shown here) yields slightly higher test-set misclassification rates than does boosting 16-node trees.

\textit{14.3.3 Convergence Issues and Overfitting}

Empirical experiments have demonstrated that \texttt{AdaBoost} tends to be quite resistant to overfitting: the test set error (an estimate of \textit{generalization}
error) almost always continues to decline (and then levels off) as we increase the number of classifiers involved even after the learning-set error has been driven to zero! Recall that in a typical classification scenario, test-set error decreases for a little while and then begins to increase as the classifier becomes more and more complex. The discovery that AdaBoost is resistant to overfitting led to it being called the “most accurate, general-purpose, classification algorithm available” (Breiman, 2004).

Since AdaBoost was introduced, hundreds of articles have been published attempting to penetrate the “mysterious” secret of why it appears to be resistant to overfitting. Many explanations have been attempted, but the question still remains open. This mystery has been described as “the most important unsolved problem in machine learning” (Breiman, 2004).

This does not mean, however, that AdaBoost never overfits. Indeed, examples of AdaBoost have been constructed in which the test-set error increases (i.e., AdaBoost does overfit) as the number of iterations increases.

In a simulated 2D example of 150 observations drawn from each of two circular-Gaussian distributions with some overlap, Breiman (2002) reports that the test-set error decreases to a minimum after about 5,000 iterations, but then reverses direction and starts to increase. Friedman, Hastie, and Tibshirani (2000) observed much the same behavior when they applied AdaBoost to 400 observations drawn from each of two 10-dimensional,
Breiman (2004) suggests that the AdaBoost process may actually consist of two stages. In the first stage (which may consist of several thousand iterations), the test-set error approaches close to the optimal Bayes error, mimicking its population (i.e., infinite sample size n) behavior. (In its population version, Breiman showed that AdaBoost is Bayes consistent; that is, its risk converges in probability to the Bayes risk.) If, for whatever reason, convergence fails, its test-set error then starts increasing. This second-stage behavior is not yet understood.

Further study of the convergence problem has shown that, for finite sample sizes, AdaBoost can be Bayes consistent only if it is regularized; see, for example, the articles on boosting in the February 2004 issue of *The Annals of Statistics*. One possible type of regularization for AdaBoost is that of stopping the algorithm very early (e.g., after 10 or 100 iterations), rather than letting it run forever; essentially, the argument is that overfitting will occur as soon as the classifier becomes too complicated and that continuing to run the algorithm will only produce larger misclassification rates. Jiang (2004) and Bickel and Ritov (2004) show that for any finite n, there is a stopping time t_n such that if the algorithm is stopped at t_n iterations, then AdaBoost will be Bayes consistent. The question then becomes, if the strategy is to stop AdaBoost early, how does one determine
the best time to stop (i.e., an optimal t_n)? One suggested method is to use a data-based procedure, such as cross-validation. Other regularized versions of AdaBoost are discussed in Section 14.3.6.

There is empirical evidence (Mease and Wyner, 2007) that shows that early stopping may not be the panacea needed to prevent overfitting; indeed, the evidence suggests that overfitting tends to occur very early in the life of the algorithm and that running the algorithm for a much larger number of iterations actually reduces the amount of overfitting (to a level close to that of the Bayes risk) rather than increases it.

14.3.4 Classification Margins

One interesting argument put forward to explain why boosting works so well in classification problems involves the concept of a “margin” (Schapire, Freund, Bartlett, and Lee, 1998).

Let C be the set of all potential weak classifiers. For example, weak classifiers could be chosen from all those decision trees that have a specified number of terminal nodes. Consider a boosted classifier f of the type (14.9), where the weights, $\{\alpha_t\}$, are each nonnegative and sum to one. Then, $f \in \text{conv}(C)$ is a weighted average of weak classifiers from C. If the weak classifiers are defined by a voting scheme, then the prediction is that label y that receives the highest vote from the weak classifiers.

Let $g(x, y)$ denote a classifier that predicts the label y for an observation x. Then, g predicts y iff $g(x, y) > \max_{y' \neq y} g(x, y')$. The classification margin of the labeled observation (x, y) is defined as

$$m(x, y) = g(x, y) - \max_{y' \neq y} g(x, y').$$

(14.11)

Thus, if y is the correct label for x, then g misclassifies x iff $m(x, y) < 0$. If $g(x, y) = \sum_t I_{[C_j(x) = y]}$ denotes the total number of votes for y obtained from all the weak classifiers, then the classification margin is the amount by which the total vote for the correct class y exceeds the highest total vote for any incorrect class. That is,

$$m(x, y) = \sum_t I_{[C_j(x) = y]} - \max_{y' \neq y} \left\{ \sum_t I_{[C_j(x) = y']} \right\}.$$

(14.12)

Thus, an observation (x, y) is misclassified by the voting scheme iff its margin is not positive. Because the observation (x, y) is misclassified by the boosted classifier f only if $y f(x) \leq 0$, we can think of the margin of (x, y) with respect to f as $m(x, y) = y f(x)$. The margin of the boosted classifier f is the minimum margin over all n observations in L.

In binary classification problems (with labels -1 and $+1$), the margin can be viewed in the following terms: the bigger the margin, the more
“confidence” we have that the observation has been correctly classified. If the margin is large but negative, this tells us we are very confident that the observation has been misclassified. Small margins indicate doubtful reliance on classifications.

To assess the performance of a boosted classifier, Schapire et al. (1998) derive a probabilistic upper-bound on its generalization error. The upper bound turns out to depend upon the sum of the empirical margin distribution, \(n^{-1} \sum_{i=1}^{n} I_{[y_i f(x_i) \leq \delta]} \), and the VC-dimension of the class of boosted classifiers (Vapnik and Chervonenkis, 1971), but is independent of the number of weak classifiers being combined. From the upper-bound, they argue that the bigger the margins (over a learning set), the lower the generalization error of the classifier. They then conjecture that AdaBoost is successful because it produces large margins for the learning set.

Unfortunately, the probabilistic upper-bound only tells part of the story. Schapire et al. (1998) realized that their bound is much too loose to be useful for a majority-vote classifier. Although not asymptotic by construction (the bound is not dependent upon the size of the learning set), empirical results show that for the bound to be of any practical use, the size of the learning set would have to be huge (of the order tens of thousands). Constructing tighter upper bounds on the generalization error remains an open problem (see, e.g., Koltchinskii and Panchenko, 2002).

Breiman (1999) demonstrated also that high margins alone cannot explain the success of AdaBoost. Using a game-theoretic argument, he constructed a boosted classifier that not only had large margins (higher indeed than obtained by AdaBoost on each of a number of data sets) but also had higher generalization error in each case.

14.3.5 AdaBoost and Maximal Margins

So far, we have adopted a “nonoptimal” point of view (or strategy) for AdaBoost, where it is only necessary to provide a “sufficiently good” classifier at each iteration (not necessarily the best one) from the set \(C \) of weak classifiers; examples of nonoptimal AdaBoost include decision trees and neural networks. We can also identify an “optimal” AdaBoost strategy, where the best weak classifier is selected at each iteration from \(C \). This strategy has the effect of introducing an optimality step into the AdaBoost algorithm, so that, in principle, specific weak classifiers can be chosen again and again from \(C \).

From the above discussion, we know that AdaBoost induces “large” margins. In fact, if \(\rho \) is the maximum achievable margin, then AdaBoost produces a margin \(m(x, y) \) that is bounded below and above by
The margin achieved by AdaBoost as a function of the maximal-achievable margin ρ. Shown are the upper bound (green line), the lower bound (red curve), and the line $\rho/2$ (blue line). The lower bound was derived by Rätsch and Warmuth (2005).

Recall that the closer a classifier gets to the maximum margin, the more confidence we have in that classifier. Even though AdaBoost was not specially designed to attain the maximum margin (margin theory came just after the introduction of AdaBoost), there is widespread belief that (as a by-product of its remarkable practical properties) AdaBoost also maximizes the margin. Rätsch and Warmuth (2005) noted, however, that empirical evidence (simulations and Figure 14.3) showed that might not always be the case.

The conjecture that AdaBoost does not always attain the maximum possible margin turns out to be true (Rudin, Daubechies, and Schapire, 2004). Because the margin does not increase monotonically as the iterations
proceed, standard methods for examining convergence properties of AdaBoost margins are not applicable. Instead, following the remarkable work by Rudin et al., we look at the limiting performance of the sequence of weight vectors \(\{w_t\} \) that defines AdaBoost.

Let \(Q = (Q_{ij}) \) be an \((n \times M)\)-matrix, where \(Q_{ij} = y_i C_m(x_i) \), \(i = 1, 2, \ldots, n \), \(j = 1, 2, \ldots, M \), are the margin values. The columns of \(Q \) are the \(M \) weak classifiers in \(C \), the rows are the \(n \) observations in \(L \), and \(Q_{ij} \) is +1 if \(x_i \) is correctly classified by the weak classifier \(C_j \) and −1 otherwise. In applications, the values of \(n \) and \(M \) may be huge; as a result, \(Q \) is a matrix that is unlikely to be used in practice. However, \(Q \) has proved most useful in understanding certain properties of AdaBoost.

If the learning algorithm selects classifier \(C_{jt} \), we can write \(Q_{ijt} = I_{[y_i = C_{jt}(x_i)]} - I_{[y_i \neq C_{jt}(x_i)]} = 1 - 2I_{[y_i \neq C_{jt}(x_i)]} = \frac{1}{2}(1 - Q_{ij}) \) into the weighted prediction error in Table 14.1 yields

\[
PE_t = \frac{1}{2} - \frac{1}{2} r_t, \tag{14.14}
\]

where

\[
r_t = [w_t^T Q]_{jt} = \sum_{i=1}^{n} w_{it} Q_{ijt} \tag{14.15}
\]

is the edge of \(C_{jt} \) over \(L \), and where the \(w_t \) are normalized. Thus, \(r_t \) shows how much \(C_{jt} \) varies from a pure-chance classifier.

The “edge” can be used to select a weak classifier from \(C \). Up to this point, we have not explained how to select an element of \(C \) at each iteration. Corresponding to the two types of AdaBoost strategies, we consider the following two selection rules:

optimal strategy: \(j_t \in \arg \max_j [w_t^T Q]_j \)

nonoptimal strategy: \(j_t \in \{j : [w_t^T Q]_j \geq \rho\} \),

where \(\rho \) is the maximum achievable margin for \(Q \). In other words, the optimal strategy selects the classifier from \(C \) that has the largest edge, whereas the nonoptimal strategy selects any classifier in \(C \) whose edge is at least \(\rho \).

The next step is to initialize the \(M \)-vector of coefficients by setting \(\beta_1 = 0 \). Substituting \(PE_t \) from (14.14) into the expression for the coefficient \(\beta_t \) in Table 14.1 yields

\[
\beta_t = \frac{1}{2} \log \left(\frac{1 + r_t}{1 - r_t} \right). \tag{14.16}
\]

By iterating on the update formula for the weights, we have that \(w_{it} \propto e^{-[Q\beta_t]_i} \), where \([Q\beta_t]_i = \sum_{j=1}^{M} y_i \beta_j C_j(x_i) \) is the \(i \)th entry of the \(n \)-vector
\(Q \beta_t \), and the proportionality factor does not involve the subscript \(i \). We can update \(\beta_t \) by the formula

\[
\beta_{t+1} = \beta_t + \delta_{j_t}
\]

(14.17)

where \(\delta_{j_t} \) is an \(M \)-vector with \(\beta_t \) in the \(j_t \)th position and zeroes in all other positions. The normalized weights \(\{ w_{it} \} \) can now be written as:

\[
w_{it} = \frac{e^{-[Q \beta_t]_i}}{\sum_{i'=1}^n e^{-[Q \beta_t]_{i'}}}, \quad i = 1, 2, \ldots, n.
\]

(14.18)

Note that the initialization step \(\beta_1 = 0 \) yields \(w_{i1} = 1/n, \quad i = 1, 2, \ldots, n \).

From (14.16) and the fact that the elements of \(Q \) are \(\pm 1 \), we have that

\[
e^{-Q_{ij_t} \beta_t} = \left(\frac{1 - r_t}{1 + r_t} \right)^{Q_{ij_t}/2} = \left(\frac{1 - Q_{ij_t} r_t}{1 + Q_{ij_t} r_t} \right)^{1/2},
\]

(14.19)

whence, the update for the weights is given by

\[
w_{i,t+1} = \frac{w_{it} e^{-Q_{ij_t} \beta_t}}{\sum_{i'=1}^n w_{i't} e^{-Q_{ij_t'} \beta_t}} \quad = \frac{w_{it}}{\sum_{i'=1}^n w_{i't} \left(\frac{1 - Q_{ij_t'} r_t}{1 + Q_{ij_t'} r_t} \right)^{1/2} \left(\frac{1 + Q_{ij_t} r_t}{1 - Q_{ij_t} r_t} \right)^{1/2}}.
\]

(14.20)

The first line uses (14.17); the second line divides both numerator and denominator by \(\sum_{i'=1}^n e^{-[Q \beta_t]_{i'}} \), and then uses (14.18); and the third line uses (14.19).

To simplify the denominator of (14.20), consider the two cases, \(Q_{ij_t} = -1 \) and \(Q_{ij_t} = +1 \), separately. Then, for each case, divide the summation into two sets of indices, \(\{ i' : Q_{ij_t} = -1 \} \) and \(\{ i' : Q_{ij_t} = +1 \} \). Let \(w_{-,t} = \sum_{i' : Q_{ij_t} = -1} w_{i't} \) and \(w_{+,t} = 1 - w_{-,t} \). On the set \(\{ i' : Q_{ij_t} = -1 \} \), we have \(r_t = 1 - 2w_{-,t} \), or \(w_{-,t} = \frac{1}{2}(1 - r_t) \). Similarly, on the set \(\{ i' : Q_{ij_t} = +1 \} \), we have \(w_{+,t} = \frac{1}{2}(1 + r_t) \). Simple algebra yields the update formula,

\[
w_{i,t+1} = \frac{w_{it}}{1 + Q_{ij_t} r_t}, \quad i = 1, 2, \ldots, n.
\]

(14.21)

Note that \(\sum_{i=1}^n w_{i,t+1} = 1 \). Thus, the weight vector \(w_t \) (at iteration \(t \)) in the \textsc{AdaBoost} algorithm can be expressed as a nonlinear iterated map (14.21) that connects \(w_{t+1} \) directly to \(w_t \), including renormalization.

The update formula (14.21) was discovered by Rudin, Daubechies, and Schapire (2004). The version derived here is for the nonoptimal \textsc{AdaBoost} strategy; the corresponding optimal strategy can be obtained by incorporating a step into the algorithm that, at each iteration, picks the weak
classifier from \mathcal{C} that has the largest edge and, hence, is furtherest away from a pure-chance classifier.

Rudin et al. showed that AdaBoost can be written as a dynamic system, which can be analyzed in terms of fixed points and stable limit cycles. AdaBoost is said to exhibit “cyclic behavior” if the same weak classifiers keep turning up again and again and the sequence of weight vectors keeps repeating with constant periodicity; that is, a cycle with period s (called an “s-cycle”) occurs if there exists an integer s such that, at some iteration t, $w_{t+s} = w_t$. Large-scale simulations have shown that it is not unusual for AdaBoost to produce periodic cycles in its weight vectors. A fixed point is produced if, at some iteration t, $w_{t+1} = w_t$.

Using specific low-dimensional examples that are simple enough for the details to be worked out completely, Rudin et al. showed that AdaBoost does not always converge to a maximum-margin solution. Instead, AdaBoost may converge to a solution whose margin is significantly below the maximum value. It may do this for nonoptimal AdaBoost even if optimal AdaBoost converges to a maximum-margin solution. AdaBoost can also operate in chaotic mode, where the algorithm moves into and out of cyclic behavior, possibly due to a sensitivity to initial conditions.

With so much attention paid to AdaBoost and maximum margins, it was only natural for alternative boosting algorithms to be designed specifically to maximize the margin. Such algorithms include arc-gv (Breiman, 1999) and AdaBoost* (Rätsch and Warmuth, 2002), neither of which are based upon coordinate-descent optimization. Two related algorithms, Coordinate-Ascent Boosting and Approximate Coordinate-Ascent Boosting algorithms (Rudin, Schapire, and Daubechies, 2004), do use a coordinatewise optimization method to find the classifier to maximize the margin.

14.3.6 A Statistical Interpretation of AdaBoost

Can we give a statistical interpretation of the AdaBoost algorithm? Friedman, Hastie, and Tibshirani (2000) showed that AdaBoost is equivalent to running a coordinate-descent algorithm to fit an additive, logistic-discrimination model to the learning set. That article (and the discussants) had much to say about the philosophical, statistical, and computational issues of boosting; we outline some of their development work here.

Let $\{C_j, j = 1, 2, \ldots, M\}$ be a set of M base classifiers, where each $C_j \in \{-1, +1\}$. Consider the following linear combination of those classifiers:

$$f(x) = \sum_{j=1}^{M} \alpha_j C_j(x),$$

where the $\{\alpha_j\}$ are constants. This has the general form of an additive model. Because $\alpha_j C_j(x) \in \mathbb{R}$, the combined binary classifier is defined as
sign\{f(x)\}. We wish to find the \{\alpha_j\} and \{C_j\} in (14.22) to minimize some optimality criterion.

To evaluate the classifier \(f(x)\), we would like to minimize the number of misclassifications using a criterion based upon the usual zero-one loss function,

\[
L(y, f(x)) = I_{[y \neq f(x)]} = I_{[y f(x) \leq 0]}.
\]

Unfortunately, this minimization problem will not work. Instead, we use a smooth, strictly convex, differentiable loss function of the random variable \(Y f(X)\). In this case, the risk function,

\[
R(f) = E_{X,Y}\{L(Y, f(X))\},
\]

is constructed using the exponential loss function,

\[
L(y, f(x)) = e^{-y f(x)}, \quad y \in \{-1, +1\}.
\]

In (14.24), the expectation \(E\) is a population expectation (taken over the joint distribution of \(X\) and \(Y\)). If \(y \neq f(x)\), then, \(y f(x) \leq 0\), and so, \(e^{-y f(x)} \geq 1\). Thus,

\[
I_{[y f(x) \leq 0]} \leq e^{-y f(x)}
\]

(Schapire and Singer, 1998). It follows that the generalization error (in this case, the probability of misclassification),

\[
\text{Prob}\{Y \neq f(X)\} = E\{I_{[Y f(X) \leq 0]}\} \leq R(f),
\]

is bounded above by \(R(f)\).

The objective now is to minimize \(R(f)\). Because

\[
R(f) = E_X\{E_Y\{L(Y, f(x))|X\}\},
\]

it suffices to carry out the minimization conditional on \(X = x\); that is, we wish to find \(f(x)\) to minimize

\[
\ell(f(x)) = E_Y\{L(Y, f(x))|x\}.
\]

Plugging the exponential loss function (14.25) into (14.29), we have that

\[
E_Y\{e^{-Y f(x)}|x\} = e^{f(x)} \text{Prob}\{Y = -1|x\} + e^{-f(x)} \text{Prob}\{Y = 1|x\}.
\]

Differentiating (14.30) wrt \(f(x)\) and setting the result equal to zero gives

\[
e^{f(x)} \text{Prob}\{Y = -1|x\} - e^{-f(x)} \text{Prob}\{Y = 1|x\} = 0.
\]

Solving for \(f\) yields

\[
f(x) = \frac{1}{2} \log \left(\frac{\text{Prob}\{Y = 1|x\}}{\text{Prob}\{Y = -1|x\}} \right),
\]
which is half the log-odds of the class probabilities. Rearranging (14.32), we have

$$\text{Prob}\{Y = 1|x\} = \frac{1}{1 + e^{-2f(x)}}, \quad (14.33)$$

and

$$\text{Prob}\{Y = -1|x\} = \frac{1}{1 + e^{2f(x)}}, \quad (14.34)$$

which gives us the logistic regression model.

Next, consider an empirical version of the risk function (14.24) for the classifier f. In this case, we replace the expectation E by an average over the learning set; this gives us the learning-set prediction error for f:

$$PE = n^{-1} \sum_{i=1}^{n} L(y_i, f(x_i)) = n^{-1} \sum_{i=1}^{n} I[y_i \neq f(x_i)]. \quad (14.35)$$

Because of the nonconvexity of the indicator function, this makes the problem of minimizing (14.35) wrt f a computationally difficult task. A way of avoiding this problem is to minimize instead a convex upper bound on the indicator function (see, e.g., Schapire and Singer, 1998). First, note that $I[y_i \neq f(x_i)] = I[y_i, f(x_i) \leq 0]$; then, from the inequality (14.26), we have that

$$PE \leq n^{-1} \sum_{i=1}^{n} e^{-y_if(x_i)} \quad (14.36)$$

Thus, the exponential criterion (14.36) is a differentiable upper bound on PE.

Now, let the partial sum, $f_j(x_i) = \sum_{k=1}^{j} \alpha_k C_k(x_i)$, of (14.22) be an additive model in the first j classifiers, $j = 1, 2, \ldots, M$. We can write f_j as an update to f_{j-1}; that is,

$$f_j(x_i) = f_{j-1}(x_i) + \alpha_j C_j(x_i). \quad (14.37)$$

Then, the minimization problem can be formulated as

$$(\alpha_j, C_j) = \arg\min_{\alpha, C} \sum_{i=1}^{n} e^{-y_i[f_{j-1}(x_i) + \alpha C(x_i)]}. \quad (14.38)$$

AdaBoost solves this minimization problem using a coordinate-descent optimization algorithm; see Table 14.2. Friedman et al. (2000) call this procedure a forward-stagewise minimization (see Section 5.9.1) of an additive model; in this case, the model is an additive, logistic-regression model.

We solve (14.38) in two steps: first, by fixing α and minimizing (14.38) wrt C, and then, given C_j, minimizing the result wrt α to get α_j. Now,

$$e^{-y_i[f_{j-1}(x_i) + \alpha C(x_i)]} = w_{i,j-1} e^{-y_i \alpha C(x_i)}, \quad (14.39)$$
TABLE 14.2. Coordinate-descent algorithm for fitting an additive model.

1. Input: \(L = \{(X_i, Y_i), i = 1, 2, \ldots, n\} \), \(T \) = number of iterations, \(h(x; \theta) \) is a parametric function of \(x \) with unknown parameters \(\theta \).

2. Initialize: \(f_0(x) = 0 \).

3. For \(t = 1, 2, \ldots, T \):
 - Compute \((\beta_t, \theta_t) = \arg\min_{\beta, \theta} \sum_{i=1}^{n} L(y_i, f_{t-1}(x_i) + \beta h(x_i; \theta)) \).
 - Set \(f_t(x) = f_{t-1}(x) + \beta_t h(x; \theta_t) \).

4. Output: \(\hat{f}(x) = f_T(x) = \sum_{t=1}^{T} \beta_t h(x; \theta_t) \).

where \(w_{i,j-1} = e^{-y_i f_{j-1}(x_i)} \) is a weight. Using the fact that \(y_i C(x_i) = -1 \) if \(y_i \neq C(x_i) \) and +1 otherwise, the criterion is

\[
e^{\alpha} \sum_{i=1}^{n} w_{i,j-1} I[y_i \neq C(x_i)] + e^{-\alpha} \sum_{i=1}^{n} w_{i,j-1} \{1 - I[y_i \neq C(x_i)]\},
\]

which can be written as

\[
e^{-\alpha} \sum_{i=1}^{n} w_{i,j-1} + (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^{n} w_{i,j-1} I[y_i \neq C(x_i)].
\]

The only term depending upon \(C \) is the second sum, and so, we take

\[
C_j = \arg\min_{C} \left\{ \sum_{i=1}^{n} w_{i,j-1} I[y_i \neq C(x_i)] \right\}.
\]

Next, we substitute \(C_j \) from (14.42) into (14.41) and minimize the result \wrt \(\alpha \). Differentiating (14.41) \wrt \(\alpha \) and setting the result equal to zero, we get

\[-e^{-\alpha} \sum_{i=1}^{n} w_{i,j-1} + (e^{\alpha} + e^{-\alpha}) \sum_{i=1}^{n} w_{i,j-1} I[y_i \neq C(x_i)] = 0,
\]

which, solving for \(\alpha_j \), yields

\[
\alpha_j = \frac{1}{2} \log \left(\frac{1 - PE_j}{PE_j} \right),
\]

where

\[
PE_j = \frac{C_j}{\sum_{i=1}^{n} w_{i,j-1}} = \sum_{i=1}^{n} \left(\frac{w_{i,j-1}}{\sum_{\ell=1}^{n} w_{\ell,j-1}} \right) I[y_i \neq C_j(x_i)].
\]
is the weighted learning-set prediction error. Plugging (14.44) into (14.37) gives us the update formula for \(f(x_i) \):

\[
f_j(x_i) = f_{j-1}(x_i) + \frac{1}{2} \log \left(\frac{1 - PE_j}{PE_j} \right) C_j(x_i).
\] (14.46)

Using (14.37), we update the weights,

\[
w_{ij} = e^{-y_i f_j(x_i)} = w_{i,j-1} e^{-y_i \alpha_j C_j(x_i)}.
\] (14.47)

From above, we have that

\[-y_i C_j(x_i) = 2I[y_i \neq C_j(x_i)] - 1.\] (14.48)

Substituting (14.48) into (14.47) gives

\[w_{ij} = w_{i,j-1} e^{2\alpha_j I[y_i \neq C_j(x_i)]} e^{-\alpha_j}.
\] (14.49)

We can ignore the final term \(e^{-\alpha_j} \) in (14.49) as it is a multiplying constant with respect to all the weights and, thus, is removed when the weights are normalized. These results constitute the AdaBoost algorithm (see Table 14.1).

Notice that the coordinate-descent algorithm (Table 14.2) used in AdaBoost fits the terms in the additive model one term (or coordinate) at a time, not jointly. At each iteration, the procedure fits only a single term of the model, unlike a stepwise procedure, which readjusts all currently existing terms to compensate for adding a new term. This fitting procedure is contrary to the usual statistical way of fitting a model with many terms (see, e.g., Buja’s discussion of Friedman et al., 2000). If the model has a large number of terms, as happens with AdaBoost, then coordinatewise fitting, one term at a time, makes a lot more sense — computationally — than does fitting all the terms simultaneously, even though the latter would be optimal. Coordinatewise algorithms are typically quite efficient, converge fairly rapidly, and are simple to program. Thus, although coordinatewise fitting is a suboptimal procedure, it enables AdaBoost to work successfully.

14.3.7 Some Questions About AdaBoost

Since the Friedman, Hastie, and Tibshirani (2000) paper on the statistical view of boosting appeared, much has been written on the subject, with extensions in many directions. Many studies using real and simulated data have appeared that try to examine the statistical issues discussed in the Friedman et al. paper. Simulated data have been particularly important in understanding the behavior of AdaBoost because then the joint distribution of \((X, Y)\) is completely known. However, several major questions
about AdaBoost have been left unanswered by Friedman et al. and other researchers. Here, we offer brief discussions of a few of these issues.

Why Does AdaBoost Work?

This is probably the most important question of interest to users of AdaBoost. As we have seen, AdaBoost can be viewed as algorithmically similar to an approach consisting of an amalgam of three separate components: (1) an additive logistic regression model (e.g., a linear combination of classification trees), (2) an exponential loss criterion, and (3) a coordinatewise fitting procedure. This interpretation of AdaBoost has since encouraged researchers to develop other boosting algorithms by changing either the type of smooth, convex loss function used in the basic algorithm, or the numerical fitting procedure, or both.

But this still begs the question of why AdaBoost works so well. AdaBoost yields very small misclassification rates (compared with other competing classifiers) over a wide variety of data sets and is (in most cases) highly resistant to overfitting. As we have already noted, not all data sets are immune to overfitting; there are a number of specially constructed examples that show that AdaBoost can indeed overfit. What Friedman et al. gave us is a useful description of a way of thinking — statistically — about AdaBoost. But they did not address the main issue of why AdaBoost is so resistant to overfitting, whether for simulated or real data.

Since the appearance of that article, many suggestions have been made as to why AdaBoost is successful in classification situations. Some researchers have pointed to the stagewise fitting machine, or to the 0–1 loss function, or to the notion of margin, but none of these explanations are really convincing. It is still an open question as to why AdaBoost works as well as it does. Specifically, we would like to know under what conditions we can expect AdaBoost not to overfit, and under what conditions we should expect AdaBoost to overfit.

How Well Can AdaBoost Estimate Conditional Class Probabilities?

On a related problem to classification, we may wish to estimate the conditional class probability function,

\[p(x) = P\{Y = 1|x\}. \] \hspace{1cm} (14.50)

If we can estimate \(p(x) \) well across the entire range of \(x \), we would then be able to obtain a solution to the classification problem by choosing an appropriate quantile \(q \) of this function to be the class boundary; that is,
find q such that all cases in the region $p(x) > q$ are classified as positive (+1).

Building upon the connection between AdaBoost and logistic regression, Friedman, Hastie, and Tibshirani (2000, Algorithm 3) introduced the LogitBoost algorithm to estimate $p(x)$ directly using the link function (14.33); that is,

$$
\hat{p}_j(x) = \frac{1}{1 + e^{-2f_j(x)}},
$$

(14.51)

where f_j is the classifier evaluated at the jth iteration and which satisfies (14.37). LogitBoost is a modified version of the AdaBoost algorithm that uses stagewise minimization of the binomial log-likelihood loss function (in place of exponential loss). Thus, the current estimate of the boosted classifier $f_j(x)$ is transformed via the link (14.51) to produce a current estimate of $p(x)$.

In simulations, Mease, Wyner, and Buja (2007) show that boosting classification trees (and LogitBoost, in particular) is not well-suited to estimating $p(x)$, except for estimating the median of that probability function (and other special cases). Indeed, there is empirical evidence that boosting can severely overfit the estimate of $p(x)$ — even when the AdaBoost classification rule performs well with no appearance of overfitting. These results throw doubt on the popularly made claim that the success of boosting is due to its close relationship to logistic regression.

Do Stumps Make the Best Base Classifiers for AdaBoost?

It has been argued (Friedman, Hastie, and Tibshirani, 2000, pp. 360–361; Hastie, Tibshirani, and Friedman, 2001, Section 10.11) that larger trees introduce higher-level interaction effects among the input variables X. Thus, stumps represent main effects (X_j), the second level of 4 nodes represents first-order interactions (X_jX_k), the third level of 8 nodes represents second-order interactions ($X_jX_kX_\ell$), and so on. Such higher-order interactions, it is argued, then lead to overfitting. A corollary to this argument is that if we believe that the optimal Bayes risk can be closely approximated by an additive function of elements of X, then only stumps provide an additive model. Although larger trees are not ruled out as base classifiers, stumps, in this context, are said to provide an “ideal match” and, according to this argument, are to be preferred to larger trees.

Yet, simulations have shown (Mease and Wyner, 2007) that stumps do not necessarily provide the best base classifiers for AdaBoost even if the optimal Bayes risk is additive, and that larger trees can actually be more effective. The solubility example in Section 14.3.2 shows that using stumps
as base classifiers gives a relatively ‘poor’ performance when compared with the results from using larger trees with 4, 8, or 16 terminal nodes.

14.3.8 Gradient Boosting for Regression

We saw that one of the crucial steps in the derivation of AdaBoost was the minimization of $\ell(f(x))$. Given an exponential loss criterion and an additive model, the minimization procedure led to a coordinate-descent algorithm. In an extension of that idea, Friedman (2001) showed that other boosting strategies could be obtained by using different minimizing procedures combined with different loss functions. In particular, he adapted the well-known gradient-descent (also known as steepest-descent) algorithm to derive a more general boosting procedure — which he called “gradient boosting” — primarily for regression situations.

The general minimization problem is to find \hat{f} such that

$$\hat{f}(x) = \arg \min_f \ell(f(x)).$$

(14.52)

For a given x, let $f_0(x)$ be an initial guess and let $f_{t-1}(x)$ be the current approximation to $\hat{f}(x)$. According to the gradient-descent algorithm, we update $f_{t-1}(x)$ by moving a small step-size $\rho_t > 0$ in the direction of the negative gradient, and evaluate the result at $f_{t-1}(x)$. In other words, we set

$$f_t(x) = f_{t-1}(x) - \rho_t g_t(x),$$

(14.53)

where $-\rho_t g_t(x)$ is the best steepest-descent step direction toward $\hat{f}(x)$,

$$g_t(x) = \frac{\partial \ell(f(x))}{\partial f(x)} \bigg|_{f(x)=f_{t-1}(x)} = \frac{\partial E_Y \{L(Y,f(x)) \mid x \}}{\partial f(x)} \bigg|_{f(x)=f_{t-1}(x)} = E_Y \left\{ \frac{\partial L(Y,f(x))}{\partial f(x)} \bigg|_{f(x)=f_{t-1}(x)} \right\}$$

(14.54)

is the gradient (assuming differentiation and integration can be exchanged), and the step-size (or learning rate) ρ_t is determined from the line search,

$$\rho_m = \arg \min_{\rho} E_{X,Y} \{L(Y,f_{t-1}(X) - \rho g_t(X))\}.$$

(14.55)

Choice of ρ_m is crucial to the steepest-descent method: too large a ρ_m may lead to overshooting the minimum and possibly divergent oscillations, whereas too small a ρ_m will slow down the search and greatly increase computation time.

The expectations in (14.54) and (14.55) are estimated using the learning set $\mathcal{L} = \{(x_i, y_i), i = 1,2,\ldots, n\}$. For example, the gradient (14.54) at x_i
14.3 Boosting

is estimated by

$$g_t(x_i) = \frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \bigg|_{f(x_i) = f_{t-1}(x_i)}, \quad i = 1, 2, \ldots, n,$$

(14.56)

the step-size ρ_t by

$$\rho_t = \arg\min_{\rho} \sum_{i=1}^{n} L(y_i, f_{t-1}(x_i) - \rho g_t(x_i)),$$

(14.57)

and the update rule by $f_t = f_{t-1} - \rho_t g_t$, where $f_t = (f_t(x_i))$, $f_{t-1} = (f_{t-1}(x_i))$, and $g_t = (g_t(x_i))$ are each n-vectors.

The important point to note here is that the gradient vector g_t is only defined at a very specific set L of n points; we cannot use this formulation to compute the gradient and step-size at any set of points not in L.

Friedman (2001) found an ingenious way around this problem by approximating the negative gradient $-g_t(x)$ by a parametric function, $h(x; \theta_t)$, with parameter vector θ_t. For example, if we use a J-terminal-node regression tree as a base learner, then $h(x; \theta_t)$ takes the simple form (see Section 14.3),

$$h(x; \theta_t) = \sum_{j=1}^{J} \bar{y}_j I[x \in R_j],$$

(14.58)

where the components of the parameter vector $\theta_t = (\{\bar{y}_j, R_j\})^T$ define the entire tree: the $\{R_j\}$ are the J disjoint regions of input space and represent the terminal nodes of the tree, and the $\{\bar{y}_j\}$ are terminal-node means that define the region boundaries.

How can we choose θ_t? A simple idea is to choose θ_t so that $h(x; \theta_t)$ is most highly correlated with the negative gradient $-g_t(x)$. This is a least-squares minimization problem: define n “pseudoresponses” as $\tilde{y}_i = -g(x_i)$, $i = 1, 2, \ldots, n$, and solve

$$(\theta_t, \beta_t) = \arg\min_{\theta, \beta} \sum_{i=1}^{n} (\tilde{y}_i - \beta h(x_i; \theta))^2.$$ \hspace{1cm} (14.59)

The update formula is

$$f_t(x) = f_{t-1}(x) + \rho_t h(x; \theta_t),$$ \hspace{1cm} (14.60)

where ρ_t is found from the line search,

$$\rho_t = \arg\min_{\rho} \sum_{i=1}^{n} L(y_i, f_{t-1}(x_i) + \rho h(x_i; \theta_t)).$$ \hspace{1cm} (14.61)

These steps constitute the Gradient.Boost algorithm (Friedman, 2001, Algorithm 1) given in Table 14.3. If each $h(x; \theta_t)$ is a J-terminal-node

1. Input: \(L = \{(x_i, y_i), i = 1, 2, \ldots, n\} \), \(T \) = number of iterations.
2. Initialize: \(f_0(x) = \arg \min_{\rho} \sum_{i=1}^{n} L(y_i, \rho) \).
3. For \(t = 1, 2, \ldots, T \):
 - \(\tilde{y}_i = -g_t(x_i) = -\frac{\partial L(y_i, f_t(x_i))}{\partial f_t(x_i)} \Big|_{f(x_i) = f_{t-1}(x_i)}, \ i = 1, 2, \ldots, n, \)
 - Compute \((\theta_t, \beta_t) = \arg \min_{\theta, \beta} \sum_{i=1}^{n} (\tilde{y}_i - \beta h(x_i; \theta))^2 \).
 - Compute \(\rho_t = \arg \min_{\rho} \sum_{i=1}^{n} L(y_i, f_{t-1}(x_i) + \rho h(x_i; \theta_t)) \).
 - Set \(f_t(x) = f_{t-1}(x) + \beta_t h(x; \theta_t) \).
4. Output: \(\hat{f}(x) = f_T(x) = \sum_{t=1}^{T} \beta_t h(x; \theta_t) \).

For regression tree, the algorithm is referred to as the Gradient.TreeBoost algorithm.

14.3.9 Other Loss Functions

Several different loss functions have been proposed as alternatives to exponential loss (14.25) as part of AdaBoost or for gradient boosting. These include the following:

logistic (log) loss: \(L(y, f_t(x)) = \log \left\{ 1 + e^{-2y f_t(x)} \right\}, \ y \in \{-1, +1\} \).

This loss function is used in the LogitBoost algorithm (Friedman et al., 2000) for classification, where \(f_t(x) = C_t(x) \); see Exercise 14.3.

squared-error loss: \(L(y, f_t(x)) = \frac{1}{2} (y - f_t(x))^2, \ y \in \mathbb{R} \).

For continuous \(Y \in \mathbb{R} \), this loss function is used for least-squares regression boosting by the LS.Boost (and the LS.TreeBoost) algorithm (Friedman, 2001, Algorithm 2) and the \(L_2 \)Boost algorithm (Buhlmann and Yu, 2003); see Exercise 14.4.

absolute-error loss: \(L(y, f_t(x)) = |y - f_t(x)|, \ y \in \mathbb{R} \).

This loss function is used in the LAD.TreeBoost algorithm (Friedman, 2001, Algorithm 3) for boosting regression trees using least-absolute-deviation. The resulting procedure is robust against outliers in both input and output variables.

Huber loss: \(L(y, f_t(x)) = \begin{cases} \frac{1}{2} (y - f_t(x))^2, & \text{if } |y - f_t(x)| \leq \delta, \\ \delta (|y - f_t(x)| - \delta/2), & \text{otherwise.} \end{cases} \)
14.3 Boosting

This loss function (specially constructed for Huber’s theory of robust M-regression) combines features of squared-error loss and absolute-error loss (Huber, 1964), and is used by the M.TreeBoost algorithm (Friedman, 2001, Algorithm 4). The constant δ is used to identify outlying residuals, whose loss is measured by absolute error instead of squared error.

The left panel of Figure 14.6 shows graphs of the exponential, binomial, and squared-error loss functions, each of which can be regarded as a continuous, convex approximation to misclassification loss, a step function having a loss of one for $yf < 0$ and zero for $yf > 0$. We can clearly see that squared-error loss is a poor approximation to misclassification loss. Instead of being a monotonically decreasing function of the margin yf as are the exponential, binomial, and misclassification losses, squared-error loss becomes larger the more confidently we can classify an observation (i.e., the larger the margin value)! The right panel shows graphs of absolute-error loss, squared-error loss, and the Huber loss function (with $\delta = 1$).

14.3.10 Regularization

Regularization by restricting the fitting process is popularly used as an antidote to overfitting. There are several ways to do this; one possible approach is that of model selection, whereby the number of components in the combined classifier or predictor is not allowed to get too large. Another ap-
Regularized predictors are obtained using a penalty function $p(\alpha)$ to restrict the size of the coefficient vector $\alpha = (\alpha_1, \cdots, \alpha_M)^T$ of the combined predictor $f(x) = \sum_{j=1}^{M} \alpha_j C_j(x)$. The penalized estimates are given by the solution to the constrained minimization problem:

$$\hat{\alpha}_\lambda = \arg \min_\alpha \left\{ \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda p(\alpha) \right\},$$

where L is any of the loss functions listed above and $\lambda > 0$ is a small regularization parameter usually interpreted as a “learning rate.” We then apply the forwards-stagewise (or a related gradient-boosting) procedure to the constrained-minimization problem. There are two types of penalty functions that have been suggested for use in the boosting context:

L_1-Penalty: The coefficients are constrained so that the sum of their absolute values,

$$p_1(\alpha) = \sum_{j=1}^{M} |\alpha_j|,$$

is smaller than a given value. In the case of squared-error loss function for regression boosting, this L_1-penalty yields a method closely related to the Lasso algorithm and to the least-angle regression (LARS) algorithm; see Sections 5.8 and 5.9. As we noted in Section 5.8, empirical evidence suggests that the L_1-penalty works best when there are a small-to-medium number of moderate-sized true coefficients.

L_2-Penalty: This penalty function restricts the sum of squares of the coefficients,

$$p_2(\alpha) = \sum_{j=1}^{M} \alpha_j^2.$$

When the combined learner is a convex combination of base learners and we use squared-error loss, the optimum penalized-regression predictor is the ridge regression estimator of Section 6.3.3.

As we vary the value of λ in the above constrained-minimization problem, we obtain a sequence of values of the components of the estimated coefficient vector $\hat{\alpha}_\lambda$. We then plot the trace of each coefficient $\hat{\alpha}_{j,\lambda}$ against λ.

Friedman (2001) introduces a regularization parameter λ into the Gradient.Boost algorithm in Table 14.3 by adding $\lambda \in (0,1]$ to the input line, and then changing the fourth line in the for-loop to

$$f_t(x) = f_{t-1}(x) + \lambda \cdot \beta_t h(x; \theta_t),$$

(14.65)
where \(h(x; \theta_t) \) is a parametric function. This particular form of regularization is also referred to as “shrinkage.” The parameter \(\lambda \) operates (in conjunction with the number of iterations \(T \)) to find the best fit to the data. However, there is a “trade-off” between the values of \(\lambda \) and \(T \) in the fitting process: the best value for \(T \) is observed to be higher for smaller values of \(\lambda \). From simulations, Friedman notes that the performance of the gradient-boosting method is generally enhanced (sometimes dramatically) by using as large a value of \(T \) as is computationally feasible and then setting \(\lambda \) to be a small (but not too small) value (e.g., \(\lambda = 0.1 \)) so that an appropriate criterion is optimized close to the chosen value for \(T \). Using a value of \(\lambda \) close to one typically produces evidence of serious overfitting.

14.3.11 Noisy Class Labels

In classification problems, label noise exists when the learning set contains observations with incorrect class labels. Dietterich (2000) showed that noisy labels degrade the accuracy of AdaBoost when applied to classification trees, whereas bagging appears to be quite robust against label noise.

We can create label noise by randomly selecting (without replacement) a fraction (e.g., 5%) of the observations from a data set and then changing the class label of each chosen observation using a random assignment from the set of incorrect class labels. In Section 5.6.2, we saw that, on average, about 37% of the observations from the learning set are omitted from each bootstrap sample; thus, it is likely that a large proportion of the mislabeled observations will not appear in a bootstrap sample. The omission of misclassified observations (which should behave like regression outliers) from the bootstrap sample will increase instability and, hence, improve the performance of bagging.

On the other hand, after a few iterations, AdaBoost will keep assigning large weights to the fraction of mislabeled observations because it will have difficulty classifying the “corrupted” observations, and this may, in turn, degrade performance and lead to overfitting.

When noisy class labels are present, there is empirical evidence (Krieger, Long, and Wyner, 2001) that we can improve the classifier’s performance if we apply bagging following boosting (a “BB” algorithm). Specifically, we generate \(B = \rho n \) bootstrap samples from the learning set \((0 < \rho < 1)\), compute a boosted classifier from each bootstrap sample using \(M \) iterations, combine the \(B \) different boosted classifiers into an ensemble, and then average over the ensemble. Studies show, using real data, that the BB classifier averages out (or smoothes) the overfitting in AdaBoost and, hence, decreases test error.
14.4 Random Forests

We have seen how perturbing the learning set \mathcal{L} in various ways can be used to generate an ensemble (or forest) of tree-structured classifiers. A classification tree T_k is grown for each perturbation \mathcal{L}_k of the learning set, $k = 1, 2, \ldots, K$; a test set observation \mathbf{x} is dropped down each tree; and the classifier predicts the class of that observation by that class that enjoys the largest number of total votes over all of the trees.

In bagging, randomization is used only in selecting the data set on which to grow each tree. An extension of this idea is random forests (Breiman, 2001b), where randomization adds another layer onto bagging and is a crucial part of constructing each tree. Suggestions on how to introduce randomization into tree construction include random split selection in which each node is split by randomly choosing one of the t best splits at that node (Dietterich, 2000) and random input selection in which the split at each node is decided by a random choice of subset of the r input features (Ho, 1998).

14.4.1 Randomizing Tree Construction

In random forests, we start in the same way that bagging starts, with B bootstrap samples drawn from the learning set \mathcal{L}, but the difference is how the trees are grown from those samples. The idea is to introduce a randomization component into tree construction so that, for the tree T_{*b}^*, each node is split in a random manner. Possible options for developing a randomized splitting strategy at each node include using some form of random input selection and linear combinations of inputs.

Recall that bagging applied to a tree-structured classifier reduces variance (due to aggregation) and bias (if the trees are fully grown). A random forest reduces the correlation between the tree-structured classifiers that enter into the averaging step. The algorithm is given in Table 14.4.

There are only two tuning parameters for a random forest: the number m of variables randomly chosen as a subset at each node and the number B of bootstrap samples. The procedure is relatively insensitive to a wide range of values of m and B. A good starting point is to take m as \sqrt{r}; if that is not sufficient, it is recommended to rerun the program with $m = 2\sqrt{r}$ and $m = 0.5\sqrt{r}$ as a way of monitoring the procedure. We have often found that values smaller than \sqrt{r} yield smaller misclassification rates. The number B of bootstrap samples can be taken to be at least 1,000, and if r is very large, then B can be around 5,000.
14.4 Random Forests

TABLE 14.4. Random forest classification algorithm using random input selection at each tree node.

1. Input: \(L = \{(x_i, y_i), i = 1, 2, \ldots, n\}, \ y_i \in \{1, 2, \ldots, K\}, \ m = \text{number of variables to be chosen at each node (} m < r), \ B = \text{number of bootstrap samples.} \)

2. For \(b = 1, 2, \ldots, B \):
 - Draw a bootstrap sample \(L^* b \) from the learning set \(L \).
 - From \(L^* b \), grow a tree classifier \(T^* b \) using random input selection: at each node, randomly select a subset \(m \) of the \(r \) input variables, and, using only the \(m \) selected variables, determine the best split at that node (using entropy or the Gini index). To reduce bias, grow the tree to a maximum depth with no pruning.
 - The tree \(T^* b \) generates an associated random vector \(\theta_b \), which is independent of the previous \(\theta_1, \ldots, \theta_{b-1} \), and whose form and dimensionality are determined by context.
 - Using \(\theta_b \) and an input vector \(x \), define a classifier \(h(x, \theta_b) \) having a single vote for the class of \(x \).

3. The \(B \) randomized tree-structured classifiers \(\{h(x, \theta_b)\} \) are collectively called a random forest.

4. The observation \(x \) is assigned to the majority vote-getting class as determined by the random forest.

14.4.2 Generalization Error

Consider an ensemble (or committee) of \(B \) randomized tree-structured classifiers,

\[
h(x, \theta_1), h(x, \theta_2), \ldots, h(x, \theta_B). \tag{14.66}
\]

Define the generalization error for a random forest having \(B \) trees as

\[
PE_B = P_{X,Y}\{m_B(X, Y) < 0\}, \tag{14.67}
\]

where

\[
m_B(X, Y) = B^{-1} \sum_{b=1}^{B} I_{[h(x, \theta_b)=Y]} - \max_{k \neq y} \left\{B^{-1} \sum_{b=1}^{B} I_{[h(x, \theta_b)=k]}\right\} \tag{14.68}
\]

is the classification margin for the ensemble, and the probability is computed over the \((X, Y) \)-space. Note that if \(m_B(X, Y) > 0 \), then the committee votes for the correct classification, whereas otherwise it does not.
Breiman (2001b) showed, using the strong law of large numbers, that, as the number of trees increases \((B \to \infty)\), \(PE_B\) converges almost surely \((\theta_b)\) to the generalization error,

\[
PE = P_{X,Y} \{m(X,Y) < 0\},
\]

where

\[
m(X,Y) = P_{\Theta} \{h(X,\Theta) = Y\} - \max_{k \neq Y} P_{\Theta} \{h(X,\Theta) = k\}.
\]

is defined as the \textit{margin function} for a random forest. The margin, \(m(X,Y)\), is the amount by which the average number of votes at \((X,Y)\) for the correct class exceeds the average vote for any other class. This limiting result is important: it shows that as we increase the number of trees in the forest, generalization error for a random forest converges to a limit; in other words, random forests \textit{cannot overfit}, even if we have an infinite number of trees in the forest.

\subsection*{14.4.3 An Upper Bound on Generalization Error}

The generalization error of a random forest can be bounded by a quantity that depends upon two parameters: a first-order parameter \(\mu\) measuring the “strength” of any single tree in the forest and a second-order parameter \(\bar{\rho}\) measuring the overall “correlation” between pairs of trees in the forest (Breiman, 2001b). These two parameters can be used to assess the accuracy of classifiers and the amount of dependence between them. For an accurate classification, we would like a strong classifier (large \(\mu\)) with low correlation (small \(\bar{\rho}\)) between trees.

Consider the set of classifiers (14.66). From (14.68), define

\[
\mu = E_{X,Y} \{m(X,Y)\}
\]

(14.71)

to be the expected “strength” of the set of classifiers, which is assumed to be positive. Think of strength as a measure of accuracy of a tree in the forest. In the binary case, we see from (14.68) that \(m(X,Y)\) can be written as

\[
m(X,Y) = 2 \cdot P_{\Theta} \{h(X,\Theta) = Y\} - 1,
\]

(14.72)

and the condition \(\mu > 0\) translates to \(E_{X,Y} P_{\Theta} \{h(X,\Theta) = Y\} > 0.5\); this result mimics the learning condition that a “weak” classifier is one that correctly classifies at a rate higher than 50%.

Our goal in this section is to provide an upper bound on the generalization error,

\[
PE^* = P_{X,Y} \{|m(X,Y) - E_{X,Y} \{m(X,Y)\}| > \mu\},
\]

(14.73)
of a random forest. Applying Chebychev’s inequality to (14.73), it follows that
\[
P_{E^*} \leq \frac{\text{var}_{X,Y}\{m(X,Y)\}}{\mu^2}. \tag{14.74}
\]
We now derive a suitable expression for the numerator of this upper bound.

Let \(\tilde{k} = \tilde{k}(X,Y)\) denote the class with the most incorrect votes; that is,
\[
\tilde{k} = \arg \max_{k \neq Y} P_{\Theta}\{h(X,\Theta) = k\}. \tag{14.75}
\]
Then, from (14.70),
\[
m(X,Y) = P_{\Theta}\{h(X,\Theta) = Y\} - P_{\Theta}\{h(X,\Theta) = \tilde{k}\} = E_{\Theta}\{m^*(X,Y,\Theta)\}, \tag{14.76}
\]
where
\[
m^*(X,Y,\theta) = I_{[h(X,\theta) = Y]} - I_{[h(X,\theta) = \tilde{k}]} \tag{14.77}
\]
can be regarded as a “raw” margin function. Assuming that \(\Theta\) and \(\Theta'\) are iid,
\[
[m(X,Y)]^2 = [E_{\Theta}\{m^*(X,Y,\Theta)\}]^2 = E_{\Theta,\Theta'}\{m^*(X,Y,\Theta)m^*(X,Y,\Theta')\}. \tag{14.78}
\]
Thus, the variance function is
\[
\text{var}_{X,Y}\{m(X,Y)\} = E_{\Theta,\Theta'}\{\text{cov}_{X,Y}(m^*(X,Y,\Theta), m^*(X,Y,\Theta'))\} = E_{\Theta,\Theta'}\{\rho(\Theta,\Theta')\sigma(\Theta)\sigma(\Theta')\}, \tag{14.79}
\]
where, for fixed \(\theta\) and \(\theta'\),
\[
\rho(\theta,\theta') = \text{corr}_{X,Y}\{m^*(X,Y,\theta), m^*(X,Y,\theta')\} \tag{14.80}
\]
is the correlation between the raw margin functions of two different members in the forest, and, for fixed \(\theta\), \(\sigma(\theta)\) is the square-root of
\[
\sigma^2(\theta) = \text{var}_{X,Y}\{m^*(X,Y,\theta)\}. \tag{14.81}
\]
Hence, from (14.79) and the definition of variance,
\[
\text{var}_{X,Y}\{m(X,Y)\} = \bar{\rho} \cdot [E_{\Theta}\{\sigma(\Theta)\}]^2 \leq \bar{\rho} \cdot E_{\Theta}\{\sigma^2(\Theta)\}, \tag{14.82}
\]
where
\[
\bar{\rho} = \frac{E_{\Theta,\Theta'}\{\rho(\Theta,\Theta')\sigma(\Theta)\sigma(\Theta')\}}{E_{\Theta,\Theta'}\{\sigma(\Theta)\sigma(\Theta')\}} \tag{14.83}
\]
is the average correlation between all possible pairs of trees in the forest.

Note that, from (14.82), we can write
\[
\bar{\rho} = \frac{\text{var}_{X,Y}\{m(X,Y)\}}{[E_{\Theta}\{\sigma(\Theta)\}]^2}. \tag{14.84}
\]
Now, from (14.81),
\[
E_\Theta \{\sigma^2(\Theta)\} = E_\Theta \{E_{X,Y} [(m^*(X, Y, \Theta))^2] - [E_{X,Y} (m^*(X, Y, \Theta))]^2\}.
\]
(14.85)

In the first term on the rhs, \(m^*(X, Y, \Theta)\) is the difference of two indicator functions; see (14.77). So, \([m^*(X, Y, \Theta)]^2 \leq 1\). The second term on the rhs can be written as
\[
E_\Theta \{[E_{X,Y} (m^*(X, Y, \Theta))]^2\} \geq E_\Theta \{E_{X,Y} (m^*(X, Y, \Theta))\}^2 = [E_{X,Y} (m(X, Y))]^2 = \mu^2
\]
(14.86)

The first line used the inequality \(E(X^2) \geq [E(X)]^2\). Thus,
\[
E_\Theta \{\sigma^2(\Theta)\} \leq 1 - \mu^2.
\]
(14.87)

Substituting the inequality (14.87) into (14.82), and the result into (14.74) gives us an upper bound on generalization error for a random forest in terms of \(\mu\) and \(\bar{\rho}\):
\[
P_E^* \leq \bar{\rho}(1 - \mu^2) / \mu^2.
\]
(14.88)

This upper bound was derived by Breiman (2001b); however, the bound is generally quite loose.

Estimation of \(\mu\) and \(\bar{\rho}\) can be carried out as follows. Let \(L^*b\) be the \(b\)th bootstrap sample and let \(h(x, \theta_b)\) be the \(b\)th classifier of \(x\) based upon \(L^*b\). For an OOB observation \((x, y)\), let
\[
\hat{p}(x, y) = \frac{\sum_b I[h(x, \theta_b) = y; (x, y) \notin L^*b]}{\sum_b I[(x, y) \notin L^*b]}
\]
(14.89)

denote the proportion of votes received for class \(y\). It is an estimate of \(P_\Theta \{h(x, \Theta) = y\}\). The strength (14.71), which is the expected value of (14.70), can be estimated by:
\[
\hat{\mu} = n^{-1} \sum_{i=1}^{n} \{\hat{p}(x_i, y_i) - \hat{p}(x_i, \tilde{y}_i)\}
\]
(14.90)

where \(\tilde{y}_i = \arg \max_{y' \neq y} \hat{p}(x_i, y'_i)\).

To estimate \(\hat{\rho}\) in (14.84), we estimate the numerator and denominator separately. The numerator,
\[
\text{var}_{X,Y}\{m(X, Y)\} =
E_{X,Y} \left\{ P_\Theta [h(X, \Theta) = Y] - P_\Theta [h(X, \Theta) = \tilde{Y}] \right\}^2 - \mu^2,
\]
(14.91)
can be estimated by

\[n^{-1} \sum_{i=1}^{n} \{ \hat{p}(x_i, y_i) - \hat{p}(x_i, \tilde{y}_i) \}^2 - \hat{\mu}^2. \]

(14.92)

The standard deviation is

\[\sigma(\theta) = \{ p_1 + p_2 + (p_1 - p_2)^2 \}^{1/2}, \]

(14.93)

where \(p_1 = \text{E}_{X,Y} \{ h(X, \theta) = Y \} \) and \(p_2 = \text{E}_{X,Y} \{ h(X, \theta) = \tilde{Y} \} \). We can estimate \(p_1 \) and \(p_2 \) for the \(b \)th OOB sample by

\[\hat{p}_{1,b} = n_b^{-1} \sum_{(x_i, y_i) \notin \mathcal{L}^*_b} I[h(x_i, \theta_b) = y_i], \]

(14.94)

\[\hat{p}_{2,b} = n_b^{-1} \sum_{(x_i, y_i) \notin \mathcal{L}^*_b} I[h(x_i, \theta_b) = \tilde{y}_i], \]

(14.95)

respectively, where \(n_b = \sum_{i=1}^{n} I[(x_i, y_i) \notin \mathcal{L}^*_b] \) is the number of observations in the \(b \)th OOB sample. The denominator of (14.84) is found by substituting (14.94) and (14.95) into (14.93) to get an estimate of \(\sigma(\theta_b) \), and then averaging over all OOB samples:

\[\hat{\sigma}(\theta) = B^{-1} \sum_{b=1}^{B} \{ \hat{p}_{1,b} + \hat{p}_{2,b} + (\hat{p}_{1,b} - \hat{p}_{2,b})^2 \}^{1/2}. \]

(14.96)

14.4.4 Example: Diagnostic Classification of Four Childhood Tumors

Gene expression profiling using cDNA microarrays has become a very popular way of studying diseases. In this example, we analyze data from microarray experiments (Khan et al., 2001) on the small, round, blue-cell tumors (SRBCTs) of childhood, which include the distinct diagnostic categories of neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NML), and the Ewing family of tumors (EWS). SRBCTs are so-named because of their similar appearance on routine histology; they often masquerade as each other, making correct clinical diagnosis difficult. Getting the diagnosis correct impacts directly upon the type of treatment, therapy, and prognosis the patient receives. Currently, there is no single clinical test that can discriminate between these cancers.

Gene-expression data were collected with a goal of distinguishing between the four types of SRBCT categories.\(^2\) The data initially consisted of 83 cases.

\(^2\)The data are publicly available and can be downloaded from the website research.nhgri.nih.gov/microarray/Supplement.
(29 EWS, 11 BL, 18 NB, and 25 RMS) of both tumor biopsy material and cell lines measured on microarrays containing 6,567 genes. Requiring that each gene should have a certain minimal level of intensity reduced the number of genes to 2,308.

A random forest was applied to these data using 500 fully grown trees, where at each node we specified that 25 variables were to be randomly sampled (from the 2,308 variables available) as candidates for splitting. Over the 500 trees, the 83 cases were OOB the following numbers of times:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>194</td>
<td>170</td>
<td>187</td>
<td>189</td>
<td>181</td>
<td>179</td>
<td>201</td>
<td>187</td>
<td>175</td>
<td>195</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>190</td>
<td>174</td>
<td>195</td>
<td>199</td>
<td>189</td>
<td>162</td>
<td>174</td>
<td>187</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>185</td>
<td>179</td>
<td>180</td>
<td>201</td>
<td>192</td>
<td>170</td>
<td>180</td>
<td>192</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>165</td>
<td>182</td>
<td>179</td>
<td>173</td>
<td>193</td>
<td>184</td>
<td>168</td>
<td>186</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>109</td>
<td>191</td>
<td>186</td>
<td>186</td>
<td>185</td>
<td>185</td>
<td>191</td>
<td>185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>177</td>
<td>178</td>
<td>172</td>
<td>194</td>
<td>180</td>
<td>185</td>
<td>188</td>
<td>185</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>165</td>
<td>198</td>
<td>179</td>
<td>179</td>
<td>180</td>
<td>176</td>
<td>205</td>
<td>187</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>187</td>
<td>183</td>
<td>181</td>
<td>184</td>
<td>181</td>
<td>186</td>
<td>183</td>
<td>188</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>172</td>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From these OOB instances, we obtain, for each case, the fraction of “votes” from the random forest for each disease category; each case is then classified according to the category with the highest fraction of votes received; and the OOB misclassification rate is calculated over all 83 classified cases. For this example, the results are indeed impressive: all 83 samples are correctly classified (0% OOB misclassification rate).

14.4.5 Assessing Variable Importance

If the objective is to classify new observations, it is useful to know which variables really control the classification process; in a regression situation, we need to know which subset of variables best explains the response values. We recognize, of course, that identifying which variables are important can be complicated by the existence of interactions between variables. Random forests can be used to evaluate the variables in a data set and provide a graphical display to assess the importance of each variable.
Computations are carried out one tree at a time. As before, let T^{*b} be the tree classifier constructed from the bootstrap sample L^{*b}. First, drop the OOB observations corresponding to L^{*b} down the tree T^{*b}, record the resulting classifications, and compute the OOB error rate, $PE_b(OOB)$. Next, randomly permute the OOB values on the jth variable X_j while leaving the data on all other variables unchanged. If X_j is important, permuting its observed values will reduce our ability to classify successfully each of the OOB observations. Then, we drop the altered OOB observations down the tree T^{*b}, record the resulting classifications, and compute the OOB error rate, $PE_b(OOB_j)$, which should be larger than the error rate of the unaltered data. A raw T^{*b}-score for X_j can be computed by the difference between those two OOB error rates,

$$\text{raw}_b(j) = PE_b(OOB_j) - PE_b(OOB), \quad b = 1, 2, \ldots, B. \quad (14.97)$$

Finally, average the raw scores over all the B trees in the forest,

$$\text{imp}(j) = \frac{1}{B} \sum_{b=1}^{B} \text{raw}_b(j), \quad (14.98)$$

to obtain an overall measure of the importance of X_j. Call this measure the raw permutation accuracy importance score for the jth variable.

Assuming the B raw scores (14.97) are independent from tree to tree, we can compute a straightforward estimate of the standard error. Empirical studies using many different types of data sets show that a good case can be made for independence: indeed, scores between the trees appear to have low correlations. If this estimate of standard error is acceptable, we compute a z-score by dividing the raw score by the estimated standard error and then compute an appropriate Gaussian-based significance level for that z-score. Call this z-score the mean decrease in accuracy for the jth variable.

A second measure of variable importance derives from the fact that the Gini impurity index for a given parent node is larger than the value of that measure for its two daughter nodes. By averaging the (Gini) decreases in node impurities over all trees in the forest, we obtain a measure we call the Gini importance index.

For the example of childhood SRBCTs, the 30 most important variables for classification are displayed in Figure 14.7. The 10 variables [gene ID, gene description] that give the largest mean decrease in accuracy (left panel) are, in order of importance: 742 [756847, suppressin (nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related)], 1955 [80410, farnesyl diphosphate synthase], 246 [345538, cathepsin L], 1003 [825433, ESTs], 1389 [525799, GTP cyclohydrolase I feedback regulatory protein], 509 [37553, protein phosphatase 2A, regulatory subunit B’ (PR 53)], 2050 [244154, KIAA0875 protein], 2046 [128054, ESTs], 1799 [196189,
cytochrome b-5], and 1319 [146868, mitogen-activated protein kinase kinase kinase 11],

The 14 variables [gene ID] that give the largest mean decrease in the Gini index (right panel) are, in order of importance: 742 [756847], 1955 [80410], 246 [545558], 1389 [525799], 1003 [825433], 509 [37553], 2050 [244154], 1645 [839374], exostoses (multiple)-like 2], 1601 [725188, malate dehydrogenase 1, NAD (soluble)], 1319 [146868, mitogen-activated protein kinase kinase kinase 11], 2046 [128054], 1194 [48285, p53-induced protein], 129 [298062, troponin T2, cardiac], and 255 [154472, fibroblast growth factor receptor 1 (fms-related tyrosine kinase 2, Pfeiffer syndrome)].

Note that the rankings of important variables changes with the number of variables randomly chosen for splitting at each node, the initial seed for randomization, and the number of bootstrap trees in the forest.

14.4.6 Proximities for Classical Scaling

One of the most useful notions incorporated into random forests is that of computing proximities between pairs of observations. Using proximities, we can apply MDS (see Chapter 13) to the learning set to give a graphical view of data clustering in a lower-dimensional space. Proximities can also be used for imputing missing values and identifying multivariate outliers, if they are present in the data.
Suppose we construct a random forest of trees \(\{T^{*b}\} \) from a learning set \(\mathcal{L} \). Recall that each tree \(T^{*b} \) is unpruned and, hence, each terminal node in \(T^{*b} \) will contain only a few observations. If we drop all cases in \(\mathcal{L} \) (including the OOB observations) down all the trees in the forest, how often do pairs of observations occupy the same terminal node? The answer to this question gives us a measure of “closeness” (or “proximity”) of those pairs of observations to each other.

We, therefore, wish to define a similarity measure, \(\text{prox}(x_i, x_j) \), between pairs of observations, \(x_i \) and \(x_j \), say, so that the closer \(x_i \) and \(x_j \) are to each other, the larger the value of \(\text{prox}(x_i, x_j) \). If the two observations \(x_i \) and \(x_j \) end up at the same terminal node in \(T^{*b} \), we increase \(\text{prox}(x_i, x_j) \) by one. We repeat this procedure over all \(B \) trees in the forest, and then divide the frequency totals of pairwise proximities by the number, \(B \), of trees in the forest; this gives us the proportion of all trees for which each pair of observations end up at the same terminal nodes. The results are subtracted from one to yield dissimilarities:

\[
\delta_{ij} = 1 - \text{prox}(x_i, x_j), \quad x_i, x_j \in \mathcal{L}, \quad i, j = 1, 2, \ldots, n. \tag{14.99}
\]

We collect these pairwise dissimilarities into an \((n \times n)\) proximity matrix \(\Delta = (\delta_{ij}) \), which is symmetric, positive-definite, with diagonal entries equal to zero. The proximity matrix is then used as input into the classical-scaling algorithm (see Table 13.5); this algorithm provides us with a visual comparison of the \(n \) observations in a lower-dimensional setting, where the interpoint distances between all pairs of observations are preserved (as much as possible) in the reduction to a lower-dimensional space.

A graphical display of pairs of principal coordinates (typically, the first plotted against the second) often yields a worthwhile comparison of the data in the learning set. In Figure 14.8, we show the MDS plot of proximities for the SRBCT data (left panel) and the BUPA data (right panel). We see that the SRBCT plot separates the data into four clusters corresponding to the four classes of SRBCTs, which probably contributes to its 0% OOB misclassification rate. The BUPA MDS plot, by contrast, shows three “arms” corresponding to the two classes in the data; the clusters have a number of overlapping points, and the OOB misclassification rate is 24.35% (500 bootstrap trees in the forest and 2 variables selected at random from the six for splitting each node in each tree), although this rate depends upon the same factors as listed at the end of the previous section.

14.4.7 Identifying Multivariate Outliers

Detecting and identifying outliers in multivariate data can be very difficult, especially when the dimensionality is high. So, any procedure that is
successful in outlier-detection is worth its weight in gold. The proximities computed for random forests can be used to detect outliers.

The basic idea is that we identify an outlier by how far away it is from all other observations belonging to its class in the learning set. Suppose \(x_i \in \Pi_k \). If the proximity of, say, \(x_i \) to another \(k \)th-class observation, say, \(x_j \) is small, then it is rare for those two observations to end up at the same terminal nodes when they are simultaneously dropped down all the trees in the forest. In other words, \(x_i \) and \(x_j \) are far apart from each other iff their proximity is small. If \(x_i \) is far away from all the other \(k \)th-class observations in the learning set, then all the proximities, \(\text{prox}(x_i, x_\ell) \), of \(x_i \) with \(x_\ell, \ell \neq i \), will be small. Breiman and Cutler (2004) suggest that a raw outlier measure for the \(i \)th observation, \(x_i \), in the \(k \)th class be given by

\[
 u_{ik} = \frac{n}{\sum_{x_\ell \in \Pi_k, \ell \neq i} \left[\text{prox}(x_i, x_\ell) \right]^2}, \quad i = 1, 2, \ldots, n, \tag{14.100}
\]

where \(k = 1, 2, \ldots, K \). Thus, if \(x_i \) is really an outlier for the \(k \)th class, the denominator of (14.100) will be small, so that \(u_{ik} \) will be large.

Let \(m_k = \text{med}_{x_i \in \Pi_k} \{ u_{ik} \} \) be the median of the raw outlier measures over all \(k \)th-class observations. Then, for \(k = 1, 2, \ldots, K \), a standardized version of \(u_{ik} \) is given by

\[
 \tilde{u}_{ik} = \frac{u_{ik} - m_k}{\sum_{x_\ell \in \Pi_k} |u_{\ell k} - m_k|}, \quad i = 1, 2, \ldots, n. \tag{14.101}
\]
FIGURE 14.9. Outlier plot for the SRBCT data. The types of tumors in the SRBCT plot are BL (red), EWS (blue), NB (green), and RMS (purple).

The values of (14.101) are plotted against sequence number, with each class’s values plotted using either a different symbol or color. Values of (14.101) in excess of 10 should generate concern. The SRBCT data set does not appear to have any outliers; see Figure 14.9.

14.4.8 Treating Unbalanced Classes

A major impediment to good classification in practical problems occurs when at least one of the classes (often the class of primary interest) contains only a very small proportion of the observations. Examples of such “unbalanced” situations include detection of fraudulent telephone calls, information retrieval and filtering, diagnosis of rare thyroid diseases, and detection of oil spills from satellite images (Chen, Liaw, and Breiman, 2004). In each of these examples, the result is wildly varying prediction errors for the different classes.

Classification algorithms, which focus on minimizing the overall misclassification rate, classify most observations according to the class of the majority of observations (the “majority” class); as a result, the misclassification rate will be very low, but the observations belonging to the class of primary interest (the “minority” class) will be totally misclassified. In the case of random forests, for example, the bootstrap samples will contain
very few (and maybe none) of the minority class observations, and so we will see poor class prediction (i.e., high prediction error) for the minority class.

To alleviate such difficulties, various modifications to the random forest classifier were considered by Chen, Liaw, and Breiman (2004), including balanced random forest (BRF), where the majority class is undersampled, and weighted random forest (WRF), where a heavier weight is placed upon selecting the minority class in bootstrap samples in order to prevent misclassifying that class. Based upon experiments with various data sets, no real difference in prediction error has been found between BRF and WRF, although BRF turns out to be computationally more efficient.

14.5 Software Packages

Bagging for classification or regression can be carried out in R using the package ipred (short for Improved Predictors), which can be downloaded from an appropriate CRAN site. For bagging decision trees, ipred uses the package rpart. For R users, there are several packages that carry out boosting using AdaBoost: ada, boost, and adabag each use rpart and each can be downloaded from an appropriate CRAN site. The AdaBOOST computations were carried out here using the ada package.

Breiman’s random forest software is now a commercial product that is licenced exclusively to Salford Systems (www.salford-systems.com). See the URL www.stat.berkeley.edu/users/breiman/RandomForests. An R-interface to the random forests classifier has been written by A. Liaw and M. Wiener based upon original Fortran code written by Breiman and Cutler. R documentation and help files for version 4.4–2 are available at lib.stat.cmu.edu/R/CRAN/doc/packages/randomForest.pdf.

Software to carry out bagging, boosting, and random forests is also available in other packages, such as MATLAB, WEKA, and STATISTICA.

Bibliographical Notes

Much of the material in this chapter is based upon the work of Leo Breiman, who has provided great insights into the ensemble methods of bagging, boosting, and random forests, and who has left an indelible mark on this field.

The statistical derivation of AdaBOOST is adapted from the treatments in Friedman, Hastie, and Tibshirani (2000) and Hastie, Tibshirani, and Friedman (2001, Section 10.4). The algorithmic development of Gradient.Boost follows the work in Friedman (2001).
into optimal and nonoptimal strategies can be found in Rätsch and Warmuth (2002); see also Rudin, Daubechies, and Schapire (2004) and Rudin, Schapire, and Daubechies (2007).

The section on random forests is based upon Breiman (2001b) and the short course he and Adele Cutler gave at the 26th Symposium on the Interface, which was held in Baltimore, MD, in May 2004. Breiman’s inspiration for random forests came from reading Amit and Geman (1997). This author thanks Adele Cutler for conversations on random forests and especially for pointing out and correcting a typographical error in Breiman (2001, equation (8)).

Exercises

14.1 Let \(Y \in \{-1, +1\} \) and let \(C(x) \in \{-1, +1\} \) be a classifier of \(x \). Show that \(Y^* = (Y + 1)/2 \) is a Bernoulli variable that takes the value 0 with probability \(p(x) = e^{C(x)}/(e^{C(x)} + e^{-C(x)}) \) and the value 1 with probability \(1 - p(x) \). Find the binomial log-likelihood and show that it is equal to \(L(y, C(x)) = \log e \{1 + e^{-2yC(x)} \} \).

14.2 Consider the regression situation, where \(Y \) is continuous. Assume squared-error loss: \(L(y, f_m(x)) = \frac{1}{2}(y - f_m(x))^2 \). Show that the pseudoresponses are given by \(\tilde{y}_i = y_i - f_{m-1}(x_i) \), \(i = 1, 2, \ldots, n \), and that the learning rate is \(\rho_m = \beta_m \). Hence, show that the Gradient.Boost algorithm reduces to an iterative least-squares fitting of the current residuals.

14.3 Show that (14.19) can be reduced to (14.20). Furthermore, show that \(\sum_{i=1}^{n} w_{i,m+1} = 1 \).

14.4 Consider the following 10 two-dimensional points: the first five points, (1, 4), (3.5, 6.5), (4.5, 7.5), (6, 6), (1.5, 1.5), belong to Class 1, and the second five points, (8, 6.5), (3, 4.5), (4.5, 4), (8, 1.5), (2.5, 0), belong to Class 2. Plot these points on a scatterplot using different symbols or colors to distinguish the two classes. Carry through by hand the AdaBoost algorithm on these points, showing the weights at each step of the process. Determine the final classifier and calculate its misclassification rate.

14.5 Write a program that implements AdaBoost for tree-based binary classification. Extend your program to more than two classes.

14.6 Use AdaBoost to classify the pima-indian-diabetes data. Compare your results with the classification tree results. Can you do any better with random forests?

14.7 Use a random forest to classify the spambase data. Repeat the analysis 100 times using different random seeds to start each replication. For each
repetition, find the OOB misclassification rate and draw the boxplot for OOB misclassification rates. Repeat this for different values of m (number of variables selected as candidates for splitting) and B (number of bootstrap trees in the forest). What can you say about the effect of m and B on the OOB misclassification rate?

14.8 Carry out the same computations as in Exercise 14.7 for the glass data. What do you notice about the MDS plot?

14.9 Carry out the same computations as in Exercise 14.7 for the Wisconsin Diagnostic Breast Cancer data (wdbc).

14.10 Run random forests 100 times on the SRBCT data, and each time find the 30 most-important variables. Set $B = 500$ bootstrap trees and $m = 25$, and for each run use different random seeds as starting values. You should see different sets of variables being ranked as the 30 most important for each run. Create a method for visualizing the overall ranking of the variables. Repeat these operations using different B and different m. Using the Internet, try to get some corroboration for your findings.
Latent Variable Models for Blind Source Separation

15.1 Introduction

Models incorporating “latent” variables have been commonplace in the social and behavioral sciences for a long time. The most popular of those models is the factor analysis model, in which a set of observed continuous variables is explained in terms of a much smaller set of continuous latent variables (called factors), and the relationship is taken to be a linear one.

Latent variables, which can be continuous or discrete, are quite different from observed variables in that they are artificial or hypothetical constructs. Latent variables are typically used to give a formal representation of ideas or concepts that cannot be well-defined or measured directly. In educational and psychometric research, for example, fuzzy concepts such as “general intelligence,” “verbal ability,” “ambition,” “socioeconomic status,” “quality of life,” and “happiness” are constructed from certain observed variables that are regarded as proxies for those unobservable concepts. Moreover, it is not unusual to hear of a causal relationship between a latent variable and a set of given observable variables (e.g., “it is because of a person’s high level of intelligence that he or she does so well on standardized tests”).

Latent variables are also known, for example, as hidden variables in neural network modeling and as sources that are statistically independent of each other in independent component analysis. Latent variables have been introduced into MCMC sampling as auxiliary variables and as a data-augmentation technique in missing-value problems. Latent variables are usually formed as linear combinations of observable variables for the purpose of reducing the dimensionality of a data set. Indeed, it is easier to consider a single latent variable interpreted as “quantitative ability” than to have to deal with understanding a battery of different arithmetic and mathematics test scores. As we will see, latent variables play the fundamental role of “sources” in blind source separation problems.

15.2 Blind Source Separation and the Cocktail-Party Problem

A common type of problem that arises in such diverse fields as telecommunications, sound and image processing, brain imaging, speech enhancement, predicting stock-price movements, remote sensing, biomedical engineering, and signal processing — all situations in which the data consist of multiple time series — is to find a way of solving the blind source separation (BSS) problem. The BSS problem involves decomposing an unknown mixture of non-Gaussian signals into its independent component signals (Cardoso, 1998). BSS is similar to the classical electrical engineering problem of source separation, but in BSS there is no prior knowledge of the signals that make up the mixture.

The best-known example of BSS is the so-called cocktail-party problem (Cherry, 1953). In this problem, m people are speaking simultaneously at a party, and each of r microphones placed in the same room at different distances from each speaker records a different mixture of the speakers’ voices at n time points. The question is whether, based upon these microphone recordings, we can separate out the individual speech signals of each of the m speakers. Despite the fact that the cocktail-party problem assumes the speakers babble on independently without considering the presence of other partygoers (who usually speak in clustered groups), it does give a fairly simplistic explanation of how one can envision BSS problems.

Thus, we see that mixtures of signals occur everywhere, and it is of great interest to develop methods for separating (or “unmixing”) those signals so that we can view the individual raw signals that make up that mixture. With this in mind, we describe in this chapter a general latent variable model that is proposed to solve the BSS problem. Special cases of this model include independent component analysis, (exploratory) factor analysis, and independent factor analysis.
15.3 Independent Component Analysis

Independent component analysis (ICA) is a multivariate statistical technique that seeks to uncover hidden variables in high-dimensional data. As such, it belongs to the class of latent variable models. Furthermore, because of its success in analyzing signal processing data, ICA is also regarded as a digital signal transform method.

In its most basic form, the ICA model is assumed to be a linear mixture of an unknown number of unknown hidden source variables, where the mixing coefficients are also unknown. A totally “blind” approach to determining both the hidden variables and the mixing coefficients solely from the observed multivariate data fails because the problem as stated is not well-defined.

To build more structure into the problem, we require the hidden variables to be mutually independent and also (with at most one exception) non-Gaussian. ICA is actually an amalgam of several related approaches to this problem, and these approaches are characterized by the types of assumptions visited upon the distributions of the independent source variables and whether or not a separate noise component should be included in the ICA model.

15.3.1 Applications of ICA

ICA has been extensively applied to the study of human brain functions. Patterns of human brain-wave activity can be viewed through noninvasive recordings made by r (usually around 20, sometimes a lot more) electrodes placed evenly around a subject’s head during different periods of consciousness and sleep. The electrodes capture a mixture of brain waves from different areas of the brain. Electroencephalographic (EEG) recordings make it possible to relate certain types of behavior to changes in the electrical activity of the cerebral cortex; event-related potential (ERP) recordings are finely-tuned EEGs resulting from the stimulation of specific visual, auditory, or sensory systems; and magnetoencephalographic (MEG) recordings measure the strength of magnetic fields that are generated by cortical activity. ICA has been used successfully to separate EEG, ERP, and MEG recordings into individual (and meaningful) source signals.

ICA has also been successful in extracting three-dimensional spatial recordings (called component maps) from functional magnetic resonance imaging (fMRI) experiments used to study the human brain. These experiments consist of a number of trials in which subjects perform certain experimental and control psychomotor tasks. The component maps take
the form of a mixture of signals from thousands of voxels (volume elements) located in each of several brain slices and measured over a given period of time. The voxel values indicate brain regions that are actively involved in the cognitive processing of the specified tasks. If the active voxels are sparsely distributed in the maps and are mostly nonoverlapping, then the maps are considered to be independent. ICA has been used to separate fMRI data into m independent component maps together with their corresponding component activation patterns.

Other applications of ICA include extracting structure from financial stock returns, mapping the cosmic microwave background anisotropy from satellite radiometric sky maps, separating out the effects of major volcanic eruptions from climate and temperature data, identifying spatial-variation patterns in manufacturing processes such as automobile assembly, Web image retrieval and classification, wireless communications and speech recognition systems, and agricultural remote sensing images. Classification of microarray gene expression profiles using ICA methods has also become a popular research issue.

15.3.2 Example: Cutaneous Potential Recordings of a Pregnant Woman

In prenatal diagnostics, it is important for a physician to be able to monitor — in a non-invasive way — the fetal heart activity of a pregnant woman so that the health and condition of the fetus can be assessed. A multichannel electrocardiogram (ECG) can be used to obtain a mixture of maternal and fetal electrical activity, including fetal heart rate and maternal heart rate; however, the maternal ECG signal is many hundreds or thousands times stronger than the fetal ECG signal, and the signals are further contaminated by respiration baseline wandering and other sources of electrical interference.

The data for this example consist of 2,500 ECG points sampled at 500 Hz using 8-channel cutaneous (i.e., on the skin) potential recordings of a pregnant woman (de Lathauwer, de Moor, and Vandewalle, 2000). The 8 sets of cardiac rhythms are displayed in Figure 15.1; the 2,500 points are recorded over a period of 5 seconds, one point every 0.002 seconds. Note that the range of amplitudes increases as we go from Channel 1 to Channel 8. The first five channels (1–5) are measured near the fetus and, hence, show abdominal signals. Fetal contributions are visible in Channels 1, 2,

and 3, but their magnitudes are quite weak. The other three channels (6–8) were placed on the mother’s thorax (chest), near the heart; note that the high magnitudes of the maternal ECG in the thoracic signals tend to swamp the fetal ECG signals. We illustrate the power of ICA methods for this example by reconstructing the fetal ECG from multichannel potential recordings on the mother’s skin.

First, we preprocess the data by applying PCA to the sample correlation matrix; this produces 8 uncorrelated and ordered principal components whose variances decrease in magnitude. Only the first two PCs have eigenvalues greater than unity, and together they account for about 93% of the total variation of the data. For this example, we retain all 8 PCs as inputs to ICA.
FIGURE 15.2. Eight independent components from the ICA of the 8-channel cutaneous potential recordings of a pregnant woman. The red curves (IC1, IC2, IC4, IC8) reflect the cardiac rhythms of the mother, whereas the blue curves (IC5, IC6) reflect the cardiac rhythms of the fetus. The purple curve (IC3) shows a respiration component, and the black curve (IC7) shows the noise level of the sensors.

We then apply the FastICA algorithm (see Section 15.3.11) to all 8 sets of principal component scores, which, in turn, yields 8 independent components (ICs). These ICs are displayed in Figure 15.2. We see four ICs that reflect the mother’s cardiac rhythm (red curves: IC1, IC2, IC4, IC8) and two ICs reflecting the fetal cardiac rhythm (blue curves: IC5, IC6). The purple curve (IC3) probably reflects a low-periodic respiration component, and IC7 displays a noise component.

15.3.3 Connection to Projection Pursuit

The technical aspects of ICA in its basic formulation are remarkably similar to those of exploratory projection pursuit (PP) (Friedman and Tukey, 1974), a methodology developed more than a decade earlier than ICA.
ICA and PP methodologies look at the same data in very different ways, yet they both use the same (or similar) computational tool (numerically optimizing an objective function) to achieve a common statistical goal of finding low-dimensional, non-Gaussian projections of the data. The differences between ICA and PP derive from the different problems they were originally built to solve.

For example, ICA was introduced to resolve a separation problem, starting with the estimation of independent components, whereas PP was designed to be an exploratory tool for data visualization, focusing on dimensionality reduction of a high-dimensional space. Furthermore, the manner in which PP and ICA extract a sequence of signals from a given collection of mixtures differs: PP extracts signals one at a time, whereas ICA can extract the entire set of signals in parallel. The PP and ICA solutions are also related: PP also makes no assumptions about the data or about independent components, as does ICA; if the ICA model holds, then the optimization process produces independent components, whereas if the model does not hold, then we obtain the PP solution.

Although much of the PP methodology has been incorporated into the ICA toolkit, there has been little cross-pollination in the other direction. Recent enhancements of the ICA model that take into account time-structure and nonlinearity of the mixing coefficients have further helped to distinguish ICA from PP.

15.3.4 Centering and Sphering

Suppose we observe a random \(r \)-vector, \(\mathbf{X} = (X_1, \ldots, X_r)^\tau \), of correlated measurements with mean \(r \)-vector \(\mathbb{E}\{\mathbf{X}\} = \mu \) and \((r \times r) \) covariance matrix \(\text{cov}\{\mathbf{X}\} = \Sigma_{XX} \). Prior to carrying out PP or ICA applications, we preprocess \(\mathbf{X} \) so that its \(r \) components have commensurate scales. We do this by first centering \(\mathbf{X} \) so that its components have zero mean, and then by sphering (or whitening) the result so that its components are uncorrelated with unit variances.

Sphering is a linear transformation that removes all traces of scale and correlation structure from \(\mathbf{X} \). From the spectral decomposition of the covariance matrix, \(\Sigma_{XX} = \mathbf{U} \Lambda \mathbf{U}^\tau \), where the columns of the orthogonal matrix \(\mathbf{U} \) are the eigenvectors of \(\Sigma_{XX} \) and \(\Lambda \) is a diagonal matrix with diagonal elements the eigenvalues of \(\Sigma_{XX} \). The columns of \(\mathbf{U} \) and the diagonal elements of \(\Lambda \) are ordered by the decreasing magnitudes of the eigenvalues of \(\Sigma_{XX} \).

Assume that \(\mu \) and \(\Sigma_{XX} \) are both known. Then, we can write \(\Sigma_{XX}^{-1/2} = \mathbf{U} \Lambda^{-1/2} \mathbf{U}^\tau \). The (centered and) sphered version of \(\mathbf{X} \) is given by

\[
\mathbf{X} \leftarrow \Lambda^{-1/2} \mathbf{U}^\tau (\mathbf{X} - \mu).
\]

(15.1)
This transformation is equivalent to computing the principal components of \(X - \mu \) and then rescaling each of the principal components to have unit variance. If \(\Sigma_{XX} \) has less than full rank, only those principal components having nonzero variance would be retained (and rescaled). A benefit of sphering \(X \) is that it is now affine invariant, with \(\mu = 0 \) and \(\Sigma_{XX} = I_r \).

In practice, \(\mu \) and \(\Sigma_{XX} \) will be unknown. Thus, we use \(n \) independent observations, \(X_1, \ldots, X_n \), on \(X \) to compute \(\bar{X} = n^{-1} \sum_{i=1}^{n} X_i \) and \(\hat{\Sigma}_{XX} = n^{-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})^\tau = \hat{U}\hat{\Lambda}\hat{U}^\tau \), respectively. Centering and sphering the data using \(X_i \leftarrow \hat{\Lambda}^{-1/2}\hat{U}^\tau(X_i - \bar{X}), \ i = 1, 2, \ldots, n \), transform an elliptically shaped symmetric cloud of points into a spherically shaped cloud. To reduce the dimensionality of the data, only the first \(J < r \) sphered variables need be retained, where \(J \) is chosen to explain a certain (high) proportion of the total variance. If outliers are present, robust versions of the sphering process can be used (see, e.g., Tukey and Tukey, 1981).

We note that the practice of sphering is somewhat controversial. Although sphering has computational and interpretational advantages (see, e.g., Friedman, 1987), arguments have been made that the act of sphering is too closely tied to underlying unimodal (and especially Gaussian) distributions, an environment we wish to avoid (see, e.g., the comments of Gower, and Hastie and Tibshirani in the discussion of Jones and Sibson, 1987). However, we follow PP and ICA practice by assuming that the components of \(X \) have been preprocessed to be mutually uncorrelated, each having zero mean and unit variance.

15.3.5 The General ICA Problem

In its most general form, the ICA model assumes that \(X \) is generated by
\[
X = f(S) + e, \tag{15.2}
\]
where \(S = (S_1, \cdots, S_m)^\tau \) is an (unobservable) random \(m \)-vector variate of sources whose components \(\{S_j\} \) are independent latent variables each having zero mean, \(f : \mathbb{R}^m \to \mathbb{R}^r \) is an unknown mixing function, and \(e \) is a zero-mean, additive, \(r \)-vector-valued component that represents measurement noise and any other type of variability that cannot be directly attributed to the sources. Independence of the sources means that each individual source signal is thought to be generated by a process unrelated to any other source signal. We assume that \(E(S) = 0 \) and \(\text{cov}(S) = I_m \), but that the distribution of \(S \) is otherwise unknown.

The BSS problem is to invert \(f \) and estimate \(S \). As it stands, this problem is ill-posed and needs some additional constraints or regularization on \(S \), \(f \), and \(e \). If we take \(f \) to be a linear function, \(f(S) = AS \), where \(A \) is a “mixing” matrix, then (15.2) is described as a linear ICA model, whereas
if f assumed to be nonlinear, then (15.2) is described as a **nonlinear ICA** model. Most applications of ICA assume no additive noise e and that all noise in the model is to be associated with the components of the random vector S. Such a model is referred to as **noiseless ICA**. If e is included in (15.2), the model is described as **noisy ICA**.

It turns out that the noiseless ICA model with linear mixing, $X = AS$, can only be solved if the vector S with independent components is not Gaussian. We can see this by assuming the contrary. Suppose that the sources, S_1, \ldots, S_m, are independent and Gaussian, each with zero mean and unit variance. Their joint density is given by $q_S(s) = \prod_{j=1}^{m} q_{s_j}(s_j) = (2\pi)^{-m/2} e^{-\|s\|^2/2}$, where $\|s\|^2 = \sum_j s_j^2$. If the mixing matrix A is square $(m = r)$ and, hence, orthogonal ($I_r = \Sigma_{XX} = AA^\tau$, so that $A^{-1} = A^\tau$), then one can show that the density of $X = AS$ is given by $p_X(x) = (2\pi)^{-m/2} e^{-\|A^\tau x\|^2/2} |\det(A^\tau)|$. But A is orthogonal, and so $\|A^\tau x\|^2 = \|x\|^2$ and $|\det(A^\tau)| = 1$. Thus, the density of X reduces to $p_X(x) = (2\pi)^{-m/2} e^{-\|x\|^2/2}$, which is identical to the density of S, so that the orthogonal mixing matrix A cannot be identified for independent Gaussian sources. Thus, it makes sense to require that, with the exception of at most one component, the remaining independent source components cannot be Gaussian distributed.

There are a number of ways of estimating this type of ICA model while ensuring that the components of S are as statistically independent and non-Gaussian as possible. Usually, we are in possession of n repeated r-variate observations, $X_i = (X_{i1}, \cdots, X_{ir})^\tau$, $i = 1, 2, \ldots, n$, on X, which constitute our data set. From this, our goal is to recover the m independent sources, $S_i = (S_{i1}, \cdots, S_{im})^\tau$, $i = 1, 2, \ldots, n$, which generated the data through $X_i = AS_i$, $i = 1, 2, \ldots, n$. Several efficient computational algorithms have been created to reach this goal.

In most ICA applications, X is regarded as an r-vector-valued stochastic process $X(t) = (X_1(t), \cdots, X_r(t))^\tau$, such as audio or music signals, EEG or MEG tracings, or seismic recordings, where t is a time or index parameter. We usually assume that $X(t)$ is an unknown non-Gaussian process with zero mean. In the linear noiseless ICA model with temporally structured sources and **static mixing** (i.e., A is a fixed matrix of constants, non-time-varying, without trends or delays), the model is written as $X(t) = AS(t)$, where $S(t) = (S_1(t), \cdots, S_m(t))^\tau$ is assumed to be an m-vector of **stationary sources**, $1 \leq t \leq n$. For example, in the cocktail-party problem, $S_i(t)$ is the tth sound spoken by the ith speaker $(i = 1, 2, \ldots, m)$, and $X_j(t)$ is the tth acoustic recording made by the jth microphone $(j = 1, 2, \ldots, r)$.

In this formulation, ICA is closely related to the **deconvolution of time series**; see, for example, Donoho (1981), who discusses at length the single-channel ($r = 1$) deconvolution problem and its application to exploratory seismology. Donoho points out that the geophysicist’s technique of minimum
entropy deconvolution is actually a PP method with kurtosis as the projection index. See Huber (1985, Section 18). Extensions to the multi-channel (general r) case have also been studied.

If the mixing matrix $A = A(t)$ is allowed to depend upon the time parameter, then we refer to the model as *dynamic mixing*. By incorporating the temporal structure of the sources into the ICA model, there is a good chance that the separation properties of the analysis can be improved. In our description of ICA models, we omit the explicit dependence of X on t unless specifically needed in the exposition.

15.3.6 Linear Mixing: Noiseless ICA

The simplest form of the ICA model is the linear mixing version with no additive noise, usually called the *noiseless* (or *classical*) ICA model. In this scenario, X is modeled deterministically as

$$X = AS, \quad (15.3)$$

where $S = (S_1, \cdots, S_m)^T$ is a latent random m-vector of independent source components, and A is a full-rank $(r \times m)$ *mixing matrix* of unknown parameters. Usually, $m \leq r$. For model (15.3), where the sources have mean zero, X has mean zero and covariance matrix AA^T. Given n iid observations on X, the BSS (and ICA) problem is to estimate A and, hence, recover S.

For a given A with full-rank, there exists a *separating* (or *unmixing matrix*) W such that the sources can be recovered exactly from the observed X by $S = WX$, where $W = (A^TA)^{-1}A^T$. If the number of independent sources is equal to the number of measurements (i.e., $m = r$), then we refer to (15.3) as the *square invertible mixing model*, and, for that special case, $W = A^{-1}$. As we saw above, if X has been centered and sphered, then the resulting square mixing matrix A in model (15.3) is orthogonal, and so $W = A^T$.

In practice, A is unknown and the goal is to estimate the separating matrix and the source components based solely upon the observed X. Given an estimate $\hat{W} = (\hat{w}_1, \cdots, \hat{w}_m)^T$ of the separating matrix W, the source component vector S is approximated by

$$Y = \hat{W}X, \quad (15.4)$$

where the elements, $Y_1 = \hat{w}_1^T X, \ldots, Y_m = \hat{w}_m^T X$, of Y are taken to be statistically independent and as non-Gaussian as possible.

15.3.7 Identifiability Aspects

Given X, the model (15.3) suffers from a certain amount of arbitrariness:
1. The original sources are ordered arbitrarily. Let P be an $(m \times m)$ permutation matrix (a permutation of the rows and columns of the identity matrix such that every row and column has exactly one 1). Then, the model (15.3) can be written as $X = AP^{-1}PS$, where AP^{-1} is a new mixing matrix and PS permutes the elements of S. In practical terms, S and PS are indistinguishable.

2. The elements of A (and S) have arbitrary scaling. Multiplying S_j by an arbitrary nonzero constant c_j (i.e., increasing the amplitude of that particular signal) while dividing the jth column of A by the same c_j, $j = 1, 2, \ldots, m$, will not change the product AS. In other words, we cannot recover the original scalings of the source signals in S.

3. There is an arbitrary rotational factor in the matrix A that cannot be resolved by just observing X. Setting $A^* = AT$ and $S^* = T^*S$, where T is an orthogonal matrix, we see that $X^* = A^*S^*$ has the same mean and covariance matrix as $X = AS$. Thus, we should expect the columns of the separating matrix W to be a scaled and permuted version of the true W_0. In practice, identifiability issues are not really serious; as long as we require at most one of the components of X to be Gaussian, then W is identifiable up to scaling and permutation of its rows, and we are able to extract the independent source components.

15.3.8 Objective Functions

The general strategy behind ICA is very similar to that of PP described in Section 7.4. Note that a projection index of PP is called an objective (or contrast) function in ICA. In practice, objective functions should be nonnegative and equal to zero iff the projections are mutually independent. In the case of PP, interest is primarily in one- and two-dimensional (and, sometimes, three-dimensional) projections, while for ICA, we would be interested in a specified number of projections (possibly $m > 3$, depending upon context).

The same projection indexes of PP (third- and fourth-order cumulants, polynomial-based indexes, and negentropy; see Section 7.4) are often used as objective functions in ICA, especially as a means of approximating the entropy $\mathcal{H}(Y)$ of $Y = \hat{w}^TX$. The main difficulty of using such moment-based indexes arises from their well-known lack of robustness.

Researchers working with ICA now tend to use instead objective functions based upon nonpolynomial approximations of the density function to maximize the entropy $\mathcal{H}(Y)$.
15.3.9 Nonpolynomial-Based Approximations

Suppose $G_i(Y)$, $i = 1, 2, \ldots, N$, are different nonpolynomial functions of Y which (like Hermite polynomials) form an orthonormal system with respect to the standard Gaussian density ϕ,

$$\int \phi(y)G_i(y)G_j(y)ds = \delta_{ij},$$ \hspace{1cm} (15.5)

where $\delta_{ij} = 1$ or 0 according as $i = j$ or $i \neq j$, respectively, and which are orthogonal to all polynomials of up to second order,

$$\int \phi(y)G_i(y)y^kdy = 0, \ k = 0, 1, 2.$$ \hspace{1cm} (15.6)

The orthogonality constraints (15.5) and (15.6) can always be satisfied by using ordinary Gram–Schmidt orthonormalization. We further assume that the expectations of the first N of the $G_i(Y)$ are given by the following values:

$$E\{G_i(Y)\} = \int G_i(y)q_Y(y)dy = c_i, \ i = 1, 2, \ldots, N.$$ \hspace{1cm} (15.7)

Assuming also that Y has mean 0 and variance 1 yields two more constraints,

$$G_{N+1}(y) = y, \ c_{N+1} = 0,$$
$$G_{N+2}(y) = y^2, \ c_{N+2} = 1.$$ \hspace{1cm} (15.8)\hspace{1cm} (15.9)

If the probability density $p_Y^0(y)$ satisfies the constraints (15.5)–(15.9) and also has the largest entropy among all such densities, then it can be shown that

$$p_Y^0(y) = A \exp \left\{ \sum_i a_iG_i(y) \right\} ,$$ \hspace{1cm} (15.10)

where A and the $\{a_i\}$ are constants to be determined from (15.7). If we further assume that $p_Y(y) \approx \phi(y)$, then for (15.10) to be close to $e^{-y^2/2}$, the only substantial coefficient has to be $a_{N+2} \approx -1/2$. We can rewrite (15.10) as follows:

$$p_Y^0(y) = A \exp \left\{ -y^2/2 + a_{N+1}y + (a_{N+2} + 1/2)y^2 + \sum_{i=1}^N a_iG_i(y) \right\}$$
$$= \tilde{A} \phi(y) \left(1 + a_{N+1}y + (a_{N+2} + 1/2)y^2 + \sum_{i=1}^N a_iG_i(y) \right),$$ \hspace{1cm} (15.11)

where $\tilde{A} = (2\pi)^{1/2}A$ and where we used the approximation $e^\epsilon \approx 1 + \epsilon$. Furthermore,

$$1 = \int p_Y^0(y)dy = \tilde{A}[1 + (a_{N+2} + 1/2)]$$ \hspace{1cm} (15.12)
\[0 = \mathbb{E}\{Y\} = \int p_Y^0(y)dy = Aa_{N+1} \] \hspace{1cm} (15.13)

\[1 = \mathbb{E}\{Y^2\} = \int p_Y^0(y)^2dy = \bar{A}[1 + 3(a_{N+2} + 1/2)] \] \hspace{1cm} (15.14)

\[c_i = \int p_Y^0(y)G_i(y)dy = \bar{A}a_i, \quad i = 1, 2, \ldots, N. \] \hspace{1cm} (15.15)

These equations are easily solved to give
\[a_i = c_i, \quad i = 1, 2, \ldots, N, a_{N+1} = 0, a_{N+2} = -1/2, \text{ and } \bar{A} = 1. \]

Substituting these values into (15.11) yields
\[p_Y^0(y) = \phi(y) \left(1 + \sum_{i=1}^{N} c_iG_i(y) \right), \] \hspace{1cm} (15.16)

which is referred to as the approximate maximum entropy density. Compare this representation with that given by (15.10).

From (15.16), the entropy of \(Y, \mathcal{H}(Y) = -\int p_Y(y) \log p_Y(y)dy, \) can be approximated by

\[
\mathcal{H}(Y) \approx -\int p_Y^0(y) \log p_Y^0(y)dy \\
= -\int \phi(y) \left(1 + \sum_{i=1}^{N} c_iG_i(y) \right) \log \left(\phi(y) \left(1 + \sum_{i=1}^{N} c_iG_i(y) \right) \right) dy \\
\approx -\int \phi(y) \log \phi(y)dy - \sum_{i=1}^{N} c_i \int \phi(y)G_i(y) \log \phi(y)dy \\
- \int \phi(y) \left(1 + \sum_{i=1}^{N} c_iG_i(y) \right) \log \left(1 + \sum_{i=1}^{N} c_iG_i(y) \right) dy \\
= \mathcal{H}(Z) - \sum_{i=1}^{N} c_i \int \phi(y)G_i(y) \log \phi(y)dy - \sum_{i=1}^{N} c_i \int \phi(y)G_i(y)dy \\
- \frac{1}{2} \sum_{i=1}^{N} c_i^2 \int \phi(y)G_i^2(y)dy - o \left(\sum_{i=1}^{N} c_i^2 \int \phi(y)G_i^2(y)dy \right) \\
= \mathcal{H}(Z) - 0 - 0 - \frac{1}{2} \sum_{i=1}^{N} c_i^2 + o \left(\sum_{i=1}^{N} c_i^2 \right), \] \hspace{1cm} (15.17)

where we have used the conditions (15.5) and (15.6), the expansion \((1 + \epsilon) \log(1 + \epsilon) = \epsilon + \epsilon^2/2 + o(\epsilon^2) \) for \(\epsilon \) small, and \(Z \sim \mathcal{N}(0, 1). \) From (15.7) and (15.17), we have that

\[\mathcal{H}(Z) - \mathcal{H}(Y) = \mathcal{J}(Y) \approx \mathcal{J}_N(Y) = \frac{1}{2} \sum_{i=1}^{N} (\mathbb{E}\{G_i(Y)\})^2. \] \hspace{1cm} (15.18)
All that remains now is to choose the functions \(\{ G_i(Y) \} \).

The simplest choice of these functions has \(N = 1 \) or \(N = 2 \). First, taking \(N = 2 \), we can make \(G_1 \) an odd function \((G_1(-y) = -G_1(y) \), reflecting symmetry vs. asymmetry) and \(G_2 \) an even function \((G_2(-y) = G_2(y) \), reflecting sub-Gaussian (negative kurtosis) vs. super-Gaussian (positive kurtosis) distributions). One can show that in this case, the approximation (15.18) boils down to

\[
J_2(Y) = \beta_1 (E\{G_1(Y)\} - E\{G(Z)\})^2 + \beta_2 (E\{G_2(Y)\} - E\{G_2(Z)\})^2,
\]

where \(\beta_1 \) and \(\beta_2 \) are positive constants. If we take \(N = 1 \), the approximation becomes

\[
J_1(Y) = \beta (E\{G(Y)\} - E\{G(Z)\})^2, \quad \beta > 0,
\]

for any nonquadratic objective function \(G \), where \(Z \sim \mathcal{N}(0, 1) \). So, we see that (15.20) generalizes the objective functions (7.111), where \(G(Y) = Y^4 \), and (7.112), where \(G \) is given by the standard Gaussian density \(\phi \).

The approximation (15.20) to negentropy is used in the R/S-Plus and C code implementation (Marchini, Heaton, and Ripley, 2003) of the FastICA algorithm (see Section 15.3.11), where \(\beta = 1 \). By choosing \(G \) carefully, we can do much better than (7.111), which is sensitive to outliers. In particular, the following choices of the \(G \) function are more robust performers:

- \(\logcosh : G(y) = \frac{1}{\alpha} \log \cosh(\alpha y), \quad 1 \leq \alpha \leq 2 \) (usually, \(\alpha = 1 \)),
- \(\exp : G(y) = -e^{-y^2/2} = -(2\pi)^{1/2} \phi(y) \).

The \(\logcosh \) function has been found to be good for most types of ICA problems, and the \(\exp \) function is probably best for highly super-Gaussian source components where robustness is a serious consideration. The \(\logcosh \) function has also been used successfully as a flexible family of Bayesian prior distributions, especially for the image reconstruction of photon emission computed tomographic data (Green, 1990; Weir and Green, 1994; Weir, 1997).

The \(\exp \) function yields a version of \(J_1(Y) \) that is proportional to the objective functions \(I^0_H(Y) \) and \(I^0_{BC}(Y) \) (see Section 7.4.1). An immediate consequence of this result is that the FastICA algorithm can be used for PP as a fast computational method for finding “interesting” one-dimensional projections of multivariate data, as well as for finding a single source component by ICA.

15.3.10 Mutual Information

The relative entropy or Kullback–Leibler divergence of a multivariate probability density \(p \) with respect to another multivariate probability density
q is defined as

$$KL(p \parallel q) = \int p(y) \log \frac{p(y)}{q(y)} \, dy$$

$$= -\mathcal{H}(Y) - \int p(y) \log q(y) \, dy,$$ \hspace{1cm} (15.21)

where $\mathcal{H}(Y)$ is the entropy of the vector Y, and $-\int p(y) \log q(y) dy$ is the cross-entropy between p and q (Cover and Thomas, 1991, Chapter 2). Note that Kullback–Leibler divergence is nonnegative,

$$KL(p \parallel q) = E_p \left\{ \log \frac{p(y)}{q(y)} \right\}$$

$$\geq -\log E_p \left\{ \frac{q(y)}{p(y)} \right\}$$

$$= -\log \left\{ \int q(y) dy \right\} = 0,$$ \hspace{1cm} (15.22)

and is zero if $p = q$. In (15.22), we used Jensen’s inequality $E\{f(x)\} \geq f(E\{x\})$ for the convex function $f(x) = -\log(x)$, and E_p indicates expectation taken with respect to the density p. However, $KL(p \parallel q)$ is not a bona fide distance measure because it is not a symmetric function of p and q; that is, $KL(p \parallel q) \neq KL(q \parallel p)$.

We define the amount of mutual information (\mathcal{MI}) between the m components, Y_1, \ldots, Y_m, of Y by setting q in (15.22) to be the product of the marginal densities of Y, $q(y) = \prod_{j=1}^m p_j(y_j)$, where $p_j(y_j)$ is the (marginal) density of Y_j:

$$\mathcal{MI}(Y) = KL(p \parallel \prod_j p_j)$$

$$= -\mathcal{H}(Y) - \int p(y) \log \left(\prod_{j=1}^m p_j(y_j) \right) \, dy$$

$$= \sum_{j=1}^m \mathcal{H}(Y_j) - \mathcal{H}(Y).$$ \hspace{1cm} (15.23)

Thus, mutual information can be regarded as the difference between the total amount of information carried by each of the components of Y and the information carried by the components jointly. $\mathcal{MI}(Y)$ is always non-negative and is zero if and only if the components of Y are statistically independent (i.e., $p(y) = \prod_j p_j(y_j)$).

In the square-mixing case (i.e., $m = r$), let $Y = WX$ be the m-vector of recovered source components, where $W = (w_1, \ldots, w_m)^\tau$ minimizes the
mutual information of the transformed components \(\{S_j\} \). Then, the entropy of \(Y = (Y_1, \ldots, Y_m)^T \) is given by

\[
\mathcal{H}(Y) = \log |\det(W)| + \mathcal{H}(X).
\] (15.24)

Assuming that each \(Y_j = w_j^T X \) has zero mean and unit variance, \(j = 1, 2, \ldots, m \), and that the \(\{Y_j\} \) are uncorrelated, we have that \(\mathbb{E}\{YY^T\} = W\Sigma_{XX} W^T = I \), whence, \(\det(W) = [\det(\Sigma_{XX})]^{-1/2} \), which does not depend upon \(W \). If \(X \) has been centered and sphered, (15.24) reduces to \(\mathcal{H}(Y) = \mathcal{H}(X) \). Thus, we can write (15.23) as

\[
\mathcal{MI}(Y) = c - \sum_{j=1}^{m} J(Y_j),
\] (15.25)

where \(c = m\mathcal{H}(Z) - \mathcal{H}(X) \) does not depend upon \(W \) and, hence, is constant (\(Z \) is a standard Gaussian variate). In terms of optimizing the mutual information between the \(m \) components of \(Y \) with respect to the square separating matrix \(W \), we see that mutual information is the negative of the sum of the negentropies of each of the \(\{Y_j\} \). In other words, minimizing the mutual information between the components of \(Y \) is equivalent to maximizing the sum of the negentropies of the independent components of \(Y \).

15.3.11 The FastICA Algorithm

Let \(Y \) be a projection, \(Y = w^T X \), of \(X \). The idea is to find that direction \(w \) that optimizes a given objective function. For example, if the variance of the projection, \(\text{var}(Y) = w^T \Sigma_{XX} w \), where \(||w|| = 1 \), is taken as the objective function, then maximizing that function with respect to \(w \) yields the first principal component of \(X \). In this case, the solution is the eigenvector corresponding to the largest eigenvalue of \(\Sigma_{XX} \). Subsequent principal components can be sequentially extracted by maximizing projection variance within the orthogonal complement of the space spanned by previously derived eigenvectors. PCA is, therefore, a special case of ICA (but not vice versa), but whereas PCA obtains uncorrelated components, ICA yields independent components. Hence, sphering by PCA is typically used as a preprocessing tool in ICA algorithms.

In this section, we describe the FastICA algorithm that is popularly used for optimizing a given objective function and thereby extracting a single component or multiple independent components from \(X \).

Extracting a Single Source Component

First, consider a single (\(m = 1 \)) source component \(Y = w^T X \), where the \(r \)-vector \(w \) represents a direction for a one-dimensional projection. We
TABLE 15.1. Nonquadratic density functions and their first and second derivatives to be used as input to the FastICA algorithm. Note that for the logcosh density, $1 \leq \alpha \leq 2$.

<table>
<thead>
<tr>
<th>Density</th>
<th>$G(y)$</th>
<th>$g(y) = G'(y)$</th>
<th>$g'(y) = G''(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>logcosh</td>
<td>$\frac{1}{\alpha} \log \cosh(\alpha y)$</td>
<td>$\tanh(\alpha y)$</td>
<td>$\alpha(1 - \tanh^2(\alpha y))$</td>
</tr>
<tr>
<td>exp</td>
<td>$-e^{-y^2/2}$</td>
<td>$ye^{-y^2/2}$</td>
<td>$(1 - y^2)e^{-y^2/2}$</td>
</tr>
</tbody>
</table>

Wish to find that w that maximizes the approximation (15.20) to negentropy subject to the sphering constraint $E\{(w^\tau X)^2\} = \|w\|^2 = 1$ on the projection. In other words, w is to be that direction that makes the density of the one-dimensional projection $Y = w^\tau X$ as far away from the Gaussian density as possible.

Because the maxima of the negentropy $J(w^\tau X)$ are typically obtained at certain maxima of $E\{G(w^\tau X)\}$, we set

$$F(w) = E\{G(w^\tau X)\} - \frac{\lambda}{2}(\|w\|^2 - 1), \quad (15.26)$$

where λ is the Lagrangian multiplier. To maximize (15.26), the Newton–Raphson iterative method (see, e.g., Thisted, 1988, Section 4.2.2) yields the iteration

$$w \leftarrow w - \left(\frac{\partial^2 F(w)}{\partial w^2}\right)^{-1} \left(\frac{\partial F(w)}{\partial w}\right). \quad (15.27)$$

We, thus, need to find the first and second partial derivatives of $F(w)$ with respect to w.

Differentiating (15.26) with respect to w yields

$$\frac{\partial F(w)}{\partial w} = E(Xg(w^\tau X)) - \lambda w, \quad (15.28)$$

where $g = \partial G/\partial w$. The stationary values of the function F are found by equating (15.28) to zero. Premultiplying both sides of the resulting equation by w^τ yields

$$\lambda = E(w^\tau Xg(w^\tau X)). \quad (15.29)$$

Differentiating (15.28) with respect to w gives the approximate second derivative of F,

$$\frac{\partial^2 F(w)}{\partial w^2} = E\{XX^\tau g'(w^\tau X)\} - \lambda I_r$$

$$\approx E\{(XX)^\tau\}E\{g'(w^\tau X)\} - \lambda I_r$$

$$= (E\{g'(w^\tau X)\} - \lambda)I_r, \quad (15.30)$$
TABLE 15.2. FastICA algorithm for determining a single source component.

1. Center and whiten the data to give X.
2. Choose an initial version of the r-vector w with unit norm.
3. Choose G to be any nonquadratic density with first and second partial derivatives g and g', respectively. If the choice is either the logcosh or exp density, g and g' are given in the text.
4. Let $w \leftarrow E(Xg(w^\top X)) - \lambda w E(g'(w^\top X))$. In practice, the expectations are estimated using sample averages.
5. Let $w \leftarrow w/\|w\|$.
6. Iterate between steps 4 and 5. Stop when convergence is attained.

where we used the fact that X has been sphered. Substituting (15.28) and (15.30) into (15.27), the iteration reduces to

$$w \leftarrow w - \frac{E\{Xg(w^\top X)\} - \lambda w}{E\{g'(w^\top X)\} - \lambda}.$$ \hspace{1cm} (15.31)

If we set $E_1 = E\{Xg(w_{k-1}^\top X)\}$ and $E_2 = E\{g'(w_{k-1}^\top X)\}$, then (15.31) can be written as $w_k = w_{k-1} - (E_1 - \lambda w_{k-1})/(E_2 - \lambda)$ for the kth iteration. Multiplying both sides by $\lambda - E_2$ yields $w_k(\lambda - E_2) = E_1 - w_{k-1}E_2$. Because we divide w by its norm $\|w\|$ at each step of the iterative procedure, the factor $\lambda - E_2$ can be ignored. The iteration (15.31) is, therefore, equivalent to

$$w \leftarrow E\{Xg(w^\top X)\} - \lambda w E\{g'(w^\top X)\}.$$ \hspace{1cm} (15.32)

For the logcosh and exp densities, the functions g and g' are given in Table 15.1. Substituting for g and g' in (15.32) for either the logcosh or exp density as appropriate yields the FastICA algorithm, which is given in Table 15.2.

The values of w can change substantially from iteration to iteration; this is because the ICA model cannot determine the sign of w, so that $-w$ and w become equivalent and define the same direction. In light of this comment, “convergence” of the FastICA algorithm is taken to have a different meaning than usual, and is taken here to mean that successive iterative values of w (i.e., w_{k-1} and w_k for some k) are oriented in the same direction (i.e., $w_k^\top w_{k-1}$ is very close to 1).

Extracting Multiple Source Components

The FastICA package (Hurri, Gävert, Särelä, and Hyvärinen, 1998) includes two different ways of extracting more than one independent source
component. Both methods (termed “deflation” and “parallel” methods) repeatedly call the single component extraction algorithm of Table 15.2. Essentially, at each step in the algorithmic cycle:

deflation: the single component routine finds a new component, that new component is orthogonalized using the Gram–Schmidt method with respect to all previously found components, and then the resulting new component is normalized.

parallel: the single component routine is carried out in parallel for each independent component to be extracted, and then a symmetric orthogonalization is carried out on all components simultaneously.

The **deflation** method extracts independent components sequentially one-at-a-time, whereas the **parallel** method extracts all the independent components at the same time. Both algorithms are listed in Table 15.3. Note that the **parallel** algorithm is used for minimizing mutual information \(\mathcal{MI}(Y) \) because the **deflation** algorithm is not appropriate.

15.3.12 Example: Identifying Artifacts in MEG Recordings

Brain signals are very weak electrical signals. Neurons located in the brain conduct electrical activity, which, in turn, produces magnetic fields. Because magnetic signals pass unchanged through brain tissue and the skull, they can be recorded outside the head and used to identify the locations of brain activity. A MEG device is used for real-time mapping of changes in the magnetic field caused by brain activity. However, such recordings often contain artifacts due to external disturbances such as eye movements or blinks, or sensory malfunctions. It is, therefore, advisable to detect, identify, and remove such artifacts from the records. In this example, we discuss the issue of separating artifacts from true brain activity. The primary assumption here is that artifacts are an anatomically and physiologically separate process from brain activity, so that, statistically, the two types of magnetic signals generated by such processes can be considered to be independent.

In a noninvasive experiment carried out by the ICA group at the Helsinki University of Technology (Vigário, Jousmäki, Hämäläinen, Hari, and Oja, 1997), the MEG signals of a test subject were recorded in a magnetically shielded room. Measurements were taken using a whole-scalp neuromagnetometer (a helmet-shaped device; see Figure 15.3) with 122 SQUID (superconducting quantum interference device) sensors organized in pairs at 61 grid locations uniformly distributed around the head. The weak magnetic fields produced by brain activity are detected by these sensors. The
TABLE 15.3. Two FastICA algorithms for extracting multiple independent source components.

Deflation algorithm

1. Center and whiten the data to give X.
2. Decide on the number, m, of independent components to be extracted.
3. For $k = 1, 2, \ldots, m$,
 - Initialize (e.g., randomly) the r-vector w_k to have unit norm.
 - Let $w_k \leftarrow E(Xg(w_k^\top X)) - w_kE(g'(w_k^\top X))$ be the FastICA single-component update for w_k, where g and g' are given in Table 15.1. In practice, the expectations are estimated using sample averages.
 - Use the Gram–Schmidt process to orthogonalize w_k with respect to the previously chosen w_1, \ldots, w_{k-1}:
 \[
 w_k \leftarrow w_k - \sum_{j=1}^{k-1} (w_k^\top w_j)w_j.
 \]
 - Let $w_k \leftarrow w_k/\|w_k\|$.
 - Iterate w_k until convergence.
4. Set $k \leftarrow k + 1$. If $k \leq m$, return to step 3.

Parallel algorithm

1. Center and whiten the data to give X.
2. Decide on the number, m, of independent components to be extracted.
3. Initialize (e.g., randomly) the r-vectors w_1, \ldots, w_m, each to have unit norm. Let $W = (w_1, \ldots, w_m)^\top$.
4. Carry out a symmetric orthogonalization of W by $W \leftarrow (WW^\top)^{-1/2}W$.
5. For each $k = 1, 2, \ldots, m$, let $w_k \leftarrow E(Xg(w_k^\top X)) - w_kE(g'(w_k^\top X))$ be the FastICA single-component update for w_k, where g and g' are given in Table 15.1. In practice, the expectations are estimated using sample averages.
6. Carry out another symmetric orthogonalization of W.
7. If convergence has not occurred, return to step 5.
FIGURE 15.3. Helmet-shaped device with array of sensors uniformly distributed around the head to provide MEG measurements. Source: ltl.tkk.fi/research/brain/head.jpg

MEG signals were deliberately contaminated by having the test subject induce the following artifacts: (1) blink his eyes; (2) make horizontal saccades (quick, simultaneous movements of both eyes at the same time in the same direction) to simulate typical ocular (eye) artifacts; and (3) bite his teeth for as long as 20 seconds to simulate myographic (muscle) artifacts. Two more artifacts were added: (4) a piece of metal was placed next to the navel to simulate breathing artifacts; and (5) a digital watch was placed one meter away from the helmet in the shielded room to simulate a general artifact.

The data consist of \(n = 17,730 \) amplitudes of each of \(r = 122 \) MEG signals recorded over a period of 2 minutes.\(^2\) A sample of 12 of these signals is displayed in Figure 15.4. We first used PCA to convert the MEG data into principal components with decreasing variance; see Figure 15.5 for a scree plot of the eigenvalues. Because we used the sample correlation matrix for PCA, we retained only those PCs whose eigenvalues were greater than unity, which also corresponded to an “elbow” in Figure 15.5. This reduced the 122-dimensional data to 22 PCs, which accounted for 77.8% of total variance. Next, we extracted 22 independent components from the PCs (using the parallel FASTICA algorithm). The 22 ICs are displayed in Figure 15.6.

We see certain patterns in the ICs. Counting from the top of Figure 15.6, IC1–IC10 (purple curves) show low-frequency, bump-like, overlearning artifacts (Särelä and Vigario, 2003); IC11 and IC12 (light-blue curves) show

\(^2\)The data are publicly available and can be downloaded from the website www.cis.hut.fi/projects/ica/eegmeg/MEG.data.html.
Latent Variable Models for Blind Source Separation

FIGURE 15.4. Spontaneous MEG signals for a sample of 12 channels (locations) of a 122-channel whole-scalp neuromagnetometer over the frontal, temporal, and occipital areas of a test subject’s scalp. Artifacts were introduced by saccades, blinking, and biting, in that order.

horizontal eye movements, and IC13 and IC14 (green curves) show eye blinks; IC15 (red curve) represents a cardiac cycle artifact, and IC16 (dark-blue curve) shows the digital watch artifact, both signals of which are not visible in the raw data; and IC17 and IC18 (orange curves) correspond to the muscle (biting) artifact. The remaining four signals reflect noise components.

15.3.13 Maximum-Likelihood ICA

Another way of carrying out ICA is to specify a parametric distribution, \(p_S(s) \), for the latent source variables \(S \) and then apply the maximum-likelihood (ML) method to estimate the parameters of that distribution. In
FIGURE 15.5. Scree plot of the 122 ordered eigenvalues (variances) of the sample correlation matrix computed from the MEG data.

In this section, we describe a fixed-point algorithm (which utilizes the FastICA algorithm) for square mixing \((m = r)\).

Suppose the density of the \(m\)-vector \(S = (S_1, \ldots, S_m)\) of sources is \(p_S(s)\), and suppose \(X = AS\), where \(A\) is square and nonsingular. Let \(W = A^{-1}\). Then, the density of \(X\) is \(p_X(x) = |\det(W)|p_S(s)\). Because the sources are assumed to be statistically independent, then,

\[
p_X(x) = |\det(W)| \prod_{j=1}^{m} p_{S_j}(w_j^T x),
\]

where \(p_{S_j}(s_j)\) is the density of \(S_j\) and \(w_j^T\) is the \(j\)th row of \(W\). Given \(n\) i.i.d. observations, \(X_1, \ldots, X_n\), on \(X\), the log-likelihood function for \(W\) is

\[
n^{-1} \log \mathcal{L}(W|\{X_i\}) = \log |\det(W)| + n^{-1} \sum_{i=1}^{n} \left\{ \sum_{j=1}^{m} \log p_{S_j}(w_j^T X_i) \right\}.
\]

In this case, the parameters are the elements of \(W\). To find the ML estimator of \(W\), we derive a fixed-point algorithm that will maximize (15.34) numerically.

For convenience, we write “E” in the second term on the right-hand side of (15.34) for the sample average over the \(n\) observations. The derivative
of log $\mathcal{L}(W)$ with respect to W is given by the matrix gradient,

$$
\frac{n^{-1} \partial \log \mathcal{L}(W)}{\partial W} = (W^\tau)^{-1} + E \left\{ \frac{\partial}{\partial W} \sum_{j=1}^{m} \log p_{S_j}(w_j^\tau X) \right\}
$$

$$
= (W^\tau)^{-1} + E\{g(WX)X^\tau\} = (W^\tau)^{-1} + E\{g(WX)X^\tau\}, \quad (15.35)
$$

where

$$
g(WX) = (g_1(w_1^\tau X), \ldots, g_m(w_m^\tau X)) \quad (15.36)
$$

and

$$
g_j(w_j^\tau X) = \frac{p'_{S_j}(w_j^\tau X)}{p_{S_j}(w_j^\tau X)} \quad (15.37)
$$
is the jth score function. The update rule for the kth iterate of \(W \) is

\[
W_k = W_{k-1} - \alpha \frac{\partial \log \mathcal{L}(W)}{\partial W}|_{W=W_{k-1}},
\]

(15.38)

where \(\alpha \) is the step-size parameter of the optimization rule, depending upon \(n \) and possibly \(k \). Setting \(\Delta W = W_k - W_{k-1} \) as the difference between successive iterates of \(W \), and using (15.35), we can write (15.38) in the form

\[
\Delta W \propto (W^\tau)^{-1} + \mathbb{E}\{g(WX)X^\tau\}.
\]

(15.39)

Postmultiplying the right-hand side of (15.39) by \(W^\tau \) gives the fixed-point algorithm,

\[
W \leftarrow W + \mu[I_m + \mathbb{E}\{g(Y)Y^\tau\}]W,
\]

(15.40)

where \(Y = WX \) and \(\mu \) is the learning rate, which may be reduced in size until convergence. This modification produces an algorithm that avoids the matrix inversions of (15.39) and speeds up convergence considerably.

Hyvärinen (1999) recognized that (15.40) is really just a special case of the FastICA algorithm. The link between the two algorithms can be seen if we write Step 5 of the parallel FastICA algorithm in Table 15.3 in matrix form as

\[
W \leftarrow W + D_\alpha [D_\lambda - \mathbb{E}\{g(Y)Y^\tau\}]W,
\]

(15.41)

where \(Y = (Y_1, \cdots, Y_m)^\tau \), \(Y_i = w_i^\tau X \), \(\lambda_i = \mathbb{E}\{Y_ig(Y_i)\} \), \(\alpha_i = 1/(\mathbb{E}\{g'(Y_i)\} - \lambda_i) \), \(D_\alpha = \text{diag}\{\alpha_i\} \), and \(D_\lambda = \text{diag}\{\lambda_i\} \). The second term on the right-hand side of (15.41) can be rearranged to give

\[
W \leftarrow W + D_{\alpha\lambda}[I_m - D^{-1}_\lambda \mathbb{E}\{g(Y)Y^\tau\}]W,
\]

(15.42)

where \(D_{\alpha\lambda} = \text{diag}\{\alpha_i\lambda_i\} \) and \(D^{-1}_\lambda = \text{diag}\{\lambda_i^{-1}\} \). Thus, the FastICA algorithm as given in Table 15.4 can be interpreted as maximizing the likelihood (15.34), thereby directly obtaining the ML estimate of \(W \). Comparing (15.42) with (15.40), we see that the scalar learning rate \(\mu \) has now become a more flexible part of the iterative process. Furthermore, simulation studies have demonstrated that careful choice of \(\{\alpha_i\} \) and \(\{\lambda_i\} \) can speed up convergence of the FastICA algorithm.

15.3.14 Kernel ICA

A radically different approach to ICA was developed by Bach and Jordan (2002). Their approach, which they call Kernel ICA, still involves building an appropriate objective function and then optimizing that objective function using a numerical algorithm. The difference between the Kernel ICA approach and those of the more “traditional” approaches described in
TABLE 15.4. FastICA algorithm for obtaining the maximum likelihood estimate of a square separating matrix W.

1. Center the data, and then sphere the result to give X.
2. Decide on the number, m, of independent components to be extracted.
3. Randomly initialize a separating matrix W.
5. Compute $\lambda_i = E(Y_i^g(Y_i))$, $\alpha_i = 1/(E(g'(Y_i)) - \lambda_i)$, $i = 1, 2, \ldots, m$. The function g is usually taken to be the tanh function (see Table 15.1). Set $D_\alpha = \text{diag}\{\alpha_i\}$ and $D_\lambda = \text{diag}\{\lambda_i\}$.
6. Update W by $W \leftarrow W + D_\alpha [D_\lambda - E(g(Y)Y^\tau)]W$. In practice, the expectation is estimated using a sample average.
7. Carry out a symmetric orthogonalization of W by $W \leftarrow (WW^\tau)^{-1/2}W$.
8. If convergence has not occurred, return to step 4.

This chapter is that the development consists of searching the functions in a reproducing kernel Hilbert space. This approach reduces to finding the eigenvalues and eigenvectors of a certain matrix, which we show is derived from a kernelized version of CVA.

Kernel CVA

The CVA method of Section 7.3 has been generalized to the nonlinear case using similar ideas as were developed for support vector machines. (We will see nonlinear PCA in Chapter 16.) The resulting methodology has been applied to problems as varied as that of extracting correlated gene clusters from multiple genomic data to cross-language latent semantic indexing. In many multivariate applications, the standard CVA method will not be feasible if the dimensionality of the problem is too large or if the data cannot be represented as vectors.

The nonlinear version of CVA that we describe here assumes that we carry out a nonlinear transformation, $\Phi_1 : \mathbb{R}^r \rightarrow \mathcal{H}_1$, of one set of input data, $X_i \in \mathbb{R}^r$, $i = 1, 2, \ldots, n$, and another nonlinear transformation, $\Phi_2 : \mathbb{R}^s \rightarrow \mathcal{H}_2$, of a second set of input data, $Y_i \in \mathbb{R}^s$, $j = 1, 2, \ldots, n$.

CVA in Feature Space

We now carry out CVA between the two transformed sets of input data, $\{\Phi_1(X_i), i = 1, 2, \ldots, n\}$ and $\{\Phi_2(Y_i), i = 1, 2, \ldots, n\}$, where we assume that both sets of transformed data have been centered. We wish to find
\[f_1 \in \mathcal{H}_1 \text{ and } f_2 \in \mathcal{H}_2 \text{ such that the features } f_1(\mathbf{X}) = \langle \Phi_1(\mathbf{X}), f_1 \rangle \text{ and } f_2(\mathbf{Y}) = \langle \Phi_2(\mathbf{Y}), f_2 \rangle \text{ have maximal correlation.} \]

We search for \(f_1 \) and \(f_2 \) in the linear spaces, \(\mathcal{S}_1 \) and \(\mathcal{S}_2 \), respectively, which are spanned by these \(\Phi \)-images. These are reproducing kernel Hilbert spaces (rkhs). For a given \(f_1, f_2 \), we can write

\[
f_1 = \sum_{i=1}^{n} \alpha_{1i} \Phi_1(\mathbf{X}_i) + f_1^\perp, \quad f_2 = \sum_{i=1}^{n} \alpha_{2i} \Phi_2(\mathbf{Y}_i) + f_2^\perp,
\]

where \(f_1^\perp \) and \(f_2^\perp \) are orthogonal to \(\mathcal{S}_1 \) and \(\mathcal{S}_2 \), respectively. Then, we can write \(f_1(\mathbf{X}) = \langle \Phi_1(\mathbf{X}), f_1 \rangle = \sum_{i=1}^{n} \alpha_{1i} \langle \Phi_1(\mathbf{X}), \Phi_1(\mathbf{X}_i) \rangle \) and \(f_2(\mathbf{Y}) = \langle \Phi_2(\mathbf{Y}), f_2 \rangle = \sum_{i=1}^{n} \alpha_{2i} \langle \Phi_2(\mathbf{Y}), \Phi_2(\mathbf{Y}_i) \rangle \).

We could maximize the covariance of \(f_1(\mathbf{x}) \) and \(f_2(\mathbf{y}) \) subject to constraints on the variances as we did previously. However, we consider instead the equivalent problem of maximizing the (canonical) \(\mathcal{H} \)-correlation (\(\mathcal{H} = \mathcal{H}_1 \times \mathcal{H}_2 \)) between \(f_1(\mathbf{X}) \) and \(f_2(\mathbf{X}) \) as defined by

\[
\tilde{\rho}_{\mathcal{H}}(\mathbf{X}, \mathbf{Y}) = \max_{(f_1, f_2) \in \mathcal{H}_1 \times \mathcal{H}_2} \frac{\text{cov}(f_1(\mathbf{X}), f_2(\mathbf{Y}))}{(\text{var}(f_1(\mathbf{X})))^{1/2}(\text{var}(f_2(\mathbf{Y})))^{1/2}},
\]

where

\[
\text{cov}(f_1(\mathbf{X}), f_2(\mathbf{Y})) = n^{-1} \sum_{i=1}^{n} f_1(\mathbf{X}_i) f_2(\mathbf{Y}_i)
\]

\[
= n^{-1} \sum_{i=1}^{n} \langle \Phi_1(\mathbf{X}_i), f_1 \rangle \langle \Phi_2(\mathbf{Y}_i), f_2 \rangle
\]

\[
= n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{1j} \alpha_{2k} \mathbf{K}_1(\mathbf{X}_i, \mathbf{X}_j) \mathbf{K}_2(\mathbf{Y}_i, \mathbf{Y}_k)
\]

\[
= n^{-1} \alpha_1^\top \mathbf{K}_1 \mathbf{K}_2 \alpha_2
\]

\[
\text{var}(f_1(\mathbf{X})) = n^{-1} \alpha_1^\top \mathbf{K}_1 \alpha_1
\]

\[
\text{var}(f_2(\mathbf{Y})) = n^{-1} \alpha_2^\top \mathbf{K}_2 \alpha_2
\]

\[
\alpha_1 = (\alpha_{11}, \ldots, \alpha_{1n})^\top, \quad \alpha_2 = (\alpha_{21}, \ldots, \alpha_{2n})^\top, \quad \text{and the matrices } \mathbf{K}_1 \text{ and } \mathbf{K}_2 \text{ are the } (n \times n) \text{ Gram matrices associated with } \{\mathbf{X}_i, i = 1, 2, \ldots, n\} \text{ and } \{\mathbf{Y}_i, i = 1, 2, \ldots, n\}, \text{ respectively.}
\]

The kernelized version of the CVA problem is, therefore, given by

\[
\hat{\rho}_{\mathcal{H}}(\mathbf{K}_1, \mathbf{K}_2) = \max_{\alpha_1, \alpha_2 \in \mathbb{R}^n} \frac{\alpha_1^\top \mathbf{K}_1 \mathbf{K}_2 \alpha_2}{(\alpha_1^\top \mathbf{K}_1 \mathbf{K}_1 \alpha_1)^{1/2}(\alpha_2^\top \mathbf{K}_2 \mathbf{K}_2 \alpha_2)^{1/2}}.
\]

Differentiating (15.48) with respect to \(\alpha_1 \) and \(\alpha_2 \) and then setting the results equal to zero yields the generalized eigenequation,

\[
\mathbf{K} \alpha = \lambda \mathbf{D} \alpha,
\]
where

\[\mathcal{K} = \begin{pmatrix} 0 & K_1 K_2 \\ K_2 K_1 & 0 \end{pmatrix}, \quad \mathcal{D} = \begin{pmatrix} K_1^2 & 0 \\ 0 & K_2^2 \end{pmatrix}, \quad \alpha = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}. \] (15.50)

The problem with this eigenequation is that \(\mathcal{D} \) will be singular because centering renders both Gram matrices, \(K_1 \) and \(K_2 \), singular. It also turns out that all pairs of “kernel canonical variates” in feature space will be perfectly correlated, which will happen even if the non-centered \(K_1 \) and \(K_2 \) are invertible. As it stands, then, this “naive” kernel method cannot provide us with a useful estimate of the population canonical correlation, \(\rho_H(X, Y) \).

Regularization

One way out of this predicament is to apply regularization to the problem. This solution is in the same spirit as ridge regression and smoothing in functional CVA (Leurgans, Moyeed, and Silverman, 1993). In this case, penalizing the \(H_1 \)-norm of \(f_1 \) and the \(H_2 \)-norm of \(f_2 \) each by the same small constant value \(\kappa > 0 \) means replacing \(K_1 \) by \((K_1 + \kappa I) \) and \(K_2 \) by \((K_2 + \kappa I) \) in the definition of \(\mathcal{D} \) in (15.50). This can be seen as follows: if \(\theta \) is a regularization parameter, then,

\[
\hat{\text{var}}\{f_1(X_i)\} + \theta \|f_1\|^2_{H_1} = n^{-1}\alpha_1^T K_1^2 \alpha_1 + \theta \alpha_1^T K_1 \alpha_1 \\
\approx n^{-1}\alpha_1^T (K_1 + \kappa I) \alpha_1 \] (15.51)

\[
\hat{\text{var}}\{f_2(Y_j)\} + \theta \|f_2\|^2_{H_2} \approx n^{-1}\alpha_2^T (K_2 + \kappa I) \alpha_2, \] (15.52)

where \(\kappa = n\theta/2 \) (Bach and Jordan, 2002).

The regularized version of (15.48) is given by

\[
\hat{\rho}_H(K_1, K_2) = \max_{\alpha_1, \alpha_2 \in \mathbb{R}^n} \frac{\alpha_1^T K_1 K_2 \alpha_2}{(\alpha_1^T (K_1 + \kappa I) \alpha_1)^{1/2}(\alpha_2^T (K_2 + \kappa I) \alpha_2)^{1/2}}. \] (15.53)

We see in (15.53) that the covariance term in the numerator is to be compared with the variance and the penalty function of each term in the denominator. The value of \(\kappa \) determines the weight to be placed upon the penalty terms compared with the variance terms. As \(\kappa \) gets close to zero, the variance term dominates, whereas as \(\kappa \) gets larger, the variance term becomes more affected by the amount of roughness allowed by the penalty term. Some careful compromise is needed here when deciding upon the value of \(\kappa \).

Differentiating (15.53) with respect to \(\alpha_1 \) and \(\alpha_2 \) and then setting the results equal to zero yields two equations, which can be written in matrix form as

\[\mathcal{K} \alpha = \lambda \mathcal{D}_\kappa \alpha, \] (15.54)
where \mathcal{K} is given by (15.50),

$$
\mathcal{D}_\kappa = \begin{pmatrix}
(K_1 + \kappa I_n)^2 & 0 \\
0 & (K_2 + \kappa I_n)^2
\end{pmatrix},
$$

(15.55)

and α is given by (15.50). This is a generalized eigenequation, which has $2n$ paired eigenvalues

$$\{\lambda_1, -\lambda_1, \ldots, \lambda_n, -\lambda_n\},
$$

(15.56)

each of which lies between -1 and 1. The first eigenvalue, λ_1, is the largest canonical correlation. The equation (15.54) can be written in the alternate form,

$$
\mathcal{K}_\kappa \alpha = (1 + \lambda) \mathcal{D}_\kappa \alpha,
$$

(15.57)

where

$$
\mathcal{K}_\kappa = \begin{pmatrix}
(K_1 + \kappa I_n)^2 & K_1 K_2 \\
K_2 K_1 & (K_2 + \kappa I_n)^2
\end{pmatrix},
$$

(15.58)

\mathcal{D}_κ is given by (15.55) and α is given by (15.50). Equation (15.57) has paired eigenvalues $\{1 + \lambda_1, 1 - \lambda_1, \ldots, 1 + \lambda_n, 1 - \lambda_n\}$.

Note that (15.57) can be expressed as a standard eigenproblem,

$$
\tilde{\mathcal{K}}_\kappa \tilde{\alpha} = \tilde{\lambda} \tilde{\alpha},
$$

(15.59)

where $\tilde{\mathcal{K}}_\kappa = \mathcal{D}_\kappa^{-1/2} \mathcal{K}_\kappa \mathcal{D}_\kappa^{-1/2}$, $\tilde{\alpha} = \mathcal{D}_\kappa^{-1/2} \alpha$, and $\tilde{\lambda} = 1 + \lambda$. We are, therefore, interested in the eigenvalues and eigenvectors of the $(2n \times 2n)$-matrix

$$
\tilde{\mathcal{K}}_\kappa = \begin{pmatrix}
I_n & K_1^\kappa K_2^\kappa \\
K_2^\kappa K_1^\kappa & I_n
\end{pmatrix},
$$

(15.60)

where $K_j^\kappa = (K_j + \kappa I_n)^{-1} K_j$, $j = 1, 2$.

The kernel canonical variate scores are then given by $f_1(X) = K_1 \alpha_1$ and $f_2(Y) = K_2 \alpha_2$.

Choice of Parameter Values

It is important that the parameters in the eigenproblem be chosen carefully. There are two “free” parameters that have to be chosen by the user:

1. Bach and Jordan (2002) recommend that the regularization parameter θ be set to $\theta = 2 \times 10^{-3}$ for $n > 1,000$ and $\theta = 2 \times 10^{-2}$ for $n \leq 1,000$. Leurgans, Moyeed, and Silverman (1993), in a slightly different context, consider cross-validation as a method for determining a good choice of θ; they found, however, that cross-validation works much better for the leading canonical variate than it does for subsequent canonical variates.
2. If a Gaussian radial basis kernel is used as the kernel in this method, Bach and Jordan recommend that the scale parameter σ be assigned the value $\sigma = 1/2$ for $n > 1,000$ and $\sigma = 1$ for $n \leq 1,000$.

Kernel ICA

The kernel CVA results can be generalized to $m > 2$ by using an analogue of (15.57). In this case, the equation can be written as

$$\mathcal{K}_\kappa \alpha = (1 + \lambda) \mathcal{D}_\kappa \alpha,$$

(15.61)

where

$$\mathcal{K}_\kappa = \begin{pmatrix}
(K_1 + \kappa I_n)^2 & K_1 K_2 & \cdots & K_1 K_m \\
K_2 K_1 & (K_2 + \kappa I_n)^2 & \cdots & K_2 K_m \\
\vdots & \vdots & \ddots & \vdots \\
K_m K_1 & K_m K_2 & \cdots & (K_m + \kappa I_n)^2
\end{pmatrix},$$

(15.62)

is the $(mn \times mn)$ covariance matrix of the m vectors y_1, \ldots, y_m.

$$\mathcal{D}_\kappa = \begin{pmatrix}
(K_1 + \kappa I_n)^2 & 0 & \cdots & 0 \\
0 & (K_2 + \kappa I_n)^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & (K_m + \kappa I_n)^2
\end{pmatrix},$$

(15.63)

is the $(mn \times mn)$ block-diagonal matrix of the individual covariance matrices, and $\alpha = (\alpha_1^\top, \ldots, \alpha_m^\top)$. Note that (15.61) can be expressed as a standard eigenproblem,

$$\tilde{\mathcal{K}}_\kappa \tilde{\alpha} = \tilde{\lambda} \tilde{\alpha},$$

(15.64)

where $\tilde{\mathcal{K}}_\kappa = \mathcal{D}_\kappa^{-1/2} \mathcal{K}_\kappa \mathcal{D}_\kappa^{-1/2}$, $\tilde{\alpha} = \mathcal{D}_\kappa^{1/2} \alpha$, and $\tilde{\lambda} = 1 + \lambda$. Thus, the eigenvector α of \mathcal{K}_κ gets transformed into the eigenvector $\tilde{\alpha}_j = (K_j + \kappa I_n) \alpha_j$ of $\tilde{\mathcal{K}}_\kappa$, with an identical eigenvalue. We are, therefore, interested in the eigenvalues and eigenvectors of the $(mn \times mn)$-matrix

$$\tilde{\mathcal{K}}_\kappa = \begin{pmatrix}
I_n & K_1^\kappa K_2^\kappa & \cdots & K_1^\kappa K_m^\kappa \\
K_2^\kappa K_1^\kappa & I_n & \cdots & K_2^\kappa K_m^\kappa \\
\vdots & \vdots & \ddots & \vdots \\
K_m^\kappa K_1^\kappa & K_m^\kappa K_2^\kappa & \cdots & I_n
\end{pmatrix},$$

(15.65)

where $K_j^\kappa = (K_j + \kappa I_n)^{-1} K_j$, $j = 1, 2, \ldots, m$.

From (15.65), Bach and Jordan suggest two possible objective functions for ICA:

- $\hat{I}_{\mathcal{H}_\kappa}(K_1, \ldots, K_m) = -\frac{1}{2} \log \lambda_{\text{min}}(\tilde{\mathcal{K}}_\kappa)$,
\[\tilde{I}_{\mathcal{H}_K}(K_1, \ldots, K_m) = -\frac{1}{2} \log \det(\tilde{K}_\kappa), \]

where \(\lambda_{\min}(\tilde{K}_\kappa) \) is the smallest eigenvalue of \(\tilde{K}_\kappa \), and \(\det(\tilde{K}_\kappa) \) is the kernel generalized variance associated with the eigenproblem. Both objective functions are functions of the Gram matrices \(K_1, \ldots, K_m \) through the separating matrix \(W \) and, hence, can be optimized with respect to that matrix.

As one would expect with such huge \((mn \times mn) \)-matrices, computational issues become paramount to the success of this method. The solution implemented by Bach and Jordan reduces the dimensionality of the problem by using low-rank approximations to the \(m \) Gram matrices \(\{K_j^\kappa, j = 1, 2, \ldots, m\} \). Computations are based upon incomplete Cholesky decompositions and a deflation algorithm similar to that outlined in Table 15.3.

Extensive simulations and comparisons with other ICA algorithms show Kernel ICA to have greater accuracy and to be more robust to outliers and insensitive to asymmetry of the source distributions. Because of its computational complexity, however, running time is somewhat slower than that of the other ICA algorithms.

15.4 Exploratory Factor Analysis

Tukey’s distinction between exploratory and confirmatory data analysis has been extended to the techniques of factor analysis. What was once known as “common factor analysis” is now considered as exploratory methodology, and is referred to as exploratory factor analysis (EFA).

The main contributors to the development of EFA as a statistical procedure were Thurstone, Spearman, Harman, Lawley, Guttman, Kaiser, Joreskog, Rao, Harris, and many others. The fact that so many were involved in its growth perhaps reflects the many divergent opinions as to the direction it should ultimately follow. The procedure has been used extensively in its different guises by social and behavioral scientists (especially in education, sociology, and psychology), who have used EFA to study latent characteristics such as mental ability, intellect, personality, and individuality through large batteries of tests. Lately, research workers in marketing, medicine, archaeology, meteorology, and other sciences have noted its usefulness and have applied it to many interesting problems.

However, this is not to say that EFA has been completely accepted. Indeed, it is still regarded by many with a marked degree of skepticism. This may be due, in part, to the type of data commonly used as input to factor analysis programs; in part, to the many subjective judgments involved in using the technique of EFA; and, in part, to the very personal interpretations of what exactly the derived factors represent. Computer packages
that include a factor analysis routine now provide enough methodological options to satisfy any factor analyst. The plethora of such available methods, however, can also create a sense of confusion for the researcher. Furthermore, such extensive automation of the subject has also produced its fair share of mindless abuse.

15.4.1 The Factor Analysis Model

The linear mixing version of the noisy ICA model,

\[X = AS + e, \quad (15.66) \]

where \(A = (a_{ij}) \) is a full-rank \((r \times m)\) mixing matrix with unknown coefficients, is usually associated with exploratory factor analysis (Lawley and Maxwell, 1971; Harman, 1976). If we assume that the noise component \(e \) has zero mean and a diagonal \((r \times r)\) covariance matrix, \(\text{cov}(e) = \Psi \), with positive diagonal entries, and that \(S \) and \(e \) are uncorrelated, \(E(Se^\top) = 0 \), then (15.66) reduces to the classical common factor analysis model (FA), where the sources are called factors. For the model (15.66), \(E\{X\} = \mu = 0 \) and

\[\Sigma_{XX} = AA^\top + \Psi. \quad (15.67) \]

The EFA (as well as the BSS and ICA) problem is to estimate \(A \) and recover \(S \).

Assume that each of the \(r \) observed input variables \(X_1, X_2, \ldots, X_r \) has been standardized to have zero mean and unit variance. We can write the EFA model in (15.66) by the following system of linear equations:

\[X_j = a_{1j}S_1 + a_{2j}S_2 + \cdots + a_{mj}S_m + e_j, \quad j = 1, 2, \ldots, r, \quad (15.68) \]

where \(S_1, S_2, \ldots, S_m \) are \(m \) unobservable random variables (usually called latent variables or common factors), the \(\{a_{ij}\} \) are unknown constants (referred to as factor loadings), and the \(e_1, e_2, \ldots, e_r \) are unobservable random variables that are called specific (or unique) factors because \(e_j \) only appears in the equation involving \(X_j \). We can also think of \(e_j \) as the unobservable error in fitting the \(j \)th equation. We assume that the relationships between the observed input variables, \(X_1, \ldots, X_r \), are explained only by the underlying common factors and not by the errors. Thus, we assume that the \(\{S_j\} \) are independent of the \(\{e_j\} \), and that the \(\{e_j\} \) are independent. The common factors, \(\{S_j\} \), are called orthogonal if they are pairwise uncorrelated, while if they are correlated, they are called oblique factors.

From (15.67), we see that the \(i \)th diagonal entry of \(\Sigma_{XX} \) is given by

\[1 = h_i^2 + \psi_{ii}, \] where \(h_i^2 = \sum_j a_{ij}^2 \) is called the communality and \(\psi_{ii} \) is the uniqueness given by the \(i \)th diagonal entry of \(\Psi \).
15.4.2 Principal Components FA

Without making any distributional assumption (e.g., Gaussian) for the sources (factors) in (15.66), we can determine \mathbf{A} using a least-squares approach. In fact, premultiplying (15.66) by the Moore–Penrose generalized inverse, $\mathbf{B} = (\mathbf{A}^\tau \mathbf{A})^{-1} \mathbf{A}^\tau$, of \mathbf{A}, and then substituting the result in terms of \mathbf{S} back into (15.66), we can re-express the model as

$$\mathbf{X} = \mathbf{CX} + \mathbf{E},$$

(15.69)

where $\mathbf{C} = \mathbf{AB}$ has rank m, \mathbf{A} and \mathbf{B} are full-rank matrices each of rank m, $\mathbf{E} = (\mathbf{I} - \mathbf{C})\mathbf{e}$, and \mathbf{X} and \mathbf{E} both have mean zero. The model (15.69) is the multivariate reduced-rank regression model corresponding to principal component analysis (see Chapters 6 and 7). The least-squares criterion,

$$\mathbb{E}\{(\mathbf{X} - \mathbf{ABX})^\tau (\mathbf{X} - \mathbf{ABX})\}$$

(15.70)

is, therefore, minimized by setting

$$\mathbf{A} = (\mathbf{v}_1, \ldots, \mathbf{v}_m) = \mathbf{B}^\tau,$$

(15.71)

where \mathbf{v}_j is the eigenvector corresponding to the jth largest eigenvalue of Σ_{XX}. The rows of the matrix \mathbf{B} give the coefficients of the m principal components scores, $\mathbf{v}_j^\tau \mathbf{X}$, $j = 1, 2, \ldots, m$, and the eigenvalues of Σ_{XX}, which are usually ordered from largest to smallest, measure the variance (or power) of the m sources. This approach, which essentially ignores the matrix Ψ, is usually referred to as the principal components method.

Typically, Σ_{XX} will be unknown and so we estimate it from the standardized input data by $\hat{\Sigma}_{XX}$, the sample correlation matrix. Estimates of \mathbf{A} and \mathbf{B} are given by

$$\hat{\mathbf{A}} = (\hat{\mathbf{v}}_1, \ldots, \hat{\mathbf{v}}_m) = \hat{\mathbf{B}}^\tau,$$

(15.72)

respectively, where $\hat{\mathbf{v}}_j$ is the eigenvector corresponding to the jth largest eigenvalue of $\hat{\Sigma}_{XX}$, $j = 1, 2, \ldots, m$. One of the difficult problems faced by factor analysts is to determine the value of m, the number of common factors. Because the r eigenvalues of $\hat{\Sigma}_{XX}$ sum to r (the trace of $\hat{\Sigma}_{XX}$), a popular decision rule (Kaiser, 1960) is that m should be taken to be the number of those sample eigenvalues that are greater than unity.

The m-vector of estimated factor scores corresponding to a standardized sample observation $\mathbf{X} = (X_1, \ldots, X_r)^\tau$ is given by

$$\hat{\mathbf{f}} = \hat{\mathbf{B}} \mathbf{X} = (\hat{\mathbf{v}}_1^\tau \mathbf{X}, \ldots, \hat{\mathbf{v}}_m^\tau \mathbf{X})^\tau.$$

(15.73)

For a sample of n sample observations, $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$, it is common to plot the estimated factor scores corresponding to the first two factors on a scatterplot, where possible outliers can be identified.
Because $C = (AT)(T^*B)$ for any orthogonal $(m \times m)$-matrix T, we can only determine A (and, hence, also S) up to a rotation. In factor analysis, this is generally referred to as the problem of *factor indeterminancy*. Although this leads to a problem of identifiability, it can be made to work in our favor. We would like to choose a *rotation matrix* T so that $\hat{f}^* = T^*\hat{f}$ has some desirable property. For example, can T be chosen to make \hat{AT} have an interesting interpretive structure? When the elements of \hat{AT} have a particular pattern so that certain elements are zero, that matrix is said to have *simple structure*. The problem of choosing such a T is known as the problem of *factor rotation*, for which there exist many different approaches. Probably the most popular rotation method is the *varimax* rotation (Kaiser, 1958), which seeks to find an orthogonal transformation T to maximize the sum, over all factors, of the variance of the squares of the scaled loadings (the estimated loadings divided by h^2_i, the square-root of the communalities) for each factor.

A modification of the principal components method, which takes account of the diagonal matrix Ψ, is the *principal-factor method*. In this method, the correlation matrix Σ_{XX}, with ones along the main diagonal, is replaced in the eigenanalysis by the *reduced correlation matrix* $\Sigma_{XX} - \Psi$, which has instead the communalities $\{h^2_j\}$ along the diagonal. In practice, Ψ is also unknown and, hence, the communalities have to be estimated. The most common estimate of h^2_j is the squared multiple correlation between X_j and the remaining $r - 1$ input variables, which can be obtained as $\hat{h}^2_j = 1 - (1/r)_{jj}$, where $(r)_{jj}$ is the jth diagonal element of the inverse of the sample correlation matrix. The matrix $\hat{\Sigma}_{XX} - \hat{\Psi}$, with numbers less than unity in the main diagonal, will not necessarily be positive-definite, so that its eigenvalues will be both positive and negative. Because the sum of the positive eigenvalues exceeds the sum of the communalities, the number of factors, m, is usually taken to be at most the maximum number of positive eigenvalues whose sum is less than $\text{tr}(\hat{\Sigma}_{XX} - \hat{\Psi})$.

Although many analysts have abandoned the principal factor method in favor of the maximum-likelihood (ML) method because of computational issues, this method still occupies a prominent place in many factor analysis programs.

15.4.3 Maximum-Likelihood FA

The ML method (MLFA) assumes a fully parametric model in which the m sources in (15.66) are distributed as multivariate Gaussian, $S \sim \mathcal{N}_m(0, I_m)$, independent of the noise, which is also multivariate Gaussian, $e \sim \mathcal{N}_r(0, \Psi)$, where Ψ is diagonal. In some formulations, $\Psi = a^2 I_r$, where a is an unknown constant. These assumptions in turn imply that X is also multivariate Gaussian, $X \sim \mathcal{N}_r(0, \Sigma_{XX})$, where Σ_{XX} is given by (15.67).
Given \(n \) independent observations, \(X_1, \ldots, X_n \), on \(X \), we compute the sample covariance matrix \(\hat{\Sigma}_{XX} \) as before, which has a Wishart distribution: \(n\hat{\Sigma}_{XX} \sim W_r(n, \Sigma_{XX}) \). ML estimators of \(A \) and \(\Psi \) are obtained by maximizing the logarithm of the likelihood function,

\[
\log_e L = -\frac{n}{2} \log_e |AA^\tau + \Psi| - \frac{n}{2} \text{tr}\left\{ \hat{\Sigma}_{XX}(AA^\tau + \Psi)^{-1} \right\}, \tag{15.74}
\]

where we have ignored constants and terms that do not involve \(\Lambda \) or \(\Psi \).

We apply the EM algorithm to maximize \(\log_e L \) with respect to \(A \) and \(\Psi \) (Rubin and Thayer, 1982). See Table 15.5. The algorithm treats the unobservable source scores \(\{s_i\} \) as if they were missing data. If the \(\{s_i\} \) were actually observed, the complete-data likelihood would be given by the joint distribution of the \(\{s_i\} \) and the \(\{e_i = x_i - As_i\} \),

\[
\text{Lik} = \prod_{i=1}^{n} \left\{ (2\pi)^{r/2} |\Psi|^{-1/2} e^{-\frac{1}{2} e_i^\tau \Psi^{-1} e_i} (2\pi)^{-r/2} e^{-\frac{1}{2} \sum_{j=1}^{r} (x_{ij} - A_j s_i)^2} \right\}
\]

where \(x_{ij} \) is the \(j \)th component of \(x_i \), \(A_j \) is the \(j \)th row of \(A \), and \(\psi_{jj} \) is the \(j \)th diagonal element of the diagonal matrix \(\Psi \). Given the observed data \(\{x_{ij}\} \) and the current estimated values of the parameters, the conditional expectation of (15.75), taken over the distribution of the missing data \(\{S_i\} \), is equal to \(e^{\log_e L} \).

The logarithm of (15.75) is

\[
\log_e (\text{Lik}) = -\frac{n}{2} \sum_{j=1}^{r} \log_e (\psi_{jj}) - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} \frac{(x_{ij} - A_j s_i)^2}{\psi_{jj}} - \frac{1}{2} \sum_{i=1}^{n} A_j^\tau s_i. \tag{15.76}
\]

The \(E \)-step of the EM algorithm entails finding the conditional expectation of (15.76), given the observed data \(\{x_{ij}\} \) and the current values of the parameters \(A \) and \(\Psi \). Because the joint distribution of \(x_i \) and \(s_i \) given \(A \) and \(\Psi \), is \((r + t)\)-variate Gaussian, the conditional distribution of \(s_i \) given \(x_i \) is

\[
(s_i|x_i, A, \Psi) \sim N_t(\delta x_i, \Delta), \tag{15.77}
\]

where

\[
\delta = A^\tau (AA^\tau + \Psi)^{-1} \tag{15.78}
\]

\[
\Delta = I_t - A^\tau (AA^\tau + \Psi)^{-1} A. \tag{15.79}
\]
TABLE 15.5. EM algorithm for maximum-likelihood factor analysis.

1. Let \hat{A}_0 and $\hat{\Psi}_0$ be initial guesses for the parameter matrices \hat{A} and $\hat{\Psi}$, respectively.

2. For $k = 1, 2, \ldots$, iterate between the following two steps:
 - **E-Step:** Compute

 \[
 C_{XX} = n^{-1} \sum_{i=1}^{n} X_i X_i^\tau \\
 C_{XS}^{(k-1)} = C_{XX} \delta_{k-1} \\
 C_{SS}^{(k-1)} = \delta_{k-1} C_{XX} \delta_{k-1} + \Delta_{k-1}
 \]

 where

 \[
 \delta_{k-1} = \hat{A}_{k-1} \hat{A}_{k-1}^\tau + \hat{\Psi}_{k-1} \\
 \Delta_{k-1} = I_t - \delta_{k-1} \hat{A}_{k-1}.
 \]
 - **M-Step:** Update the parameter estimates,

 \[
 \hat{A}_k = C_{XS}^{(k-1)} (C_{SS}^{(k-1)})^{-1} \\
 \hat{\Psi}_k = \text{diag}\{C_{XX} - C_{XS}^{(k-1)} (C_{SS}^{(k-1)})^{-1} C_{XS}^{(k-1)} \delta_{k-1}\}.
 \]

3. Stop when convergence has been attained.

To find the expectation of (15.77), we need to find the expectations of the following sufficient statistics,

\[
C_{XX} = n^{-1} \sum_{i=1}^{n} X_i X_i^\tau, \quad C_{XS} = n^{-1} \sum_{i=1}^{n} X_i S_i^\tau, \quad C_{SS} = n^{-1} \sum_{i=1}^{n} S_i S_i^\tau.
\]

Given the data $\{X_i = x_i\}$ and parameters A and Ψ, the expectations are

\[
C_{XX}^* = E(C_{XX}|\{x_i\}, A, \Psi) = C_{XX} \quad (15.80) \\
C_{XS}^* = E(C_{XS}|\{x_i\}, A, \Psi) = C_{XX} \delta^\tau \quad (15.81) \\
C_{SS}^* = E(C_{SS}|\{x_i\}, A, \Psi) = \delta C_{XX} \delta^\tau + \Delta. \quad (15.82)
\]

Equations (15.80) through (15.82) define the E-step based upon the observed data $\{x_i\}$ and the current values of the parameter estimates A and Ψ.

The M-step provides the updated versions of the ML estimates by using the regression estimates,

\[
\hat{A} = C_{XS}^* C_{SS}^{*-1} \quad (15.83) \\
\hat{\Psi} = \text{diag}\{C_{XX}^* - C_{XS}^* C_{SS}^{*-1} C_{XS}^\tau\}. \quad (15.84)
\]
The current estimates (15.83) and (15.84) are substituted for A and Ψ, respectively, in (15.78) and (15.79) to get updated estimates of δ and Δ, which are then used to recompute C_{XS}^* and C_{SS}^*, and get new values of \hat{A} and $\hat{\Psi}$. The method is iterated until we arrive at convergence.

15.4.4 Example: Twenty-four Psychological Tests

This classic data set in the factor analysis literature consists of 24 psychological tests administered to 301 seventh and eighth grade students (with ages ranging from 11 to 16) in a suburb of Chicago: a group of 156 students (74 boys, 82 girls) from the Pasteur School and a group of 145 students (72 boys, 73 girls) from the Grant-White School (Holzinger and Swineford, 1939). The 24 psychological tests are as follows:

(1) visual perception, (2) cubes, (3) paper form board, (4) flags, (5) general information, (6) paragraph comprehension, (7) sentence completion, (8) word classification, (9) word meaning, (10) addition, (11) code, (12) counting dots, (13) straight-curved capitals, (14) word recognition, (15) number recognition, (16) figure recognition, (17) object-number, (18) number-figure, (19) figure-word, (20) deduction, (21) numerical puzzles, (22) problem reasoning, (23) series completion, (24) arithmetic problems.

Many of these tests were multiple-choice and all of the tests were timed, ranging from 2 minutes to 24 minutes. Actually, the students from the Grant–White school took 26 tests, where the two additional tests — 25 (paper form board “b”) and 26 (flags “b”) — were attempts to develop better tests than tests 3 and 4. When analyzing only the 145 Grant-White school students, it is common practice (see, e.g., Harman, 1976, pp. 123–124) to use variables 25 and 26 in place of variables 3 and 4. We note that the means, standard deviations, and correlation matrix of all 24 tests (1, 2, 25, 26, 5–24) obtained in this example are slightly different from those given by Harman.

The estimated loadings, uniquenesses, and sum-of-squares of the loadings for the 5-factor MLFA solution are given in Table 15.6. We see that the first factor, S_1, is a “verbal” factor because it loads heavily on tests 5–9; the second factor, S_2, is a “deduction of relations” factor because it loads heavily on tests 1, 2, 25, 26, and 23; the third factor, S_3, is a “speed” factor because it loads heavily on tests 10–13; the fourth factor, S_4, is a “memory” factor because it loads heavily on tests 14–18; and the fifth factor, S_5, is another “speed” factor because it loads heavily on test 13.

3The raw data can be downloaded from the book’s website. Source: www.psych.yorku.ca/friendly/lab/files/psy6140/data/psych24r.sas. Also available on the website are more detailed descriptions of the 24 tests.
TABLE 15.6. The Grant–White student data. Estimated loadings for the five-factor MLFA solution with varimax rotation. The ith factor is denoted by S_i. The rightmost column lists the uniquenesses for each test, and the last row gives the sum-of-squares of the loadings for each factor. The largest loadings for each factor are printed in boldface.

<table>
<thead>
<tr>
<th>Test</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>S_5</th>
<th>Unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.165</td>
<td>0.655</td>
<td>0.124</td>
<td>0.181</td>
<td>0.208</td>
<td>0.453</td>
</tr>
<tr>
<td>2</td>
<td>0.108</td>
<td>0.442</td>
<td>0.087</td>
<td>0.095</td>
<td>0.003</td>
<td>0.777</td>
</tr>
<tr>
<td>25</td>
<td>0.134</td>
<td>0.559</td>
<td>−0.048</td>
<td>0.111</td>
<td>0.094</td>
<td>0.646</td>
</tr>
<tr>
<td>26</td>
<td>0.230</td>
<td>0.533</td>
<td>0.089</td>
<td>0.081</td>
<td>0.014</td>
<td>0.648</td>
</tr>
<tr>
<td>5</td>
<td>0.738</td>
<td>0.189</td>
<td>0.191</td>
<td>0.149</td>
<td>0.056</td>
<td>0.357</td>
</tr>
<tr>
<td>6</td>
<td>0.772</td>
<td>0.187</td>
<td>0.031</td>
<td>0.248</td>
<td>0.125</td>
<td>0.291</td>
</tr>
<tr>
<td>7</td>
<td>0.798</td>
<td>0.214</td>
<td>0.143</td>
<td>0.088</td>
<td>0.051</td>
<td>0.286</td>
</tr>
<tr>
<td>8</td>
<td>0.571</td>
<td>0.343</td>
<td>0.239</td>
<td>0.127</td>
<td>0.044</td>
<td>0.481</td>
</tr>
<tr>
<td>9</td>
<td>0.808</td>
<td>0.203</td>
<td>0.033</td>
<td>0.219</td>
<td>−0.007</td>
<td>0.257</td>
</tr>
<tr>
<td>10</td>
<td>0.181</td>
<td>−0.108</td>
<td>0.845</td>
<td>0.180</td>
<td>0.029</td>
<td>0.208</td>
</tr>
<tr>
<td>11</td>
<td>0.195</td>
<td>0.066</td>
<td>0.422</td>
<td>0.436</td>
<td>0.419</td>
<td>0.413</td>
</tr>
<tr>
<td>12</td>
<td>0.030</td>
<td>0.232</td>
<td>0.694</td>
<td>0.102</td>
<td>0.131</td>
<td>0.436</td>
</tr>
<tr>
<td>13</td>
<td>0.186</td>
<td>0.432</td>
<td>0.477</td>
<td>0.077</td>
<td>0.540</td>
<td>0.253</td>
</tr>
<tr>
<td>14</td>
<td>0.185</td>
<td>0.061</td>
<td>0.044</td>
<td>0.552</td>
<td>0.080</td>
<td>0.649</td>
</tr>
<tr>
<td>15</td>
<td>0.104</td>
<td>0.122</td>
<td>0.059</td>
<td>0.509</td>
<td>−0.002</td>
<td>0.712</td>
</tr>
<tr>
<td>16</td>
<td>0.070</td>
<td>0.406</td>
<td>0.056</td>
<td>0.509</td>
<td>0.055</td>
<td>0.565</td>
</tr>
<tr>
<td>17</td>
<td>0.154</td>
<td>0.072</td>
<td>0.210</td>
<td>0.595</td>
<td>−0.026</td>
<td>0.572</td>
</tr>
<tr>
<td>18</td>
<td>0.032</td>
<td>0.300</td>
<td>0.322</td>
<td>0.458</td>
<td>0.006</td>
<td>0.596</td>
</tr>
<tr>
<td>19</td>
<td>0.156</td>
<td>0.221</td>
<td>0.144</td>
<td>0.378</td>
<td>0.046</td>
<td>0.761</td>
</tr>
<tr>
<td>20</td>
<td>0.373</td>
<td>0.462</td>
<td>0.127</td>
<td>0.293</td>
<td>−0.193</td>
<td>0.509</td>
</tr>
<tr>
<td>21</td>
<td>0.172</td>
<td>0.398</td>
<td>0.431</td>
<td>0.238</td>
<td>0.002</td>
<td>0.569</td>
</tr>
<tr>
<td>22</td>
<td>0.364</td>
<td>0.423</td>
<td>0.114</td>
<td>0.320</td>
<td>−0.068</td>
<td>0.568</td>
</tr>
<tr>
<td>23</td>
<td>0.361</td>
<td>0.542</td>
<td>0.249</td>
<td>0.231</td>
<td>−0.113</td>
<td>0.447</td>
</tr>
<tr>
<td>24</td>
<td>0.368</td>
<td>0.179</td>
<td>0.495</td>
<td>0.321</td>
<td>−0.066</td>
<td>0.480</td>
</tr>
<tr>
<td>SS</td>
<td>3.639</td>
<td>2.958</td>
<td>2.450</td>
<td>2.386</td>
<td>0.633</td>
<td></td>
</tr>
</tbody>
</table>

For comparison purposes, an MLFA (with varimax rotation) was conducted separately on the data collected from the Grant-White students and from the Pasteur students, where we used the first 24 variables common to both sets of students. The results are very similar (with certain exceptions). A scatterplot of the first two factor scores from the rotated MLFA solution for each school is given in Figure 15.7; we see that there is little difference in the structure of the individual plots.

15.4.5 Critiques of MLFA

The ML method still has not been universally accepted among factor analysts, and a certain amount of controversy surrounds it. Critics have charged that:

1. MLFA, which is based upon Gaussian assumptions, has been routinely applied to non-Gaussian or discrete data. Whereas deviations
from normality in social survey data are often short-tailed in nature (due to the discreteness of questions with finite range), we should expect heavy tails to be the more relevant consideration in biometric or geological applications.

2. There are substantial numerical problems that have long plagued the MLFA method, such as the existence of multiple local maxima of the likelihood function. Factor analysts try to obtain a view of the likelihood surface by comparing the solutions obtained from starting the iterative process at several points.

3. MLFA enables approximate standard errors to be obtained in a relatively simple manner using the second-derivative matrix evaluated at a mode; however, in instances where the likelihood function is multimodal, the use of such standard errors can be viewed as being of dubious value (Rubin and Thayer, 1982).

4. **Heywood cases**, which occur when the sample correlation matrix is singular and some squared multiple correlations have values greater than unity, appear in too many (over half) of the MLFA applications.
Furthermore, in these days of high-performance computing, there should be no reason to restrict attention to linear models for FA, especially when subject-matter theory suggests nonlinear relationships between test scores and factors. Indeed, some progress has been made toward formulating nonlinear latent variable models and deriving iterative algorithms for nonlinear MLFA (Yalcin and Amemiya, 2001).

15.4.6 Confirmatory Factor Analysis

During the past 40 years, EFA has been supplemented by the work of Karl Jöreskog and his colleagues, who introduced and developed confirmatory factor analysis (CFA) (Jöreskog, 1969). In CFA, the number of common factors is specified, certain elements of the factor loadings matrix are set to zero, and factor variances are specified; then, using Gaussian distribution assumptions, the remaining unknown parameters of the restricted factor model are estimated by maximum likelihood.

The specified factor structure is more likely to be regarded by a researcher as a theory-testing model, and such a restricted model can be evaluated using an appropriate (e.g., chi-squared) goodness-of-fit criterion. If the proposed model is not supported by the data, the model is rejected as a possible representation of the correlation structure of the underlying variables. It is not unusual to find more than one CFA model (i.e., different specifications of zero loadings) that fits the data.

There are a number of additional models that Jöreskog developed to provide more flexibility in carrying out a confirmatory analysis of factor structures. Such models include the analysis of covariance structures (Jöreskog, 1970) and structural equations modeling (Jöreskog, 1977).

15.5 Independent Factor Analysis

Although MLFA is a very popular multivariate statistical technique, it cannot solve the BSS problem. For example, Figure 15.8 shows the first four factor scores obtained from an MLFA of the ECG signals recorded from a pregnant woman (see Section 15.2.3). These recovered signals do not separate the mother’s ECG signal from the fetus’s ECG signal, as did ICA.

This inability of MLFA to solve the BSS problem is due precisely to its use of Gaussian assumptions for the probability distributions of the factors. Gaussian variables that are mutually uncorrelated are also automatically independent, and so MLFA only requires that the sources be uncorrelated. Furthermore, MLFA suffers from a similar ailment as does principal component FA: the likelihood function is rotationally invariant in factor space,
and so the sources S and the mixing matrix A in the BSS problem can only be defined up to an arbitrary rotation.

Independent factor analysis (IFA) (Attias, 1999) was proposed as an alternative to ICA to deal with the BSS problem and also as an alternative to EFA. IFA essentially adopts the MLFA model but employs arbitrary non-Gaussian densities for the factors. Specifically, the model is still given by

$$X = AS + e, \quad e \sim N_r(0, \Psi),$$

(15.85)

with Ψ not necessarily diagonal, but now each unobserved source signal S_j is assumed to be independently distributed according to a non-Gaussian density $q_{S_j}(s_j|\theta_j)$ characterized by the parameter vector θ_j, $j = 1, 2, \ldots, m$. In this set-up, the collection of parameters is given by (A, Ψ, θ), where $\theta = (\theta_1, \ldots, \theta_m)$.

In the IFA model, each source density, $q_{S_j}(s_j|\theta_j)$, is modeled parametrically by an arbitrary mixture of univariate Gaussian (MoG) densities,
TABLE 15.7. Eight-channel ECG recordings of a pregnant woman: estimated loadings for the four independent sources IFA solution, where the ith source is denoted by S_i. The rightmost column lists the uniquenesses (i.e., the diagonal entries of Ψ) for each channel.

<table>
<thead>
<tr>
<th>Channel</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>Unique</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.684</td>
<td>0.447</td>
<td>0.384</td>
<td>0.067</td>
<td>0.101</td>
</tr>
<tr>
<td>2</td>
<td>-0.964</td>
<td>0.509</td>
<td>0.176</td>
<td>-0.017</td>
<td>0.015</td>
</tr>
<tr>
<td>3</td>
<td>0.967</td>
<td>-0.150</td>
<td>-0.157</td>
<td>0.078</td>
<td>0.072</td>
</tr>
<tr>
<td>4</td>
<td>0.112</td>
<td>-0.746</td>
<td>0.099</td>
<td>-0.133</td>
<td>0.445</td>
</tr>
<tr>
<td>5</td>
<td>1.010</td>
<td>-0.216</td>
<td>0.054</td>
<td>0.012</td>
<td>0.039</td>
</tr>
<tr>
<td>6</td>
<td>0.990</td>
<td>-0.032</td>
<td>-0.009</td>
<td>-0.118</td>
<td>0.012</td>
</tr>
<tr>
<td>7</td>
<td>-0.965</td>
<td>-0.093</td>
<td>0.008</td>
<td>-0.111</td>
<td>0.011</td>
</tr>
<tr>
<td>8</td>
<td>-0.810</td>
<td>-0.398</td>
<td>0.008</td>
<td>-0.090</td>
<td>0.028</td>
</tr>
</tbody>
</table>

$$q_{S_j}(s_j|\theta_j) = \sum_{i=1}^{I_j} w_{ij} \phi(s_j|\eta_{ij}), \quad j = 1, 2, \ldots, m,$$

where $\phi(s|\eta_{ij}) = N(\mu_{ij}, \sigma_{ij}^2)$, $\eta_{ij} = (\mu_{ij}, \sigma_{ij}^2)$, and $w_{ij} > 0$ is the mixing proportion attached to the ith component of the jth source density, $i = 1, 2, \ldots, I_j$, with $\sum_{i=1}^{I_j} w_{ij} = 1$, $j = 1, 2, \ldots, m$. Note that $\theta_j = \{(w_{ij}, \mu_{ij}, \sigma_{ij}), i = 1, 2, \ldots, I_j\}$. The MoG density (15.86) can mimic both super-Gaussian and sub-Gaussian densities by using a large enough set of component densities. The main disadvantage of working with MoG densities is that the total number of parameters can grow to be very large.

The model parameters $(\mathbf{A}, \Psi, \theta)$ are estimated by ML using an appropriate version of the EM algorithm in Table 15.5. Details may be found in Attias (1999). When the model source densities are Gaussian, IFA reduces to EFA. Reconstructing the sources \mathbf{S} can be carried out by least-squares or by Bayesian MAP estimation.

As an illustration of IFA, consider again the example of the 8-channel ECG signals recorded on a pregnant woman. We specified four independent sources, modeled each source distribution as a mixture of three Gaussians, and then used the EM algorithm to find the IFA solution. The resulting estimates are as follows: an estimate of the mixing matrix \mathbf{A} is given in Table 15.7; the estimated distributions of the four independent sources, each a mixture of three Gaussians, with estimated weights, means, and variances, are given by

$$S_1 \sim (0.199)N(0.745, 0.360) + (0.755)N(0.032, 0.024) + (0.046)N(-3.774, 3.344),$$

$$S_2 \sim (0.376)N(-0.170, 0.067) + (0.538)N(0.031, 0.009) + (0.086)N(0.544, 10.803),$$
FIGURE 15.9. Four sets of IFA scores of the ECG signals recorded on a pregnant woman. The horizontal axis is measured in seconds. The source distributions were each taken as a mixture of three Gaussians. We see traces of the mother’s ECG signal in all four sets of IFA scores, and hints of traces of the fetal ECG signal in the third and fourth IFA scores, but these plots do not exhibit any visible separation between the mother’s ECG signal and the ECG signal of the fetus.

\[
S_3 \sim (0.302)N(0.294, 0.286) + (0.396)N(-0.106, 0.106) \\
+ (0.150)N(0.379, 5.909), \\
S_4 \sim (0.361)N(0.294, 0.286) + (0.396)N(0.004, 0.131) \\
+ (0.243)N(-0.430, 3.169);
\]

and an estimate of the diagonal matrix Ψ is given by the rightmost column, titled “Unique” in Table 15.7. In Figure 15.9, we display time plots of the four sets of IFA scores. All four plots show traces of the mother’s ECG signals, and two of them show hints of the fetus’s ECG signals, but no clear separation is visible between the mother’s and the fetus’s ECG signals as we saw in the ICA solution.

One of the main difficulties with (ML-via-EM-MoG) IFA is that it is an extremely computationally intensive procedure when there are many sources to be separated; this occurs because the MoG model is quite complex,
and EM is a slow algorithm that does not necessarily converge to a global maximum of the log-likelihood. Another important aspect of the IFA procedure that has to be resolved is the determination of the number of Gaussians in the mixture for each component and whether such an MoG formulation appears justified. Furthermore, simple toy examples have indicated that IFA does not seem to be appropriate for all BSS situations: in particular, there appears to be identifiability aspects of the method, and it is not yet understood whether an additive noise model such as IFA gains anything over the ICA model with no additive noise component.

15.6 Software Packages

ICA can be carried out in S-PLUS and R using the fastICA library; fastICA is also available in MATLAB as an ICA Toolbox. The KernelICA algorithm is implemented as a MATLAB program, which can be downloaded from the website cmm.enmp.fr/~bach/kernel-ica/. KernelICA employs two parameters to be set by the user: the regularization parameter \(\kappa \) and the width of the Gaussian kernel \(\sigma \). See Section 15.6.3 for recommended values of these parameters.

Factor analysis programs are standard in almost every major statistical package. The general acceptance of CFA techniques, especially in the sociometric, psychometric, and even biometric sciences is primarily due to the ready availability of good software (e.g., LISREL, AMOS, EQS, MPLUS) to carry out the extensive computations. IFA models can be fitted using the EM algorithm in the R package ifa (written by Cinzia Viroli).

Bibliographical Notes

Although the concept of ICA was introduced in 1982 in a neurophysiological context, its name was coined by Herault and Jutten (1986). See Jutten (2000) for the early history. Since then, theoretical insights, computational algorithms, and new applications have been developed to enhance and understand the ICA technique. Several books (Stone, 2004; Cichocki and Amari, 2003; Hyvärinen, Karhunen, and Oja, 2001; Lee, 1998) and edited volumes (Roberts and Everson, 2001; Girolami, 2000; Nandi, 1999) have appeared and a huge number of articles have been published on the topic. There is also an international workshop on ICA and related topics held annually in different countries.

Latent variable models and factor analysis models are discussed in the books by Everitt (1984) and Bartholomew (1987). Factor analysis is covered
in almost every textbook on multivariate analysis. More specialized books on factor analysis include Harman (1976) and Lawley and Maxwell (1971).

Exercises

15.1 Let \(a \) and \(c \) be constants. If \(X \) is a random variable, show that (i) \(\mathcal{H}(X + c) = \mathcal{H}(X) \), (ii) \(\mathcal{H}(aX) = \mathcal{H}(X) + \log |a| \).

15.2 Let \(X \) be a random \(r \)-vector and let \(W \) be an \((r \times r)\)-matrix of constants. Show that \(\mathcal{H}(WX) = \mathcal{H}(X) + \log |\det(W)| \).

15.3 Suppose \(X \) is a random \(r \)-vector with zero mean and covariance matrix \(\Sigma \). Show that \(\mathcal{H}(X) \leq (1/2)[r + \log \{(2\pi)^r\}|\det(\Sigma)|] \).

15.4 Suppose \(X \sim \mathcal{N}_r(0, \Sigma) \). Show that the differential entropy of \(X \) is given by \(\mathcal{H}(X) = (1/2)[r + \log \{(2\pi)^r\}|\det(\Sigma)|] \). This shows that the multivariate Gaussian distribution maximizes differential entropy among all multivariate distributions having the same covariance matrix \(\Sigma \).

15.5 Show that the differential entropy of the Cauchy distribution, \(p(x) = \pi^{-1}(1 + x^2)^{-1}, x \in \mathbb{R} \), is \(\log(4\pi) \approx 2.531 \).

15.6 Show that the differential entropy of the logistic distribution, \(p(x) = e^{-x}(1 + e^{-x})^{-2}, x \in \mathbb{R} \), is \(2 \).

15.7 Generate \(n = 500 \) values for \(X_1(t) = \cos(t) \) and \(X_2(t) = e^{-t} - 5e^{-t/5} \). Let \(S_1(t) = 0.7X_1(t) + 0.4X_2(t) \) and \(S_2(t) = 0.2X_1(t) - 0.5X_2(t) \), \(t = 1, 2, \ldots, 500 \). Using either the FastICA algorithm or by writing a program to perform ICA, carry out an independent component analysis of the resulting data.

15.8 Define the measure of kurtosis as \(\kappa_4(X) = \mathbb{E}\{X^4\} - 3[\mathbb{E}\{X^2\}]^2 \). Show that for a Gaussian random variable, \(\kappa_4 = 0 \).

15.9 Let \(X_1 \) and \(X_2 \) be two independent random variables. Show that, if \(\kappa_4(X) \) denotes the kurtosis of the random variable \(X \), then \(\kappa_4(X_1 + X_2) = \kappa_4(X_1) + \kappa_4(X_2) \) and, if \(c \) is a scalar, \(\kappa_4(cX_j) = c^4\kappa(X_j) \), \(j = 1, 2 \).

15.10 The joint entropy \(\mathcal{H}(X, Y) \) of two random vectors \(X \) and \(Y \) is defined as \(\mathcal{H}(X, Y) = -\int p(x, y) \log p(x, y) dx dy \), and the conditional entropy of \(Y \) given \(X \) is \(\mathcal{H}(Y|X) = -\int p(x, y) \log p(y|x) dx dy \). Show that \(\mathcal{H}(X, Y) = \mathcal{H}(X) + \mathcal{H}(Y|X) = \mathcal{H}(Y) + \mathcal{H}(X|Y) \).

15.11 Use the raw data (tests 1–24) to find the MLFA (and varimax) solution to the 24 psychological tests for the combined 301 students from both schools. Give interpretations of the factors you obtain. Compare the solution with the solutions of each school separately.
15.12 Using the combined MLFA solution derived in Exercise 13.11, compare different factor rotation methods. There are two types of rotation methods: orthogonal and oblique rotations, and they attempt to transform the FA solution to simple structure. Read about the orthogonal quartimax method and compare it with the varimax method by trying it out on these data. Then, read about the oblique rotation methods, oblimin, promax, and quartimin, and try them out on these data. Does it make any difference which rotation method is used?

15.13 Let X and Y be iid random variables with unit variance. Show that $Z = (X + Y)/\sqrt{2}$ has unit variance.

15.14 Let X and Y be iid random variables with unit variance. Let $\mathcal{H}(X)$ denote the entropy of X. Let Z be the normalized version of $X + Y$ as in Exercise 15.13. Show that $\mathcal{H}(Z) = \mathcal{H}(X + Y) - \frac{1}{2} \log_e 2$.

15.15 For X and Y both iid and having unit variance, show that $\mathcal{H}(X + Y) > \max\{\mathcal{H}(X), \mathcal{H}(Y)\}$. Is this relationship still true if $X + Y$ is normalized as in Exercise 15.13? Generalize your results to the sum of n iid random variables, each having unit variances.
16

Nonlinear Dimensionality Reduction and Manifold Learning

16.1 Introduction

We have little visual guidance to help us identify any meaningful low-dimensional structure hidden in high-dimensional data. The linear projection methods of Chapter 7 can be extremely useful in discovering low-dimensional structure when the data actually lie in a linear (or approximately linear) lower-dimensional subspace (called a manifold) \mathcal{M} of input space \mathbb{R}^r. But what can we do if we know or suspect that the data actually lie on a low-dimensional nonlinear manifold, whose structure and dimensionality are both assumed unknown? Our goal of dimensionality reduction then becomes one of identifying the nonlinear manifold in question. The problem of recovering that manifold is known as nonlinear manifold learning.

If we manually search for visual hints of low-dimensional nonlinear structure in high-dimensional data by looking at scatterplot matrices or by spinning three-dimensional scatterplots, we can easily be misled, for such perceived nonlinearity may actually be due to a small group of multivariate outliers present in the data. In other cases, whatever visual guidance we do possess may not help us. Even though we may observe no unusual behavior in 2D or 3D scatterplots, the data may indeed lie close to a low-dimensional
curved manifold \mathcal{M}, which would be invisible to linear projection methods such as PCA. In such a case, the data would satisfy nonlinear constraints, and it would then be desirable to determine a nonlinear coordinate system that, when suitably reduced, would best explain the data.

When a linear representation of the data is unsatisfactory, we turn to specialized methods designed to recover nonlinear structure. Even so, we may not always be successful in our attempts because extracting nonlinear structure from data is a difficult problem in general. If the data lie on some intrinsically weird, nonlinear manifold of input space (e.g., a one-dimensional helix or a two-dimensional “Swiss roll” embedded in three-dimensional space; see Figure 16.7), then the manifold learning problem becomes even harder, especially when the input dimension is very high.

Nonlinear dimensionality reduction and nonlinear manifold learning have become very active research topics. Some methods were found by generalizing linear multivariate methods. For example, an attractive feature of linear PCA is that it can be derived using a variety of approaches, such as variance maximization and least-squares optimality, and that these approaches yield identical solutions. Unfortunately, these equivalences in the linear case do not transfer to the nonlinear case. Thus, authors usually reformulate one of the defining characteristics of linear PCA so that it fits the nonlinear case. As a result, there can be different nonlinear versions of PCA, depending upon how one defines a nonlinear analogue of linear PCA. Furthermore, there may be technical difficulties inherent in the nonlinear versions of PCA that do not appear in linear PCA.

16.2 Polynomial PCA

How should we generalize PCA to the nonlinear case? One possibility is to transform the set of input variables using a quadratic, cubic, or higher-degree polynomial, and then apply linear PCA (Gnanadesikan and Wilk, 1969). The resulting *polynomial PCA* again boils down to an eigenanalysis, but this time attention is focused on the *smallest* few eigenvalues for nonlinear dimensionality reduction.

In the quadratic PCA case, for example, the r-vector \mathbf{X} is transformed into an extended r'-vector \mathbf{X}', where $r' = 2r + r(r - 1)/2$. Here, \mathbf{X}' includes the original r variables plus r quadratic powers and $r(r - 1)/2$ cross-products of the elements of \mathbf{X}. Thus, for the bivariate case ($r = 2$), quadratic PCA transforms $\mathbf{X} = (X_1, X_2)$ to $\mathbf{X}' = (X_1, X_2, X_1^2, X_2^2, X_1X_2)$, and a linear PCA is carried out on the five transformed variables of \mathbf{X}'. If the bivariate observations follow an exact quadratic curve, the smallest eigenvalue of the covariance matrix of the extended vector will be zero, and
TABLE 16.1. Quadratic PCA for the bivariate data \((X_1, X_2)\), where \(X_1 = -1.5(0.01)0.5\), \(X_2 = 4X_1^2 + 4X_1 + 2\), and \(n = 201\). Eigenanalysis of the covariance matrix of the variables \((X_1, X_2, X_1^2, X_2^2, X_1X_2)\) for the noiseless and noisy cases. The noisy case is obtained by replacing \(X_1\) by \(X_1 + Z\) and, independently, \(X_2\) by \(X_2 + Z\), where \(Z \sim \mathcal{N}(0, 1)\).

<table>
<thead>
<tr>
<th></th>
<th>Noiseless Case</th>
<th>Noisy Case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eigenvalues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46.722</td>
<td>74.617</td>
</tr>
<tr>
<td></td>
<td>4.912</td>
<td>10.229</td>
</tr>
<tr>
<td></td>
<td>0.052</td>
<td>2.073</td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>0.336</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.247</td>
</tr>
<tr>
<td>Eigenvectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X_1)</td>
<td>0.003</td>
<td>0.012</td>
</tr>
<tr>
<td>(X_2)</td>
<td>-0.173</td>
<td>-0.165</td>
</tr>
<tr>
<td>(X_1^2)</td>
<td>-0.046</td>
<td>-0.019</td>
</tr>
<tr>
<td>(X_2^2)</td>
<td>-0.979</td>
<td>-0.980</td>
</tr>
<tr>
<td>(X_1X_2)</td>
<td>0.097</td>
<td>0.121</td>
</tr>
</tbody>
</table>

the scores of the last principal component will be constant with a value of zero.

Consider, for example, the noiseless case in which \(n = 201\) bivariate observations, \((X_1, X_2)\), are generated to lie exactly on the quadratic curve \(X_2 = 4X_1^2 + 4X_1 + 2\), where \(X_1 = -1.5(0.01)0.5\). Suppose we carry out a linear PCA on the extended vector \((X_1^2, X_2^2, X_1, X_2, X_1X_2)\) and obtain five sets of principal component scores. See the upper panel of Table 16.1 for the eigenanalysis. The scatterplot matrix of the first four pairs of PC scores is given in Figure 16.1 and shows the pretzel-like shapes of the pairwise PCs. The last PC is not displayed because all its values are zero. The hyperplane defined by the zero eigenvalue is \(0.696X_1 - 0.0174X_2 + 0.696X_1^2 = 0\) or \(X_2 = 4X_1^2 + 4X_1\), which recovers the original quadratic curve (except for the constant). By varying the constant \(a\), we can display a family of possible quadratic curves \(X_2 = 4X_1^2 + 4X_1 + a\), and the constant \(a\) can be recovered from that curve that passes through each data point. The last PC (actually, \(PC5/0.0174 + X_2\)) is plotted in Figure 16.2 against \(X_1\), for \(a = 0, 1, 2, 3\), where we see that \(a = 2\).

Suppose we now add standard Gaussian noise (mean 0, variance 1) independently to the \(X_1\) and \(X_2\)-coordinates of each observation and then repeat the linear PCA on the resulting extended vector. How would the eigenanalysis and the PCA scatterplot matrix of the noiseless case be
affected? For this noisy case, see the lower panel of Table 16.1. The eigenvalues are each greater than the respective eigenvalues from the noiseless case, with the smallest eigenvalue now 0.247. As we would expect, some of the well-defined patterns in the scatterplot matrix become blurred in the noisy case. Even if we significantly reduce the variance of the added noise component, the results of the quadratic PCA will still be strongly affected by the noisiness of the data.

Some problems inevitably arise when using quadratic PCA. First, the variables in X' will not be uniformly scaled, especially for large r, and so a standardization of all r' variables may be desirable. Second, the size of the extended vector X' for quadratic PCA increases quickly with increasing r: when $r = 10$, $r' = 65$, and when $r = 20$, $r' = 230$. For higher-degree polynomials, the size of X' increases even faster. In practical terms, this introduces a lower bound on the sample size n, which has to be larger than r', the dimensionality of X'.

16.3 Principal Curves and Surfaces

Since the Gnanadesikan and Wilk (1969) article appeared, many attempts have been made to define a more general nonlinear version of PCA. The first such attempt was principal curves and surfaces.

Suppose X is a continuous random r-vector having density p_X, zero mean, and finite second moments. Suppose further that the data observed
on \(\mathbf{X} \) lie close to a smooth nonlinear manifold of low dimension. A principal curve (Hastie, 1984; Hastie and Stuetzle, 1989) is a smooth one-dimensional parameterized curve \(\mathbf{f} \) that passes through the “middle” of the data, regardless of whether the “middle” is a straight line or a nonlinear curve. A principal surface is a generalization of principal curve to a smooth two- (or higher-) dimensional curve. Here, we use an analogue of least-squares optimality as the defining characteristic: we determine the principal curve or surface by minimizing the average of the squared distances between the data points and their projections onto that curve.

This idea can be interpreted in terms of the relationship between data points and points on the curve. If every point on the curve is the average of all those data points that project onto it, then the curve can be said to pass through the “middle” of the data set. In this way, it is a nonlinear generalization of the first principal component line.

Before we define principal curves and surfaces, it will be useful, first, to describe the basic ideas behind one-dimensional curves and the notion of curvature.

16.3.1 Curves and Curvature

A one-dimensional curve in an \(r \)-dimensional space is an analogue of a straight line in \(\mathbb{R}^r \). To formalize this notion, we define a one-dimensional curve in \(\mathbb{R}^r \) as a function \(\mathbf{f} : \Lambda \to \mathbb{R}^r \), for \(\Lambda \subseteq \mathbb{R} \), so that

\[
\mathbf{f}(\lambda) = (f_1(\lambda), \ldots, f_r(\lambda))^T
\]

(16.1)
is an r-vector parameterized by $\lambda \in \Lambda$. For example, the unit circle in \mathbb{R}^2, \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}, is a one-dimensional curve that can be parameterized as

$$f(\lambda) = (f_1(\lambda), f_2(\lambda))^T = (\cos \lambda, \sin \lambda)^T, \quad \lambda \in [0, 2\pi).$$

(16.2)

If we take the coordinate functions of λ, \{f_h(\lambda)\}, to be as smooth as needed (usually, C^∞, functions that have any number of continuous derivatives), then we say that f is a smooth curve. The curve f is said to be closed if it is periodic, i.e., if $f(\lambda + \alpha) = f(\lambda)$, for all $\lambda, \lambda + \alpha \in \Lambda$. For example, the unit circle is a closed curve.

We need a notion of how fast something can move along a smooth curve such as f. Accordingly, we define the velocity (or tangent) vector at the point λ as the vector of first derivatives, $f'(\lambda) = (f'_1(\lambda), \cdots, f'_r(\lambda))^T$, where $f'_j(\lambda) = df_j(\lambda)/d\lambda$. For the closed unit circle, $f'(\lambda) = (-\sin \lambda, \cos \lambda)^T$. The length of the velocity vector,

$$\|f'(\lambda)\| = \left\{\sum_{j=1}^r [f'_j(\lambda)]^2\right\}^{1/2},$$

(16.3)

is called the speed of the curve f at the point λ. If the speed is never zero, then $f(\lambda)$ is called a regular curve, and if $\|f'(\lambda)\| = 1$, the curve is said to have “unit speed.” The acceleration vector of f is defined as the vector of second derivatives, $f''(\lambda) = (f''_1(\lambda), \cdots, f''_r(\lambda))^T$, where $f''_j(\lambda) = df'_j(\lambda)/d\lambda$. For the unit circle, $\|f'(\lambda)\| = 1$ and $f''(\lambda) = (-\cos \lambda, -\sin \lambda)^T$.

Distance on a smooth curve f is given by arc-length, which is measured from a fixed point λ_0 on that curve. Usually, the fixed point is taken as the origin, $\lambda_0 = 0$, defined to be one of the two endpoints of the data. The arc-length along the curve f from λ_0 to λ_1 is defined as the integral of the speed of the curve between those two points,

$$L(f) = \int_{\lambda_0}^{\lambda_1} \|f'(\lambda)\|d\lambda.$$

(16.4)

We use arc-length as a natural parameterization of the curve f. If two curves have the same arc-length, they are said to be isometric. If a curve has unit speed, then its arc-length equals $\lambda_1 - \lambda_0$. We can define a one-dimensional curve uniquely by parameterizing it by arc-length and starting from a given point λ_0 having unit speed. We, henceforth, assume that f has been scaled to be a unit-speed, (arc-length) parameterized curve.

We next introduce a notion of curvature as a way of distinguishing a curve from a straight line. For a unit-speed curve, the acceleration vector $f''(\lambda)$ is always orthogonal to the tangent vector $f'(\lambda)$, so that the two vectors span a plane. The circle of curvature of f at λ is a unique unit-speed circle in the plane with radius $r(\lambda)$, which is tangent to the curve f
at the point \(\lambda \). An interesting result is that \(r(\lambda) \) is a concave function of \(\lambda \) (i.e., \(d^2r(\lambda)/d\lambda^2 \leq 0 \)).

We say that the curve \(f \) has radius of curvature \(r(\lambda) \) at \(\lambda \) and that its curvature at \(\lambda \) is \(K(\lambda) = 1/r(\lambda) = \|f''(\lambda)\| \); the center of the circle is the center of curvature of \(f \) at \(\lambda \). Knowing the curvature for all values of arc-length \(\lambda \) means that the curve is completely known. If the curvature of a curve is constant and nonzero, it must be a circle (or part of a circle). A straight line is just a curve with everywhere-zero curvature.

16.3.2 Principal Curves

Consider a data point \(x \in \mathbb{R}^r \) and let \(f(\lambda) \) be a curve. Project \(x \) to a point on \(f(\lambda) \) that is closest (in Euclidean distance) to \(x \). Let

\[
\lambda_f(x) = \sup_\lambda \left\{ \lambda : \|x - f(\lambda)\| = \inf_\mu \|x - f(\mu)\| \right\}
\]

be the projection index, \(\lambda_f : \mathbb{R}^r \rightarrow \mathbb{R} \), which produces a value of \(\lambda \) for which \(f(\lambda) \) is closest to \(x \). In the unlikely event that there are multiple points on the curve closest to \(x \) (called ambiguity points), the projection index will pick that point with the largest value of the projection index. Note that \(\lambda_f \) can be a discontinuous function.

We define the reconstruction error as the expected squared distance between \(X \) (or its associated density) and \(f \),

\[
D^2(X, f) = E \left\{ \|X - f(\lambda_f(X))\|^2 \right\}.
\]

If \(f(\lambda) \) satisfies

\[
f(\lambda) = E\{X|\lambda_f(X) = \lambda\}, \text{ for almost every } \lambda \in \Lambda,
\]

then \(f(\lambda) \) is said to be self-consistent or a principal curve for \(X \) (or its associated density \(p_X \)). Thus, for any point on the curve, \(f(\lambda) \) is the average of all those data values that project to that point.

In trying to show that the principal curve \(f \) minimizes the reconstruction error (16.6), Hastie and Stuetzle (1989) proved the important result that, in a variational sense, the principal curve \(f \) is a stationary (or critical) value of the reconstruction error. Specifically, if we perturb \(f \) slightly so that it becomes \(f + \epsilon g \), where \(g \) is a suitably smooth curve, then

\[
\frac{\partial D^2(X, f + \epsilon g)}{\partial \epsilon} \bigg|_{\epsilon=0} = 0.
\]

Furthermore, principal curves are the solutions of a second-order ordinary differential equation, which makes them computable (Duchamp and Stuetzle, 1996). However, all principal curves are saddle points and can never be
local minima of the reconstruction error. Thus, cross-validation cannot be
used for choosing the model complexity when estimating principal curves.

16.3.3 Projection-Expectation Algorithm

The goal is to derive an estimate \(\hat{f} \) of a principal curve \(f \) using \(n \) observations, \(\{X_i\} \), on \(X \). To do this, we minimize an estimated reconstruction error,

\[
D^2(\{X_i\}, \hat{f}) = \min_f \sum_{i=1}^{n} \|X_i - f(\lambda_f(X_i))\|^2, \tag{16.9}
\]

by using an algorithm that alternates between a projection step (estimating \(\lambda \) assuming a fixed \(f \)) and an expectation step (estimating \(f \) assuming a fixed \(\lambda \)).

We start the algorithm by taking the first principal component line as the initial curve \(f^{(0)} \). Next, the \(n \) observations \(\{X_i\} \) are each projected onto this line, yielding the \(n \) points \(\lambda_f^{(0)}(X_i) = \lambda_i^{(1)} \), \(i = 1, 2, \ldots, n \). Then, the updated curve \(f^{(1)} \) is computed by invoking the self-consistency property,

\[
f^{(1)}(\lambda_i^{(1)}) = E\{X|\lambda_f^{(0)}(X) = \lambda_i^{(1)}\}, \quad i = 1, 2, \ldots, n. \tag{16.10}
\]

The \(k \)th iteration consists of two steps:

Projection step: Given the current iterate, \(f^{(k-1)} \), of the principal curve, we project \(x_i \) onto that curve to get an updated value of \(\lambda \):

\[
\lambda_f^{(k-1)}(X_i) = \lambda_i^{(k)}, \quad i = 1, 2, \ldots, n. \tag{16.11}
\]

Expectation step: Given the set \(\{\lambda_i^{(k)}, \quad i = 1, 2, \ldots, n\} \) from the projection step, we compute the next iterate of the principal curve by averaging all those points that project to nearby points on the curve:

\[
f^{(k)}(\lambda_i^{(k)}) = E\{X|\lambda_f^{(k-1)}(X) = \lambda_i^{(k)}\}, \quad i = 1, 2, \ldots, n. \tag{16.12}
\]

At the \(k \)th iteration, let \(\lambda_i^{(k)}\) denote the \(i \)th order statistic of the set of projected points, \(\{\lambda_1^{(k)}, \ldots, \lambda_n^{(k)}\} \), and let \(x_{(i)}^{(k)} \) denote the data point whose projection is \(\lambda_i^{(k)}, \quad i = 1, 2, \ldots, n \). Because the order of the projected points depends upon the particular iterate, then so do the corresponding data points. Let \(N_{f(k)}(\lambda) \) be a neighborhood on the principal curve around \(\lambda \). Then, let

\[
N_{(i)}^{(k)} = \left\{x_{(i)}^{(k)} : \lambda_{(i)}^{(k)} \in N_{f(k)}(\lambda_{(i)}^{(k)})\right\}. \tag{16.13}
\]

The span is the fraction of data points that fall into \(N_{(i)}^{(k)} \). The conditional expectations (16.12) are estimated by

\[
f^{(k)}(\lambda_{(i)}^{(k)}) = \hat{E}\{X|N_{(i)}^{(k)}\}, \tag{16.14}
\]
where we use a local averaging procedure for \hat{E} in which each coordinate function $f_h, h = 1, 2, \ldots, r$, of \mathbf{f} is independently estimated. Local averaging for estimating f_h is accomplished using a scatterplot smoother (e.g., kernel, cubic spline, or locally weighted running-line smoother).

We can define a measure of goodness-of-fit of $\mathbf{f}^{(k)}$ by an estimate of the reconstruction error,

$$D^2(\{X_i\}, \mathbf{f}^{(k)}) = n^{-1} \sum_{i=1}^{n} \|X_i - \mathbf{f}^{(k)}(\lambda_{f^{(k-1)}}(X_i))\|^2,$$

which is the average squared distance of the data values to their projections on the principal curve. The convergence criterion is the relative change in the reconstruction error in going from the $(k - 1)$st iteration to the kth iteration,

$$\text{thresh}^{(k)} = \frac{|D^2(\{X_i\}, \mathbf{f}^{(k-1)}) - D^2(\{X_i\}, \mathbf{f}^{(k)})|}{D^2(\{X_i\}, \mathbf{f}^{(k-1)})}.$$

We repeat the alternating projection-expectation process until thresh is reduced below some specified threshold, such as 0.001.

The “final” iteration yields a discrete set of n tuples, $(\hat{\lambda}_i, \hat{f}_i), i = 1, 2, \ldots, n$, the elements of which are ordered by increasing $\hat{\lambda}$-values. The principal curve $\hat{f}(\lambda)$ is then the polygon produced by joining up these n tuples. Convergence of this algorithm has not yet been proved; indeed, empirical evidence suggests that, in certain circumstances, the algorithm can converge to a poor “local” solution.

As an example, we generated 100 points in two dimensions, where X_2 is a quadratic function of X_1 plus Gaussian error with mean 0 and standard deviation 0.1. The scatterplot and principal curve are given in Figure 16.3; the left panel shows the first principal component as initial iteration, with $D^2 = 1023.3$, and the right panel shows the fifth (and final) iteration of the principal curve, with $D^2 = 0.54$.

16.3.4 Bias Reduction

If segments of \mathbf{f} have high curvature, the projection-expectation algorithm yields a biased estimate of the principal curve. Bias also enters into the estimation procedure because of the smoothing used to estimate the conditional expectations: the bigger the span, the larger the estimation bias. A modification of this algorithm (Banfield and Raftery, 1992) allows principal curves to be estimated in a way which reduces bias.

The Banfield–Raftery enhancement of the original algorithm evolved as a means of charting the outlines of ice floes above a certain size from satellite images of the polar regions. In this particular application, ice floe outlines
are modeled as closed principal curves. The original algorithm could not do this because of a basic assumption that the curve does not intersect itself. A further modification was added to ignore the effect of outliers on the estimation procedure.

16.3.5 Principal Surfaces

The idea of principal curves has been extended to principal surfaces for two (or higher) dimensions (Hastie, 1984; LeBlanc and Tibshirani, 1994).

A continuous two-dimensional surface in \mathbb{R}^r is a function $f : \Lambda \rightarrow \mathbb{R}^r$, where $\Lambda \subseteq \mathbb{R}^2$, so that

$$f(\lambda) = (f_1(\lambda), \ldots, f_r(\lambda))^\top = (f_1(\lambda_1, \lambda_2), \ldots, f_r(\lambda_1, \lambda_2))^\top$$

(16.17)

is an r-vector of smooth continuous coordinate functions parameterized by $\lambda = (\lambda_1, \lambda_2) \in \Lambda$. The projection index for a bivariate surface Γ is defined as

$$\lambda_f(x) = \sup_{\lambda} \left\{ \lambda : \|x - f(\lambda)\| = \inf_{\mu} \|x - f(\mu)\| \right\},$$

(16.18)

which is the value of λ corresponding to the point on the surface closest to x. Then, a principal surface satisfies the self-consistency property,

$$f(\lambda) = E\{X|\lambda_f(X) = \lambda\}, \text{ for almost every } \lambda \in \Lambda.$$

(16.19)
Given n observations $\{X_i\}$ on X, we estimate f by minimizing the residual sum of squares,

$$RSS(f) = \sum_{i=1}^{n} \|X_i - f(\lambda_f(X_i))\|^2.$$ \hspace{1cm} (16.20)

Defining a suitable analogue of the “unit-speed” property for parameterizing principal surfaces is a lot more complicated than its definition for principal curves, and so an alternative approach is necessary. Toward this end, LeBlanc and Tibshirani (1994) describe an adaptive formulation and algorithm for the computation of principal surfaces, and they give some examples. Malthouse (1998) gives other possible types of parameterizations.

16.4 Multilayer Autoassociative Neural Networks

Another version of nonlinear PCA has been constructed using a special type of artificial neural network (ANN) architecture: a five-layer autoassociative ANN (Kramer, 1991). An autoassociative (or autoencoder or self-supervised) network is an ANN that is trained to learn its own inputs. The network connects r input nodes to r output nodes in such a way that the output values are trained to approximate the inputs.

16.4.1 Main Features of the Network

The main features of a five-layer autoassociative ANN are

- three hidden layers of nodes (second, third, and fourth layers), where the mapping (or encoding) layer (second) and the demapping (or decoding) layer (fourth) both have nonlinear (sigmoidal) activation functions;
- an internal bottleneck layer (third) with fewer (linear or sigmoidal) nodes than either the mapping (second) or demapping (fourth) layers;
- feedforward connections trained by backpropagation.

The number of nodes in the mapping and demapping layers will depend upon how complicated the nonlinearity feature of the network is required to be. In fact, we should not expect the mapping and demapping layers to have the same number of nodes. Too few mapping/demapping nodes sacrifice accuracy whereas too many such nodes encourage overfitting. Furthermore, it may be better in certain circumstances to have more than one mapping or demapping layer.

The bottleneck layer is the most important feature of the network because it reduces the dimensionality of the inputs through data compression.
Without the bottleneck layer, the network is only capable of producing either linear combinations of the inputs (given linear output nodes) or sigmoidally compressed outputs (given nonlinear sigmoidal output nodes).

We saw in Chapter 10 that a three-layer ANN with nonlinear activation functions in the hidden layer can be represented by a function of the form $\sum_{j} \alpha_j \sigma(\beta_j^T x)$, where α_j and the vector β_j are weights, and $\sigma(\cdot)$ is a sigmoidal-shaped function. Recall also that such a network with linear output nodes can approximate any continuous function uniformly on compact sets provided that the number of nodes in the hidden layer is sufficiently large (Cybenko, 1989). A five-layer network, such as the one displayed in Figure 16.4, can then be viewed as the composition of two three-layer subnetworks (layers 1, 2, and 3; layers 3, 4, and 5). In order for each of these two subnetworks to represent continuous functions, the second and fourth layers have to consist of nonlinear activation functions. If we remove the mapping and demapping layers and if we set the nodes in the bottleneck layer to be linear, then the resulting network corresponds to linear PCA.

16.4.2 Relationship to Principal Curves

The first part of the autoassociative ANN (layers 1, 2, and 3, with one bottleneck node) can be used to model a continuous one-dimensional function $\lambda_f : \mathbb{R}^r \rightarrow \mathbb{R}$, which we call a *projection index*. The second part of the ANN (layers 3, 4, and 5) can be used to model the function $f : \mathbb{R} \rightarrow \mathbb{R}^r$. The
first three layers project the original data onto a curve, and the projected data values are then given by the activation values of the bottleneck node. The weights in the network are found by solving the least-squares problem,

$$\min_{f, \lambda_f} \sum_{i=1}^{n} \|x_i - f(\lambda_f(x_i))\|^2,$$ \hspace{1cm} (16.21)

which reduces to a similar minimization problem as we used to find principal curves, but where the same criterion was minimized only over f. For modeling a t-dimensional principal surface, we set the functions $\lambda_f : \mathbb{R}^r \to \mathbb{R}^t$ and $f : \mathbb{R}^t \to \mathbb{R}^r$, where $t \geq 2$ nodes are set in the bottleneck layer.

A crucial distinction between principal curves and this type of ANN is that the projection index λ_f defined for principal curves is allowed to be discontinuous. The fact that the ANN version of λ_f is a continuous function causes severe problems with its application as a nonlinear PCA technique (Malthouse, 1998):

1. If f has any ambiguity points for the data point x, then the ANN must avoid becoming discontinuous at the ambiguity point by projecting x to the “wrong” point on the curve (i.e., a point that is not closest to x).

2. The ANN cannot model any curves or surfaces that intersect themselves (such as the circle in \mathbb{R}^2). Recall that the original version of principal curves did not allow the curves to intersect themselves, but modifications by Banfield and Raftery (1992) now allow closed curves to be modeled.

For these reasons, we should be very cautious in using this type of ANN to model nonlinear PCA.

16.5 Kernel PCA

An approach that also generalizes polynomial PCA is given by *Kernel PCA* (Scholkopf, Smola, and Muller, 1996). This is an application of so-called *kernel methods*, which we have already seen in studying SVMs (see Chapter 11).

Let $X_i \in \mathbb{R}^r$, $i = 1, 2, \ldots, n$, be the input data points. We can think of kernel PCA as a two-step process:

1. Nonlinearly transform the ith input data point $X_i \in \mathbb{R}^r$ into a point $\Phi(X_i)$ in an N_{H}-dimensional *feature space* \mathcal{H}, where

$$\Phi(X_i) = (\phi_1(X_i), \cdots, \phi_{N_{H}}(X_i))^T \in \mathcal{H}, \quad i = 1, 2, \ldots, n. \hspace{1cm} (16.22)$$
The map $\Phi: \mathbb{R}^r \to \mathcal{H}$ is called a feature map, and each of the $\{\phi_j\}$ is a nonlinear map.

2. Given $\Phi(X_1), \ldots, \Phi(X_n) \in \mathcal{H}$, with $\sum_{i=1}^{n} \Phi(X_i) = 0$, solve a linear PCA problem in feature space \mathcal{H}, which will have a higher dimensionality than that of input space (i.e., $N_\mathcal{H} > r$).

The argument is that any low-dimensional structure may be more easily discovered when it becomes embedded in the larger space \mathcal{H}, which could be infinite dimensional (i.e., we allow the possibility that $N_\mathcal{H} = \infty$). Although we do not need to define Φ explicitly, we have to assume in step 2 that the data have been centered in feature space. We return to this assumption in Section 16.5.2. Unless otherwise stated, we also assume that $N_\mathcal{H} < n$.

In the following, we take \mathcal{H} to be an $N_\mathcal{H}$-dimensional Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|_\mathcal{H}$. For example, if $\xi_j = (\xi_{j1}, \ldots, \xi_{jN_\mathcal{H}})^\tau \in \mathcal{H}$, $j = 1, 2$, then, $\langle \xi_1, \xi_2 \rangle = \sum_{i=1}^{N_\mathcal{H}} \xi_{1i}\xi_{2i}$, and if $\xi = (\xi_1, \ldots, \xi_{N_\mathcal{H}})^\tau \in \mathcal{H}$, then $\|\xi\|_\mathcal{H}^2 = \langle \xi, \xi \rangle = \sum_{i=1}^{N_\mathcal{H}} \xi_{i}^2$.

16.5.1 PCA in Feature Space

In order to carry out linear PCA in feature space so that it mimics the standard treatment of PCA (as carried out in input space), we have to find eigenvalues $\lambda \geq 0$ and nonzero eigenvectors $v \in \mathcal{H}$ of the estimated covariance matrix,

$$C = n^{-1} \sum_{i=1}^{n} \Phi(X_i)\Phi(X_i)^\tau,$$ \hspace{1cm} (16.23)

of the centered and nonlinearly transformed input vectors. The eigenequation $Cv = \lambda v$, where v is the eigenvector corresponding to the eigenvalue $\lambda \geq 0$ of C, can be written in an equivalent form as

$$\langle \Phi(X_i), Cv \rangle = \lambda \langle \Phi(X_i), v \rangle, \hspace{1cm} i = 1, 2, \ldots, n.$$

(16.24)

Because

$$Cv = n^{-1} \sum_{i=1}^{n} \Phi(X_i)\langle \Phi(X_i), v \rangle,$$ \hspace{1cm} (16.25)

all solutions v with nonzero eigenvalue λ are contained in the span of $\Phi(X_1), \ldots, \Phi(X_n)$. So, there exist coefficients, α_i, $i = 1, 2, \ldots, n$, such that

$$v = \sum_{i=1}^{n} \alpha_i \Phi(X_i).$$ \hspace{1cm} (16.26)
Substituting (16.26) for v in (16.24), we get that

$$n^{-1} \sum_{j=1}^{n} \alpha_j \left\langle \Phi(X_i), \sum_{k=1}^{n} \Phi(X_k) \right\rangle \left\langle \Phi(X_k), \Phi(X_j) \right\rangle = \lambda \sum_{k=1}^{n} \alpha_k \left\langle \Phi(X_i), \Phi(X_k) \right\rangle,$$

for all $i = 1, 2, \ldots, n$. Define the $(n \times n)$-matrix $K = (K_{ij})$, where

$$K_{ij} = \langle \Phi(X_i), \Phi(X_j) \rangle.$$

(16.28)

Note that K will generally be a huge matrix. Then, the eigenequation (16.27) can be written as

$$K \alpha = \lambda n \sum_{k=1}^{n} \alpha_k \langle \Phi(X_i), \Phi(X_k) \rangle,$$

(16.29)

where $\lambda = n \lambda$. Note that we can express the eigenvalues and vectors, $(\tilde{\lambda}, \alpha)$, of K in terms of those, (λ, v), for C.

Denote the ordered eigenvalues of K by $\tilde{\lambda}_1 \geq \tilde{\lambda}_2 \geq \ldots \geq \tilde{\lambda}_n \geq 0$, with associated eigenvectors $\alpha_1, \ldots, \alpha_n$, where $\alpha_i = (\alpha_{i1}, \ldots, \alpha_{in})^T$. If we require that $\langle v_i, v_i \rangle = 1$, $i = 1, 2, \ldots, n$, then, using the expansion (16.26) for v_i and the eigenequation (16.27), we have that

$$1 = \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{ij} \alpha_{ik} \langle \Phi(X_j), \Phi(X_k) \rangle
= \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{ij} \alpha_{ik} K_{jk}
= \langle \alpha_i, K \alpha_i \rangle = \tilde{\lambda}_i \langle \alpha_i, \alpha_i \rangle,$$

(16.30)

which determines the normalization for the vectors $\alpha_1, \ldots, \alpha_n$.

If X is a test point, then the nonlinear principal component scores of X corresponding to Φ are given by the projection of $\Phi(X) \in H$ onto the eigenvectors $v_k \in H$,

$$\langle v_k, \Phi(X) \rangle = \lambda_k^{-1/2} \sum_{i=1}^{n} \alpha_{ki} \langle \Phi(X_i), \Phi(X) \rangle, \quad k = 1, 2, \ldots, n,$$

(16.31)

where the $\lambda_k^{-1/2}$ term is included so that $\langle v_k, v_k \rangle = 1$.

Using the kernel trick (see Section 11.3.2), the nonlinear principal component scores of X can be expressed as

$$\langle v_k, \Phi(X) \rangle = \lambda_k^{-1/2} \sum_{i=1}^{n} \alpha_{ki} K(X_i, X), \quad k = 1, 2, \ldots, n.$$

(16.32)
If we set $X = X_m$ in (16.32), we get that $\langle v_k, \Phi(X_m) \rangle = \lambda_k^{-1/2} \sum_i \alpha_{ki} K_{im} = \lambda_k^{-1/2} (K\alpha_k)_m = \lambda_k^{-1/2} (\lambda_k \alpha_k)_m \propto \alpha_{km}$, where $(A)_m$ stands for the mth row of A.

16.5.2 Centering in Feature Space

So far, we assumed that the Φ-images in feature space have been centered, and that, through (16.28), we can work with the matrix K. Although it may not be possible to do this in feature space, there is a way it can be accomplished back in the original input space. We do not actually need to have a centered Φ to work with, but we do need K.

We can apply the following simple adjustment to the non-centered version of the matrix K,

$$\tilde{K} = HKH,$$

(16.33)

where $H = I_n - n^{-1}J_n$ is the centering matrix, $J_n = 1_n 1_n^T$ is an $(n \times n)$-matrix of all ones, and 1_n is an n-vector of all ones. The resulting

$$\tilde{K} = K - K(n^{-1}J_n) - (n^{-1}J_n)K + (n^{-1}J_n)K(n^{-1}J_n)$$

(16.34)

corresponds to starting with a centered Φ as required by the above development (Scholkopf, Smola, and Muller, 1998).

16.5.3 Example: Food Nutrition (Continued)

Consider again the example in Section 7.2.1 on the nutritional value of food. Previously, we had computed the PCA of the data and displayed the scatterplot of the first two principal component scores. Here, we compute the kernel principal components for the data ($n = 961, r = 6$) using a radial basis (Gaussian) function kernel with scale parameter σ. Figure 16.5 displays the scatterplots of the first two kernel PC scores using $\sigma = 0.005, 0.01, 0.1,$ and 0.5. The eigenvalues are

<table>
<thead>
<tr>
<th>σ</th>
<th>λ_1</th>
<th>λ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.0336</td>
<td>0.0033</td>
</tr>
<tr>
<td>0.01</td>
<td>0.0602</td>
<td>0.0066</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2200</td>
<td>0.0820</td>
</tr>
<tr>
<td>0.5</td>
<td>0.2738</td>
<td>0.1139</td>
</tr>
</tbody>
</table>

Notice that both eigenvalues increase in size as σ increases.

We see that as we increase σ, the shape of the kernel PC plot changes significantly. The scatterplots for $\sigma \geq 0.01$ show an obvious nonlinear configuration of points: for each of these three plots, there is a “head” and a “tail” to the “curve.” The head contains those points that have the largest
magnitudes for at least one of the six variables, whereas the tail contains only data with negligible values for all variables. In the curve for $\sigma = 0.01$, the head is on the left; in the curve for $\sigma = 0.1$, the head is at the top left; and in the plot for $\sigma = 0.5$, the head is at the center of the plot. There are a small number of stray points falling inside each of the $\sigma = 0.01$ and 0.1 curves; most of these points correspond to foods that are very high in cholesterol, and which become the head of the the curve for $\sigma = 0.5$.

In the scatterplot corresponding to $\sigma = 0.5$ (lower-right panel of Figure 16.5), the points having the largest magnitudes of each of the six variables are annotated with the dominating variable name. We see an ordering of the six variables along the nonlinear curve, starting at cholesterol, and continuing with saturated fat, fat/food energy, carbohydrates, and protein, in that order. There is very little difference between foods that are high in fat and those that are high in calories (food energy). This display provides a “food-nutrition ordering” similar in spirit to the classic “color wheel.” Similar interpretations can be obtained from the other three scatterplots.

16.5.4 Kernel PCA and Metric MDS

We note that kernel PCA with an isotropic kernel function is closely related to metric MDS (Williams, 2001). In feature space, we can compute the distance (i.e., dissimilarity), $\tilde{d}_{ij}^2 = \|\Phi(X_i) - \Phi(X_j)\|^2$. Expanding and using the kernel trick, we have that $\tilde{d}_{ij}^2 = 2(1 - K(X_i, X_j))$. The matrix A has ijth entry $a_{ij} = -\frac{1}{2}\tilde{d}_{ij}^2 = K(X_i, X_j) - 1$, whence, $A = K - J_n$. Furthermore, $HAH = HKH$, because $HJ_n = 0$.

Thus, carrying out metric MDS on the kernel matrix K produces an equivalent configuration of points as the distances $\tilde{d}_{ij} = \sqrt{2(1 - K(X_i, X_j))}$ computed in feature space. If the kernel $K(X_i, X_j)$ is isotropic, it depends only on the distance, $\delta_{ij} = \|X_i - X_j\|$, in input space, so that $K(X_i, X_j) = k(\delta_{ij})$. It follows that $\tilde{d}_{ij}^2 = \sqrt{2(1 - k(\delta_{ij}))}$, which makes the feature-space distances \tilde{d}_{ij}^2 a nonlinear function of the input-space distances δ_{ij}. This shows that this formulation is a special case of metric MDS.

16.6 Nonlinear Manifold Learning

We now discuss some exciting new algorithmic techniques: ISOMAP, LOCAL LINEAR EMBEDDING, LAPLACIAN EIGENMAP, and HESSIAN EIGENMAP. The goal of each of these algorithms is to recover the full low-dimensional representation of an unknown nonlinear manifold \mathcal{M}.
FIGURE 16.5. The nutritional value of food example. Scatterplots of first and second kernel principal component scores, computed using a radial basis (Gaussian) function kernel with scale parameter σ. Upper-left panel: $\sigma = 0.005$; upper-right panel: $\sigma = 0.01$; lower-left panel: $\sigma = 0.1$; lower-right panel: $\sigma = 0.5$.

embedded1 in some high-dimensional space, where it is important to retain the neighborhood structure of \mathcal{M}. Although closely related to nonlinear dimensionality reduction, these algorithms are mainly concerned with recovering the manifold \mathcal{M}. When \mathcal{M} is highly nonlinear, such as the S-shaped manifold in the left panel of Figure 16.6, these algorithms have outperformed linear techniques. Each algorithm is designed to emphasize simplicity while avoiding optimization problems that could produce local minima.

Although the algorithms use different philosophies for recovering nonlinear manifolds, they each consist of a three-step approach. The first and third steps are common to all algorithms: the first step incorporates

1A space \mathcal{A} is said to be embedded in a bigger space \mathcal{B} if the properties of \mathcal{B} when restricted to \mathcal{A} are identical to the properties of \mathcal{A}.

16.6 Nonlinear Manifold Learning

Manifold learning involves concepts from differential geometry. So, before we describe these algorithms, we first discuss what we mean by a manifold and what it means for it to be embedded in a higher-dimensional space.

16.6.1 Manifolds

It is not easy to give a simple description of a “manifold” because of the complex mathematical notions involved in its definition. Even the great mathematician Élie Cartan wrote that “La notion générale de variété est assez difficile à définir avec précision”\(^2\) (Cartan, 1946, p. 56). However, we will try to give some of the flavor of its definition.

Imagine an ant at a picnic, where there are all sorts of items from cups to doughnuts. The ant crawls all over the picnic items, but because of its diminutive size, the ant sees everything on a very small scale as flat and featureless. A manifold (also referred to as a topological manifold) can be thought of in similar terms, as a topological space that locally looks flat and featureless and behaves like Euclidean space. To prevent crazy, counter-intuitive situations, a manifold also satisfies certain topological conditions. A submanifold is just a manifold lying inside another manifold of higher dimension.

In 1854, Georg Friedrich Bernhard Riemann (1826–1866) introduced the idea of a manifold where one could carry out differential and integral calculus. If a topological manifold \(\mathcal{M} \) is continuously differentiable to any order

\(^2\)“The general notion of manifold is quite difficult to define with precision.”
(i.e., $\mathcal{M} \in C^\infty$), we call it a smooth (or differentiable) manifold. All smooth manifolds are topological manifolds, but the reverse is not necessarily true.

If we endow a smooth manifold \mathcal{M} with a metric $d^\mathcal{M}$, which calculates distances between points on \mathcal{M}, we have a Riemannian manifold, $(\mathcal{M}, d^\mathcal{M})$. If \mathcal{M} is connected, it is a metric space and $d^\mathcal{M}$ determines its structure. More specifically, we take $d^\mathcal{M}$ to be a manifold metric defined by

$$d^\mathcal{M}(\mathbf{y}, \mathbf{y}') = \inf_c \{ L(c) | c \text{ is a curve in } \mathcal{M} \text{ which joins } \mathbf{y} \text{ and } \mathbf{y}' \}, \quad (16.35)$$

where $\mathbf{y}, \mathbf{y}' \in \mathcal{M}$ and $L(c)$ is the arc-length of the curve c; see Section 16.3.1. Thus, $d^\mathcal{M}$ finds the shortest curve (or geodesic) between any two points on \mathcal{M}, and the arc-length of that curve is the geodesic distance between the points. By Nash’s embedding theorem (Nash, 1965), we can embed a smooth manifold \mathcal{M} into a high-dimensional Euclidean space \mathbb{R}^r, which we take to be input space \mathbb{R}^r.

16.6.2 Data on Manifolds

The methods we discuss in this section operate under the assumption that finitely many data points, $\{\mathbf{y}_i\}$, are randomly sampled from a smooth t-dimensional manifold \mathcal{M} with metric given by geodesic distance $d^\mathcal{M}$; these points are then nonlinearly embedded by a smooth map ψ into high-dimensional input space $\mathcal{X} = \mathbb{R}^r$ ($t \ll r$) with Euclidean metric $\|\cdot\|_\mathcal{X}$. This embedding yields the input data $\{\mathbf{x}_i\}$; see, for example, the right panel of Figure 16.7, where 2,000 points in three dimensions are randomly generated to lie on the surface of a two-dimensional S-shaped curve. Thus, $\psi : \mathcal{M} \rightarrow \mathcal{X}$ is the embedding map, and a point on the manifold, $\mathbf{y} \in \mathcal{M}$, can be expressed as $\mathbf{y} = \phi(\mathbf{x})$, $\mathbf{x} \in \mathcal{X}$, where $\phi = \psi^{-1}$. The goal is to recover \mathcal{M} and find an implicit representation of the map ψ (and, hence, recover the $\{\mathbf{y}_i\}$), given only the input data points $\{\mathbf{x}_i\}$ in \mathcal{X}.

Each of these algorithms computes estimates $\{\hat{\mathbf{y}}_i\} \subset \mathbb{R}^{t'}$ of the manifold data $\{\mathbf{y}_i\} \subset \mathbb{R}^t$, for some t'. We consider such a reconstruction to be successful if $t' = t$, the true dimensionality of \mathcal{M}. Because t' will most likely be too large for practical usage and because we require a low-dimensional display for a visual representation of the solution, we take only the first two or three of the coordinate vectors and plot the corresponding elements of those vectors against each other to yield n points in two- or three-dimensional space.

16.6.3 Isomap

The isometric feature mapping (or ISOMAP) algorithm (Tenenbaum, de Silva, and Langford, 2000) assumes that the smooth manifold \mathcal{M} is a convex
FIGURE 16.7. Left panel: The Swiss Roll: a two-dimensional manifold embedded in three-dimensional space. Right panel: 20,000 data points lying on the surface of the swiss-roll manifold.

region of \mathbb{R}^t ($t \ll r$) and that the embedding $\psi : \mathcal{M} \rightarrow \mathcal{X}$ is an isometry. This assumption has two key ingredients:

- **Isometry**: The geodesic distance is invariant under the map ψ. For any pair of points on the manifold, $\mathbf{y}, \mathbf{y}' \in \mathcal{M}$, the geodesic distance between those points equals the Euclidean distance between their corresponding coordinates, $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$; i.e.,

$$d^\mathcal{M}(\mathbf{y}, \mathbf{y}') = \|\mathbf{x} - \mathbf{x}'\|_\mathcal{X},$$

(16.36)

where $\mathbf{y} = \phi(\mathbf{x})$ and $\mathbf{y}' = \phi(\mathbf{x}')$.

- **Convexity**: The manifold \mathcal{M} is a convex subset of \mathbb{R}^t.

Thus, ISOMAP regards \mathcal{M} as a convex region that may have been distorted in any of a number of ways (e.g., by folding or twisting). The so-called Swiss roll,\(^3\) which is a flat two-dimensional rectangular submanifold of \mathbb{R}^3, is one such example; see Figure 16.7. ISOMAP appears to work best for intrinsically flat submanifolds of $\mathcal{X} = \mathbb{R}^r$ that look like rolled-up sheets of paper. In certain situations, the isometry assumption appears to be reasonable, while the convexity assumption may be too restrictive (Donoho and Grimes, 2003).

ISOMAP uses the isometry and convexity assumptions to form a nonlinear generalization of multidimensional scaling (MDS). As we saw in Section 13.3, MDS searches for a low-dimensional subspace in which to embed input data while preserving the Euclidean interpoint distances. ISOMAP extends

\(^3\)The Swiss roll is generated as follows: for $y_1 \in [3\pi/2, 9\pi/2]$ and $y_2 \in [0, 15]$, set $x_1 = y_1 \cos y_1$, $x_2 = y_1 \sin y_1$, $x_3 = y_2$.

the MDS paradigm by attempting to preserve the global geometry properties of the underlying nonlinear manifold, and it does this by approximating all geodesic distances (i.e., lengths of the shortest paths) on the manifold. In this sense, ISOMAP gives a global approach to manifold learning.

The ISOMAP algorithm consists of three steps:

1. **Neighborhood graph.** Fix either an integer K or an $\epsilon > 0$. Calculate the distances,

$$d_{ij}^X = d^X(x_i, x_j) = \|x_i - x_j\|_X,$$

(16.37)

between all pairs of data points $x_i, x_j \in X$, $i, j = 1, 2, \ldots, n$. These are generally taken to be Euclidean distances but may be a different distance metric. Determine which data points are “neighbors” on the manifold M by connecting each point either to its K nearest neighbors or to all points lying within a ball of radius ϵ of that point. Choice of K or ϵ controls neighborhood size and also the success of Isomap.

This gives us a weighted neighborhood graph $G = G(V, E)$, where the set of vertices $V = \{x_1, \ldots, x_n\}$ are the input data points, and the set of edges $E = \{e_{ij}\}$ indicate neighborhood relationships between the points. The edge e_{ij} that joins the neighboring points x_i and x_j has a weight w_{ij} associated with it, and that weight is given by the “distance” d_{ij}^X between those points. If there is no edge present between a pair of points, the corresponding weight is zero.

2. **Compute graph distances.** Estimate the unknown true geodesic distances, $\{d_{ij}^M\}$, between pairs of points in M by graph distances, $\{d_{ij}^G\}$, with respect to the graph G. The graph distances are the shortest path distances between all pairs of points in the graph G. Points that are not neighbors of each other are connected by a sequence of neighbor-to-neighbor links, and the length of this path (sum of the link weights) is taken to approximate the distance between its endpoints on the manifold.

If the data points are sampled from a probability distribution that is supported by the entire manifold, then, asymptotically (as $n \to \infty$), it turns out that the estimate d^G converges to d^M if the manifold is flat (Bernstein, de Silva, Langford, and Tenenbaum, 2001).

An efficient algorithm for computing the shortest path between every pair of vertices in a graph is Floyd’s algorithm (Floyd, 1962), which works best with dense graphs (graphs with many edges).

3. **Embedding via multidimensional scaling.** Let $D^G = (d^G_{ij})$ be the symmetric $(n \times n)$-matrix of graph distances. Apply “classical” MDS to D^G to give the reconstructed data points in a t-dimensional feature space \mathcal{Y}, so that the geodesic distances on M between data points is preserved as much as possible:
• Form the “doubly centered,” symmetric, \((n \times n)\)-matrix of squared graph distances,
\[
A_G^n = -\frac{1}{2} HS^n G H,
\]
(16.38)
where \(S^G = ([d^G_{ij}]^2)\), \(H = I_n - n^{-1}J_n\), and \(J_n = 1_n 1_n^T\) is an \((n \times n)\)-matrix of ones. The matrix \(A_G^n\) will be nonnegative-definite of rank \(t < n\).

• The embedding vectors \(\{\hat{y}_i\}\) are chosen to minimize
\[
\|A_G^n - A_Y^n\|,
\]
where \(A_Y^n\) is (16.38) with \(S^Y = ([d^Y_{ij}]^2)\) replacing \(S^G\), and \(d^Y_{ij} = \|y_i - y_j\|\) is the Euclidean distance between \(y_i\) and \(y_j\). The optimal solution is given by the eigenvectors \(v_1, \ldots, v_t\) corresponding to the \(t\) largest (positive) eigenvalues, \(\lambda_1 \geq \cdots \geq \lambda_t\), of \(A_G^n\).

• The graph \(G\) is embedded into \(Y\) by the \((t \times n)\)-matrix
\[
\hat{Y} = (\hat{y}_1, \ldots, \hat{y}_n) = (\sqrt{\lambda_1} v_1, \ldots, \sqrt{\lambda_t} v_t)^T.
\]
(16.39)
The \(i\)th column of \(\hat{Y}\) yields the embedding coordinates in \(Y\) of the \(i\)th data point. The Euclidean distances between the \(n t\)-dimensional columns of \(\hat{Y}\) are collected into the \((n \times n)\)-matrix \(D_Y^t\).

The ISOMAP algorithm appears to work most efficiently with \(n \leq 1,000\). Changes to the ISOMAP code (see below) enable us to work with much larger data sets.

As a measure of how closely the ISOMAP \(t\)-dimensional solution matrix \(D_Y^t\) approximates the matrix \(D^G\) of graph distances, we plot \(1 - R_t^2\) against dimensionality \(t\) (i.e., \(t = 1, 2, \ldots, t^*\), where \(t^*\) is some integer such as 10), where \(R_t^2 = [\text{corr}(D_Y^t, D^G)]^2\) is the squared correlation coefficient of all corresponding pairs of entries in the matrices \(D_Y^t\) and \(D^G\). The intrinsic dimensionality is taken to be that integer \(t\) at which an “elbow” appears in the plot.

Consider, for example, the two-dimensional Swiss roll manifold embedded in three-dimensional space. Suppose we are given 20,000 points randomly drawn from the surface of that manifold.\(^4\) The 3D scatterplot of the data is given in the right panel of Figure 16.7. Using all 20,000 points as input to the ISOMAP algorithm proves to be computationally too big, and so we use only the first 1000 points for illustration. Taking \(n = 1,000\) and \(K = 7\) neighborhood points, Figure 16.8 shows a plot of the values of \(1 - R_t^2\) against \(t\) for \(t = 1, 2, \ldots, 10\), where an elbow correctly shows \(t = 2\); the 2D ISOMAP neighborhood-graph solution is given in Figure 16.9.

\(^4\)These 3D data, stored as a \((3 \times 20,000)\)-matrix, are available in the data file swiss_roll_data on the ISOMAP website isomap.stanford.edu.
The Isomap algorithm has difficulty with manifolds that contain holes, have too much curvature, or are not convex. In the case of noisy data, it depends upon how the neighborhood size (either \(K \) or \(\epsilon \)) is chosen; if \(K \) or \(\epsilon \) are chosen neither too large (that it introduces false connections into \(G \)) nor too small (that \(G \) becomes too sparse to approximate geodesic paths accurately), then Isomap should be able to tolerate moderate amounts of noise in the data.

LANDMARK ISOMAP

When a data set is very large, the performance of the Isomap algorithm is significantly degraded by having to store in memory the complete \((n \times n) \)-matrix \(D_G \) (step 2) and carry out an eigenanalysis of the \((n \times n) \)-matrix \(A_n \) for the MDS reconstruction (step 3). If the data are truly scattered around a low-dimensional manifold, then the vast majority of pairwise distances will be redundant; to speed up the MDS embedding step, we have to eliminate as many of the redundant distance calculations as we can.

In **Landmark Isomap**, the researcher tries to eliminate such redundancy by specifying a landmark subset of \(m \) of the \(n \) data points (de Silva and Tenenbaum, 2003). For example, if \(x_i \) is designated as one of the \(m \) landmark points, we calculate only those distances between each of the \(n \) points and \(x_i \). Input to the Landmark Isomap algorithm is, therefore, an \((m \times n) \)-matrix of distances. The landmark points may be selected by random sampling or by a judicious choice of “representative” points. The number of such landmark points is left to the researcher, but \(m = 50 \) works
well. In the MDS embedding step, the object is to preserve only those distances between all points and the subset of landmark points. Step 2 in Landmark Isomap uses Dijkstra’s algorithm (Dijkstra, 1959), which is faster than Floyd’s algorithm for computing graph distances and is generally preferred when the graph is sparse. Dijkstra’s algorithm is also recommended as a replacement for Floyd’s algorithm in the original Isomap algorithm.

Applying Landmark Isomap to the \(n = 1,000 \) Swiss roll data points with \(K = 7 \) and the first \(m = 50 \) points taken to be landmark points results in an elbow at \(t = 2 \) in the dimensionality plot; the 2D Landmark Isomap neighborhood-graph solution is given in Figure 16.10. This is a much faster solution than the one we obtained using the original Isomap algorithm. The main differences between Figures 16.9 and 16.10 are roundoff error and a rotation due to sign changes.

Because of the significant increase in computational speed, we can apply Landmark Isomap to all 20,000 points (using \(K = 7 \) and \(m = 50 \)); an elbow again correctly appears at \(t = 2 \) in the dimensionality plot, and the resulting 2D Landmark Isomap neighborhood-graph solution is given in Figure 16.11.

16.6.4 Local Linear Embedding

The local linear embedding (LLE) algorithm (Roweis and Saul, 2000; Saul and Roweis, 2003) for nonlinear dimensionality reduction is similar
Nonlinear Dimensionality Reduction and Manifold Learning

in spirit to the ISOMAP algorithm, but because it attempts to preserve local neighborhood information on the (Riemannian) manifold (without estimating the true geodesic distances), we view LLE as a local approach rather than as the ISOMAP’s global approach.

Like ISOMAP, the LLE algorithm also consists of three steps:

1. Nearest neighbor search. Fix $K \ll r$ and let N^K_i denote the “neighborhood” of x_i that contains only its K nearest points, as measured by Euclidean distance (K could be different for each point x_i).

The success of LLE depends (as does ISOMAP) upon the choice of K: it must be sufficiently large so that the points can be well-reconstructed but also sufficiently small for the manifold to have little curvature.

The LLE algorithm is best served if the graph formed by linking each point to its neighbors is connected. If the graph is not connected, the LLE algorithm can be applied separately to each of the disconnected subgraphs.

2. Constrained least-squares fits. Reconstruct x_i by a linear function of its K nearest neighbors,

$$\hat{x}_i = \sum_{j=1}^{n} w_{ij} x_j,$$

(16.40)

where w_{ij} is a scalar weight for x_j with unit sum, $\sum_j w_{ij} = 1$, for translation invariance; if $x_\ell \not\in N^K_i$, then set $w_{i\ell} = 0$ in (16.40). Set $W = (w_{ij})$ to
be a sparse \((n \times n)\)-matrix of weights (there are only \(nK\) nonzero elements). Find optimal weights \(\{\hat{w}_{ij}\}\) by solving

\[
\hat{W} = \arg \min_W \sum_{i=1}^{n} \|x_i - \sum_{j=1}^{n} w_{ij} x_j\|_2,
\]

subject to the invariance constraint \(\sum_j w_{ij} = 1, i = 1, 2, \ldots, n\), and the sparseness constraint \(w_{i\ell} = 0\) if \(x_\ell \notin N^K_i\).

The matrix \(\hat{W}\) can be obtained as follows. For a given point \(x_i\), the summand of (16.41) can be written as

\[
\|\sum_j w_{ij}(x_i - x_j)\|^2 = w^\tau_i G w_i,
\]

where \(w_i = (w_{i1}, \ldots, w_{in})^\tau\), only \(K\) of which are non-zero, and \(G = (G_{jk})\), \(G_{jk} = (x_i - x_j)^\tau(x_i - x_k), j, k \in N^K_i\), is a symmetric, nonnegative-definite, \((n \times n)\)-matrix. Using the Lagrangean multiplier \(\mu\), we minimize the function

\[
f(w_i) = w^\tau_i G w_i - \mu(1^{\tau}_n w_i - 1).
\]

Differentiating \(f(w_i)\) with respect to \(w_i\) and setting the result equal to zero yields \(\hat{w}_i = \frac{\mu}{2} G^{-1} 1_n\). Premultiplying this last result by \(1^\tau_n\) gives us the optimal weights

\[
\hat{w}_i = \frac{G^{-1} 1_n}{1^\tau_n G^{-1} 1_n},
\]
where it is understood that for $x_\ell \not\in N_i^K$, the corresponding element, $\hat{w}_{i\ell}$, of \hat{W}_i is zero. Note that we can also write $G(rac{2}{\mu} \hat{w}_i) = 1_n$; so, the same result can be obtained by solving the linear system of n equations $G \hat{w}_i = 1_n$, where any $x_\ell \not\in N_i^K$ has weight $\hat{w}_{i\ell} = 0$, and then rescaling the weights to sum to one. Collect the resulting optimal weights for each data point (and all other zero-weights) into a sparse $(n \times n)$-matrix $\hat{W} = (\hat{w}_{ij})$ having only nK nonzero elements.

3. Eigenproblem. Fix the optimal weight matrix \hat{W} found at step 2. Find the $(t \times n)$-matrix $Y = (y_1, \ldots, y_n)$, $t \ll r$, of embedding coordinates that solves

$$\hat{Y} = \arg\min_Y \sum_{i=1}^{n} \|y_i - \sum_{j=1}^{n} \hat{w}_{ij} y_j\|^2,$$

subject to the constraints $\sum_i y_i = Y1_n = 0$ and $n^{-1} \sum_i y_i y_i^\tau = n^{-1} YY^\tau = I_t$.

These constraints are imposed to fix the translation, rotation, and scale of the embedding coordinates so that the objective function will be invariant. We can show that (10.60) can be written as

$$\hat{Y} = \arg\min_Y \text{tr}\{YMY^\tau\}$$

where M is the sparse, symmetric, and nonnegative-definite $(n \times n)$-matrix $M = (I_n - \hat{W})^\tau (I_n - \hat{W})$.

The objective function $\text{tr}\{YMY^\tau\}$ in (16.56) has a unique global minimum given by the eigenvectors corresponding to the smallest $t + 1$ eigenvalues of M. The smallest eigenvalue of M is zero with corresponding eigenvector $v_n = n^{-1/2}1_n$. Because the sum of coefficients of each of the other eigenvectors, which are orthogonal to $n^{-1/2}1_n$, is zero, if we ignore the smallest eigenvalue (and associated eigenvector), this will constrain the embeddings to have mean zero. The optimal solution then sets the rows of the $(t \times n)$-matrix \hat{Y} to be the t remaining n-dimensional eigenvectors of M,

$$\hat{Y} = (\hat{y}_1, \ldots, \hat{y}_n) = (v_{n-1}, \ldots, v_{n-t})^\tau,$$

where v_{n-j} is the eigenvector corresponding to the $(j + 1)$st smallest eigenvalue of M. The sparseness of M enables eigencomputations to be carried out very efficiently.

Because LLE preserves local (rather than global) properties of the underlying manifold, it is less susceptible to introducing false connections in G and can successfully embed nonconvex manifolds. However, like ISOMAP, it has difficulty with manifolds that contain holes.
16.6.5 Laplacian Eigenmaps

The Laplacian eigenmap algorithm (Belkin and Niyogi, 2002) also consists of three steps. The first and third steps of the Laplacian eigenmap algorithm are very similar to the first and third steps, respectively, of the LLE algorithm.

1. Nearest-neighbor search. Fix an integer K or an $\epsilon > 0$. The neighborhoods of each data point are symmetrically defined: for a K-neighborhood N^K_i of the point x_i, let $x_j \in N^K_i$ iff $x_i \in N^K_j$; similarly, for an ϵ-neighborhood N^ϵ_i, let $x_j \in N^\epsilon_i$ iff $\|x_i - x_j\| < \epsilon$, where the norm is Euclidean norm. In general, let N_i denote the neighborhood of x_i.

2. Weighted adjacency matrix. Let $W = (w_{ij})$ be a symmetric $(n \times n)$ weighted adjacency matrix defined as follows:

$$w_{ij} = \begin{cases} \exp\left\{-\frac{\|x_i-x_j\|^2}{2\sigma^2}\right\}, & \text{if } x_j \in N_i; \\ 0, & \text{otherwise.} \end{cases}$$ (16.46)

These weights are determined by the isotropic Gaussian kernel (also known as the heat kernel), with scale parameter σ. A simpler W is given by $w_{ij} = 1$ if $x_j \in N_i$, and 0 otherwise. Denote the resulting weighted graph by G. If G is not connected, apply step 3 to each connected subgraph.

3. Eigenproblem. Embed the graph G into the low-dimensional space \mathbb{R}^t by the $(t \times n)$-matrix $Y = (y_1, \ldots, y_n)$, where the ith column of Y yields the embedding coordinates of the ith point. Let $D = (d_{ij})$ be an $(n \times n)$ diagonal matrix with diagonal elements $d_{ii} = \sum_{j \in N_i} w_{ij} = (W1_n)_i$, $i = 1, 2, \ldots, n$. The $(n \times n)$ symmetric matrix $L = D - W$ is known as the graph Laplacian for the graph G. Let $y = (y_i)$ be an n-vector. Then, $y^T Ly = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n w_{ij} (y_i - y_j)^2$, so that L is nonnegative definite. The graph Laplacian can be regarded as an approximation to the continuous Laplace–Beltrami operator Δ defined on the manifold M.

The matrix Y is determined by minimizing the following objective function:

$$\sum_i \sum_j w_{ij} \|y_i - y_j\|^2 = \text{tr}\{YLY^T\}. \quad (16.47)$$

In other words, we seek the solution,

$$\hat{Y} = \arg \min_{YDY^T = I_t} \text{tr}\{YLY^T\}, \quad (16.48)$$

where we restrict Y such that $YDY^T = I_t$ to prevent a collapse onto a subspace of fewer than $t - 1$ dimensions. This problem boils down to solving the generalized eigenequation, $L v = \lambda D v$, or, equivalently, finding the eigenvalues and eigenvectors of the matrix $\tilde{W} = D^{-1/2} W D^{-1/2}$. The
smallest eigenvalue, \(\lambda_n \), of \(\tilde{W} \) is zero. If we ignore the smallest eigenvalue (and its corresponding constant eigenvector \(v_n = 1_n \)), then the best embedding in \(\mathbb{R}^t \) is similar to that given by LLE; that is, the rows of \(\tilde{Y} \) are the eigenvectors,

\[
\tilde{Y} = (\tilde{y}_1, \cdots, \tilde{y}_n) = (v_{n-1}, \cdots, v_{n-t})^T,
\]

(16.49) corresponding to the next \(t \) smallest eigenvalues, \(\lambda_{n-1} \leq \cdots \leq \lambda_{n-t} \), of \(\tilde{W} \).

16.6.6 Hessian Eigenmaps

We noted earlier that, in certain situations, the convexity assumption for Isomap may be too restrictive. It may be more realistic in such situations to require instead that the manifold \(M \) be locally isometric to an open, connected subset of \(\mathbb{R}^t \). Examples include families of “articulated” images (i.e., translated or rotated images of the same object, possibly through time) that are selected from a high-dimensional, digitized-image library (e.g., faces, pictures, handwritten numbers or letters). If the pixel elements of each 64-pixel-by-64-pixel digitized image are represented as a 4,096-dimensional vector in “pixel space,” it can be very difficult to show that the images really live on a low-dimensional manifold, especially if that image manifold is unknown.

Such images can be modeled using a vector of smoothly varying articulation parameters \(\theta \in \Theta \). For example, digitized images of a person’s face that are varied by pose and illumination can be parameterized by two pose parameters (expression [happy, sad, sleepy, surprised, wink] and glasses–no glasses) and a lighting direction (centerlight, leftlight, rightlight, normal); similarly, handwritten “2”s appear to be parameterized essentially by two features, bottom loop and top arch (Tenenbaum, de Silva, and Langford, 2000; Roweis and Saul, 2000). To some extent, learning about an underlying image manifold depends upon data quality: are the images sufficiently scattered around the manifold to enable us to identify the manifold, and how good is the quality of digitization of each image?

Hessian eigenmaps have been proposed for recovering manifolds of high-dimensional libraries of articulated images where the convexity assumption is often violated (Donoho and Grimes, 2003). Assume the parameter space is \(\Theta \subset \mathbb{R}^t \) and suppose that \(\phi : \Theta \to \mathbb{R}^r \), where \(t < r \). Assume \(M = \phi(\Theta) \) is a smooth manifold of articulated images. The isometry and convexity requirements of Isomap are replaced by the following weaker requirements:

- **Local Isometry:** \(\phi \) is a locally isometric embedding of \(\Theta \) into \(\mathbb{R}^r \). For any point \(x' \) in a sufficiently small neighborhood around each point \(x \) on the manifold \(M \), the geodesic distance equals the Euclidean distance between their corresponding parameter points \(\theta, \theta' \in \Theta \);
i.e.,

$$d^M(x, x') = \|\theta - \theta'\|_\Theta,$$ \hspace{1cm} (16.50)

where $x = \phi(\theta)$ and $x' = \phi(\theta')$.

- **Connectedness:** The parameter space Θ is an open, connected subset of \mathbb{R}^t.

The goal is to recover the parameter vector θ (up to a rigid motion).

First, consider the differentiable manifold $M \subset \mathbb{R}^r$. Let $T_x(M)$ be a tangent space of the point $x \in M$, where $T_x(M)$ has the same number of dimensions as M itself. We endow $T_x(M)$ with a (non-unique) system of orthonormal coordinates having the same inner product as \mathbb{R}^r. We can view $T_x(M)$ as an affine subspace of \mathbb{R}^r that is spanned by vectors tangent to M and pass through the point x, with the origin $0 \in T_x(M)$ identified with $x \in M$. Let N_x be a neighborhood of x such that each point $x' \in N_x$ has a unique closest point $\xi' \in T_x(M)$; a point in N_x has local coordinates, $\xi = \xi(x) = (\xi_1(x), \ldots, \xi_t(x))^T$, say, and these coordinates are referred to as tangent coordinates.

Suppose $f : M \rightarrow \mathbb{R}$ is a C^2-function (i.e., a function with two continuous derivatives) near x. If the point $x' \in N_x$ has local coordinates $\xi = \xi(x) \in \mathbb{R}^t$, then the rule $g(\xi) = f(x')$ defines a C^2-function $g : U \rightarrow \mathbb{R}$, where U is a neighborhood of $0 \in \mathbb{R}^r$. The tangent Hessian matrix, which measures the “curviness” of f at the point $x \in M$, is defined as the ordinary $(t \times t)$ Hessian matrix of g,

$$H^\text{tan}_f(x) = \left(\frac{\partial^2 g(\xi)}{\partial \xi_i \partial \xi_j} \bigg|_{\xi=0} \right).$$ \hspace{1cm} (16.51)

The average “curviness” of f over M is then the quadratic form,

$$\mathcal{H}(f) = \int_M \|H^\text{tan}_f(x)\|_F^2 \, dx,$$ \hspace{1cm} (16.52)

where $\|H\|_F^2 = \sum_i \sum_j H_{ij}^2$ is the squared Frobenius norm of a square matrix $H = (H_{ij})$. Note that even if we define two different orthonormal coordinate systems for $T_x(M)$, and hence two different tangent Hessian matrices, H_f and H'_f, at x, they are related by $H'_f = U H_f U^T$, where U is orthogonal, so that their Frobenius norms are equal and $\mathcal{H}(f)$ is well-defined.

Donoho and Grimes showed that $\mathcal{H}(f)$ has a $(t+1)$-dimensional nullspace consisting of the constant function and a t-dimensional space of functions spanned by the original isometric coordinates, $\theta_1, \ldots, \theta_t$, which can be recovered (up to a rigid motion) from the null space of $\mathcal{H}(f)$.

The **Hessian Locally Linear Embedding (HLLE)** algorithm computes a discrete approximation to the Hessian \mathcal{H} using the data lying on M. There
Nonlinear Dimensionality Reduction and Manifold Learning

are, again, three steps to this algorithm, which essentially substitutes a quadratic form based upon the Hessian instead of one based upon the Laplacian.

1. Nearest-Neighbor Search. We begin by identifying a neighborhood of each point as in Step 1 of the LLE algorithm. Fix an integer K and let N^K_i denote the K nearest neighbors of the data point x_i using Euclidean distance.

2. Estimate Tangent Hessian Matrices. Assuming local linearity of the manifold M in the region of the neighborhood N^K_i, form the $(r \times r)$ covariance matrix M_i of the K neighborhood-centered points $x_j - \bar{x}_i$, $j \in N^K_i$, where $\bar{x}_i = (n^{-1} \sum_{j \in N^K_i} x_j)$, and compute a PCA of the matrix M_i. Assuming $K \geq t$, the first t eigenvectors of M_i yield the tangent coordinates of the K points in N^K_i and provide the best-fitting t-dimensional linear subspace corresponding to x_i. Next, construct a LS estimate, \hat{H}_i, of the local Hessian matrix H_i as follows: build a matrix Z_i by putting all squares and cross-products of the columns of M_i up to the tth order in its columns, including a column of 1s; so, Z_i has $1 + t + t(t+1)/2$ columns and K rows. Then, apply a Gram–Schmidt orthonormalization to Z_i. The estimated $(t(t+1)/2 \times K)$ tangent Hessian matrix \hat{H}_i is given by the transpose of the last $t(t+1)/2$ orthonormal columns of Z_i.

3. Eigenanalysis. The estimated local Hessian matrices, $\hat{H}_i, i = 1, 2, \ldots, n$, are used to construct a sparse, symmetric, $(r \times r)$-matrix $\hat{H} = (\hat{H}_{kl})$, where

$$\hat{H}_{kl} = \sum_i \sum_j ((\hat{H}_i)_{jk} (\hat{H}_i)_{j\ell}).$$

\hat{H} is a discrete approximation to the functional H. We now follow Step 3 of the LLE algorithm, this time performing an eigenanalysis of \hat{H}. To obtain the low-dimensional representation that will minimize the curviness of the manifold, find the smallest $t + 1$ eigenvectors of \hat{H}; the smallest eigenvalue will be zero, and its associated eigenvector will consist of constant functions; the remaining t eigenvectors provide the embedding coordinates for $\hat{\theta}$.

16.6.7 Other Methods

There are several other methods for nonlinear manifold learning, including an algorithm for “charting” manifolds (Brand, 2003), which uses parametric density estimation and a Bayesian approach, and a local tangent space alignment algorithm (Zhang and Zha, 2004).

16.6.8 Relationships to Kernel PCA

The three algorithms of Isomap, LLE, and Laplacian eigenmaps have close connections with kernel PCA (Ham, Lee, Mika, and Scholkopf, 2003).
For each algorithm, the individual elements of the kernel matrix depend upon all the input data, unlike traditional kernel matrices whose entries each depend only upon a pair of input points.

ISOMAP For isotropic kernels, it can be shown that kernel PCA is closely related to metric MDS (Williams, 2001). Thus, **ISOMAP** is equivalent to kernel PCA if

\[
K_{\text{Isomap}} = A_n^G
\]

is used as the appropriate kernel matrix. However, \(A_n \) is not guaranteed to be nonnegative definite for finite \(n \). It is nonnegative definite only in an asymptotic sense (i.e., as \(n \to \infty \)).

LLE If the largest eigenvalue of \(M \) is \(\lambda_1 \), then the \((n \times n)\) Gram matrix

\[
K_{\text{LLE}} = \lambda_1 I_n - M
\]

is nonnegative definite, the eigenvector corresponding to the zero eigenvalue of \(K_{\text{LLE}} \) is \(n^{-1/2} I_n \), and eigenvectors 2 through \(t + 1 \) of \(K_{\text{LLE}} \) give the LLE embedding. Furthermore, the LLE embedding is equivalent (up to the scaling factors \(\sqrt{\lambda_k} \)) to the kernel PCA scores (see Section 10.6.2) based upon \(K_{\text{LLE}} \). The form of the kernel function \(K \) corresponding to \(K_{\text{LLE}} \) is also not explicitly known.

An alternative version of LLE uses a kernel representation of the input data. Instead of finding the \(K \) nearest neighbors of each point in input space, we can use kernel methods to find the nearest neighbors in feature space (DeCoste, 2001). The Euclidean distance between two points in feature space is given by

\[
d_{ij} = \| \Phi(x_i) - \Phi(x_j) \| = \sqrt{K_{ii} - 2K_{ij} + K_{jj}}.
\]

Using this definition of distance in feature space, nearest neighbors of \(\Phi(x_i) \) can be found by using an efficient algorithm that supports such distances (e.g., Yianilos, 1998). Corresponding to the matrix \(G \) in step 2 of the algorithm, we can define the matrix \(\tilde{G} = (\tilde{G}_{jk}) \) in feature space, where, for all \(x_j, x_k \in N^K_i \),

\[
\tilde{G}_{jk} = \langle \Phi(x_i) - \Phi(x_j), \Phi(x_i) - \Phi(x_k) \rangle = K_{ii} - K_{ij} - K_{ik} + K_{jk}.
\]

Replacing \(G \) by \(\tilde{G} \) in step 2 of the LLE algorithm, we find the matrix of optimal weights \(\tilde{W} \) (replacing \(W \)) and the embedding vectors (corresponding to step 3).

Laplacian Eigenmaps As we saw in step 3 of the algorithm, the embedding is obtained by finding the eigenvectors corresponding to the smallest
eigenvalues of the graph Laplacian L. This solution can also be justified in terms of arguments involving heat flow and diffusion on a graph. Without going into details (which involve the notion of commute times of diffusion on a graph), it can be shown that if we take as kernel

$$K_{LE} = L^{-1},$$

where L^{-1} is a generalized-inverse of L, then the embedding solution is equivalent to performing kernel PCA on the matrix K_{LE}.

16.7 Software Packages

The website www.iro.umontreal.ca/~kegl/research/pcurves gives a review of the area of principal curves and gives an introduction to algorithms and software. The S-PLUS/R computer packages [princurve](http://www.iro.umontreal.ca/~kegl/research/pcurves) and [pcurve](http://www.iro.umontreal.ca/~kegl/research/pcurves), both based on S-code originally written by Hastie, are available for fitting a principal curve to multivariate data. MATLAB code for principal curves is available at lear.inrialpes.fr/verbeek/software.

There are several publicly available computer programs for performing kernel PCA; see, for example, the [kcpa](http://www.iro.umontreal.ca/~kegl/research/pcurves) function included in the R package [kernlab](http://www.iro.umontreal.ca/~kegl/research/pcurves), which can be downloaded from CRAN.

MATLAB code for implementing [ISOMAP](http://isomap.stanford.edu), LLE, and HLLE is publicly available at the following websites:

- **ISOMAP**: isomap.stanford.edu
- **LLE**: www.cs.toronto.edu/~roweis/lle/
- **Laplacian Eigenmaps**: people.cs.uchicago.edu/~misha/ManifoldLearning/index.html
- **HLLE**: basis.stanford.edu/WWW/HLLE/frontdov.htm

See Martinez and Martinez (2005, Section 3.2 and Appendix B). There is also a [Matlab_Toolbox_for_Dimensionality_Reduction](http://www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten) which is downloadable from the website www.cs.unimaas.nl/l.vandermaaten/Laurens_van_der_Maaten and includes all the methods discussed in this chapter and many data sets. There is, at present, no S-PLUS/R code for ISOMAP, LLE, Laplacian eigenmaps, or HLLE.

Bibliographical Notes

Much of our discussion of nonlinear dimensionality reduction and manifold learning has its roots in differential geometry. A text that gives an

The website www.iro.umontreal.ca/~kegl/research/pcurves gives a list of references for principal curves. A detailed study of the concept of self-consistency is given by Tarpey and Flury (1996). Linear PCA can also be generalized by considering additive functions \(\sum_i \phi_i(X_i) \), where the \(\{\phi_i\} \) satisfy normalization and orthogonality conditions. This nonlinear generalization is called additive principal components (Donnell, Buja, and Stuetzle, 1994). Another version of nonlinear PCA is given by Salinelli (1998). Our treatment of kernel PCA is based upon the work of Scholkopf, Smola, and Muller (1998). See also Scholkopf and Smola (2002).

Exercises

16.1 Generate \(n = 150 \) trivariate \((r = 3)\) observations on \((X_1, X_2, X_3)\) so that they lie on the surface of the sphere \(X_1^2 + X_2^2 + X_3^2 = 36 \). Compute the \(2r + r(r-1)/2 = 9 \) variables \((X_1, X_2, X_3, X_1^2, X_2^2, X_3^2, X_1X_2, X_1X_3, X_2X_3)\) and carry out an error-free quadratic PCA of the extended vector. Then, add an independent \(Z \sim \mathcal{N}(0, 0.25) \) variate to the \(X_2 \) variable and carry out a noisy quadratic PCA of the extended vector.

16.2 Using the kernels listed in Table 11.1, check whether (or not) they each have the property that \([K(x, y)]^2 \leq K(x, x)K(y, y)\).

16.3 Using the Food Nutrition data, compute the first two kernel principal component scores and plot them for different values of \(\sigma \) for the RBF kernel. In the scatterplot, identify which of the six variables dominates each point. Add another identification for points that have very low values for each variable. Replot the kernel PC scores using different colors for the seven classes. Comment on your findings.

16.4 Using the *pendigits* data (Section 7.2.10), which consist of 10,992 handwritten digits \((0, 1, 2, \ldots, 9)\), compute the kernel PC scores and plot them for different values of \(\sigma \) for the RBF kernel. Use different colors for the 10 digits. Comment on your findings and compare your results with Figure 7.4.

16.5 Generate \(n = 500 \) independent data values from the multivariate Gaussian distribution \(\mathcal{N}_4(\mathbf{0}, \mathbf{R}) \), where \(\mathbf{R} \) is the correlation matrix,

\[
\mathbf{R} = \begin{pmatrix}
1.0 & 0.5 & 0.7 & -0.6 \\
0.5 & 1.0 & 0.3 & -0.5 \\
0.7 & 0.3 & 1.0 & -0.7 \\
-0.6 & -0.5 & -0.7 & 1.0
\end{pmatrix}.
\]
Run these simulated data through a kernel PCA program and make a scatterplot of the first two kernel PC scores. Choose a range of values of σ for the RBF kernel and vary the values of the correlations in the matrix \mathbf{R}. Comment on your findings.

16.6 In kernel PCA and in MDS, we “double-center” a symmetric $(n \times n)$-matrix $\mathbf{A} = (a_{ij})$ by the transformation,

$$\mathbf{B} = (\mathbf{I}_n - n^{-1} \mathbf{J}_n) \mathbf{A} (\mathbf{I}_n - n^{-1} \mathbf{J}_n),$$

where $\mathbf{J}_n = 1_n 1_n^T$ and 1_n is an n-vector of all ones. Show that the ijth entry of \mathbf{B} can be expressed as

$$b_{ij} = a_{ij} - a_{i.} - a_{.j} + a_{..},$$

where a dot-subscript indicates averaging over that subscript.

16.7 In MDS, the matrix $\mathbf{A} = (a_{ij})$ in Ex. 16.7 is a *dissimilarity matrix* with $a_{ij} = -\frac{1}{2} d_{ij}^2$, where d_{ij} is the interpoint distance (or dissimilarity). Note: d_{ij} is a dissimilarity if $d_{ii} = 0$, $d_{ij} \geq 0$, and $d_{ij} = d_{ji}$. Show that, for the MDS case, the matrix \mathbf{B} in Ex. 16.7 ($\mathbf{A}_n^{\mathcal{G}}$ in (16.55)) is nonnegative-definite.

16.8 Show that $(\mathbf{I}_n - n^{-1} \mathbf{J}_n) 1_n = 0$ and, hence, that $\mathbf{B} 1_n = 0$, where \mathbf{B} is given in Ex. 16.7. Let $\mathbf{y} = n^{-1} \hat{\mathbf{Y}}^T 1_n$, where $\hat{\mathbf{Y}}$ is the embedding matrix given by (16.56). Use the spectral decomposition of \mathbf{B}, assuming \mathbf{B} has rank $t < n$, to show that $n^2 \mathbf{y}^T \hat{\mathbf{y}} = 0$ and, hence, that $\mathbf{y} = 0$. Thus, the ISOMAP embeddings have mean zero.

16.9 Download the helix.mat data set from the Matlab_Toolbox_for_Dimensionality_Reduction.

Run PCA, kernel PCA, ISOMAP, LLE, Lapacian Eigenmaps, and HLLE algorithms on the helix data, report your results, and compare solutions.

16.10 Download the COIL20 dataset from the Matlab_Toolbox_for_Dimensionality_Reduction.

Run PCA, kernel PCA, ISOMAP, LLE, Lapacian Eigenmaps, and HLLE algorithms on the COIL20 data, report your results, and compare solutions.
17
Correspondence Analysis

17.1 Introduction

Correspondence analysis is an exploratory multivariate technique for simultaneously displaying scores representing the row categories and column categories of a two-way contingency table as the coordinates of points in a low-dimensional (two- or possibly three-dimensional) vector space. The objective is to clarify the relationship between the row and column variates of the table and to discover a low-dimensional explanation for possible deviations from independence of those variates. The methodology has its own nomenclature, and its approach is decidedly geometric, especially for interpreting the resulting graphical displays.

For two-way contingency tables, correspondence analysis is known as simple correspondence analysis. For three-way and higher contingency tables, it is known as multiple correspondence analysis. Variants of correspondence analysis are dual (or optimal) scaling, reciprocal averaging, perceptual mapping, and social space analysis. In general, correspondence analysis is applicable when the variates are discrete with many categories and, hence, is well-suited for analyzing large contingency tables. It can also be used for continuous variates, such as age, which can be segmented into a finite

A.J. Izenman, Modern Multivariate Statistical Techniques,
doi: 10.1007/978-0-387-78189-1_17,
© Springer Science+Business Media, LLC 2008
number of ranges, but discretization of a continuous variate usually entails some loss of information.

17.1.1 Example: Shoplifting in The Netherlands

These data\footnote{The contingency table can be downloaded from the book’s website.} were taken from van der Heijden, de Falguerolles, and de Leeuw (1989). It is a three-way contingency table of 33,101 individuals, classified by gender and age, who were suspected of stealing specific goods in The Netherlands in 1978 and 1979. The data were obtained from a survey of about 350 Dutch stores and big retail shops. Cases in which shoplifting consisted of more than a single type of good, or in which more than one person was suspected, were omitted from the study. Age was divided into nine nonoverlapping categories, and shoplifted items were classified into 13 types of goods.

For this example, we arranged the original $2 \times 9 \times 13$ three-way contingency table into a $(2 \times 9) \times 13$ two-way contingency table in which gender has been introduced as separate sets of nine male and nine female rows of ages. The ages were coded by groups: < 12 (1 for boys and 10 for girls), 12–14 (2 and 11), 15–17 (3 and 12), 18–20 (4 and 13), 21–29 (5 and 14), 30–39 (6 and 15), 40–49 (7 and 16), 50–64 (8 and 17), and 65+ (9 and 18). The graphical display from the resulting correspondence analysis is given in Figure 17.1.

We can make the following observations from Figure 17.1. First, points representing males and females are well-separated at each age group, suggesting that their shoplifting profiles are quite different. Second, for both males and females, the age category points are clearly ordered from younger than 12 years old on the left-hand side to older than 65 on the right-hand side, with both sets of points doubling back toward the left after 30 years of age. Third, while there are larger distances between males at the younger age groups than those at older age groups, suggesting that shoplifting behavior changes substantially more for younger than for older males, the distances between female age groups are largest at both the younger and older ages (and, hence, more rapidly changing shoplifting behavior), with smaller distances appearing in the middle age groups (18–49).

The configuration of points in Figure 17.1 also tempts us to identify column points (which types of goods are shoplifted more than average) with nearby row points (age groups), possibly leading to the identification of significant age \times goods interactions. Although interrow distances and inter-column distances can be compared, row-to-column distances are undefined and, therefore, are essentially meaningless (see, e.g., Greenacre and Hastie,
17.2 Simple Correspondence Analysis

17.2.1 Two-Way Contingency Tables

Categorical data are count data that are collected in a contingency table N. A two-way $(r \times s)$ contingency table with r rows (labelled A_1, A_2, \ldots, A_r) and s columns (labelled B_1, B_2, \ldots, B_s) has rs cells. The ijth cell has entry

FIGURE 17.1. Correspondence map for the shoplifting example. The red words are the items shoplifted, the points joined by a solid line represent the progression in male ages (1–9), and the points joined by a dotted line represent the progression in female ages (10–18).
TABLE 17.1. Types of goods most often shoplifted by males and by females at each age group, as derived from the two-way contingency table of the example. Superscripts show the percentages of that type of good stolen for that age group and gender. Also listed in parentheses for each age group and gender are those goods that are stolen more than 20% of the time.

<table>
<thead>
<tr>
<th>Age</th>
<th>Males (category)</th>
<th>Females (category)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12</td>
<td>Toys 26.2</td>
<td>Writing materials 23.8</td>
</tr>
<tr>
<td></td>
<td>(writing materials 23.5)</td>
<td></td>
</tr>
<tr>
<td>12–14</td>
<td>Writing materials 25.1</td>
<td>Jewelry 26.5</td>
</tr>
<tr>
<td>15–17</td>
<td>Writing materials 14.8</td>
<td>Clothing 32.3</td>
</tr>
<tr>
<td></td>
<td>(jewelry 20.5)</td>
<td>(clothing 45.4)</td>
</tr>
<tr>
<td>18–20</td>
<td>Clothing 22.8</td>
<td>Clothing 55.8</td>
</tr>
<tr>
<td>21–29</td>
<td>Clothing 27.3</td>
<td>Clothing 55.8</td>
</tr>
<tr>
<td>30–39</td>
<td>Clothing 25.9</td>
<td>Clothing 57.2</td>
</tr>
<tr>
<td>40–49</td>
<td>Clothing 21.7</td>
<td>Clothing 51.7</td>
</tr>
<tr>
<td>50–64</td>
<td>Hobbies, tools 22.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(clothing 20.9)</td>
<td></td>
</tr>
<tr>
<td>65+</td>
<td>Provisions, tobacco 27.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(hobbies, tools 20.9)</td>
<td></td>
</tr>
</tbody>
</table>

\(n_{ij} \), representing the observed frequency in row category \(A_i \) and column category \(B_j \), \(i = 1, 2, \ldots, r \), \(j = 1, 2, \ldots, s \). The \(i \)th marginal row total is \(n_{i+} = \sum_{j=1}^{s} n_{ij}, \ i = 1, 2, \ldots, r \), and the \(j \)th marginal column total is \(n_{+j} = \sum_{i=1}^{r} n_{ij}, \ j = 1, 2, \ldots, s \). If \(n = \sum_{i=1}^{r} \sum_{j=1}^{s} n_{ij} \) individuals are classified by row and column categories, then Table 17.2, which is also called a correspondence table, shows the cell frequencies, marginal totals, and total sample size. For interpretation purposes, it is important to distinguish when the \(n \) individuals are randomly selected from some very large population or when they actually constitute the entire population of interest.

We denote by \(\pi_{ij} \) the probability that an individual has the properties \(A_i \) and \(B_j \), \(i = 1, 2, \ldots, r \), \(j = 1, 2, \ldots, s \). In the event that the row variable \(A \) is independent of the column variable \(B \), we have that \(\pi_{ij} = \pi_{i+} \pi_{+j} \), where \(\pi_{i+} = \sum_{j=1}^{s} \pi_{ij} \) and \(\pi_{+j} = \sum_{i=1}^{r} \pi_{ij} \), for all \(i = 1, 2, \ldots, r \) and \(j = 1, 2, \ldots, s \). We are generally interested in assessing whether \(A \) and \(B \) are indeed independent variables. Such a question can alternatively be posed in terms of homogeneity of the row or column probability distributions; that is, whether all the rows have the same probability distributions across columns, or, equivalently, whether all the columns have the same probability distributions across rows.

17.2.2 Row and Column Dummy Variables

For a two-way contingency table, we are interested in the relationship between the row categories and the column categories. We define two sets of dummy variates, an \(r \)-vector \(X_i = (X_{ij}) \) to indicate which of the \(n \)
TABLE 17.2. Two-way contingency table, showing observed cell frequencies, row and column marginal totals, and total sample size.

<table>
<thead>
<tr>
<th>Row Variable</th>
<th>Column Variable</th>
<th>B₁</th>
<th>B₂</th>
<th>⋮</th>
<th>Bₖ</th>
<th>⋮</th>
<th>Bs</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td></td>
<td>n₁₁</td>
<td>n₁₂</td>
<td>⋮</td>
<td>n₁ₖ</td>
<td>⋮</td>
<td>n₁ₜ</td>
<td>n₁⁺</td>
</tr>
<tr>
<td>A₂</td>
<td></td>
<td>n₂₁</td>
<td>n₂₂</td>
<td>⋮</td>
<td>n₂ₖ</td>
<td>⋮</td>
<td>n₂ₜ</td>
<td>n₂⁺</td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td>⋮</td>
<td>⋮</td>
<td></td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
</tr>
<tr>
<td>Aᵢ</td>
<td></td>
<td>nᵢ₁</td>
<td>nᵢ₂</td>
<td>⋮</td>
<td>nᵢₖ</td>
<td>⋮</td>
<td>nᵢₜ</td>
<td>nᵢ⁺</td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td>⋮</td>
<td>⋮</td>
<td></td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
</tr>
<tr>
<td>Aᵣ</td>
<td></td>
<td>nᵣ₁</td>
<td>nᵣ₂</td>
<td>⋮</td>
<td>nᵣₖ</td>
<td>⋮</td>
<td>nᵣₜ</td>
<td>nᵣ⁺</td>
</tr>
<tr>
<td>Column total</td>
<td></td>
<td>n₊₁</td>
<td>n₊₂</td>
<td>⋮</td>
<td>n₊ₖ</td>
<td>⋮</td>
<td>n₊ₜ</td>
<td>n₊⁺</td>
</tr>
</tbody>
</table>

Observations fall into the \(i\)th row, and an \(s\)-vector \(Y_j = (Y_{ij})\) to indicate which of the \(n\) observations fall into the \(j\)th column; that is,

\[
X_{ij} = \begin{cases}
1, & \text{if the } j\text{th individual belongs to } A_i \\
0, & \text{otherwise}
\end{cases}
\]

\[
Y_{ij} = \begin{cases}
1, & \text{if the } i\text{th individual belongs to } B_j \\
0, & \text{otherwise}
\end{cases}
\]

\(i = 1, 2, \ldots, r\), \(j = 1, 2, \ldots, s\). These indicator vectors can be collected into two matrices, an \((r \times n)\)-matrix \(X\) and an \((s \times n)\)-matrix \(Y\). Note that even though both \(X\) and \(Y\) are defined by the specific distribution of cell frequencies in the contingency table, it turns out that the summary information will be the same as if we assume, for convenience, that \(X\) and \(Y\) are given by

\[
X = \begin{pmatrix}
1 & \cdots & 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots & & \vdots & & \vdots & \\
0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 1 \\
\end{pmatrix}
\]

(17.1)

\[
Y = \begin{pmatrix}
1 & \cdots & 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots & & \vdots & & \vdots & \\
0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 1 \\
\end{pmatrix}
\]

(17.2)

respectively.

Matrices derived from \(X\) and \(Y\) reproduce the observed cell frequencies and their marginal totals. The \((r \times s)\)-matrix \(XY^T\) reproduces the observed
cell frequencies of the contingency table,
\[
\mathcal{X}\mathcal{Y}^\tau = \begin{pmatrix}
 n_{11} & n_{12} & \cdots & n_{1s} \\
 n_{21} & n_{22} & \cdots & n_{2s} \\
 \vdots & \vdots & \ddots & \vdots \\
 n_{r1} & n_{r2} & \cdots & n_{rs}
\end{pmatrix} = N.
\]
(17.3)

The \((r \times r)\) matrix \(\mathcal{X}\mathcal{X}^\tau\) and the \((s \times s)\) matrix \(\mathcal{Y}\mathcal{Y}^\tau\) are both diagonal, \(\mathcal{X}\mathcal{X}^\tau\) having as diagonal entries the \(r\) marginal row totals and \(\mathcal{Y}\mathcal{Y}^\tau\) having as diagonal entries the \(s\) marginal column totals,
\[
\mathcal{X}\mathcal{X}^\tau = \text{diag}\{n_{1+}, \ldots, n_{r+}\},
\]
(17.4)
\[
\mathcal{Y}\mathcal{Y}^\tau = \text{diag}\{n_{+1}, \ldots, n_{+s}\}.
\]
(17.5)

Collecting (17.3), (17.4), and (17.5) together, we can form the \((r+s)\times(r+s)\) block matrix,
\[
\begin{pmatrix}
 \mathcal{X} \\
 \mathcal{Y}
\end{pmatrix}
\begin{pmatrix}
 \mathcal{X} \\
 \mathcal{Y}
\end{pmatrix}^\tau = \begin{pmatrix}
 nD_r & N \\
 N^\tau & nD_c
\end{pmatrix},
\]
(17.6)
where
\[
D_r = n^{-1}\mathcal{X}\mathcal{X} = \text{diag}\{n_{1+}/n, \ldots, n_{r+}/n\},
\]
(17.7)
\[
D_c = n^{-1}\mathcal{Y}\mathcal{Y}^\tau = \text{diag}\{n_{+1}/n, \ldots, n_{+s}/n\}.
\]
(17.8)

The matrix (17.6) is known as a Burt matrix (Burt, 1950) for a two-way contingency table. It is nonnegative definite and symmetric and is the analogue in the discrete case (after dividing through by \(n\)) of the sample covariance matrix of two sets of continuous variates.

17.2.3 Example: Hair Color and Eye Color

This classic two-way contingency table \(N\) with \(r = 4\) and \(s = 5\) (see Table 17.3) was analyzed by R.A. Fisher (1940) and others. It relates to data on hair color and eye color of a sample of 5,387 schoolchildren from Caithness, Scotland. It is given as a \((4 \times 5)\)-matrix by:
\[
N = \mathcal{X}\mathcal{Y}^\tau = \begin{pmatrix}
 326 & 38 & 241 & 110 & 3 \\
 688 & 116 & 584 & 188 & 4 \\
 343 & 84 & 909 & 412 & 26 \\
 98 & 48 & 403 & 681 & 85
\end{pmatrix}.
\]

The matrices \(\mathcal{X}\mathcal{X}^\tau\) and \(\mathcal{Y}\mathcal{Y}^\tau\) are given by:
\[
\mathcal{X}\mathcal{X}^\tau = \begin{pmatrix}
 718 & 0 & 0 & 0 \\
 0 & 1580 & 0 & 0 \\
 0 & 0 & 1774 & 0 \\
 0 & 0 & 0 & 1315
\end{pmatrix}.
\]
TABLE 17.3. Relationship of Hair Color to Eye Color of Scottish Schoolchildren.

<table>
<thead>
<tr>
<th>Eye Color</th>
<th>Hair Color</th>
<th>Fair</th>
<th>Red</th>
<th>Medium</th>
<th>Dark</th>
<th>Black</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td></td>
<td>326</td>
<td>38</td>
<td>241</td>
<td>110</td>
<td>3</td>
<td>718</td>
</tr>
<tr>
<td>Light</td>
<td></td>
<td>688</td>
<td>116</td>
<td>584</td>
<td>188</td>
<td>4</td>
<td>1,580</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>343</td>
<td>84</td>
<td>909</td>
<td>412</td>
<td>26</td>
<td>1,774</td>
</tr>
<tr>
<td>Dark</td>
<td></td>
<td>98</td>
<td>48</td>
<td>403</td>
<td>681</td>
<td>85</td>
<td>1,315</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>1,455</td>
<td>286</td>
<td>2,137</td>
<td>1,391</td>
<td>118</td>
<td>5,387</td>
</tr>
</tbody>
</table>

\[
Y^\tau Y = \begin{pmatrix}
1455 & 0 & 0 & 0 & 0 \\
0 & 286 & 0 & 0 & 0 \\
0 & 0 & 2137 & 0 & 0 \\
0 & 0 & 0 & 1391 & 0 \\
0 & 0 & 0 & 0 & 118
\end{pmatrix},
\]

respectively. The matrices \(D_r\) and \(D_c\) are obtained by dividing both \(XX^\tau\) and \(YY^\tau\) by \(n = 5,387\):

\[
D_r = \begin{pmatrix}
0.1333 & 0 & 0 & 0 & 0 \\
0 & 0.2933 & 0 & 0 & 0 \\
0 & 0 & 0.3293 & 0 & 0 \\
0 & 0 & 0 & 0.2441 & \\

D_c = \begin{pmatrix}
0.2701 & 0 & 0 & 0 & 0 \\
0 & 0.0531 & 0 & 0 & 0 \\
0 & 0 & 0.3967 & 0 & 0 \\
0 & 0 & 0 & 0.2582 & 0 \\
0 & 0 & 0 & 0 & 0.0219
\end{pmatrix}.
\]

17.2.4 Profiles, Masses, and Centroids

The \((r \times s)\)-matrix

\[P = n^{-1}N\] \hspace{1cm} (17.9)

converts the contingency table \(N\) into a correspondence matrix. See Table 17.4. If the \(n\) individuals constitute a random sample, the entry, \(p_{ij} = n_{ij}/n\), in the \(i\)th row and \(j\)th column of \(P\) can be characterized as either the uniformly minimum variance unbiased (UMVU) estimator or the maximum likelihood (ML) estimator of \(\pi_{ij}\). For the hair-color/eye-color example,

\[
P = \begin{pmatrix}
0.0605 & 0.0071 & 0.0447 & 0.0204 & 0.0006 \\
0.1277 & 0.0215 & 0.1084 & 0.0349 & 0.0007 \\
0.0637 & 0.0156 & 0.1687 & 0.0765 & 0.0048 \\
0.0182 & 0.0089 & 0.0748 & 0.1264 & 0.0158
\end{pmatrix}.
\]
TABLE 17.4. Correspondence matrix, showing observed cell relative frequencies $P (p_{ij} = n_{ij}/n)$, row marginal totals $r (p_{i+} = n_{i+}/n)$, and column marginal totals $c^T (p_{+j} = n_{+j}/n)$

<table>
<thead>
<tr>
<th>Row Variable</th>
<th>B_1</th>
<th>B_2</th>
<th>\cdots</th>
<th>B_j</th>
<th>\cdots</th>
<th>B_s</th>
<th>Row Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>p_{11}</td>
<td>p_{12}</td>
<td>\cdots</td>
<td>p_{1j}</td>
<td>\cdots</td>
<td>p_{1s}</td>
<td>p_{1+}</td>
</tr>
<tr>
<td>A_2</td>
<td>p_{21}</td>
<td>p_{22}</td>
<td>\cdots</td>
<td>p_{2j}</td>
<td>\cdots</td>
<td>p_{2s}</td>
<td>p_{2+}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>A_i</td>
<td>p_{i1}</td>
<td>p_{i2}</td>
<td>\cdots</td>
<td>p_{ij}</td>
<td>\cdots</td>
<td>p_{is}</td>
<td>p_{i+}</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>A_r</td>
<td>p_{r1}</td>
<td>p_{r2}</td>
<td>\cdots</td>
<td>p_{rj}</td>
<td>\cdots</td>
<td>p_{rs}</td>
<td>p_{r+}</td>
</tr>
<tr>
<td>Column total</td>
<td>p_{+1}</td>
<td>p_{+2}</td>
<td>\cdots</td>
<td>p_{+j}</td>
<td>\cdots</td>
<td>p_{+s}</td>
<td>1</td>
</tr>
</tbody>
</table>

The row totals and column totals of P are given by the diagonal elements of D_r and D_c, respectively.

The $(r \times s)$-matrix P_r of row profiles of N (or P) consists of the rows of N divided by their appropriate row totals (e.g., n_{ij}/n_{i+}, which, under random sampling, can be characterized as either the UMVU or ML estimator of π_{ij}/π_{i+}, the conditional probability that an individual has property B_j given that he or she has property A_i), and can be computed as the regression coefficient matrix of Y on X; that is,

$$P_r = (X'X)^{-1}X'Y' = D_r^{-1}P = \begin{pmatrix} a_1^T \\ \vdots \\ a_r^T \end{pmatrix}, \quad (17.10)$$

where

$$a_i^T = \left(\frac{n_{i1}}{n_{i+}}, \ldots, \frac{n_{is}}{n_{i+}} \right) \quad (17.11)$$

is the ith row profile, $i = 1, 2, \ldots, r$. For the hair-color/eye-color example,

$$P_r = \begin{pmatrix} 0.4540 & 0.0529 & 0.3357 & 0.1532 & 0.0042 \\ 0.4354 & 0.0734 & 0.3696 & 0.1190 & 0.0025 \\ 0.1933 & 0.0474 & 0.5124 & 0.2322 & 0.0147 \\ 0.0745 & 0.0365 & 0.3065 & 0.5179 & 0.0646 \end{pmatrix}.$$

Similarly, the $(s \times r)$-matrix P_c of column profiles of N (or P) consists of the columns of N divided by their appropriate column totals (e.g., n_{ij}/n_{+j}, which, under random sampling, can be characterized as the UMVU or ML estimator of π_{ij}/π_{+j}, the conditional probability that an individual has property A_i given that he or she has property B_j), and computed as the
17.2 Simple Correspondence Analysis

The regression coefficient matrix of X on Y; that is,

$$P_c = (YY')^{-1}YX = D_c^{-1}P = \begin{pmatrix} b_1^\top \\ \vdots \\ b_s^\top \end{pmatrix},$$

(17.12)

where

$$b_j^\top = \left(\frac{n_{1j}}{n_{+j}}, \ldots, \frac{n_{rj}}{n_{+j}} \right)$$

(17.13)

is the jth column profile, $j = 1, 2, \ldots, s$. For the hair-color/eye-color example,

$$P_c = \begin{pmatrix} 0.2241 & 0.4729 & 0.2357 & 0.0674 \\ 0.1329 & 0.4056 & 0.2937 & 0.1678 \\ 0.1128 & 0.2733 & 0.4254 & 0.1886 \\ 0.0791 & 0.1352 & 0.2962 & 0.4896 \\ 0.0254 & 0.0339 & 0.2203 & 0.7203 \end{pmatrix}.$$

The row means of the contingency table N are the row sums of P,

$$P_1 = \begin{pmatrix} \bar{X}_1 \\ \vdots \\ \bar{X}_r \end{pmatrix} = \begin{pmatrix} n_{1+}/n \\ \vdots \\ n_{r+}/n \end{pmatrix} = (p_{1+}) = r,$$

(17.14)

and the column means of N are the column sums of P (or row sums of P^\top),

$$P^\top 1_r = \begin{pmatrix} \bar{Y}_1 \\ \vdots \\ \bar{Y}_s \end{pmatrix} = \begin{pmatrix} n_{+1}/n \\ \vdots \\ n_{+s}/n \end{pmatrix} = (p_{+1}) = c,$$

(17.15)

where 1_a denotes an a-vector each of whose entries is 1. The vectors r and c can be formed from the diagonal elements of D_r and D_c, respectively; that is, $D_r = \text{diag}\{r\}$ and $D_c = \text{diag}\{c\}$. For the hair-color/eye-color example,

$$r = \begin{pmatrix} 0.1333 \\ 0.2933 \\ 0.3293 \\ 0.2441 \end{pmatrix}, \quad c = \begin{pmatrix} 0.2701 \\ 0.0531 \\ 0.3967 \\ 0.2582 \\ 0.0219 \end{pmatrix}.$$

Powers of these diagonal matrices are given by $D^\alpha_r = \text{diag}\{r^\alpha\}$ and $D^\alpha_c = \text{diag}\{c^\alpha\}$, where r^α and c^α are the column vectors (17.14) and (17.15), respectively, with each entry raised to the αth power. In this chapter, we will be interested in situations where $\alpha = -\frac{1}{2}$ or -1.

The ith element, $p_{i+} = n_{i+}/n$, of the r-vector r is called the ith row mass and, under random sampling, is an estimate of the unconditional
Correspondence Analysis

Probability, \(\pi_{i+} \), of belonging to \(A_i \). Similarly, the \(j \)th element, \(p_{+j} = n_{+j}/n \), of the \(s \)-vector \(\mathbf{c} \) is called the \(j \)th column mass and is an estimate of the unconditional probability, \(\pi_{+j} \), of belonging to \(B_j \). In correspondence analysis, \(\mathbf{r} \) is called the average column profile and \(\mathbf{c} \) is called the average row profile of the contingency table. The vector \(\mathbf{c} \) is also referred to as the row centroid because it can be expressed as the weighted average of the row profiles, namely,

\[
\mathbf{c} = \sum_{i=1}^{r} p_{i+} \mathbf{a}_i,
\]

where the weights are the row masses. Similarly, the vector \(\mathbf{r} \) is referred to as the column centroid because it can be expressed as the weighted average of the column profiles, namely,

\[
\mathbf{r} = \sum_{j=1}^{s} p_{+j} \mathbf{b}_j,
\]

where the weights are the column masses. It is not difficult to show that the relationship between \(\mathbf{r} \) and \(\mathbf{c} \) is given by \(\mathbf{r} = \mathbf{P} \tau \mathbf{D}^{-1} \mathbf{c} \) and \(\mathbf{c} = \mathbf{P}^\tau \mathbf{D}^{-1} \mathbf{r} \).

17.2.5 Chi-squared Distances

In correspondence analysis, it is important to be able to visualize distances between different row profiles (i.e., rows of \(\mathbf{P}_r \)) or between different column profiles (i.e., rows of \(\mathbf{P}_c \)). To do this, we use the chi-squared metric as a measure of distance.

Row Distances

Consider the \(i \)th and \(i' \)th row profiles, \(\mathbf{a}_i \) and \(\mathbf{a}_{i'} \), respectively. We will need the fact that \(\mathbf{a}_i - \mathbf{a}_{i'} \) is an \(s \)-vector whose \(j \)th entry is \(n_{ij}/n_{i+} - n_{ij'}/n_{i'+} \). The squared \(\chi^2 \)-distance between \(\mathbf{a}_i \) and \(\mathbf{a}_{i'} \) is defined as the quadratic form,

\[
d^2(\mathbf{a}_i, \mathbf{a}_{i'}) \equiv (\mathbf{a}_i - \mathbf{a}_{i'})^\tau \mathbf{D}_c^{-1}(\mathbf{a}_i - \mathbf{a}_{i'})
\]

\[
= \sum_{j=1}^{s} \frac{n}{n_{+j}} \left(\frac{n_{ij}}{n_{i+}} - \frac{n_{ij'}}{n_{i'+}} \right)^2.
\]

We see from (17.19) that the \(j \)th column mass, \(n_{+j}/n \), enters the squared distance between row profiles \(\mathbf{a}_i \) and \(\mathbf{a}_{i'} \) as an inverse element of the \(j \)th term in the sum. It follows that those categories having fewer observations contribute more to the inter-row profile distances.

Recall that \(\mathbf{c} \) is the row centroid. The \((r \times s)\)-matrix of centered row profiles \(\mathbf{P}_r - 1, \mathbf{c}^\tau \), where \(\mathbf{P}_r = \mathbf{D}_r^{-1} \mathbf{P} \), has \(i \)th row \((\mathbf{a}_i - \mathbf{c})^\tau\), with \(j \)th
entry \(n_{i+j}^{-1}(n_{ij} - n_{i+n+j}/n) \), \(i = 1, 2, \ldots, r \), \(j = 1, 2, \ldots, s \). The squared \(\chi^2 \)-distance between \(a_i \) and \(c \) is, therefore,

\[
d^2(a_i, c) = (a_i - c)^T D_c^{-1} (a_i - c)
\]

\[
= \frac{1}{n_{i+j}} \sum_{j=1}^{s} \frac{n}{n_{i+n+j}} \left(n_{ij} - \frac{n_{i+n+j}}{n} \right)^2.
\]

(17.20)

Summing (17.20) over all row profiles yields

\[
n \sum_{i=1}^{r} p_i d^2(a_i, c) = \sum_{i=1}^{r} \sum_{j=1}^{s} \left(\frac{n_{ij} - \frac{n_{i+n+j}}{n}}{\frac{n_{i+n+j}}{n}} \right)^2,
\]

(17.21)

which is the Pearson’s chi-squared statistic,

\[
X^2 = \sum_{i} \sum_{j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}},
\]

(17.22)

where the observed cell frequency \(O_{ij} \) and the expected cell frequency \(E_{ij} \) (assuming independence of row and column variates) are given by

\[
O_{ij} = n_{ij}, \quad E_{ij} = \frac{n_{i+n+j}}{n},
\]

(17.23)

respectively, \(i = 1, 2, \ldots, r \), \(j = 1, 2, \ldots, s \). Under random sampling, \(X^2 \) has approximately (large \(n \)) the \(\chi^2 \) distribution with \((r - 1)(s - 1)\) degrees of freedom (see, e.g., Rao, 1965, Section 6d.2).

Column Distances

In a similar manner, we define the squared \(\chi^2 \)-distance between the \(j \)th and \(j' \)th column profiles, \(b_j \) and \(b_{j'} \), respectively, as the quadratic form,

\[
d^2(b_j, b_{j'}) \equiv (b_j - b_{j'})^T D_r^{-1} (b_j - b_{j'}) \]

(17.24)

\[
= \sum_{i=1}^{r} \frac{n}{n_{i+n+j}} \left(\frac{n_{ij} - \frac{n_{i+n+j}}{n}}{\frac{n_{i+n+j}}{n}} \right)^2.
\]

(17.25)

The squared \(\chi^2 \)-distance between the \(j \)th column profile and the column centroid is, therefore, given by

\[
d^2(b_j, r) = (b_j - r)^T D_r^{-1} (b_j - r)
\]

\[
= \frac{1}{n_{i+n+j}} \sum_{i=1}^{r} \frac{n}{n_{i+n+j}} \left(n_{ij} - \frac{n_{i+n+j}}{n} \right)^2.
\]

(17.26)

Summing (17.26) over all column profiles yields

\[
n \sum_{j=1}^{s} p_{+j} d^2(b_j, r) = X^2,
\]

(17.27)
where X^2 is given by (17.22).

Thus, the weighted average of the squared χ^2-distances of all row profiles to the row centroid (or of all column profiles to the column centroid), where the weights are the row masses (column masses), is the quantity X^2/n. If the row and column variates are independent, then X^2/n will be small, in which case every component of X^2/n — either the $\{p_i + d^2(a_i, c)\}$ or the $\{p_{+j} d^2(b_j, r)\}$ — will be small. On the other hand, if X^2/n is large, that means that at least one of the $\{p_i + d^2(a_i, c)\}$ or at least one of the $\{p_{+j} d^2(b_j, r)\}$ will be large. This type of information will be important in determining where independence in the table fails.

For the hair-color/eye-color example, the matrix $E = (E_{ij})$ of expected cell frequencies is given by:

$$
E = \begin{pmatrix}
193.93 & 38.12 & 284.83 & 185.40 & 15.73 \\
426.75 & 83.88 & 626.78 & 407.98 & 34.61 \\
479.15 & 94.18 & 703.74 & 458.07 & 38.86 \\
355.17 & 69.81 & 521.65 & 339.55 & 28.80
\end{pmatrix}.
$$

Compare this matrix with $N = (O_{ij})$ above. The matrix of values of $(O_{ij} - E_{ij})^2/E_{ij}$ is given by:

$$
\begin{pmatrix}
89.95 & 0.00 & 6.74 & 30.66 & 10.30 \\
159.93 & 12.30 & 2.92 & 118.61 & 27.07 \\
38.69 & 1.10 & 59.87 & 4.63 & 4.26 \\
186.22 & 6.82 & 26.99 & 343.36 & 109.63
\end{pmatrix}.
$$

The sum of all these values is $X^2 = 1240.05$, which should be compared with 21.03, the tabulated 95th-percentile of the χ^2_{12} distribution. Clearly, independence of row and column variates fails for these data.

17.2.6 Total Inertia and Its Decomposition

We see that using dummy variables for representing a two-way contingency table enables us to view the problem as a special case of canonical variate analysis. The situation is, however, different in that instead of extracting the correlation structure between two sets of stochastic data vectors, we are dealing with the correlation structure of two sets of dummy variables.

Let $x = (x_{ij})$, where $x_{ij} = X_{ij} - \bar{X}_i$ is either $1 - (n_i + n_j)/n$ or $-n_i/n$. Similarly, let $y = (y_{ij})$, where $y_{ij} = Y_{ij} - \bar{Y}_j$ is either $1 - (n_i + n_j)/n$ or $-n_j/n$. Then, the covariance matrices are

$$
n^{-1}xx^\tau = n^{-1}A(I_n - n^{-1}J_n)A^\tau = D_r - rr^\tau, \quad (17.28)
$$

$$
n^{-1}yy^\tau = n^{-1}A(I_n - n^{-1}J_n)A^\tau = D_c - cc^\tau, \quad (17.29)
$$
where \(\mathbf{J}_a = \mathbf{1}_a \mathbf{1}_a^\tau \) is an \((a \times a)\)-matrix of 1s. The matrices \(\mathbf{x}\mathbf{x}^\tau \) (of rank \(r - 1 \)) and \(\mathbf{y}\mathbf{y}^\tau \) (of rank \(s - 1 \)) are both singular and, hence, their inverses do not exist. We could sidestep this problem by deleting one of the row dummy variables and one of the column dummy variables (see Exercise 17.2), but this would reduce the dimensionality and we would not be able to recover the points from the missing dimensions.

The standard assumption of contingency table analysis is that the row and column totals are considered fixed and the cell frequencies in \(\mathbf{N} \) are allowed to vary within those constraints. Accordingly, we center the elements of \(\mathbf{N} \) at the values we expect them to have under independence (instead of centering the data \(\mathbf{N} \) at the mean). Thus, (17.9) becomes the relative frequency matrix,

\[
\mathbf{N}^{-1}\mathbf{X}(\mathbf{I}_n - \mathbf{N}^{-1}\mathbf{J}_n)\mathbf{Y}^\tau = \mathbf{P} - \mathbf{r}\mathbf{c}^\tau = \tilde{\mathbf{P}}. \tag{17.30}
\]

For the hair-color/eye-color example,

\[
\tilde{\mathbf{P}} = \begin{pmatrix}
0.0245 & -0.0000 & -0.0081 & -0.0140 & -0.0024 \\
0.0485 & 0.0060 & -0.0079 & -0.0408 & -0.0057 \\
-0.0253 & -0.0019 & 0.0381 & -0.0086 & -0.0024 \\
-0.0477 & -0.0040 & -0.0220 & 0.0634 & 0.0104
\end{pmatrix}.
\]

The matrix \(\tilde{\mathbf{N}} = n\tilde{\mathbf{P}} \) is often called the matrix of residuals because its \(ij \)th entry, \(\tilde{n}_{ij} = O_{ij} - E_{ij} \), shows the difference between the observed cell frequency \((O_{ij}) \) and its expected cell frequency \((E_{ij}) \), assuming independence between row and column variates, \(i = 1, 2, \ldots, r, j = 1, 2, \ldots, s \) (see (17.23)). Note that because \(\tilde{\mathbf{N}}\mathbf{1}_s = (\mathbf{N} - n\mathbf{r}\mathbf{c}^\tau)\mathbf{1}_s = \mathbf{N}\mathbf{1}_s - n\mathbf{r}\mathbf{c}^\tau\mathbf{1}_s = nr - nr = \mathbf{0} \), the rank of \(\tilde{\mathbf{N}} \) (and, hence, of \(\tilde{\mathbf{P}} \)) is at most \(s - 1 \).

The \((s \times s)\)-matrix \(\mathbf{R} \) in (8.76) plays a central role in canonical variate analysis, and it has an obvious analogue in this development. The correspondences between (8.76) and (17.6) are given by

\[
\mathbf{\Sigma}_{XX} \leftrightarrow \mathbf{D}_r, \quad \mathbf{\Sigma}_{YY} \leftrightarrow \mathbf{D}_c, \quad \mathbf{\Sigma}_{XY} \leftrightarrow \tilde{\mathbf{P}}. \tag{17.31}
\]

Accordingly, we use (17.7), (17.8), and (17.30) to compute the \((s \times s)\)-matrix,

\[
\mathbf{R}_0 = \mathbf{D}_c^{-1/2}\tilde{\mathbf{P}}\mathbf{D}_r^{-1}\tilde{\mathbf{P}}\mathbf{D}_c^{-1/2}, \tag{17.32}
\]

where \(\mathbf{D}_r^{-1} = \text{diag}\{r^{-1}\} \) and \(\mathbf{D}_c^{-1/2} = \text{diag}\{c^{-1/2}\} \). The entry in the \(j \)th row and \(j' \)th column of \(\mathbf{R}_0 \) is given by

\[
(n_{++}n_{++})^{-1/2} \sum_{i=1}^{r} \frac{1}{n_{i+}} \left(n_{ij} - \frac{n_{i+n_j}}{n} \right) \left(n_{ij'} - \frac{n_{i+n_{j'}}}{n} \right) \tag{17.33}
\]

and the \(j \)th diagonal entry of \(\mathbf{R}_0 \) is obtained by setting \(j = j' \),

\[
\frac{1}{n_{++}} \sum_{i=1}^{r} \frac{1}{n_{i+}} \left(n_{ij} - \frac{n_{i+n_j}}{n} \right)^2. \tag{17.34}
\]
For the hair-color/eye-color example,

\[
R_0 = \begin{pmatrix}
0.0881 & 0.0160 & -0.0044 & -0.0798 & -0.0420 \\
0.0160 & 0.0038 & -0.0001 & -0.0156 & -0.0080 \\
-0.0044 & -0.0001 & 0.0179 & -0.0148 & -0.0099 \\
-0.0798 & -0.0156 & -0.0148 & 0.0923 & 0.0507 \\
-0.0420 & -0.0080 & -0.0099 & 0.0507 & 0.0281
\end{pmatrix}.
\]

The trace of \(R_0 \), which is also the sum of the eigenvalues of \(R_0 \), is

\[
\sum_{j=1}^{s} \lambda_j^2 = \text{tr}\{R_0\} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{1}{n_{i+n+j}} \left(n_{ij} - \frac{n_{i+n+j}}{n} \right)^2 = \frac{X^2}{n}, \quad (17.35)
\]

where \(X^2 \) is given by (17.22).

If the value of \(X^2 \) is very large, as it is in the shoplifting example where \(X^2 = 19,949.97 \) on \(17 \times 12 = 204 \) degrees of freedom, the hypothesis of independence of the row and column variates in the contingency table has to be rejected. It then becomes of interest to determine where the deviations from independence occur. Understanding which characteristics of the data may be important may be useful for further study.

The quantity \(X^2/n \) is referred to as the amount of total inertia in the contingency table. The eigenvalues (or principal inertias) of \(R_0 \) form a decomposition of the total inertia. The accumulated contribution of the first \(t \) principal inertias is given by

\[
\frac{\lambda_1^2 + \cdots + \lambda_t^2}{\sum_{j=1}^{s} \lambda_j^2}, \quad (17.36)
\]

which is an analogue of the percentage of total variance explained by the first \(t \) principal components, where we usually take \(t \) to be 2 or 3.

For the hair-color/eye-color example, the eigenvalues of \(R_0 \) (and their individual percentages of the total, \(\text{tr}(R_0) = 0.2302 \)) are 0.1992 (86.6%), 0.0301 (13.1%), 0.0009 (0.4%), 0, and 0. Clearly, the first two eigenvalues account for almost all of the total inertia.

Table 17.5 lists the 12 principal inertias (eigenvalues of \(R_0 \)) for the shoplifting example. The total inertia is \(X^2/n = 19,949.97/33,101 = 0.6027 \). We see that the first three eigenvalues account for about 90% of the total inertia, which suggests that almost all of the deviations from independence can be attributed to the first three dimensions. The two-dimensional plot (see Figure 17.1) accounts for about 78% of the total inertia.

17.2.7 Principal Coordinates for Row and Column Profiles

The matrix \(R_0 \) in (17.32) can be expressed as

\[
R_0 = M^T M, \quad (17.37)
\]
TABLE 17.5. Shoplifting example: Principal inertias (eigenvalues λ^2_j), total inertia, the proportions of total inertia explained by each eigenvalue, and the cumulative proportions.

<table>
<thead>
<tr>
<th>Axis</th>
<th>Inertia</th>
<th>Percentage</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3504</td>
<td>58.13</td>
<td>58.13</td>
</tr>
<tr>
<td>2</td>
<td>0.1192</td>
<td>19.78</td>
<td>77.91</td>
</tr>
<tr>
<td>3</td>
<td>0.0700</td>
<td>11.61</td>
<td>89.52</td>
</tr>
<tr>
<td>4</td>
<td>0.0382</td>
<td>6.35</td>
<td>95.86</td>
</tr>
<tr>
<td>5</td>
<td>0.0112</td>
<td>1.86</td>
<td>97.72</td>
</tr>
<tr>
<td>6</td>
<td>0.0086</td>
<td>1.43</td>
<td>99.14</td>
</tr>
<tr>
<td>7</td>
<td>0.0031</td>
<td>0.51</td>
<td>99.81</td>
</tr>
<tr>
<td>8</td>
<td>0.0009</td>
<td>0.15</td>
<td>99.91</td>
</tr>
<tr>
<td>9</td>
<td>0.0006</td>
<td>0.10</td>
<td>99.99</td>
</tr>
<tr>
<td>10</td>
<td>0.0003</td>
<td>0.06</td>
<td>99.97</td>
</tr>
<tr>
<td>11</td>
<td>0.0001</td>
<td>0.02</td>
<td>99.99</td>
</tr>
<tr>
<td>12</td>
<td>0.0001</td>
<td>0.01</td>
<td>100.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.6027</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where the $(r \times s)$-matrix

$$M = D_r^{-1/2} \tilde{P} D_c^{-1/2}$$ \hspace{1cm} (17.38)

has ijth entry given by the Pearson residual,

$$m_{ij} = (n_i + n_j)^{-1/2} \left(n_{ij} - \frac{n_i + n_j}{n} \right),$$ \hspace{1cm} (17.39)

$i = 1, 2, \ldots, r$, $j = 1, 2, \ldots, s$. For the hair-color/eye-color example,

$$M = \begin{pmatrix}
0.1292 & -0.0003 & -0.0354 & -0.0754 & -0.0437 \\
0.1723 & 0.0478 & -0.0233 & -0.1484 & -0.0709 \\
-0.0847 & -0.0143 & 0.1054 & -0.0293 & -0.02811 \\
-0.1859 & -0.0356 & -0.0708 & 0.2525 & 0.1427
\end{pmatrix}.$$

Thus, from (17.35), the sum of squares of all rs Pearson residuals in the contingency table is the total inertia. Note that because rank(\tilde{P}) $\leq s - 1$, it follows that M in (17.38) also has rank at most $s - 1$. The singular value decomposition of M is, therefore, given by

$$M = UD_\lambda V^\tau,$$ \hspace{1cm} (17.40)

where U is an $(r \times s)$-matrix, $U^\tau U = I_s$, whose columns are the eigenvectors, $\{u_j\}$, corresponding to the $s - 1$ nonzero eigenvalues of the $(r \times r)$-matrix

$$MM^\tau = D_r^{-1/2} \tilde{P} D_c^{-1/2} \tilde{P}^\tau D_r^{-1/2} = R_1,$$ \hspace{1cm} (17.41)
\(\mathbf{V} \) is an \((s \times s)\)-matrix, \(\mathbf{V}^\tau \mathbf{V} = \mathbf{I}_s \), whose columns are the eigenvectors, \(\{ \mathbf{v}_j \} \), corresponding to the eigenvalues of the \((s \times s)\)-matrix \(\mathbf{M}^\tau \mathbf{M} = \mathbf{R}_0 \), and \(\mathbf{D}_\lambda = \text{diag}\{ \lambda_1, \ldots, \lambda_s \} \) is an \((s \times s)\) diagonal matrix with its principal diagonal having entries the singular values (the positive square-roots of the nonzero eigenvalues of either \(\mathbf{R}_0 \) or \(\mathbf{R}_1 \)).

Combining (17.38) and (17.40), we can write

\[\bar{\mathbf{P}} = (\mathbf{D}_r^{1/2} \mathbf{U}) \mathbf{D}_\lambda (\mathbf{V}^\tau \mathbf{D}_c^{1/2}) = \mathbf{A} \mathbf{D}_\lambda \mathbf{B}^\tau, \tag{17.42} \]

where

\[\mathbf{A} = \mathbf{D}_r^{1/2} \mathbf{U}, \quad \mathbf{B} = \mathbf{D}_c^{1/2} \mathbf{V}. \tag{17.43} \]

For the hair-color/eye-color example,

\[
\mathbf{A} = \begin{pmatrix}
-0.1195 & 0.1271 & -0.2917 & -0.1333 & 0 \\
-0.2896 & 0.1496 & 0.3179 & -0.2933 & 0 \\
0.0248 & -0.4651 & -0.0624 & -0.3293 & 0 \\
0.3843 & 0.1885 & 0.0362 & -0.2441 & 0
\end{pmatrix},
\]

\[
\mathbf{B} = \begin{pmatrix}
-0.3292 & 0.2707 & -0.1154 & 0.2741 & 0 \\
-0.0277 & 0.0148 & 0.2138 & 0.0421 & -0.0680 \\
-0.0373 & -0.4764 & -0.0438 & 0.4071 & 0.0259 \\
0.3406 & 0.1547 & -0.0891 & 0.2186 & -0.2501 \\
0.0537 & 0.0362 & 0.0345 & 0.0433 & 0.1210
\end{pmatrix}.
\]

Note that

\[\mathbf{A}^\tau \mathbf{D}_r^{-1} \mathbf{A} = \mathbf{I}_s, \quad \mathbf{B}^\tau \mathbf{D}_c^{-1} \mathbf{B} = \mathbf{I}_s. \tag{17.44} \]

The expression (17.42) (and (17.44)) is the generalized singular value decomposition of \(\bar{\mathbf{P}} \) in the metrics \(\mathbf{D}_r^{-1} \) and \(\mathbf{D}_c^{-1} \). The columns of \(\mathbf{A} \) and \(\mathbf{B} \) are called the principal axes of the row and column profiles.

The squared \(\chi^2 \)-distance (in the metric \(\mathbf{D}_c^{-1} \)) between the \((r \times s)\)-matrices of centered row profiles \(\mathbf{P}_r - \mathbf{1}_r c^\tau \) and \(\mathbf{B} \) is given by

\[
\mathbf{G}_P^r = (\mathbf{P}_r - \mathbf{1}_r c^\tau) \mathbf{D}_c^{-1} \mathbf{B} = (\mathbf{D}_r^{-1} \bar{\mathbf{P}} \mathbf{D}_c^{-1}) \mathbf{B} = \mathbf{D}_r^{-1} (\mathbf{A} \mathbf{D}_\lambda \mathbf{B}^\tau) \mathbf{D}_c^{-1} \mathbf{B} = \mathbf{D}_r^{-1} \mathbf{A} \mathbf{D}_\lambda, \tag{17.45}
\]

where we have used (17.10), \(\mathbf{1}_r = \mathbf{D}_r^{-1} \mathbf{r} \), (17.41), and (17.43). Similarly, we can show that the squared \(\chi^2 \)-distance (in the metric \(\mathbf{D}_r^{-1} \)) between the \((s \times r)\)-matrices of centered column profiles \(\mathbf{P}_c - \mathbf{1}_c r^\tau \) and \(\mathbf{A} \) is given by

\[
\mathbf{H}_P^r = (\mathbf{P}_c - \mathbf{1}_c r^\tau) \mathbf{D}_r^{-1} \mathbf{B} = \mathbf{D}_c^{-1} \mathbf{B} \mathbf{D}_\lambda. \tag{17.46}
\]
Substituting (17.42) for the A and B in (17.44) and (17.45), respectively, we have that
\[G_P^\tau = D_r^{-1/2}UD_\lambda, \quad H_P^\tau = D_c^{-1/2}VD_\lambda. \] (17.47)

For the hair-color/eye-color example,
\[
G_P^\tau = \begin{pmatrix}
-0.4003 & 0.1654 & -0.0642 & 0 \\
-0.4407 & 0.0885 & 0.0318 & 0 \\
0.0336 & -0.2450 & -0.0056 & 0 \\
0.7027 & 0.1339 & 0.0043 & 0
\end{pmatrix},
\]
\[
H_P^\tau = \begin{pmatrix}
-0.5440 & 0.1738 & -0.0125 & 0 \\
-0.0233 & 0.0483 & 0.1181 & 0 \\
-0.0420 & -0.2083 & -0.0032 & 0 \\
0.5887 & 0.1040 & -0.0101 & 0 \\
1.0944 & 0.2864 & 0.0461 & 0
\end{pmatrix}.
\]

The columns of G_P^τ and H_P^τ are called the *principal coordinates* of the row and column profiles, respectively (hence the subscript P). The matrices G_P^τ and H_P^τ are related to each other. It can be shown (see Exercise 17.5) that
\[G_P^\tau = D_r^{-1}PH_P^\tau D_\lambda^{-1}, \quad H_P^\tau = D_c^{-1}P^\tau G_P^\tau D_\lambda^{-1}. \] (17.48)

Similar results can also be obtained directly from the canonical variate analysis developed in Chapter 8 and the correspondences given in (17.31). From (8.46) and (8.47), we compute the $(s \times r)$-matrix G_S and the $(s \times s)$-matrix H_S, where
\[G_S = U^\tau D_r^{-1/2}, \quad H_S = V^\tau D_c^{-1/2}. \] (17.49)

Note that $G_SD_rG_S^\tau = I_r$ and $H_SD_cH_S^\tau = I_s$. The columns of G_S^τ and H_S^τ in (17.49) are known as the *standard coordinates* of the row and column profiles, respectively (hence the subscript S). Instead of defining the row and column coordinates as (17.49), however, they are generally scaled as in (17.47).

17.2.8 Graphical Displays

In correspondence analysis, one has the choice between analyzing only the row profiles, or analyzing only the column profiles, or analyzing both the row and column profiles together. The graphical displays formed from plotting the row and column coordinates in Table 17.6 are scatterplots that can be of two types:

Symmetric map: Both row and column coordinates are expressed as principal coordinates.
TABLE 17.6. The t-dimensional formulas for row and column coordinates are the columns of the first t rows of the following matrices, where t is two or three.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Row Coordinates</th>
<th>Column Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row Profiles</td>
<td>$G_P = D^\lambda U^\tau D_r^{-1/2}$</td>
<td>$H_S = V^\tau D_c^{-1/2}$</td>
</tr>
<tr>
<td>Column Profiles</td>
<td>$G_S = U^\tau D_r^{-1/2}$</td>
<td>$H_P = D^\lambda V^\tau D_c^{-1/2}$</td>
</tr>
<tr>
<td>Both Profiles</td>
<td>$G_P = D^\lambda U^\tau D_r^{-1/2}$</td>
<td>$H_P = D^\lambda V^\tau D_c^{-1/2}$</td>
</tr>
</tbody>
</table>

Asymmetric map: The row (or column) coordinates are expressed as principal coordinates while the other is expressed as standard coordinates.

Most users of correspondence analysis prefer to view a symmetric map of both the row and column principal coordinates (17.47) in a two- (or three-) dimensional scatterplot. First, we make a scatterplot of each of the r rows of the first two (or three) columns of G_P^τ. Then, on the same scatterplot, we overlay a plot of each of the s rows of the first two (or three) columns of H_P^τ. In Figure 17.2, we have drawn the symmetric correspondence map for the eye-color/hair-color example. If the three-dimensional points are plotted on a dynamic scatterplot, then the display can be rotated in all three dimensions for better viewing. These merged displays provide interpretable views of different features in the data.

There will be $r + s$ points in these scatterplots, which are called correspondence maps. For clearer interpretation, different symbols should be used for the row points and column points. It is also useful (unless the plot would look overly cluttered) to identify each point in the plot by a tag showing its corresponding category name. If the row (or column) categories are ordered in some way, such as time-order by year or successive age ranges (as in the shoplifting example), then it is visually helpful to connect those category points in the plot with each other to indicate such order-dependence.

In general, points in the scatterplot that appear “close” to each other tend to correspond to categories that are closely related. More specifically,

- if row points are close, then those rows have similar conditional distributions across columns;
- if column points are close, then those columns have similar conditional distributions across rows;
if a row point is close to a column point, then that configuration suggests a particular deviation from independence.

In general, we should not try to compare the positions of row points with the positions of column points and say, for example, that if a particular row point is very close to a particular column point then the corresponding row and column categories are related to each other. (A dissenting view that supports identifying row points with neighboring column points is given by van der Heijden et al, 1989.)

17.3 Square Asymmetric Contingency Tables

An important special case of two-way contingency tables consists of square tables, where \(r = s \) and the rows have the same categories as the columns. Examples of square tables include:

- Individuals who are naturally paired, such as husbands and wives or fathers and sons, are classified by occupational or social status.
Experiments conducted on naturally paired items, such as vision grades of left eye and right eye.

Two investigators or event judges independently rate each subject in a study using the same Likert-type scale.

Individuals in a sample are categorized by region of residence at two distinct points in time.

To study accuracy of a classification rule, the rows give the classes to which the data were assigned by the rule, the columns define the true classes (possibly determined from reference data), the cell entries show how much the classified data and the reference data agree, and the diagonal cells show the numbers of correct classifications.

If a square table \(N \) is symmetric with respect to the \(r^2 \) cell frequencies (i.e., \(N^\tau = N \)), then the correspondence map will display coincident pairs of row and column points. In each of the examples listed above, however, the square tables are asymmetric in the sense that \(N^\tau \neq N \). Unlike rectangular contingency tables, analyzing asymmetric square tables using correspondence analysis has not been very successful. The reason is similar to that for models that try to analyze square tables for symmetry: the data along the principal diagonal tend to have too great an influence on the results.

An innovative way of analyzing square asymmetric tables was proposed by Gower (1977) and Constantine and Gower (1978). Consider a square asymmetric contingency table \(N \) that yields the correspondence table \(P \), also square and asymmetric. Gower showed that \(P \) can be decomposed, prior to analysis, into two orthogonal component tables,

\[
P = M + Q,
\]

where

\[
M = \frac{1}{2} (P + P^\tau), \quad Q = \frac{1}{2} (P - P^\tau).
\]

In (17.51), \(M \) is a symmetric table (\(M^\tau = M \)) and \(Q \) is a skew-symmetric table (\(Q^\tau = -Q \)). Because of the orthogonality of the decomposition (see Exercise 17.4), separate analyses of \(M \) and \(Q \) can be carried out. See van der Heijden et al. (1989). If \(r \) is even, the singular vectors of \(Q \) occur in pairs corresponding to pairs of equal singular values (principal inertias). If \(r \) is odd, the last singular value of \(Q \) equals zero.

Greenacre (2000) used the decomposition (17.50) to obtain separate correspondence maps of \(M \) and \(Q \). Greenacre showed that these maps could be obtained from a single application of simple correspondence analysis to the \((2r \times 2r)\) block matrix,

\[
N^* = \begin{pmatrix} N & N^\tau \\ N^\tau & N \end{pmatrix},
\]
with correspondence matrix,

\[P^* = \frac{1}{4} \begin{pmatrix} P & P^\tau \\ P^\tau & P \end{pmatrix}, \]

(17.53)

and row and column totals,

\[w^* = \frac{1}{2} \begin{pmatrix} w \\ w \end{pmatrix}, \]

(17.54)

where \(w = (r + c)/2 \). Whereas the usual correspondence analysis is to analyze \(\tilde{P} = P - rc^\tau \) in the metrics \(D_r^{-1} \) and \(D_c^{-1} \), in this case, we analyze \(P - ww^\tau \) in the metrics \(D_w^{-1} \) and \(D_w^{-1} \). Thus, (17.50) becomes \(P - ww^\tau = M - ww^\tau + Q \). We should expect the total inertia attributed to \(P - ww^\tau \) to be larger than the usual total inertia (e.g., (17.35)) because \(ww^\tau \) is not the rank-1 matrix closest to \(P \). The extent of the difference will depend upon how different are \(r \) and \(c \) from each other.

The dimensionality of \(N^* \) is \(2r - 1 \), of which \(r - 1 \) dimensions belong to \(M \) and the remaining \(r \) dimensions to \(Q \). The correspondence map of \(M \) displays pairs of coincident row and column points (so that it suffices to plot only one set of points). We can, therefore, detect deviations of \(N \) from symmetry by concentrating on the correspondence map of \(Q \).

Thus, there will be two separate correspondence maps for \(N \), one map for the symmetric component \(M \) and the other map for the skew-symmetric component \(Q \). Each map consists of a single set of points. Greenacre recommends that both correspondence maps be scaled equally for comparing the relative sizes of the principal inertias.

17.3.1 Example: Occupational Mobility in England

This 14 × 14 contingency table (see Table 17.7) of the occupations of a sample of 775 males and their fathers in England was originally studied by Pearson (1904). Figure 17.3 shows the two-dimensional correspondence map of Table 17.7. The total inertia of the contingency table is 1.2974, of which 50.97% is accounted for by the map.

The above decomposition of \(P \) into a symmetric component \(M \) and a skew-symmetric component \(Q \) is accomplished by using (17.52). The resulting total inertia increases by 0.3016 to 1.5990 due to the different type of centering involved. The total symmetric inertia is 1.1484, and the total skew-symmetric inertia is 0.4506. In Table 17.8, we list the 27 principal inertias, of which 13 correspond to the symmetric correspondence analysis and 14 (= 7 pairs) to the skew-symmetric correspondence analysis. Also listed in Table 17.8 are the percentages of the two sets of principal inertias relative to the total symmetric and skew-symmetric inertias. The first pair
TABLE 17.7. Occupations of fathers and their sons in England (Pearson, 1904). The occupational categories are A army; B art; C teaching, clerical work, civil service; D crafts; E divinity; F agriculture; G landownership; H law; I literature; J commerce; K medicine; L navy; M politics and court; N scholarship and science. Uppercase letters represent occupations of the father and lowercase letters represent occupations of the son. The Pearson chi-squared test for independence gives $X^2 = 874.9$ on 169 degrees of freedom, so that an hypothesis of independence is rejected.

<table>
<thead>
<tr>
<th>Fathers</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
<th>m</th>
<th>n</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>62</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>54</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>13</td>
<td>115</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>G</td>
<td>17</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>17</td>
<td>7</td>
<td>88</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>18</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>J</td>
<td>12</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>13</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>15</td>
<td>106</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>M</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>23</td>
<td>1</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>84</td>
<td>108</td>
<td>37</td>
<td>11</td>
<td>122</td>
<td>1</td>
<td>15</td>
<td>64</td>
<td>69</td>
<td>24</td>
<td>57</td>
<td>23</td>
<td>74</td>
<td>86</td>
<td>775</td>
</tr>
</tbody>
</table>

of symmetric principal inertias (1 and 2) accounts for $33.85\% + 20.20\% = 54.05\%$ of the total symmetric inertia, suggesting that higher dimensions contain additional significant information. The first pair of skew-symmetric principal inertias (3 and 4) accounts for $35.15\% + 35.15\% = 70.30\%$ of the total skew-symmetric inertia (compared with only $9.90\% + 9.90\% = 19.80\%$ of the total inertia). The symmetric dimensions are, therefore, 1, 2, 5–9, 12, 13, 16, 21, 24, and 27, and the remainder, which occur in pairs, are the skew-symmetric dimensions.

Figure 17.4 shows the correspondence maps of dimensions 1 and 2, and 3 and 4, respectively. The top panel of Figure 17.4 shows the symmetric portion of the table. The points representing the arts (B) and crafts (D) occupations are clearly separated from the other points, but these two points are also not close to each other. One can also argue that these two points account for much of the difference in inertias between the symmetric and skew-symmetric analyses because the variation in points is not that different without points B and D. Points that are close together in this map reflect the fact that there is a lot of movement from father to son
between those occupations, whereas points that are far apart from each other indicate relatively little movement. If we ignore points B and D, there appears to be a progression in the occupations, from the topmost points down through several clusters of points, such as

- army (A), and politics and court (M)
- teaching, clerical work, civil service (C), landownership (G), law (H), and navy (L)
- agriculture (F), literature (I), commerce (J), and scholarship and science (N)
- divinity (E) and medicine (K)

These clusters suggest that occupational mobility from father to son is typically confined to movements within the various clusters only and not between clusters.
TABLE 17.8. Occupational mobility example: Principal inertias (eigenvalues λ_j^2), total inertia, the percentages and cumulative percentages of total inertia explained by each eigenvalue, and the percentages corresponding to the symmetric (S) and skew-symmetric (SS) correspondence analyses. The total symmetric inertia is 1.1484, and the total skew-symmetric inertia is 0.4506.

<table>
<thead>
<tr>
<th>Principal Axis</th>
<th>Principal Inertia</th>
<th>Principal Inertia %</th>
<th>Cumulative %</th>
<th>%-S</th>
<th>%-SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3887</td>
<td>24.31</td>
<td>24.31</td>
<td>33.85</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.2320</td>
<td>14.51</td>
<td>38.82</td>
<td>20.20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1584</td>
<td>9.90</td>
<td>48.72</td>
<td>35.15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1584</td>
<td>9.90</td>
<td>58.62</td>
<td>35.15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.1439</td>
<td>9.00</td>
<td>67.62</td>
<td>12.53</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.1238</td>
<td>7.74</td>
<td>75.36</td>
<td>10.78</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0818</td>
<td>5.12</td>
<td>80.48</td>
<td>7.12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0707</td>
<td>4.42</td>
<td>84.91</td>
<td>6.16</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.0498</td>
<td>3.12</td>
<td>88.02</td>
<td>4.34</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0418</td>
<td>2.62</td>
<td>90.64</td>
<td>9.28</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.0418</td>
<td>2.62</td>
<td>93.25</td>
<td>9.28</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.0229</td>
<td>1.43</td>
<td>94.68</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.0220</td>
<td>1.38</td>
<td>96.06</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.0129</td>
<td>0.81</td>
<td>96.87</td>
<td>2.86</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.0129</td>
<td>0.81</td>
<td>97.67</td>
<td>2.86</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.0104</td>
<td>0.65</td>
<td>98.32</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.0076</td>
<td>0.47</td>
<td>98.80</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.0076</td>
<td>0.47</td>
<td>99.27</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.0031</td>
<td>0.19</td>
<td>99.46</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.0031</td>
<td>0.19</td>
<td>99.66</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.0017</td>
<td>0.10</td>
<td>99.76</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.0011</td>
<td>0.07</td>
<td>99.83</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.0011</td>
<td>0.07</td>
<td>99.90</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.0006</td>
<td>0.04</td>
<td>99.94</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.0004</td>
<td>0.02</td>
<td>99.97</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.0004</td>
<td>0.02</td>
<td>99.99</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.0001</td>
<td>0.01</td>
<td>100.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.5990</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 17.4. Correspondence analysis of the symmetric component (top panel) and skew-symmetric component (bottom panel) for the occupational mobility example.
The bottom panel of Figure 17.4 shows the deviations from symmetry. Asymmetry between any two points can be envisioned by a triangle constructed with vertices at those two points and the origin; the greater the area of that triangle, the greater the degree of asymmetry between the points. Points that yield triangles with no area (i.e., points on a line through the origin) have no asymmetric relationship. Points that are close to the origin indicate small asymmetries. In this map, there are no points clustered around the origin, suggesting some asymmetry between all occupations. Indeed, all the points in this map lie on one side of a line drawn through the origin, indicating that circular triads are absent in the data. The more drastic asymmetries are those points furthest from the origin, literature (I) and scholarship and science (N) at one extreme and agriculture (F) at the other. The greatest deviation from symmetry is from a father’s occupation of literature (I) to a son’s occupation in agriculture (F).

17.4 Multiple Correspondence Analysis

Multiple correspondence analysis is intended to be a generalization of simple correspondence analysis, in the sense that it is designed to deal with the graphical representation of contingency tables that have more than two categorical variables. The fact that as currently conceived it is not a true generalization (in the sense that simple correspondence analysis is not a special case) has not, however, detracted from its usefulness. Accordingly, there is much research currently taking place on this topic.

17.4.1 The Multivariate Indicator Matrix

As we did in Section 17.2.2, we can define a dummy (or indicator) variable for each of the Q categorical variables that make up the table. Suppose that the qth variable has J_q categories and that $J = \sum_{q=1}^{Q} J_q$ is the total number of categories over all variables. Suppose further that there are n individuals in the study (who may be some part — a sample — or all of a population). Let $Z = (Z_{ij})$ be a $(J \times n)$-matrix, where

$$Z_{ij} = \begin{cases} 1, & \text{if the } j\text{th individual belongs to the } i\text{th category} \\ 0, & \text{otherwise,} \end{cases} \quad (17.55)$$

$i = 1, 2, \ldots, J, j = 1, 2, \ldots, n$. We assume that there is no row of Z that contains all 0s. Each column of Z sums to Q and all Jn entries sum to nQ. The matrix Z is often called a multivariate indicator matrix. One interpretation of the concept of multiple correspondence analysis is that of
carrying out a simple correspondence analysis of the multivariate indicator matrix Z.

We can partition the J rows of Z into blocks by variable so that

$$Z = \begin{pmatrix} \mathbf{Z}_1 \\ \vdots \\ \mathbf{Z}_Q \end{pmatrix}, \quad (17.56)$$

where \mathbf{Z}_q is a $(J_q \times n)$-matrix corresponding to the qth categorical variable having J_q categories, $q = 1, 2, \ldots, Q$. The following properties of Z are given in Greenacre (1984). In \mathbf{Z}_q, there are $\mathbf{1}_J^\top \mathbf{Z}_q \mathbf{1}_n = n$ 1s, $q = 1, 2, \ldots, Q$. Following (17.15), the row masses of \mathbf{Z}_q are defined by the J_q-vector,

$$c^Z_q \equiv \left(\frac{nQ}{nQ - 1}\right)^{-1} \mathbf{Z}_q \mathbf{1}_n. \quad (17.57)$$

Because the row masses of \mathbf{Z}_q sum to 1, each of the Q categorical variables has the same total mass. As a result, the row masses over all Q variables sum to 1. The row centroid is a weighted average of the J_q rows of \mathbf{Z}_q, where the weights are the row masses,

$$\frac{(c^Z_q)^\top \mathbf{Z}_q}{(c^Z_q)^\top \mathbf{1}_{J_q}} = \frac{(nQ)^{-1} \mathbf{1}_n^\top \mathbf{Z}_q \mathbf{1}_n}{Q^{-1}} = n^{-1} \mathbf{1}_n^\top, \quad (17.58)$$

because $\mathbf{Z}_q^\top \mathbf{Z}_q = \mathbf{I}_n$. Thus, the qth block of J_q row profiles has a row centroid (17.58) that does not depend upon q. Those J_q row profiles are dispersed within a subspace having at most $J_q - 1$ dimensions. All J row profiles are, therefore, dispersed within a subspace having at most $\sum_q (J_q - 1) = J - Q$ dimensions.

17.4.2 The Burt Matrix

A second interpretation of the idea of multiple correspondence analysis is based upon analyzing the $(J \times J)$-matrix

$$\mathbf{B} = \mathbf{Z} \mathbf{Z}^\top = \begin{pmatrix} \mathbf{Z}_1 \mathbf{Z}_1^\top & \mathbf{Z}_1 \mathbf{Z}_2^\top & \cdots & \mathbf{Z}_1 \mathbf{Z}_Q^\top \\ \mathbf{Z}_2 \mathbf{Z}_1^\top & \mathbf{Z}_2 \mathbf{Z}_2^\top & \cdots & \mathbf{Z}_2 \mathbf{Z}_Q^\top \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Z}_Q \mathbf{Z}_1^\top & \mathbf{Z}_Q \mathbf{Z}_2^\top & \cdots & \mathbf{Z}_Q \mathbf{Z}_Q^\top \end{pmatrix}, \quad (17.59)$$

which is called a Burt matrix. See (17.6) for a Burt matrix with $Q = 2$. \mathbf{B} is a symmetric matrix with block structure. The qth diagonal block submatrix, $\mathbf{Z}_q \mathbf{Z}_q^\top = n \mathbf{D}_q$, say, is a diagonal matrix of the row totals of \mathbf{Z}_q ($q = 1, 2, \ldots, Q$), where \mathbf{D}_q is the diagonal matrix of row or column masses for the qth variable. The off-diagonal (u, v)-block submatrix, $\mathbf{Z}_u \mathbf{Z}_v^\top = \mathbf{N}_{uv}$, say, $(u \neq v)$, is a two-way contingency table between the uth variable and
the vth variable ($u, v = 1, 2, \ldots, Q$). Because the total of all entries in each submatrix $Z_iZ_i^T$ in B is n, the total of all entries of B is $b = nQ^2$. The Burt matrix (17.59) is the analogue in the discrete case of the covariance matrix of Q continuous variables.

17.4.3 Equivalence and an Implication

The two primary approaches to multiple correspondence analysis turn out to be equivalent to one another (Greenacre, 1984). From the symmetry of B, a simple correspondence analysis of B produces the same sets of row and column coordinates, so that one of the two sets can be ignored. Furthermore, the standard coordinates of the rows of B are identical to the standard coordinates of the rows of Z, and the principal coordinates obtained by analyzing B are directly related to those obtained by analyzing Z because the principal inertias of B are the squares of those of Z.

This equivalence between the two approaches has the following implication. Although the multivariate indicator matrix Z incorporates information from all Q categorical variables, its multiple correspondence analysis provides no more information than an analysis of all pairs of categorical variables. In other words, multiple correspondence analysis of either Z or B offers no insight into three- or higher-way interactions that may be present in the contingency table.

17.4.4 Example: Satisfaction with Housing Conditions

This data set was studied by Madsen (1976) in a study of housing conditions in selected areas of Copenhagen, Denmark. A total of $n = 1,681$ residents living in rented homes built during 1960–1968 were surveyed about their satisfaction (categorized as low (ls), medium (ms), high (hs)), the amount of contact with other residents (low (lc), high (hc)), and their feeling of influence on apartment management (low (li), medium (mi), high (hi)). The rental units were categorized as tower blocks (tb), apartments (ap), atrium houses (ah), and terraced houses (th). The purpose of the study was to assess whether there was any association between degrees of contact, influence, and satisfaction and the type of housing.

The Burt table is given in Table 17.9. The χ^2-statistics for the off-diagonal two-way contingency tables are $X_{12}^2 = 16.660$, $X_{13}^2 = 39.121$, $X_{14}^2 = 60.286$, $X_{23}^2 = 17.586$, $X_{24}^2 = 106.175$, and $X_{34}^2 = 5.140$, where “1” = Housing, “2” = Influence, “3” = Contact, and “4” = Satisfaction. Assuming these two-way tables are independent of each other, we conclude that both housing and influence appear not to be related to either contact or satisfaction. The sum of these χ^2-values is $X^2 = 244.968$.
TABLE 17.9. Burt table of data on satisfaction with housing conditions in Copenhagen, Denmark (Madsen, 1976). The variables are type of housing (tower blocks: tb; apartments: ap; atrium houses: ah; terraced houses: th), influence on apartment management (low: li; medium: mi; high: hi), contact with other residents (low: lc; high: hc), and satisfaction (low: ls; medium: ms; high: hs). For this table, Q=4, J_1 = 4, J_2 = 3, J_3 = 2, J_4 = 3, J = 12, and n = 1681.

<table>
<thead>
<tr>
<th>Housing</th>
<th>Influence</th>
<th>Contact</th>
<th>Satisfaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>tb</td>
<td>ap</td>
<td>ah</td>
<td>th</td>
</tr>
<tr>
<td>tb</td>
<td>400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ap</td>
<td>0</td>
<td>765</td>
<td>0</td>
</tr>
<tr>
<td>ah</td>
<td>0</td>
<td>239</td>
<td>0</td>
</tr>
<tr>
<td>th</td>
<td>0</td>
<td>0</td>
<td>227</td>
</tr>
<tr>
<td>li</td>
<td>140</td>
<td>268</td>
<td>95</td>
</tr>
<tr>
<td>mi</td>
<td>172</td>
<td>297</td>
<td>84</td>
</tr>
<tr>
<td>hi</td>
<td>88</td>
<td>200</td>
<td>60</td>
</tr>
<tr>
<td>lc</td>
<td>219</td>
<td>317</td>
<td>82</td>
</tr>
<tr>
<td>hc</td>
<td>181</td>
<td>457</td>
<td>157</td>
</tr>
<tr>
<td>ls</td>
<td>99</td>
<td>271</td>
<td>64</td>
</tr>
<tr>
<td>ms</td>
<td>101</td>
<td>192</td>
<td>79</td>
</tr>
<tr>
<td>hs</td>
<td>200</td>
<td>302</td>
<td>96</td>
</tr>
</tbody>
</table>

The two-dimensional multiple correspondence map is given in Figure 17.5. The first axis orders from right to left the low, medium, and high categories of the influence and satisfaction variables, whereas the reverse ordering occurs for the contact variable. The second axis separates the high levels from the low levels of influence, contact, and satisfaction, and also separates th and tb from ah, and ap is positioned at the center of the map.

Certain points are close to each other and indicate associations. Thus, high influence on management is related to residents being highly satisfied, whereas high contact with other residents produces medium satisfaction. Residents of atrium houses tend to have high contact with other residents and enjoy medium satisfaction, apartment residents have medium influence on management, residents of tower blocks tend to have low contact with other residents, and residents of terraced housing appear to have both low influence and low satisfaction.

17.4.5 A Weighted Least-Squares Approach

There are Q(Q – 1)/2 distinct two-way contingency tables above the diagonal of B; the tables below the diagonal are transposes of those above. Although we could carry out a simple correspondence analysis for every one of those Q(Q – 1)/2 tables, such extensive and exhaustive analyses
FIGURE 17.5. Correspondence map for the housing conditions example. The factors in the study were: type of housing (tower blocks, tb; apartments, ap; atrium houses, ah; terraced houses, th), influence on apartment management (low, li; medium, mi; high, hi), contact with other residents (low, lc; high, hc), and satisfaction (low, ls; medium, ms; high, hs).

would violate the principles of parsimony, efficiency, and dimensionality reduction.

With this in mind, we mention an alternative approach by Greenacre (1988), who proposed a matrix approximation method that (a) simultaneously fits all the $Q(Q - 1)/2$ tables in the upper-triangle of B, and (b) reduces to simple correspondence analysis of $N = N_{12}$ when $Q = 2$. The idea is to approximate B by another matrix \hat{B}, say, having reduced rank that minimized the weighted least-squares criterion

$$n^{-1} \text{tr}\{D^{-1/2}(B - \hat{B})D^{-1}(B - \hat{B})^T D^{-1/2}\}, \quad (17.60)$$

where $D = QD_r$ is Q times the diagonal matrix, D_r, of row (or column) masses of B and is defined so that all its elements sum to 1 (cf. Exercise 17.3). Greenacre suggested the use of an alternating least-squares algorithm as a means of obtaining \hat{B} but could not guarantee that the minimum of (17.60) would be achieved by that procedure.
17.5 Software Packages

Many of the popular statistical software packages contain simple and multiple correspondence analysis routines. R has the ca package; see Charnomordic and Holmes (2001) and the details in Greenacre (2007, Appendix C). MINITAB has a correspondence analysis routine that appears to be matched to the output in Greenacre (1984). There is also a program CodonW, written by John Peden and available at codonw.sourceforge.net, which provides correspondence analysis of codon and amino acid usage.

Bibliographical Notes

Correspondence analysis was developed by many individuals. Initial work showing the correlation structure of a two-way contingency table appeared during the mid-1930s by H.O. Hirschfield (later Hartley), P. Horst, and others. At the start of the 1940s, R.A. Fisher and L. Guttman constructed scaling theories for contingency tables for biometric and psychometric contexts, respectively. The methodology found its champion, J.-P. Benzécri, in the early 1960s when Benzécri and a group of French statisticians constructed a theory of associations between rows and columns of a two-way contingency table. This was called analyse des correspondances in French, which was later loosely translated as “correspondence analysis.” Others who have had major impacts on the subject include M.O. Hill, M.J. Greenacre, and L.A. Goodman.

Exercises

17.1 The 4 × 4 contingency table in Table 17.10 was originally analyzed by Stuart (1953) and has since been studied by many statisticians. It contains frequency data on eye tests, specifically, the right-eye grade and the corresponding left-eye grade in unaided distance vision for 7,477 women,
TABLE 17.10. Right-eye grade and left-eye grade of 7,477 women with respect to unaided distance vision (Stuart, 1953). The Pearson chi-squared test for independence gives $X^2 = 8,096.877$ on 9 degrees of freedom, so that an hypothesis of independence is rejected.

<table>
<thead>
<tr>
<th>Right-Eye Grade</th>
<th>Left-Eye Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best</td>
</tr>
<tr>
<td>Best</td>
<td>1,520</td>
</tr>
<tr>
<td>Second</td>
<td>234</td>
</tr>
<tr>
<td>Third</td>
<td>117</td>
</tr>
<tr>
<td>Worst</td>
<td>36</td>
</tr>
<tr>
<td>Totals</td>
<td>1,907</td>
</tr>
</tbody>
</table>

aged 30–39, employed in Royal Ordinance factories in Britain, where each eye was graded in one of four categories from best to worst. Carry out a correspondence analysis for this square contingency table and interpret the results.

17.2 Suppose we omit the last row of X and last row of Y, so that X has $r - 1$ rows and n columns and Y has $s - 1$ rows and n columns. Suppose we center X and Y at their means.

(a) Show that

$$(X_c X_c^T)^{-1} = \text{diag} [n_{1+}^{-1}, n_{2+}^{-1}, \ldots, n_{r-1+}^{-1}] + n_{r+}^{-1}J_{r-1},$$

$$(Y_c Y_c^T)^{-1} = \text{diag} [n_{+1}^{-1}, n_{+2}^{-1}, \ldots, n_{+s-1}^{-1}] + n_{+s}^{-1}J_{s-1}.$$

(b) Show that the entry in the jth row and ith column of the full-rank regression coefficient matrix, $\hat{\Theta} = Y_c X_c^T (X_c X_c^T)^{-1}$, is

$$\hat{\theta}_{ji} = \frac{n_{ij}}{n_{i+}} - \frac{n_{rj}}{n_{r+}}, \quad i = 1, 2, \ldots, r - 1, \ j = 1, 2, \ldots, s - 1,$$

which is just the difference between the ith and rth row proportions for the jth column of the contingency table. Similarly, show that the entry in the ith row and jth column of $X_c Y_c^T (Y_c Y_c^T)^{-1}$ is

$$\frac{n_{ij}}{n_{i+j}} - \frac{n_{is}}{n_{i+s}}, \quad i = 1, 2, \ldots, r - 1, \ j = 1, 2, \ldots, s - 1.$$

(c) From these two matrices, show that the trace of \hat{R} is given by

$$\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{1}{n_{i+} n_{i+j}} \left(n_{ij} - \frac{n_{i+j} n_{r+}}{n_{r+}} \right) \left(n_{ij} - \frac{n_{is} n_{i+j}}{n_{i+s}} \right),$$

and, under independence of A and B, that $\text{tr}\{\hat{R}\}$ reduces to X^2 in (17.22).
TABLE 17.11. Number of children in a family versus yearly income (in units of 1,000 Kroner) for \(n = 25263 \) Swedish families (Cramér, 1946). The Pearson chi-squared test for independence gives \(X^2 = 568.57 \) on 12 degrees of freedom, so that an independence hypothesis is rejected.

<table>
<thead>
<tr>
<th>Number of Children</th>
<th>Yearly Income (1000s Kroner)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–1</td>
</tr>
<tr>
<td>0</td>
<td>2,161</td>
</tr>
<tr>
<td>1</td>
<td>2,755</td>
</tr>
<tr>
<td>2</td>
<td>936</td>
</tr>
<tr>
<td>3</td>
<td>225</td>
</tr>
<tr>
<td>(\geq 4)</td>
<td>39</td>
</tr>
<tr>
<td>Total</td>
<td>6,116</td>
</tr>
</tbody>
</table>

(d) Show that the \(s - 1 \) eigenvalues of \(\hat{R} \) are identical to the nonzero eigenvalues of \(R_0 \) (or \(R_1 \)).

17.3 (Greenacre, 2000). Another way of deriving the results of simple correspondence analysis is to find an \((r \times s)\)-matrix \(\hat{P} \) having reduced-rank \(t < \min(r, s) \) that approximates \(P \) by minimizing the weighted least-squares criterion,

\[
\text{tr}\{D_r^{-1/2}(P - \hat{P})D_c^{-1}(P - \hat{P})^\tau D_r^{-1/2}\}.
\]

Using the Eckart–Young Theorem, find the matrix \(\hat{P} \) that yields the best reduced-rank approximation of \(P \) in the above sense. Show that the best “rank-1” approximation to \(P \) is the trivial solution \(\hat{P} = rc^\tau \).

17.4 Let \(M = [m_{ij}] \) and \(Q = [q_{ij}] \) be defined as in (17.51) and let \(N = M + Q \). Consider \(\text{tr}\{(vec N)(vec N)^\tau\} \). Show that the cross-product term \(\text{tr}\{(vec M)(vec Q)^\tau\} = 0 \), whence, we have the identity,

\[
\sum_i \sum_j n_{ij}^2 = \sum_i \sum_j m_{ij}^2 + \sum_i \sum_j q_{ij}^2.
\]

17.5 Show that \(G_r^\tau P \) and \(H_r^\tau P \) are related to each other by proving that \(G_r^\tau P = D_r^{-1}PH_rD_\lambda^{-1} \) and \(H_r^\tau P = D_c^{-1}P^\tau G_r^\tau P D_\lambda^{-1} \).

17.6 The \(5 \times 4 \) contingency table in Table 17.11 is due to Cramér (1946, p. 444); see also Diaconis and Efron (1985). It contains a sample of frequency data from a Swedish census of March 1936 in which 25,263 married couples residing in country districts, who had been married for at most five years, each listed the number of children in their family and their yearly income (in units of 1,000 Kroner). Carry out a correspondence analysis for this table and interpret the results.
17.7 Construct four different contingency tables, each with five rows and three columns, with the restriction that each of the column totals in each table equals 50. Compute the weights in the chi-squared statistic for each table. Compute the inertia for each table and arrange the four tables by increasing inertia. Plot the row profiles for each table as points in a triangular scatterplot. What is the relationship between inertia and these plots?
References

References

References

References 695

References

Index of Examples

airline distances, 464–467, 481, 482, 484
aqueous solubility in drug discovery, 514, 515
bodyfat, 116, 125–128, 146, 148, 150, 151, 154
Boston housing, 158
British towns, 504
BUPA liver disorders, 258, 260, 348, 387, 508
chemical composition of tobacco, 183, 187
Cleveland heart-disease, 284, 286, 287, 289–291, 314, 368
colon cancer, 19, 20, 443, 444, 446
COMBO-17 galaxy photometric catalogue, 216–219, 235
confusion of Morse-code signals, 469, 470, 503, 504
coronary heart disease, 76, 77, 86
covertype, 279
cutaneous potential recordings of a pregnant woman, 554–556, 592
diabetes, 272, 278, 348, 391
e-coli, 273, 279, 348, 391
employee careers at Lloyds Bank, 477, 478, 489
face recognition, 22–24, 209
family size and income, 665
forensic glass, 273, 348, 391, 508, 550
four childhood tumors, 541–545, 550
gilgaied soil, 271, 278, 367
hair color and eye color, 638, 639, 644–649, 651
Hidalgo postage stamps, 93–96, 98
identifying artifacts in MEG recordings, 569
insurance company benchmark, 158, 278
ionosphere, 258, 260, 348, 387
iris, 235, 274, 278, 348, 391
Landsat satellite image, 428–431, 436–438, 461
laundry detergent, 156
letter recognition, 274, 348, 391
leukemia (ALL/AML), 451–453, 461
Major League Baseball salaries, 307
Major League baseball salaries, 308, 309, 368
mapping the protein universe, 484–486
mixtures of polyaromatic hydrocarbons, 19–22, 188
National Cancer Institute, 461
Norwegian paper quality, 166, 167, 190, 193, 194
nutritional value of food, 196–198, 206, 208, 462, 612, 613, 631
occupational mobility in England, 653–658
Old Faithful Geyser, 99, 100, 409, 410
pen-based handwritten digit recognition, 211, 234, 274, 348, 391, 631
perceptions of color, 468, 469, 503
PET yarns, 130, 133, 134, 136, 137, 142, 144, 156
Pima Indians diabetes, 292–294, 296, 298, 299, 301, 302, 314, 368, 549
primate scapulae, 274, 279, 280, 348, 391, 420, 421, 461
psychological tests, 587, 588, 595
right and left eye grades, 664
root-stocks of apple trees, 193
satisfaction with housing conditions, 660–662
shoplifting in The Netherlands, 646, 647
shoplifting in the Netherlands, 634, 635
shuttle, 274, 348, 391
sonar, 259, 260, 348, 387
spambase, 259, 260, 278, 348, 385, 387, 512, 549
spiral galaxy NGC7531, 81, 106
steganography, 344, 345
Swiss bank notes, 235
Swiss roll, 598, 617, 619, 620, 622, 623
turtle carapaces, 234
U.S. highways, 106
vehicle, 274, 302–304, 348, 391
wine, 275, 278, 348, 391
yeast, 275, 279, 348, 391, 508
Author Index

Abbott, A., 477, 667
Abrams, P., 460, 694
Aizerman, M., 404, 667
Akaike, H., 147, 667, 668
Alan, U., 667
Aldrin, M., 166, 667
Alimoglu, F., 211, 667
Alon, U., 19
Altschul, S.F., 473, 475, 667, 689
Alzadeh, A., 440, 443, 684
Amari, S., 594, 674
Amemiya, Y., 590, 706
Amit, Y., 549, 668
Anderson, J., 310, 675
Anderson, J.A., 245, 668
Anderson, R., 345, 696
Anderson, R.L., 183, 668
Anderson, T.W., 64, 72, 175, 183, 189, 205, 233, 249, 277, 668
Andrews, D.F., 193, 272, 668
Antonescu, C.R., 541, 689
Ashton, K.H., 420, 668
Asimov, D., 232, 668
Atkinson, E.J., 313, 702
Attias, H., 591, 592, 668
Börner, K., 28, 700
Bach, F.R., 575, 578–580, 668
Baker, H.V., 18, 668
Baker, S.G., 33, 669
Bancroft, T.A., 183, 668
Banfield, J.D., 605, 609, 669
Barber, D., 365, 669
Barkai, N., 19, 667
Barnett, V., 43, 669
Bartholomew, D.J., 594, 669
Bartlett, P., 518–520, 699
Basalaj, W., 502, 669
Basford, K.E., 460, 461, 694
Bearman, P., 477, 478, 702
Bedell, J., 503, 690
Begg, C.E., 42, 674
Behnken, D., 166, 670
Belkin, M., 625, 669
Bell, E.F., 706
Bellman, R., 669
Bellman, R.E., 41, 53, 669
Belsley, D.A., 154, 669
Berger, J.O., 72, 359, 669
Berger, M., 631, 669
Berger, R.L., 72, 357, 673
Bernardo, J.M., 365, 491, 669
Bernstein, M., 618, 670
Berthold, F., 541, 689
Besag, J., 362, 365, 670
Bibby, J., 72, 693
Bickel, P.J., 517, 670
Bishop, C., 670
Bishop, C.M., 16, 104, 277, 365, 669, 670
Blasius, J., 663, 670
Bloomfield, C.D., 451, 681
Bolton, R.J., 229, 670
Borch, A., 706
Borg, I., 502, 670
Boser, B.E., 369, 404, 670
Botstein, D., 440, 443, 684
Box, G.E.P., 166, 670
Boyd, S., 404, 670
Brand, M., 628, 670
Braverman, E., 404, 667
Breiman, L., 37, 119, 143, 147, 151, 152, 154, 168, 281, 292, 295, 296, 298, 300, 301, 312, 313, 506, 516, 517, 523, 536, 538, 546–549, 670, 671, 673
Brereton, R.G., 19
Brillinger, D.R., 177, 189, 671
Brin, S., 476, 671
Broom, B., 460, 677
Brown, L.D., 71, 671
Brown, P.J., 136, 152, 168, 672, 695
Brown, P.O., 440, 443, 684
Bruce, R.A., 76, 689
Bryan, J., 460, 672
Buckley, C., 28, 685
Buhlmann, P., 532, 672
Buja, A., 231, 232, 470, 527, 529, 631, 672, 674, 677, 694, 702
Buntine, W.L., 354, 356, 359, 672
Burges, C.J.C., 404, 672
Burt, C., 638, 672
Buta, R., 81, 672
Butler, N.A., 136, 672
Buydens, L.M.C., 129, 702
Cabrera, J., 231, 232, 674
Cacoullos, T., 92, 104, 672
Caligiuri, M.A., 451, 681
Calvin, W.H., 364, 673
Cardoso, J.-F., 552, 673
Carlin, B.P., 358, 365, 673, 675
Carlin, J.B., 681
Carroll, J.D., 233, 460, 691
Cartan, E., 615, 673
Casella, G., 72, 357, 361, 365, 673, 697
Cattell, R.B., 205, 673
Chan, W.C., 440, 443, 684
Chang, W.C., 459, 673
Charnomardic, B., 673
Chen, C., 547, 548, 673
Cheng, B., 365, 673
Cheng, Y., 447, 673
Chernick, M.R., 154, 673
Cheronenkov, A., 519
Cherry, E.C., 552, 673
Chervonenkis, A., 704
Chipman, H., 460, 674
Chipman, J.S., 155, 674
Christianini, N., 382, 404, 700
Christophersen, N., 136, 692
Church, G.M., 447, 673
Cichocki, A., 594, 674
Cimatti, A., 706
Clark, L.A., 312, 313
Cleveland, W.S., 3, 674
Codd, E.F., 42, 674
Coller, H., 451, 681
Connolly, T.M., 42, 674
Constantine, A.G., 227, 652, 674
Cook, D., 231, 232, 674, 702
Cortes, C., 379, 674
Cover, T., 674
Cover, T.M., 565
Cowles, M.K., 365, 675
Cox, M.A.A., 488, 500, 502, 675
Cox, T.F., 488, 500, 502, 675
Cramér, H., 665, 675
Craven, P., 312, 675
Crippen, G.M., 484, 502, 675, 684
Cristianini, N., 674, 675, 692
Crunk, S.M., 44, 678
Culp, M., 515, 675
Cutler, A., 546, 671
Cybenko, G., 365, 608, 675
Dale, N.B., 420, 692
Date, C.J., 42, 675
Daubechies, I., 520, 522, 523, 549, 698
Davis, J.B., 191, 675
Davis, R., 310, 675
de Duve, C., 477, 675
de Falguerolles, A., 634, 651, 652, 663, 704
de Hoog, F., 136, 696
de Jong, S., 134, 136, 675
de Lathauwer, L., 554, 676
de Leeuw, J., 498, 634, 651, 652, 663, 702, 704
de Montricher, G.M., 87, 88, 676
de Moor, B., 554, 676
de Silva, V., 616, 618, 620, 626, 670, 702
de Weijer, A.P., 129, 702
Dean, N., 672
DeCoste, D., 629, 675
Delicado, P., 676
Dempster, A.P., 40, 457, 461, 676 Denham, M.C., 136, 672
Deonier, R.C., 503, 676
Devroye, L., 79, 92, 676
Di Battista, G., 502, 676
Diaconis, P., 228, 349, 665, 676
Dietterich, T.G., 535, 536, 677
Digby, P.G.N., 663, 682
Dijkstra, E.W., 621, 677
Ding, A.A., 341, 686
Dmitrovsky, E., 439, 703
Do, K.-A., 460, 677
Donnell, D.J., 631, 677
Donoho, D., 559, 617, 626, 677
Downing, J.R., 451, 681
Draghici, S., 42, 677
Draper, N., 154, 677
Duane, S., 364, 677
Duchamp, T., 603, 677
Duda, R.O., 104, 364, 677
Dudoit, S., 442, 677
Durbin, R., 503, 677
Dwan, C., 43, 704
Dye, S., 706
Eades, P., 502, 676
Eckart, C., 52, 502, 677
Eddy, S., 503, 677
Efron, B., 11, 12, 71, 72, 122, 125, 126, 152, 154, 256, 665, 676, 678
Eilbeck, K., 502, 669
Eisen, M.B., 440, 443, 684
Ekman, G., 468, 678
Epanechnikov, V.K., 104, 678
Everitt, B.S., 461, 594, 678
Everson, R., 594, 698
Fairley, W.B., 44, 678
Farid, H., 346, 679
Fayyad, U.M., 8, 16, 679
Findley, D.F., 155, 679
Fine, T.L., 364, 365, 679
Firth, D., 168, 672
Fisher, R.A., 72, 242, 249, 277, 638, 679
Fisherkeller, M.A., 232, 234, 679
Floyd, R.W., 618, 679
Flury, B., 631, 702
Fraley, C., 459-461, 679
Frank, E., 364, 705
Frank, I.E., 134, 136, 149, 155, 679
Freedman, D., 676
Freedman, D.A., 127, 154, 228, 679
Freund, Y., 506, 511, 512, 518–520, 679, 699
Fridlyand, J., 442, 452, 677
Friedman, J., 684
Funahashi, K., 365, 680
Furnival, G., 146, 680
Gävert, H., 568, 686
Gaasenbeek, J.P., 451
Gaasenbeek, J.P., 681
Gale, W., 330, 696
Garrett, E.S., 42, 695
Gaskins, R.A., 87, 88, 103, 681
Geisser, S., 154, 681
Gelfand, A.E., 366, 681
Gelman, A., 365, 681
Geman, D., 362, 366, 549, 668, 681
Geman, S., 362, 366, 681
Gilks, W.R., 361, 365, 681
Girolami, M., 594, 681
Gish, K., 19, 667
Gish, W., 473, 667
Glunt, W., 502, 681
Gnanadesikan, R., 230, 233, 598, 600, 681
Goldstein, M., 155, 681
Golub, T.R., 439, 451, 681, 703
Good, I.J., 87, 88, 103, 681
Gordon, L., 310, 682
Goutis, C., 136, 682
Gower, J.C., 502, 652, 663, 674, 682
Graef, J., 501, 701
Gray, M., 706
Green, P., 362, 365, 670
Green, P.E., 233, 460, 691
Green, P.J., 564, 682, 705
Greenacre, M., 634, 652, 660, 662, 663, 665, 670
Greenacre, M.J., 682
Grimes, C., 617, 626, 677
Groenen, P., 502, 670
Gussoni, E., 42, 460, 700
Guyon, I.M., 369, 404, 670
Gyorfi, L., 79, 676
Hämäläinen, M., 569, 704
Hadi, A.S., 132, 683
Haitovsky, Y., 168, 683
Hall, P., 92, 97, 102, 154, 231, 683
Ham, J., 628, 683
Hampel, F., 38, 683
Hand, D.J., 16, 80, 277, 461, 678, 683
Hari, R., 569, 704
Harman, H.H., 587, 595, 683
Hart, P.E., 104, 364, 677
Hartigan, J.A., 103, 408, 444, 460, 683
Hartigan, P.M., 103, 683
Hasinger, G., 706
Hassibi, B., 343, 684
Hastie, T., 16, 142, 150, 152, 277, 313, 351, 364, 365, 404, 440, 442, 443, 461, 516, 523, 525, 527–529, 532, 548, 601, 606, 634, 663, 678, 680, 682, 684, 698, 703, 707
Hastie, T.J., 350, 460, 674
Havel, T.F., 502, 675, 684
Havel, T.M., 484
Hayden, T.L., 502, 681
Haykin, S., 364, 684
Heaton, C., 564, 693
Hebb, D.O., 320, 321, 364, 684
Heeringa, W., 476, 695
Helland, I.S., viii, 136, 685
Henikoff, J.G., 474, 685
Henikoff, S., 474, 685
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herault, J.</td>
<td>594, 685</td>
</tr>
<tr>
<td>Hersh, W.</td>
<td>28, 685</td>
</tr>
<tr>
<td>Herzberg, A.M.</td>
<td>193, 272, 668</td>
</tr>
<tr>
<td>Hickam, D.</td>
<td>28, 685</td>
</tr>
<tr>
<td>Hifmann, H.</td>
<td>672</td>
</tr>
<tr>
<td>Higdon, D.</td>
<td>362, 365, 670</td>
</tr>
<tr>
<td>Hinton, G.E.</td>
<td>316, 344, 365, 685</td>
</tr>
<tr>
<td>Ho, T.K.</td>
<td>536, 685</td>
</tr>
<tr>
<td>Hoe, J.</td>
<td>686</td>
</tr>
<tr>
<td>Hoerl, A.E.</td>
<td>136, 141, 154, 685</td>
</tr>
<tr>
<td>Hoeting, J.A.</td>
<td>14, 685</td>
</tr>
<tr>
<td>Hoffman, A.J.</td>
<td>53, 685</td>
</tr>
<tr>
<td>Hofmann, H.</td>
<td>470</td>
</tr>
<tr>
<td>Holm, L.</td>
<td>484, 686</td>
</tr>
<tr>
<td>Holmes, S.</td>
<td>673</td>
</tr>
<tr>
<td>Holzinger, K.</td>
<td>587, 686</td>
</tr>
<tr>
<td>Hornick, K.</td>
<td>365, 686</td>
</tr>
<tr>
<td>Horton, I.F.</td>
<td>271, 686</td>
</tr>
<tr>
<td>Hotelling, H.</td>
<td>195, 196, 202, 210, 215, 686</td>
</tr>
<tr>
<td>Hou, J.</td>
<td>484, 486, 502</td>
</tr>
<tr>
<td>Householder, A.S.</td>
<td>502, 706</td>
</tr>
<tr>
<td>Hrycak, A.</td>
<td>477, 667</td>
</tr>
<tr>
<td>Huang, X.</td>
<td>475, 686</td>
</tr>
<tr>
<td>Huard, M.</td>
<td>451, 681</td>
</tr>
<tr>
<td>Huber, P.J.</td>
<td>101, 229, 231, 365, 533, 560, 686</td>
</tr>
<tr>
<td>Huberman, B.A.</td>
<td>344, 705</td>
</tr>
<tr>
<td>Hurley, H.</td>
<td>231, 232, 674</td>
</tr>
<tr>
<td>Hurri, J.</td>
<td>568, 686</td>
</tr>
<tr>
<td>Hwang, J.-N.</td>
<td>350, 686</td>
</tr>
<tr>
<td>Hwang, J.T.G.</td>
<td>131, 341, 686</td>
</tr>
<tr>
<td>Hyvärinen, A.</td>
<td>568, 575, 594, 686, 687</td>
</tr>
<tr>
<td>Intrator, O.</td>
<td>310, 687</td>
</tr>
<tr>
<td>Irizarry, R.A.</td>
<td>42, 695</td>
</tr>
<tr>
<td>Jöreskog, K.G.</td>
<td>590, 688</td>
</tr>
<tr>
<td>Jackson, J.E.</td>
<td>233, 687</td>
</tr>
<tr>
<td>James, A.T.</td>
<td>205, 227, 687</td>
</tr>
<tr>
<td>James, W.</td>
<td>69, 687</td>
</tr>
<tr>
<td>Jee, J.R.</td>
<td>101, 687</td>
</tr>
<tr>
<td>Jiang, W.</td>
<td>517, 687</td>
</tr>
<tr>
<td>Joachims, T.</td>
<td>404, 688</td>
</tr>
<tr>
<td>Johnson, K.</td>
<td>515, 675</td>
</tr>
<tr>
<td>Johnson, R.A.</td>
<td>72, 277, 460, 688</td>
</tr>
<tr>
<td>Johnstone, I.</td>
<td>678</td>
</tr>
<tr>
<td>Johnstone, I.M.</td>
<td>76, 152, 205, 227, 688</td>
</tr>
<tr>
<td>Jolliffe, I.T.</td>
<td>132, 233, 663, 688, 695</td>
</tr>
<tr>
<td>Jones, M.C.</td>
<td>98, 101, 102, 104, 230, 232, 558, 688, 700</td>
</tr>
<tr>
<td>Jordan, M.I.</td>
<td>575, 578–580, 668</td>
</tr>
<tr>
<td>Jousmäki, V.</td>
<td>569, 704</td>
</tr>
<tr>
<td>Juszczyk, P.W.</td>
<td>364, 688</td>
</tr>
<tr>
<td>Jutten, C.</td>
<td>594, 685, 688</td>
</tr>
<tr>
<td>Kadane, J.B.</td>
<td>365, 689, 703</td>
</tr>
<tr>
<td>Kahn, D.</td>
<td>344, 689</td>
</tr>
<tr>
<td>Kaiser, H.F.</td>
<td>132, 208, 584, 689</td>
</tr>
<tr>
<td>Karhunen, J.</td>
<td>594, 687</td>
</tr>
<tr>
<td>Karlin, S.</td>
<td>475, 689</td>
</tr>
<tr>
<td>Kaski, S.</td>
<td>460, 695</td>
</tr>
<tr>
<td>Kass, G.V.</td>
<td>313, 689</td>
</tr>
<tr>
<td>Kass, R.E.</td>
<td>365, 459, 689</td>
</tr>
<tr>
<td>Kasser, I.S.</td>
<td>76, 689</td>
</tr>
<tr>
<td>Kaufman, L.</td>
<td>424, 425, 427, 460, 689</td>
</tr>
<tr>
<td>Kendall, M.G.</td>
<td>229, 689</td>
</tr>
<tr>
<td>Kennard, R.</td>
<td>136, 141, 154, 685</td>
</tr>
<tr>
<td>Kennedy, A.D.</td>
<td>364, 677</td>
</tr>
<tr>
<td>Kent, J.</td>
<td>72, 693</td>
</tr>
<tr>
<td>Kernighan, B.W.</td>
<td>476, 689</td>
</tr>
<tr>
<td>Kettenring, J.R.</td>
<td>230, 681</td>
</tr>
<tr>
<td>Khan, J.</td>
<td>541, 689</td>
</tr>
<tr>
<td>Khattree, R.</td>
<td>189, 689</td>
</tr>
<tr>
<td>Kim, S.-H.</td>
<td>484, 486, 502, 686</td>
</tr>
<tr>
<td>Kimeldorf, G.</td>
<td>389, 689</td>
</tr>
<tr>
<td>Kirkendall, N.</td>
<td>4, 690</td>
</tr>
<tr>
<td>Kitareewan, S.</td>
<td>439, 703</td>
</tr>
<tr>
<td>Klein, R.M.</td>
<td>364, 688</td>
</tr>
<tr>
<td>Kleinheinrich, M.</td>
<td>706</td>
</tr>
<tr>
<td>Kleiweg, P.</td>
<td>476, 695</td>
</tr>
<tr>
<td>Kohane, I.S.</td>
<td>42, 460, 700</td>
</tr>
<tr>
<td>Author</td>
<td>Pages</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Kohonen, T.</td>
<td>431, 434, 460, 690</td>
</tr>
<tr>
<td>Kolmogorov, A.N.</td>
<td>365, 690</td>
</tr>
<tr>
<td>Koltchinskii, V.</td>
<td>519</td>
</tr>
<tr>
<td>Kooperberg, C.</td>
<td>310, 687</td>
</tr>
<tr>
<td>Korf, I.</td>
<td>503, 690</td>
</tr>
<tr>
<td>Korn, E.L.</td>
<td>42, 442, 701</td>
</tr>
<tr>
<td>Kramer, M.A.</td>
<td>607, 690</td>
</tr>
<tr>
<td>Krieger, A.</td>
<td>535, 690</td>
</tr>
<tr>
<td>Krishnan, T.</td>
<td>43, 694</td>
</tr>
<tr>
<td>Krogh, A.</td>
<td>503, 677</td>
</tr>
<tr>
<td>Kruskal, J.B.</td>
<td>233, 493, 498–500, 502, 503, 690</td>
</tr>
<tr>
<td>Krzanowski, W.J.</td>
<td>229, 670</td>
</tr>
<tr>
<td>Kuh, E.</td>
<td>154, 669</td>
</tr>
<tr>
<td>Kuhn, M.G.</td>
<td>345, 696</td>
</tr>
<tr>
<td>Kuntz, I.D.</td>
<td>484, 684</td>
</tr>
<tr>
<td>Ladanyi, M.</td>
<td>541, 689</td>
</tr>
<tr>
<td>Laird, N.M.</td>
<td>40, 457, 461, 676</td>
</tr>
<tr>
<td>Lampinen, J.</td>
<td>365, 690</td>
</tr>
<tr>
<td>Lander, E.S.</td>
<td>42, 439, 451, 681, 691, 703</td>
</tr>
<tr>
<td>Langford, J.C.</td>
<td>616, 618, 626, 670, 702</td>
</tr>
<tr>
<td>Laplace, P.S.</td>
<td>355, 691</td>
</tr>
<tr>
<td>Lattin, D.N.</td>
<td>233, 460, 691</td>
</tr>
<tr>
<td>Lawley, D.N.</td>
<td>595, 691</td>
</tr>
<tr>
<td>Lazzeroni, L.</td>
<td>449, 451, 691</td>
</tr>
<tr>
<td>LeBlanc, M.</td>
<td>606, 607, 691</td>
</tr>
<tr>
<td>LeCun, Y.</td>
<td>365, 691</td>
</tr>
<tr>
<td>Lee, D.D.</td>
<td>628, 683</td>
</tr>
<tr>
<td>Lee, T.-W.</td>
<td>594, 691</td>
</tr>
<tr>
<td>Lee, W.S.</td>
<td>518–520, 699</td>
</tr>
<tr>
<td>Lee, Y.</td>
<td>392, 397, 691</td>
</tr>
<tr>
<td>Lehmann, E.L.</td>
<td>72, 691</td>
</tr>
<tr>
<td>Leone, T.J.</td>
<td>28, 685</td>
</tr>
<tr>
<td>Leroy, A.M.</td>
<td>43, 698</td>
</tr>
<tr>
<td>Lesteven, S.</td>
<td>437, 691</td>
</tr>
<tr>
<td>Leurgans, S.E.</td>
<td>578, 579, 691</td>
</tr>
<tr>
<td>Levine, A.</td>
<td>19, 667</td>
</tr>
<tr>
<td>Levy, R.</td>
<td>440, 443, 684</td>
</tr>
<tr>
<td>Lewis, D.D.</td>
<td>28, 260, 691</td>
</tr>
<tr>
<td>Lewis, T.</td>
<td>43, 669</td>
</tr>
<tr>
<td>Li, F.</td>
<td>28, 260, 691</td>
</tr>
<tr>
<td>Li, H.</td>
<td>350, 686</td>
</tr>
<tr>
<td>Liaw, A.</td>
<td>547, 548, 673</td>
</tr>
<tr>
<td>Lin, Y.</td>
<td>388, 392, 397, 691, 692</td>
</tr>
<tr>
<td>Lindley, D.V.</td>
<td>155, 692</td>
</tr>
<tr>
<td>Ling, R.F.</td>
<td>132, 683</td>
</tr>
<tr>
<td>Lingjaerde, O.C.</td>
<td>136, 692</td>
</tr>
<tr>
<td>Lipman, D.J.</td>
<td>473, 667, 696</td>
</tr>
<tr>
<td>Little, R.J.A.</td>
<td>40, 43, 461, 692</td>
</tr>
<tr>
<td>Littman, M.L.</td>
<td>470, 672</td>
</tr>
<tr>
<td>Lloyd, C.J.</td>
<td>692</td>
</tr>
<tr>
<td>Loader, C.R.</td>
<td>99, 692</td>
</tr>
<tr>
<td>Lodhi, H.</td>
<td>382, 404, 692</td>
</tr>
<tr>
<td>Loh, M.L.</td>
<td>451, 681</td>
</tr>
<tr>
<td>Long, C.</td>
<td>535, 690</td>
</tr>
<tr>
<td>Louis, T.A.</td>
<td>358, 365, 673</td>
</tr>
<tr>
<td>Lugosi, G.</td>
<td>514, 692</td>
</tr>
<tr>
<td>Mack, D.</td>
<td>19, 667</td>
</tr>
<tr>
<td>MacKay, D.J.C.</td>
<td>16, 353, 356, 358–361, 364, 365, 692</td>
</tr>
<tr>
<td>MacNaughton-Smith, P.</td>
<td>420, 692</td>
</tr>
<tr>
<td>MacQueen, J.B.</td>
<td>423, 693</td>
</tr>
<tr>
<td>Macrae, E.C.</td>
<td>64, 692</td>
</tr>
<tr>
<td>Madigan, D.</td>
<td>14, 685</td>
</tr>
<tr>
<td>Madsen, H.</td>
<td>152, 695</td>
</tr>
<tr>
<td>Madsen, M.</td>
<td>660, 693</td>
</tr>
<tr>
<td>Maechler, M.</td>
<td>350, 686</td>
</tr>
<tr>
<td>Makov, U.E.</td>
<td>461, 703</td>
</tr>
<tr>
<td>Mallows, C.L.</td>
<td>147, 155, 157, 693</td>
</tr>
<tr>
<td>Malthouse, E.C.</td>
<td>607, 609, 693</td>
</tr>
<tr>
<td>Mangasarian, O.L.</td>
<td>239, 693, 702</td>
</tr>
<tr>
<td>Mannila, H.</td>
<td>16, 683</td>
</tr>
<tr>
<td>Marčenko, V.A.</td>
<td>205, 693</td>
</tr>
<tr>
<td>Marchini, J.L.</td>
<td>564, 693</td>
</tr>
<tr>
<td>Mardia, K.</td>
<td>693</td>
</tr>
<tr>
<td>Mardia, K.V.</td>
<td>72, 480, 693</td>
</tr>
<tr>
<td>Marquardt, D.W.</td>
<td>131, 156, 693</td>
</tr>
<tr>
<td>Marron, J.S.</td>
<td>97, 104, 683, 688</td>
</tr>
<tr>
<td>Martens, H.</td>
<td>131, 134, 135, 693, 706</td>
</tr>
<tr>
<td>Martin, D.</td>
<td>350, 686</td>
</tr>
<tr>
<td>Martin, J.B.</td>
<td>696</td>
</tr>
<tr>
<td>Martinez, A.R.</td>
<td>630, 693</td>
</tr>
<tr>
<td>Martinez, W.L.</td>
<td>630, 693</td>
</tr>
<tr>
<td>Massy, W.F.</td>
<td>131, 693</td>
</tr>
<tr>
<td>Maxwell, A.E.</td>
<td>595, 691</td>
</tr>
</tbody>
</table>
McClelland, J., 316, 699
McClelland, J.L., 365
McCullagh, P., 255, 351, 694
McCulloch, W.S., 318, 325, 694
McKean, J.W., 191, 675
McLachlan, G.J., 43, 460, 461, 694
McShane, L.M., 42, 442, 701
Mease, A., 518, 694
Mease, D., 529, 694
Meisenheimer, M., 706
Meltzer, P.S., 541, 689
Mengersen, K., 362, 365, 670
Mercer, J., 694
Mesirov, J., 439, 703
Mesirov, J.P., 451, 681
Metropolis, N., 362, 694
Michailidis, G., 515, 675
Mika, S., 628, 683
Miller, A.J., 147, 694
Miller, W., 473, 475, 667, 686
Milner, P.M., 321, 364, 694
Minsky, M.L., 328, 330, 694
Mitchison, G., 503, 677
Mockett, L.G., 420, 692
Moguerza, J.M., 404, 694
Monk, H., 34, 694
Moore, A.W., 271, 686
Morgan, J.N., 313, 695
Morris, C., 71, 72, 678
Mosteller, F., 11, 695
Moyeed, R.A., 578, 579, 691
Muller, K.-R., 609, 612, 631, 699
Munoz, A., 404, 694
Murtagh, F., 437, 691
Myers, E.W., 473, 667
Naes, T., 131, 693
Naik, D.M., 189, 689
Nandi, A.K., 594, 695
Nash, J., 616, 695
Neal, R.M., 353, 355, 361, 364, 365, 695
Needleman, S.B., 473, 695
Nelder, J.A., 255, 351, 694
Nerbonne, J., 476, 695
Nettleton, D., 131, 686
Niyogi, P., 625, 669
Notterman, D., 19, 667
O’Sullivan, F., 87, 695
Oh, M.-S., 478, 489, 492, 502, 695
Oja, E., 460, 569, 594, 687, 695, 704
Ojelund, H., 152, 695
Ojemann, G.A., 364, 673
Olshen, R., 671
Olshen, R.A., 147, 281, 292, 295, 296, 298, 300, 301, 310, 312, 313, 682
Owen, A., 449, 451, 460, 691
Owen, A.B., 695
Oxnard, C.E., 420, 668
Pack, P., 663, 695
Page, L., 476, 671
Panchenko, D., 519
Papert, S.A., 328, 330, 694
Parker, D.B., 365, 695
Parmigiani, G., 42, 695
Parzen, E., 76, 92, 155, 679, 696
Pastur, L.A., 205, 693
Payne, C.D., 168, 672
Peña, D., 230, 696
Pearson, K., 653, 654, 696
Pearson, W.R., 473, 696
Pechura, M., 696
Peel, D., 460, 461, 694
Pendleton, B.J., 364, 677
Penrod, C.S., 92, 676
Pentland, A.P., 22, 704
Peterson, C., 541, 689
Petitcolas, F.A.P., 345, 696
Phatak, A., 136, 696
Piatetsky-Shapiro, G., 8, 16, 679
Pike, R., 476, 689
Pinsker, S., 316, 696
Pitts, W., 318, 325, 694
Platt, J., 403, 696
Plaut, D.C., 316, 685
Poinçot, P., 437, 691
Pregibon, D., 312, 313, 330, 696
Press, S.J., 277, 696
Prieto, F.J., 230, 696
Prince, A., 316, 696
Quinlan, J.R., 281, 697
Rätsch, G., 520, 523, 549, 697
Radmacher, M.D., 42, 442, 701
Ramoni, M.F., 42, 460, 700
Ramsay, J.O., 212, 471, 492, 495, 503, 697
Rao, C.R., 72, 189, 231, 643, 697
Raydan, M., 502, 681
Redner, R.A., 458, 697
Reinsel, G.C., 191, 697
Rencher, A.C., 277, 460, 697
Richardson, S., 361, 365, 681
Ringner, M., 541, 689
Ritov, Y., 517, 670
Rix, H.-W., 706
Robert, C.P., 361, 365, 697
Roberts, S., 594, 698
Rojas, R., 364, 365, 698
Roosen, C.B., 350, 698
Rose, T.G., 28, 260, 691
Rosenberg, C., 316, 700
Rosenblatt, F., 322, 325, 698
Rosenblatt, M., 77, 698
Rosenbluth, A.W., 362, 694
Rosenbluth, M.N., 362, 694
Rothkopf, E.Z., 469, 698
Rousseeuw, P.J., 43, 424–427, 460, 689, 698
Roweis, S.T., 621, 626, 698, 699
Roweth, D., 364, 677
Rozoener, L., 404, 667
Rubin, D.B., 40, 43, 365, 457, 461, 589, 676, 681, 692, 698
Rudin, C., 520, 522, 523, 549, 698
Rumelhart, D., 316
Rumelhart, D.E., 344, 365, 699, 705
Russell, J.S., 271, 686
Särelä, J., 568, 571, 686
Saal, L.H., 541, 689
Salinelli, E., 699
Sammon, J.W., 488, 498, 699
Sander, C., 484, 686
Saul, L.K., 621, 626, 698, 699
Saunders, C., 382, 404, 692
Savage, M., 477, 478, 702
Schölkopf, B., 404, 683, 699
Schafer, J.L., 43, 461, 699
Schimert, J., 350, 686
Schölkopf, B., 609, 612, 628, 631
Schonlau, M., 502, 702
Schroeder, A., 100, 101, 680
Schwab, M., 541, 689
Schwarz, G., 147, 699
Scott, D.W., 80, 85, 86, 88, 89, 93, 97, 103, 104, 700, 702
Sebastiani, P., 42, 460, 700
Seber, G.A.F., 72, 233, 277, 460, 700
Seery, J.B., 502, 690
Segal, M.R., 310, 700
Sejnowski, T., 316, 700
Shahshahani, M., 349, 676
Shallice, T., 316, 685
Shawe-Taylor, J., 382, 404, 674, 675, 692, 700
Sheather, S.J., 98, 104, 688, 700
Shepard, R.N., 469, 700
Shiffrin, R.M., 28, 700
Siemsen, R., 101, 102, 230, 232, 558, 688
Siemon, H.P., 435, 704
Silverman, B.W., 76, 96, 103, 106, 212, 459, 578, 579, 688, 691, 697, 701
Simon, R.M., 42, 442, 701
Simonoff, J., 103, 701
Sims, G.E., 484, 486, 502, 686
Singer, B., 312, 313, 707
Singer, Y., 524, 699
Simon, R.M., 42, 442, 701
Simonoff, J., 103, 701
Sims, G.E., 484, 486, 566, 461, 491, 669, 681, 692, 703
Smith, A.F.M., 155, 365, 366, 461, 491, 669, 681, 692, 703
Smith, H., 154, 677
Smith, T.F., 473, 701
Smola, A.J., 404, 609, 612, 631, 699
Smyth, P., 8, 16, 679, 683
Sommer, C.J., 93, 103, 106, 459, 687
Sondquist, J.A., 695
Sonquist, J.A., 313
Spector, P., 671
Speed, T., 42, 701
Speed, T.P., 452, 677
Spence, I., 501, 701
Spence, T.F., 420, 668
Spiegelhalter, D.J., 361, 365, 681
Sprecher, D.A., 365, 701
Staudt, L., 440, 443, 684
Stein, C., 68, 69, 701
Stern, H.S., 365, 681, 701
Stinchcombe, M., 365, 686
Stone, C., 12, 147, 671
Stone, C.J., 281, 292, 295, 296, 298, 300, 301, 312, 313
Stone, J.V., 594, 701
Stone, M., 121, 154, 701
Stork, D.G., 104, 343, 364, 677, 684
Stovel, K., 477, 478, 702
Street, W.N., 239, 693, 702
Stuart, A., 229, 663, 664, 689, 702
Stuetzle, W., 100, 101, 234, 349–351, 601, 603, 631, 677, 680, 684
Sun, D.X., 3, 674
Swayne, D.F., 232, 470, 672, 702
Swierenga, H., 129, 702
Swineford, F., 587, 686
Szokoly, G., 706
Takane, Y., 498, 702
Tamassia, R., 502, 676
Tamayo, P., 451, 681
Tapia, R.A., 87, 88, 676, 700
Tarpey, T., 631, 702
Tavaré, S., 503, 676
Teller, A.H., 362
Teller, E., 362
Tenenbaum, J.B., 616, 618, 620, 626, 670, 702
Terrell, G.R., 80, 85, 97, 700, 702
Thayer, D.T., 589, 698
Therneau, T.M., 313, 702
Theus, M., 502, 702
Thisted, R.A., 142, 155, 567, 702
Thomas, J., 674
Thomas, J.A., 565
Thompson, J.R., 87, 88, 676, 700
Thorpe, J.A., 631, 703
Thyregod, P., 152, 695
Tibshirani, R., 16, 125, 126, 142, 150, 152, 154, 277, 313, 351, 364, 365, 404, 440, 442, 443, 460, 461, 516, 523, 525, 527–529, 532, 548, 606, 607, 674, 678, 680, 684, 691, 703
Tierney, L., 365, 689, 703
Titterington, D.M., 365, 461, 673, 703
Tollis, I., 502, 676
Tomayo, P., 439, 703
Torgerson, W.S., 480, 502, 703
Trosset, M.W., 492, 502, 703
Tukey, J., 680
Tukey, J.W., 3, 11, 228, 232–234, 461, 556, 558, 679, 695, 703
Tukey, P.A., 558, 703
Turk, M.A., 22, 704
Uitdenbogerd, A., 476, 704
Ultsch, A., 435, 704
Uthurusamy, R., 16, 679
Valdivia-Granda, W.A., 43, 704
Valiant, L.G., 511, 704
van der Heijden, P.G.M., 634, 651, 652, 663, 704
van der Leeden, R., 191, 704
van Wijk, R.J., 129, 704
Vandenberghe, L., 404, 670
Vandewalle, J., 554, 676
Vapnik, V.N., 9, 364, 369, 379, 404, 519, 670, 674, 704
Vayatis, N., 514, 692
Vehtari, A., 365, 690
Velu, R.P., 191, 697
Venables, W.N., 233, 313, 364, 403, 460, 501, 502, 704
Vigário, R., 569, 571, 704
Vinod, H., 424, 704
Volinsky, C.T., 14, 685

Wahba, G., 312, 389, 392, 397, 675, 689, 691
Wald, A., 246, 704
Walker, A.M., 355, 705
Walker, H.F., 458, 697
Walther, G., 442, 703
Wanatabe, M., 461, 705
Wanatabe, T., 343, 684
Wand, M.P., 92, 683
Warmuth, M.K., 520, 523, 549, 697
Waterman, M.S., 42, 473, 503, 676, 691, 701
Watkins, C., 382, 404, 692
Watnick, M.R., 307, 705
Wei, J.S., 541, 689
Weigend, A.S., 344, 354, 356, 359, 672, 705
Weir, I.S., 564, 705
Weisberg, S., 99, 154, 409, 705

Welsch, R.E., 154, 669
Wen, S., 460, 677
Wenk, C., 476, 705
Werbos, P.J., 336, 365, 705
Westermann, F., 541, 689
White, H., 365, 686
Wichern, D.W., 72, 277, 460, 688
Wielandt, H.W., 53, 685
Wilks, M.B., 598, 600, 681
Wilkinson, L., 36, 705
Williams, C.K.I., 613, 629, 705
Williams, R.J., 365
Williams, W.T., 420, 692
Wilson, R., 146, 680
Wishart, J., 72, 705
Wisotski, L., 706
Witten, I.H., 364, 705
Wolberg, W.H., 239, 693, 702
Wold, H., 134–136, 706
Wold, S., 132, 134, 135, 706
Wolf, C., 706
Wolfe, J.H., 459, 706
Wolff, G., 343, 684
Wolpert, D.H., 356, 706
Woodroofe, M., 98, 706
Wright, G.W., 42, 442, 701
Wu, C.F.J., 126, 456, 706
Wunsch, C.D., 473, 695
Wyner, A., 690
Wyner, A.J., 518, 529, 535, 694
Yalcin, I., 590, 706
Yamaguchi, K., 461, 705
Yandell, M., 503, 690
Yang, Y., 28, 260, 691
Ybarra, S., 19, 667
Yianilos, P.N., 629
Young, F.W., 498, 702
Young, G., 52, 502, 677, 706
Yu, B., 532, 672

Zeger, S.L., 42, 695
Zha, H., 628, 707
Zhang, C., 484, 486, 502, 686
Zhang, H., 309, 312, 313, 706
Zhang, Z., 628, 707
Zhao, Y., 42, 442, 701
Zhu, Q., 439, 703
Zidek, J.V., 168, 672
Zobel, J., 476, 704
Zou, H., 150, 707
Subject Index

activation function, 325, 332
 nonlinear, 334
 sigmoidal, 333
AdaBoost, 512–535
additive model, 350, 525
admissible, 69
agglomerative hierarchical clustering
 average linkage, 414, 418–420
 complete linkage, 414, 416–418
 single linkage, 414–416
Akaike Information Criterion, 147
algorithm
 K-means clustering, 424
 K-medoids clustering, 426
AdaBoost, 513
agglomerative hierarchical clustering, 415
backfitting, 351
backpropagation, 336–341, 365
block clustering, 447
classical scaling, 481
coordinate-descent, 526
EM, 455
EM for MLFA, 586
FastICA, 568
FastICA deflation, 570
FastICA MLE, 576
FastICA parallel, 570
forwards-stagewise, 152
Gibbs sampler, 362, 363, 366
gradient boosting, 532
Hessian locally-linear embedding, 628
isomap, 618, 619
iteratively reweighted least-squares, 254, 351
Laplacian eigenmaps, 625, 626
LARS, 153
locally-linear embedding, 622–624
Metropolis, 362, 363
nonmetric distance-scaling, 499
partial least-squares regression, 134, 135
partitioning-around-medoids clustering, 426
projection pursuit density estimation, 101
projection-expectation, 604–606
random forest, 537
rank trace, 186
self-organizing map, 432
amino acids, 473
analysis of variance, 115
Anderson, Edgar, 274
apparent error rate, 121
artificial intelligence, 329
artificial neural networks, 315–367
asymptotic covariance matrix, 183
asymptotic integrated variance, 83
average log-intensity, 19
average optimism, 124
average shifted histogram, 101, 104
bagging, 506–509, 511
Bayes estimator, 139
Bayes risk, 109
Bayes rule, 109
Bayes’s rule classifier, 242, 262
Bayesian Information Criterion, 147
Bayesian MDS, 489, 491, 492
Bayesian networks
 classification, 359
 regression, 353
bias-variance decomposition, 140
BIC — see Bayesian Information Criterion, 147
bin width, 84
blind source separation, 551–596
block clustering, 444
BLOSUM62 matrix, 474, 475
boosting, 511–535
bootstrap, 13
 conditional, 126
box constraint, 378
Box–Behnken design, 166
bridge regression, 155
British general election, 168
bump-hunting, 103
Burt matrix, 638, 659
Cajal, Santiago Ramón, 320
canonical correlation
 coefficient, 222, 223
canonical correlation analysis, 180, 195, 215–228
canonical variate analysis, 180, 189, 195, 215–228, 645
canonical variate scores, 226
CART — see classification and regression trees, 281
Cartan, Élie, 615
class prediction, 238
classical scaling, 480
classification and regression trees, 281–314
classification margin, 518–523
classification regions, 262
classification rule, 237
classification tree
 binary split, 282
 nonterminal node, 282
 root node, 282
 stump, 282
 terminal node, 282
classifier
 base, 506, 511
 boosted, 511
 combined, 506
claw density, 106
cluster analysis, 407–462
clustering method
 K-means, 423
 K-medoids, 426
 fuzzy, 425
 nonhierarchical, 422
 partitioning around medoids, 424
clustering variables, 439
cocktail-party problem, 552, 559
cognitive science, 315
collinearity indices, 128
common factors, 582
communality, 582
complete-case analysis, 40
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>complexity parameter</td>
<td>295, 300, 306</td>
</tr>
<tr>
<td>complexity term</td>
<td>147, 344</td>
</tr>
<tr>
<td>condition number</td>
<td>52, 128</td>
</tr>
<tr>
<td>confidence interval</td>
<td>165</td>
</tr>
<tr>
<td>confirmatory factor analysis</td>
<td>590</td>
</tr>
<tr>
<td>confusion table</td>
<td>246, 247, 430, 431</td>
</tr>
<tr>
<td>connection weight</td>
<td>323</td>
</tr>
<tr>
<td>convex optimization</td>
<td>373, 378</td>
</tr>
<tr>
<td>correlation coefficient</td>
<td>58</td>
</tr>
<tr>
<td>correlation matrix</td>
<td>58</td>
</tr>
<tr>
<td>correspondence analysis</td>
<td>180, 633–666</td>
</tr>
<tr>
<td>correspondence maps</td>
<td>650</td>
</tr>
<tr>
<td>cost-complexity pruning measure</td>
<td>295</td>
</tr>
<tr>
<td>covariance</td>
<td>58</td>
</tr>
<tr>
<td>covariance matrix</td>
<td>57, 58, 63</td>
</tr>
<tr>
<td>cross-entropy</td>
<td>102, 565</td>
</tr>
<tr>
<td>cross-validation</td>
<td>96</td>
</tr>
<tr>
<td>V-fold</td>
<td>12, 300, 307</td>
</tr>
<tr>
<td>biased</td>
<td>85</td>
</tr>
<tr>
<td>generalized approximate</td>
<td>397</td>
</tr>
<tr>
<td>leave-one-out</td>
<td>85, 96, 397</td>
</tr>
<tr>
<td>leave-one-out rule</td>
<td>246</td>
</tr>
<tr>
<td>unbiased</td>
<td>85, 96</td>
</tr>
<tr>
<td>curse of dimensionality</td>
<td>41–42, 379, 458</td>
</tr>
<tr>
<td>curves and curvature</td>
<td>601–603</td>
</tr>
<tr>
<td>Daniel, Cuthbert</td>
<td>155</td>
</tr>
<tr>
<td>data augmentation</td>
<td>156</td>
</tr>
<tr>
<td>data compression</td>
<td>215</td>
</tr>
<tr>
<td>data integration</td>
<td>32, 33</td>
</tr>
<tr>
<td>data mining</td>
<td>3</td>
</tr>
<tr>
<td>data storage</td>
<td></td>
</tr>
<tr>
<td>data warehouse</td>
<td>33–35</td>
</tr>
<tr>
<td>trends</td>
<td>26, 27</td>
</tr>
<tr>
<td>data types</td>
<td>25–26</td>
</tr>
<tr>
<td>database management systems</td>
<td>29, 30</td>
</tr>
<tr>
<td>databases</td>
<td></td>
</tr>
<tr>
<td>general</td>
<td>24</td>
</tr>
<tr>
<td>Internet</td>
<td>27</td>
</tr>
<tr>
<td>microarray</td>
<td>28</td>
</tr>
<tr>
<td>natural-language text</td>
<td>27–29</td>
</tr>
<tr>
<td>DBMS — see database management systems</td>
<td>29</td>
</tr>
<tr>
<td>de Nélo Lorente</td>
<td>321</td>
</tr>
<tr>
<td>decision support system</td>
<td>35</td>
</tr>
<tr>
<td>decision tree</td>
<td>281</td>
</tr>
<tr>
<td>decomposition</td>
<td></td>
</tr>
<tr>
<td>singular value</td>
<td>647</td>
</tr>
<tr>
<td>spectral</td>
<td>131</td>
</tr>
<tr>
<td>deconvolution problem</td>
<td>559</td>
</tr>
<tr>
<td>dendrogram</td>
<td>411</td>
</tr>
<tr>
<td>directed acyclic graph</td>
<td>322</td>
</tr>
<tr>
<td>discriminant coordinates</td>
<td>271</td>
</tr>
<tr>
<td>disparities</td>
<td>493</td>
</tr>
<tr>
<td>dissimilarity</td>
<td>471</td>
</tr>
<tr>
<td>1-correlation</td>
<td>413</td>
</tr>
<tr>
<td>Euclidean</td>
<td>413</td>
</tr>
<tr>
<td>Manhattan city-block</td>
<td>413</td>
</tr>
<tr>
<td>Minkowski</td>
<td>413</td>
</tr>
<tr>
<td>distance</td>
<td></td>
</tr>
<tr>
<td>chi-squared metric</td>
<td>642</td>
</tr>
<tr>
<td>edit</td>
<td>476</td>
</tr>
<tr>
<td>Euclidean</td>
<td>479</td>
</tr>
<tr>
<td>Hellinger</td>
<td>79</td>
</tr>
<tr>
<td>Levenshtein</td>
<td>476</td>
</tr>
<tr>
<td>Mahalanobis</td>
<td>60</td>
</tr>
<tr>
<td>Manhattan city-block</td>
<td>479</td>
</tr>
<tr>
<td>Minkowski</td>
<td>479</td>
</tr>
<tr>
<td>distance scaling</td>
<td>486</td>
</tr>
<tr>
<td>metric</td>
<td>487</td>
</tr>
<tr>
<td>metric least-squares</td>
<td>488</td>
</tr>
<tr>
<td>nonmetric</td>
<td>492</td>
</tr>
<tr>
<td>distribution</td>
<td></td>
</tr>
<tr>
<td>bivariate Gaussian</td>
<td>61</td>
</tr>
<tr>
<td>chi-squared</td>
<td>74</td>
</tr>
<tr>
<td>Gaussian</td>
<td>59</td>
</tr>
<tr>
<td>inverse-gamma</td>
<td>491</td>
</tr>
<tr>
<td>multivariate Gaussian</td>
<td>59–62</td>
</tr>
<tr>
<td>Normal</td>
<td>59</td>
</tr>
<tr>
<td>Student’s t</td>
<td>165</td>
</tr>
<tr>
<td>sub-Gaussian</td>
<td>564</td>
</tr>
<tr>
<td>super-Gaussian</td>
<td>564</td>
</tr>
<tr>
<td>Wishart</td>
<td>63, 74, 165, 585</td>
</tr>
<tr>
<td>divisive hierarchical clustering</td>
<td>420</td>
</tr>
</tbody>
</table>
DSS — see decision support system, 35
dual
 functional, 374, 377, 396
 variables, 373
dynamic graphics, 232
 correlation tour, 233
 grand tour, 232
 PRIM-9, 232, 234
 XGobi/GGobi, 232, 234

Edgeworth, Francis Ysidro, 107
effective degrees of freedom, 142
effective dimensionality, 178, 185
eigenfaces, 22, 210
elastic net, 150
EM algorithm
 convergence properties, 456
 general, 40, 453–456
 mixture models, 103, 457–459
empirical orthogonal functions, 196
entropy function, 288
ero error covariance matrix, 161, 165, 175
error sum of squares, 111
error-complexity measure, 306
exploratory data analysis (EDA), 3
exploratory factor analysis, 180, 582–588
expression level, 18
factor indeterminancy, 584
factor loadings, 582
feasible region, 378
feature extraction, 195
feature map, 379
feature space, 379
feedforward network, 323, 325
finite mixture of Gaussians, 591
Fisher, Ronald Aylmer, 180
Floyd’s algorithm, 618
forwards stagewise, 152, 525
frequency polygon, 104
full-rank regression, 177
full-rank regression coefficient matrix, 179, 181
functional CVA, 578
functional data, 212
functional PCA, 212, 214
Galton, Francis, 107
gap statistic, 442
garotte, 151, 152
gene clustering, 440–443
gene shaving, 440–443
generalization, 11
generalization error, 13, 117, 505, 508, 515, 537, 538
generalized additive models, 348, 351, 364
generalized inverse, 50, 131, 164
 Moore–Penrose, 51, 131, 222, 583
 reflexive, 51
generalized least-squares, 157, 162, 255
generalized-inverse regression, 156
generalized-inverse regression, 131
Gini index, 288, 289, 543
goodness of split, 289
gradient boosting, 530
gradient-descent algorithm, 326
hat matrix, 113, 164
heatmap, 19, 20
Hebbian learning theory, 320
hemoglobin
 alpha chain, 475
 beta chain, 475
Hessian eigenmaps, 626, 627
high-leverage points, 113
Hilbert space, 379, 380
histogram, 80–86
 origins, 104
Hotelling’s T^2 statistic, 248
Hotelling, Harold, 180, 222, 223
Human Genome Project, 18
ICA model
noiseless, 560
noisy, 582
ill-conditioned data, 128, 129
image analysis, 196
impurity function, 284, 288
imputation
 multiple, 40
 single, 40
IMSE — see integrated
 mean-squared error, 78
inadmissible, 68
independent component analysis
 (ICA), 553–569, 571–573,
 575–581
independent factor analysis, 590–
 594
independent test set, 299, 306
inequality
 Cauchy–Schwarz, 327, 380
 Chebychev, 539
 Jensen, 565
Inmon, W.H., 33
instability, 505
integrated absolute error, 79
integrated mean-squared error, 78
intensity log-ratio, 19
interquartile range, 84
isomap, 616–621
isotonic (monotonic) regression, 493
istribution
 multivariate Gaussian, 59
Jacobi family of orthogonal poly-
 nomials, 227
Jacobian, 227
James–Stein estimator, 69–72
Kaiser’s rule, 132, 208, 209, 430
Karhunen–Loève
 expansion, 214
 transform, 196, 201
Karush–Kuhn–Tucker conditions,
 373, 378, 384, 396, 400,
 405
kernel
 Bartlett–Epanechnikov, 90
 biweight, 90
 cosine, 90
 Dirichlet, 405
 Gaussian, 90
 Gaussian radial basis
 function, 381
 Laplacian, 381
 Mercer, 380
 polynomial, 90, 380, 381
 product, 91
 rectangular, 90
 sigmoid, 381
 string, 382
 thin-plate spline, 381
 triangular, 90
 triweight, 90
kernel CVA, 576, 578–580
kernel density estimates, 240, 241,
 261
kernel density estimation, 88–100
kernel function, 89, 379
kernel generalized variance, 581
kernel ICA, 575, 577, 578, 580,
 581
kernel methods, 370, 609
kernel PCA, 609–613
kernel trick, 379, 611, 613
knowledge discovery, 8
Kronecker product, 47, 162
Kryder’s Law, 26
Kullback–Leibler
 deviance, 336
 divergence, 564
 relative entropy, 79
kurtosis, 595
Laplace’s method, 353, 355, 365
Laplace, Pierre Simon, 107
Laplace–Beltrami operator, 625
LARS-forward stagewise, 154
LARS-lasso, 153
lasso, 150, 152
latent variable models, 551–596
latent variables, 133, 551
learning set, 11
learning-rate parameter, 326
least-angle regression, 152
least-squares
 origins, 107
leave-one-out rule, 122
Legendre, Adrien Marie, 107
leverage, 113
likelihood function, 65
likelihood-ratio test, 192
linear activation function, 323
linear constraints, 168
linear discriminant analysis, 180, 238, 251
 Gaussian, 243
linear discriminant function, 240, 241, 243, 247, 261
linear regression model, 108
LLE — see locally-linear embedding, 621
locally-linear embedding, 621, 622, 624
logistic discrimination, 256, 265
logistic regression, 250, 525
logistic sigmoid activation function, 250, 266
loss function, 109
 absolute-error, 533
 binomial, 533
 exponential, 516
 hinge, 388
 Huber, 533
 linear epsilon-insensitive, 398, 399
 logistic, 532
 quadratic epsilon-insensitive, 398, 399
 squared-error, 68, 532
lossy data compression, 196
machine learning, 9
Macsyma, 330
majority-vote rule, 508
Mallows C_P, 147
manifold
differentiable, 616
Riemannian, 616
S-shaped, 614, 615
Swiss Roll, 617
topological, 615
MANOVA
 between-class covariance matrix, 264
 general linear hypothesis, 174
 Hotelling–Lawley trace statistic, 174
 identity, 264
 pooled within-class covariance matrix, 264
 Roy’s largest root statistic, 174
 Wilk’s lambda, 174
MANOVA — see multivariate analysis of variance, 173
MANOVA table, 174
MAP estimation, 352, 353
MAR — see missing at random, 40
margin, 372
margin function, 538
Markov chain Monte Carlo methods, 353, 361, 365, 491
MARS — see multivariate adaptive regression splines, 311
matrix
 commutation, 64
 Gram, 380, 384, 581
 Hessian, 55, 254
 ill-conditioned, 52
 Jacobian, 54
 permuted-identity, 64
matrix decomposition
 Cholesky, 46, 66
 LR, 46
 QR, 46
 singular-value (SVD), 50
maximal margin classifier, 371
maximal margin solution, 373
maximum likelihood, 81
maximum likelihood (ML), 65
maximum penalized likelihood, 87, 88
maximum-likelihood factor analysis, 584–588
MCAR — see missing completely at random, 40
McCulloch-Pitts neuron, 318, 319, 322, 366
MDS — see multidimensional scaling, 463
mean integrated absolute error, 79
mean integrated squared error, 78
metaparameter, 132
metric stress function, 488
MIAE — see mean integrated absolute error, 79
microarray
cDNA, 18
oligonucleotide, 18
microarray experiments, 541
minimizing subtree, 295, 296
misclassification rate, 294, 300, 508
MISE — see mean integrated squared error, 78
missing at random, 40
missing completely at random, 40
missing data, 39, 40, 312
mixing function, 558
mixing matrix, 558
mixing proportions, 592
model error, 119, 120
monotone spline, 493, 495–497
Moore’s Law, 27
Moore, Gordon E., 27
multiclass classification
one-versus-one, 390
one-versus-rest, 390
multidimensional scaling, 463–465, 467–482, 484–489, 491–501
multimodality, 103
multiple correspondence analysis, 658–662
multiple logistic discrimination, 266
multiple logistic model, 266
multiple regression, 247
multivariate adaptive regression splines, 311
multivariate analysis of variance, 173
multivariate inverse calibration, 21
multivariate kernel density estimator, 89
multivariate linear regression model, 177
multivariate outliers, 230, 545, 547
multivariate reduced-rank regression, 160, 176–178, 180, 184, 188–190, 192, 195, 200, 222, 228, 233, 335, 583
multivariate regression, 159, 161
multivariate ridge regression, 168
mutual information, 565
network complexity, 334, 341
network pruning, 343
neural network
Bayesian learning, 352
fully connected, 332
multilayer autoassociative, 607–609
partially connected, 332
skip-level connection, 333
NIPALS algorithm, 136
node impurity function, 287
noisy class labels, 535
nonlinear dimensionality reduction, 597–613
nonlinear manifold learning, 613, 615–631
nonparametric density estimate, 246
nonparametric density estimation, 75–103
norm
matrix, 51
spectral, 52
objective function, 561
Ockham’s razor, 13, 343
OLAP — see on-line analytical processing, 36
OLTP — see on-line transaction processing, 32
on-line analytical processing, 35, 36
on-line learning, 326
on-line transaction processing, 32
one-SE rule, 301
optimal brain surgery, 343
optimal separating hyperplane, 371, 372, 375
optimal sequence alignment, 472
optimism, bootstrap estimator, 125
out-of-bag (OOB), 507, 509
out-of-bootstrap, 125
outliers, 38, 39, 219, 230, 256
outliers in PCA, 215
overfitting, 13, 143, 343

PAC — see probably approximately correct learning, 511
partial least-squares regression, 133
pattern recognition, 196
Pearson residual, 647
Pearson’s chi-squared, 643
Pearson, Karl, 108
penalized least-squares, 148
penalty coefficient, 146
penalty function, 148–150, 344
lasso, 149, 150
ridge regression, 149
perceptron
convergence theorem, 326–328
learning rule, 326
limitations, 328
multilayer, 330, 331
single layer, 322, 324
phylogenetic tree, 477
PLSR — see partial least-squares regression, 133
plug-in classifier, 265
plurality rule, 292
polyaromatic hydrocarbon (PAH) compounds, 21
polynomial PCA, 598–600
posterior probability, 242, 262
prediction, 117
prediction error, 10, 12, 15, 117, 119–121, 228
0.632 bootstrap estimator, 125
apparent error rate, 121, 123, 147, 285
leave-one-out bootstrap estimator, 125
resubstitution error rate, 121, 147, 285
simple bootstrap estimator, 123
predictive sample-reuse method, 154
predictor
base, 506
combined, 506
primal
functional, 376, 395
variables, 373, 374
primal functional, 373
principal component analysis, 180, 195–215
principal components, 132, 431
principal components regression, 131
principal coordinates, 482, 649
principal curves and surfaces, 600–610
principal inertias, 646
principal-factor method, 584
prior probabilities, 241, 262
probably approximately correct learning, 511
profile analysis, 169, 172
projection index, 102, 229, 561
Friedman–Tukey, 102
moment-based, 230
polynomial-based, 230
Shannon negentropy, 229, 231
third and fourth moments, 102, 229
two-dimensional, 231
variance, 229
projection pursuit (PP), 228
density estimation, 100–102
exploratory, 556, 557
origins, 233
regression, 348–350, 364
protein sequences, 472
proximity, 412, 463, 471, 545, 546
proximity matrix, 413, 424, 425, 471, 477, 478, 480, 491, 504
pruning, 295
quadratic discriminant analysis, 257, 265
quadratic discriminant function, 257
Quarter-Circle Law, 205
Raman near-infrared spectroscopy, 130
Raman NIR spectra, 130
random forests, 536–548
random input selection, 536
random matrix theory, 205
random split selection, 536
rank trace, 186–190, 207, 235
CV, 228
PC, 208
recursive partitioning, 281–283, 291
reduced-rank regression coefficient matrix, 179, 181, 200, 204, 223
regression coefficient matrix, 175, 186
regression function, 109, 111, 119, 152
regression tree, 304
regularization, 87, 344, 533, 578
regularization parameter, 148, 151, 360, 376
relational DBMS, 29
reproducing kernel, 380
reproducing kernel Hilbert space, 380, 387, 392, 576, 577
reproducing property, 380, 389
resampling method
bootstrap, 121, 122
bootstrap, unconditional, 122
cross-validation, 121, 122
residual covariance matrix, 165, 186
residual matrix, 164
residual sum of squares, 113
residual sum-of-squares matrix, 165
residual variance, 114
residuals, 114
resubstitution error rate, 294, 302
ridge regression, 149, 152, 167
estimator, 136, 154
ridge matrix, 168
ridge parameter, 129, 138, 142, 168
ridge trace, 141, 144
Riemann, Georg Friedrich Bernhard, 615
rotation matrix, 584
roughness, 83
roughness penalty functional, 87
RRR — see multivariate reduced-rank regression, 176
rule-based expert system, 329
DENDRAL, 329
EMYCIN, 329
MYCIN, 329
Rex, 330
Sammon mapping, 488
sample covariance matrix, 67
sampling, 245
scalability, 5
scatterplot smoothers, 350
Scott’s rule, 84
scree plot, 205, 206, 208, 235, 501, 573
self-organizing map (SOM), 431–439
separate ridge regression, 167
separating function, 370
separating hyperplane, 371, 372
sequence alignment
alignment score, 473
gap score, 474
global, 473
local, 473
substitution score, 474
Shannon, Claude E., 231
Shepard diagram, 493, 495
shrinkage estimator, 134, 138, 139
lasso, 150
shrinkage factor, 71, 129
sigmoidal functions, 324
silhouette plot, 426–428, 430
similarity, 471
simple correspondence
analysis, 635–658
SIMPLS algorithm, 136
single-layer network, 323
slack variable, 376
smallest minimizing subtree, 297, 298
softcomputing, 366
softmax, 266
softmax function, 336
specific factors, 582
spherical Gaussian density, 60
SQL — see Structured Query Language, 32
square asymmetric contingency tables, 651–658
squared correlation coefficient, 223
squared multiple correlation coefficient, 115, 128, 223
Star Trek, 345
Stein effect, 71
Stein’s Lemma, 70, 74
Stein’s paradox, 71
Stein, Charles, 68
stress function, 497, 498
string matching, 476
Structural Classification System of Proteins (SCOP), 472
Structured Query Language, 30–32
supervised learning, 10, 237
support vector machines, 369–406
linear, 370–378
multiclass, 390–397
nonlinear, 378–390
support vector machines, linear
linearly nonseparable case, 376–378
linearly separable case, 371–375
support vector regression, 398–401
support vectors, 371, 372, 374, 375, 397, 401
surrogate splits, 312
survival trees, 310
SVM — see support vector machines, 369
Swiss-Protein database, 475
test set, 11
text categorization, 260, 382
theorem
Courant–Fischer Min-Max, 52, 202
Eckart–Young, 52, 178, 665
Fubini, 78
Gauss–Markov, 112, 156, 162
generalized mean value, 82
Hoffman–Wielandt, 53, 72
Poincaré Separation, 53, 179, 220
representer, 389
spectral, 49
spectral decomposition, 199
universal approximation, 333, 334, 365
threshold activation function, 324
threshold logic unit, 319
total inertia, 646
total misclassification probability, 244
Tukey, John, W., 232
two-way clustering
 biclustering, 447
 plaid models, 449
two-way contingency tables, 635–658
unified-distance matrix, 435
uniqueness, 582
unmixing matrix, 560
unsupervised learning, 10, 407
validation set, 11
Vandermonde determinant, 205, 227
variable selection
 all possible subsets, 146
 backwards elimination, 144, 255
 criticisms, 146, 147
 forwards selection, 145
 hybrid stepwise, 145
variable-importance plots, 544
variance inflation factor, 128
varimax rotation, 584
VC dimension, 519
weight-decay regularizer, 360
window width, 89
Wishart matrix, 206, 236
witchcraft, 154
World Wildlife Fund–UK, 19
Yule, George Udny, 108
Statistical Design
George Casella

The goal of this book is to describe the principles that drive good design, paying attention to both the theoretical background and the problems arising from real experimental situations. Designs are motivated through actual experiments, ranging from the timeless agricultural randomized complete block, to microarray experiments, which naturally lead to split plot designs and balanced incomplete blocks.

ISBN 0-387-75964-7

Time Series Analysis with Applications in R
Johnathon D. Cryer and Kung-Sik Chan

Time Series Analysis With Applications in R, Second Edition, presents an accessible approach to understanding time series models and their applications. Although the emphasis is on time domain ARIMA models and their analysis, the new edition devotes two chapters to the frequency domain and three to time series regression models, models for heteroscedasticity, and threshold models. All of the ideas and methods are illustrated with both real and simulated data sets. A unique feature of this edition is its integration with the R computing environment.

ISBN 0-387-75958-6

Pattern Recognition and Machine Learning
Christopher M. Bishop

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential. The book includes an introduction to basic probability theory.

Easy Ways to Order►
Call: Toll-Free 1-800-SPRINGER • E-mail: orders-ny@springer.com • Write: Springer, Dept. S8113, PO Box 2485, Secaucus, NJ 07096-2485 • Visit: Your local scientific bookstore or urge your librarian to order.
Privacy Statement

MetaPress is committed to respecting data-protection regulations. This statement informs you of the steps we take to protect your rights.

By personal data we mean (a) the details you provide us via our forms, e.g. your email address, all ordering and billing information, such as postal addresses and payment details, and (b) all data captured in authentication and tracking logs.

By using our site and by registering for any of our services or products, you accept that such personal data will be gathered and stored in our databases.

We will maintain appropriate safeguards to ensure the security, integrity and privacy of your personal data. We do not share personal data with other companies for marketing or similar purposes.

This data will be used by MetaPress to provide you with the services and products you have ordered. We may also occasionally use it to inform you of new services and products related to those you have ordered and of changes and activities within MetaPress. By registering for services and products in MetaPress, you agree to MetaPress using your email address in this way.

Authentication and tracking logs will be used to produce usage statistics. This information does not contain any personally identifiable information. MetaPress reserves the right to have logs and databases analyzed by external service providers, in which case every effort will be made to protect the security, integrity and privacy of the data.

Please note that we take no responsibility for personal data posted on any open forums or message boards.

Disclaimer

MetaPress cannot take responsibility for information found on third party Web sites outside its control. While we attempt to provide links only to third-party Web sites that comply with all applicable laws and regulations and our standards, please understand that the content on these third-party Web sites is subject to change without notice to MetaPress. We therefore cannot be responsible for, and accept no liability for, any information or opinion contained in any third-party web site.